植物生理学名词解释 (1)

合集下载

植物生理学名词解释

植物生理学名词解释

1.光敏色素:植物体内存在着的能吸收红光和远红光并具有可逆转能力的水溶性色素蛋白。

2.自由水:指不被胶体颗粒或渗透物质所吸附或吸附力很小而能自由移动的水。

3.束缚水:细胞中被蛋白质等亲水性生物大分子组成的胶体颗粒或渗透物质所吸附不能自由。

移动的水。

4.单盐毒害:任何植物,假若培养在某种单一盐溶液中,不久即呈现不正常状态,最后死亡。

这种单一盐溶液对植物的毒害现象称为单盐毒害。

5.离子拮抗:若在单盐溶液中加入少量其他盐类,单盐毒害现象就会减弱或者消除。

这种离子间能够互相消除毒害的现象,称离子拮抗,也称离子对抗。

6.平衡溶液:由多种盐按一定比例组合而成的能使植物生长良好的溶液。

7.无氧呼吸消失点:指使植物体内无氧呼吸停止进行的外界气体环境中氧的含量。

8.转移细胞:在疏导组织末梢存在的一些具有物质转移功能的特化细胞,其显著特点是:细胞壁向内伸向细胞质,形成许多褶皱,质膜的表面积大大增加,富含ATP酶,为跨膜运输提供足够的能量。

9.第二信使:又称细胞信号转导过程中的次级信号,是指细胞感受胞外环境信号和胞间信号后产生的、将细胞外信息转变为细胞内信息的胞内信号分子。

10.极性运输:生长素只能从植物体的形态学上端向下端运输,而不能倒转过来运输的现象。

同时这种生长素的极性运输可以逆浓度梯度进行。

11.永久萎蔫系数:植物刚刚发生永久萎蔫时土壤中尚存的水分含量(占土壤干重的百分数)。

达到永久萎蔫时土壤所含的水分植物不能利用,属无效水分。

12.生长大周期:指植物一生的生长进程中其生长速率总是表现出慢-快-慢的变化规律。

如果以植物生长的体积、干重等参数对时间做图则可得“S”形曲线。

这种周期性的变化规律称为生长大周期。

13.生物钟:也称生理钟,生物体内存在的一种测时系统,由此系统控制生物在无重力、光照、温度、压力等条件的变化下,按其原有的时期呈周期性运动。

接近24小时周期性、节奏性的变化现象。

14.光周期现象:指植物生长对昼夜温度周期性变化的反应,即白天温度高,夜间温度低对植物有利的现象称为光周期现象。

植物生理学名词解释

植物生理学名词解释

一1.原核细胞(prokaryotic-cell) 无典型细胞核的细胞,其核质外面无核膜,细胞质中缺少复杂的内膜系统和细胞器。

由原核细胞构成的生物称原核生物(prokaryote)。

细菌、蓝藻等低等生物属原核生物。

2.真核细胞(eukaryotic-cell) 具有真正细胞核的细胞,其核质被两层核膜包裹,细胞内有结构与功能不同的细胞器,多种细胞器之间有内膜系统联络。

由真核细胞构成的生物称为真核生物(eukayote)。

高等动物与植物属真核生物。

3.原生质体(protoplast) 除细胞壁以外的细胞部分。

包括细胞核、细胞器、细胞质基质以及其外围的细胞质膜。

原生质体失去了细胞的固有形态,通常呈球状。

4.细胞壁(cell-wall) 细胞外围的一层壁,是植物细胞所特有的,具有一定弹性和硬度,界定细胞的形状和大小。

典型的细胞壁由胞间层、初生壁以及次生壁组成。

5.生物膜(biomembrane) 即构成细胞的所有膜的总称,它由脂类和蛋白质等组成,具有特定的结构和生理功能。

按其所处的位置可分为质膜和内膜。

6.共质体(symplast) 由胞间连丝把原生质(不含液泡)连成一体的体系,包含质膜。

7.质外体(apoplast) 由细胞壁及细胞间隙等空间(包含导管与管胞)组成的体系。

8.内膜系统(endomembrane-system) 是那些处在细胞质中,在结构上连续、功能上关联的,由膜组成的细胞器总称。

主要指核膜、内质网、高尔基体以及高尔基体小泡和液泡等。

9.细胞骨架(cytoskeleton) 指真核细胞中的蛋白质纤维网架体系,包括微管、微丝和中间纤维等,它们都由蛋白质组成,没有膜的结构,互相联结成立体的网络,也称为细胞内的微梁系统(microtrabecular system)。

10.细胞器(cell-organelle) 细胞质中具有一定形态结构和特定生理功能的细微结构。

依被膜的多少可把细胞器分为:双层膜细胞器如细胞核、线粒体、质体等;单层膜细胞器如内质网、液泡、高尔基体、蛋白体等;无膜细胞器如核糖体、微管、微丝等。

植物生理学名词解释

植物生理学名词解释

植物生理学名词解释第一章植物的水分生理1.水势:(water potential)水溶液的化学势与纯水的化学势之差,除以水的偏摩尔体积所得商。

2.渗透势:(osmotic potential)亦称溶质势,是由于溶质颗粒的存在,降低了水的自由能,因而其水势低于纯水水势的水势下降值。

3.压力势:(pressure potential)指细胞的原生质体吸水膨胀,对细胞壁产生一种作用力相互作用的结果,与引起富有弹性的细胞壁产生一种限制原生质体膨胀的反作用力。

4.质外体途径:(apoplast pathway)指水分通过细胞壁、细胞间隙等没有细胞质部分的移动,阻力小,移动速度快。

5.共质体途径:(symplast pathway)指水分从一个细胞的细胞质经过胞间连丝,移动到另一个细胞的细胞质,形成一个细胞质的连续体,移动速度较慢。

6.渗透作用:水分从水势高的系统通过半透膜向水势低的系统移动的现象。

7.根压:(root pressure)由于水势梯度引起水分进入中柱后产生的压力。

8.蒸腾作用:(transpiration)指水分以气体状态,通过植物体的表面(主要是叶子),从体内散失到体外的现象。

9.蒸腾速率:(transpiration rate)植物在一定时间内单位叶面积蒸腾的水量。

10.蒸腾比率:(transpiration ratio)光合作用同化每摩尔CO2所需蒸腾散失的水的摩尔数。

11.水分利用率:(water use efficiency)指光合作用同化CO2的速率与同时蒸腾丢失水分的速率的比值。

12.内聚力学说:(cohesion theory)以水分具有较大的内聚力足以抵抗张力,保证由叶至根水柱不断来解释水分上升原因的学说。

13.水分临界期:(critical period of water)植物对水分不足特别敏感的时期。

第二章植物的矿质营养1.矿质营养:(mineral nutrition)植物对矿物质的吸收、转运和同化。

《植物生理学》名词解释

《植物生理学》名词解释

《植物生理学》名词解释1、春化作用:春化作用是指低温促进植物开花的作用。

2、水分临界期:水分临界期是指植物在生命周期中,对缺水最敏感、最易受害的时期。

3、光形态建成:光形态建成是指光控制植物生长、发育和分化的过程。

4、三重反应:用乙烯处理植物幼苗后,出现的抑制伸长生长、促进茎增粗、促进茎横向生长的现象称为三重反应。

5、末端氧化酶:末端氧化酶是指处于生物氧化反应的最末端,将底物脱下的H+或e-传递给O2,从而形成H20或H2O2的氧化酶。

6、临界日长:临界日长是指诱导长日植物开花所需的最短日照长度或诱导短日植物开花所需的最长日照长度。

7、临界夜长:临界夜长是指诱导短日植物开花所需的最短暗期或诱导长日植物开花所需的最长暗期。

8、感性运动:感性运动是指植物受无定向的外界刺激而引起的运动。

9、向性运动:向性运动是指植物受外界单方向刺激产生的生长性运动。

10、向光性:向光性是指植物向光照入射方向弯曲的反应。

11、自由水:自由水是指距离胶粒较远而可以自由流动的水,其含量制约植物的代谢强度。

12、束缚水:束缚水是指靠近胶粒而被胶粒所束缚不易自由流动的水。

13、溶液培养法:又名水培法,是指在含有全部或部分营养元素的溶液中栽培植物的方法。

14、荧光现象:荧光现象是指叶绿素溶液在透射光下呈绿色,在反射光下呈红色的现象。

15、同化能力:由于ATP和NADPH用于碳反应中CO2的同化,因此将这两种物质统称为同化能力。

16、光补偿点:光补偿点是指同一叶片在同一时间内光合作用吸收的CO2与呼吸作用放出的CO2相等时的外界光照强度。

17、光饱和点:在一定范围内,植物的光合作用强度随光照强度的上升而增加,当光照强度上升到某一数值之后,光合作用强度不再随光照强度的上升而增加,这个数值称为光饱和点。

18、CO2补偿点:CO2补偿点是指在一定的光照条件下,叶片进行光合作用所吸收的CO2量与叶片进行呼吸作用所释放的CO2量达到动态平衡时,外界环境中的CO2浓度。

植物生理学名词解释

植物生理学名词解释

][][][][2/1][AMP ADP ATP ADP ATP +++=能荷的物质的量吸收的的物质的量放出的22O CO RQ =℃时的速率℃时的速率T T Q )10(10+=植物生理学名词解释第一章: 水势:每偏摩尔体积水的化学势差。

m ol N m /mol /m 3∙==水的偏摩尔体积水的化学势水势 细胞水势是由4个势组成。

分别为溶质势,压力势,重力势,衬质势。

渗透作用:水分从水势高的系统通过半透膜向水势低的系统移动的现象。

根压:依靠根部水势梯度使水沿导管上升的动力。

蒸腾作用:是指水分以气体状态,通过植物体的表面从体内散失到体外的现象。

水分临界期:植物对水分不足特别敏感的时期。

第二章:矿质营养:植物对矿物质的吸收、转运和同化。

被动运输:指离子跨过生物膜不需要代谢供给能量,是顺电化学势梯度想下进行的运输方式。

包括简单扩散和协助扩散。

主动运输:指离子跨国生物膜需要代谢供给能量,逆电化学势梯度向上进行运输的方式。

生物膜:细胞的外周膜和内膜系统称为生物膜。

第三章:增益效应:因两种波长的光协同作用而增加光合效率的现象光合单位:由叶绿素、类胡萝卜素、脂质和蛋白质组成的复合物。

在生理上形成协同作用的 一个功能单位的色素分子的数量。

希尔反应:在光照下,离体叶绿体泪囊体能将含有高铁的化合物还原为低铁化合物,并施放 氧。

光合磷酸化:指叶绿体利用光能驱动电子传递建立跨泪囊体莫的质子动力势,质子动力室就 把ADP 和无机磷酸化合成A TP 。

光抑制:当光能超过光和系统所能利用的数量时,光合功能下降的现象。

光补偿点:同一叶子在同一时间内,光合过程中一手的CO 2与光呼吸和呼吸作用过程中放 出的CO 2等量时的光照强度。

光能利用率:指植物光合作用所积累的有机物所含的能量,占照射在单位地面上的日光能量 的比率。

第四章:呼吸商:表示呼吸底物的性质和氧气供应状态的一种指标,植物组织在一定时间内,放出CO 2的物质的量与吸收氧气的物质的量的比率。

植物生理学名词解释(1)

植物生理学名词解释(1)

名词解释自由水:不被原生质胶体吸附的,能自由移动并起溶剂作用的水。

束缚水:被原生质胶粒紧密吸附的或存在于大分子结合空间的水,不能自由移动,也不起溶剂作用的水。

生理需水:直接满足植物生命活动的所需的水。

生态需水:通过改变栽培环境,特别是土壤条件,从而间接地对植物产生影响的水分。

水孔蛋白aquaporin, AQP是指细胞膜上能选择性地高效转运水分子的水通道蛋白水势:在相同温度、压力下,体系中水与纯水之间每mol体积水的自由能之差。

用ψw 表示,单位为帕(Pa)。

标准状态下,纯水水势=0渗透作用:osmosis水分子透过半透膜从水势高的系统向水势低的系统移动的作用称渗透作用。

渗透势ψs,是由于溶质的存在而引起水的自由能下降的值,为负值,ψS=-iCRTψp:由于压力存在而增加的水势。

(在细胞中是细胞壁压力)一般压力势为正值,只有在特殊情况下如质壁分离时ψp=0,强烈蒸腾时ψp<0。

ψm:(衬质势):由于衬质存在而引起水势降低的数值。

一般为负值衬质:亲水层表面能吸附水的物质主动吸水——由于根系生理活动而引起的吸水过程叫主动吸水。

被动吸水:由于枝叶蒸腾引起的根部吸水,叫被动吸水。

被动吸水是植物吸水的主要方式蒸腾拉力:由于蒸腾作用产生一系列水势梯度使导管中水分上升的力量称为蒸腾拉力。

蒸腾拉力-内聚力-张力学说(内聚力学说): 由于水的内聚力大于张力,还由于水与输导组织间有强的附着力,所以水柱不会中断而使水分向上运输.蒸腾作用:水分以气态形式通过植物体表面散失到体外的过程。

蒸腾速率(蒸腾强度):单位时间单位叶面积蒸腾的水量蒸腾比率TR (蒸腾效率)表示指植物在一定生长期内所积累的干物质与蒸腾失水量之比。

常用g.kg-1表示。

蒸腾系数WUE又称为需水量。

植物在一定生长时期内的蒸腾失水量与积累的干物质量之比。

水分临界期critical period of water:作物一生中对水分缺乏最敏感、最易受害的时期称~。

植物生理学名词解释

植物生理学名词解释

1.生物膜:构成细胞的所有膜的总称,它由脂类和蛋白质等组成,具有特定的结构和生理功能.2.水通道蛋白:存在生物膜上的具有通透水分功能的内在蛋白。

水通道蛋白亦称水孔蛋白。

3.必需元素:在植物生长发育中起着不可替代的直接的必不可少的作用的元素。

4.希尔反应:离体叶绿体在有适当的电子受体存在时,光下分解水并放出氧气的反应。

5.糖酵解:己糖在细胞质中分解成丙酮酸的过程。

6.比集转运速率:单位时间单位韧皮部或筛管横切面积上所运转的干物质的数量。

用其来衡量同化物运输快慢与数量。

7.偏上生长:指植物器官的上部生长速度快于下部的现象。

乙烯对茎和叶柄都有偏上生长的作用,从而造成茎的横向生长和叶片下垂。

8.脱分化:植物已经分化的细胞在切割损伤或在适宜的培养基上诱导形成失去分化状态的、结构均一的愈伤组织或细胞团的过程。

9.春化作用:低温诱导促使植物开花的作用。

10.逆境:亦称为环境胁迫,是对植物生存生长不利的各种环境因素的总称。

11. 共质体: 由胞间连丝把原生质(不含液泡)连成一体的体系,包含质膜。

12.水分代谢: 植物对水分的吸收、运输、利用和散失的过程。

13.灰分元素:14.第二信使:细胞内容易扩散传播分子,它们参与将细胞外信息传递到细胞内靶酶的过程。

15.呼吸链:即呼吸电子传递链,指线粒体内膜上由呼吸传递体组成的电子传递的总轨道。

16.韧皮部装载:同化物从合成部位通过共质体或质外体运输进入筛管的过程。

17.植物激素:在植物体内合成的、能从合成部位运往作用部位、对植物生长发育产生显著调节作用的微量小分子有机物。

18.细胞的全能性:指植物的每一个生活细胞都具有该植物的全部遗传信息,在适当的条件下,具有分化成一个完整植株的能力。

19.光周期现象:昼夜的相对长度对植物生长发育的影响叫做光周期现象。

20.活性氧:指化学性质活泼、氧化能力很强的含氧物质的总称。

21. 植物细胞信号转导(signal transduction):指细胞偶联各种刺激信号(包括各种内外源刺激信号)与其引起的特定生理效应之间的一系列分子反应机制。

植物生理学名词解释最全

植物生理学名词解释最全

植物生理学名词解释一、1.植物生理学是研究植物生命活动规律与细胞环境相互关系的科学,在细胞结构与功能的基础上研究植物环境刺激的信号转导、能量代谢和物质代谢。

二、1.水分代谢:植物对水分的吸收、运输、利用和散失的过程。

2.水势:相同温度下一个含水的系统中一偏摩尔体积的水与一偏摩尔体积纯水之间的化学势差称为水势。

把纯水的水势定义为零,溶液的水势值则是负值。

3.压力势:植物细胞中由于静水质的存在而引起的水势增加的值。

4.渗透势:溶液中固溶质颗粒的存在而引起的水势降低的值。

5.根压:由于植物根系生理活动而促使液流从根部上升的压力。

伤流和吐水现象是根压存在的证据。

6.自由水:与细胞组分之间吸附力较弱,可以自由移动的水。

7.渗透作用:溶液中的溶剂分子通过半透膜扩散的现象。

对于水溶液而言,是指水分子从水势高处通过半透膜向水势低处扩散的现象。

8.束缚水:与细胞组分紧密结合不能自由移动、不易蒸发散失的水。

9.衬质势:由于衬质(表面能吸附水分的物质,如纤维素、蛋白质、淀粉等)的存在而使体系水势降低的数值。

10. 吐水:从未受伤的叶片尖端或边缘的水孔向外溢出液滴的现象。

11. 伤流:从受伤或折断的植物组织伤口处溢出液体的现象。

12.蒸腾拉力:由于蒸腾作用产生的一系列水势梯度使导管中水分上升的力量。

13.蒸腾作用:水分通过植物体表面(主要是叶片)以气体状态从体内散失到体外的现象。

14.蒸腾效率:植物在一定生育期内所积累干物质量与蒸腾失水量之比,常用 g·kg-l表示。

15.蒸腾系数:植物每制造 1g干物质所消耗水分的 g数,它是蒸腾效率的倒数,又称需水量。

16.抗蒸腾剂:能降低蒸腾作用的物质,它们具有保持植物体中水分平衡,维持植株正常代谢的作用。

抗蒸腾剂的种类很多,如有的可促进气孔关闭。

17.吸胀作用:亲水胶体物质吸水膨胀的现象称为吸胀作用。

胶体物质吸引水分子的力量称为吸胀。

18.永久萎蔫系数:将叶片刚刚显示萎蔫的植物,转移至阴湿处仍不能恢复原状,此时土壤中水分重量与土壤干重的百分比叫做永久萎蔫系数。

植物生理学名词解释

植物生理学名词解释

植物生理学重点名词解释第一章植物的水分代谢1、水势(water potential);就是每偏摩尔体积水的化学势差,即体系中水的化学势与纯水化学势之差除以水的偏摩尔体积所得的商.2、渗透势(osmoticpotential):由于溶质的存在而使水势降低的值,其值为负.3、压力势由于细胞壁压力的存在而引起的细胞水势增加的值,其为正值.4、水孔蛋白(aquaporin):研究发现植物细胞质膜和液泡膜上有一类膜内蛋白,其多肽链穿越膜并形成孔道,特异的允许水分子通过,具有高效转运水分子的功能,这类蛋白被称为水孔蛋白.5、自由水(free water)与束缚水(bound water)自由水:不被胶体颗粒或渗透物质所吸引或吸引力很小,可以自由移动的水分,当温度升高时可以挥发,温度降低到冰点以下可结冰.束缚水:被植物细胞的胶体颗粒或渗透物质所吸引,且紧紧被束缚不能自由移动的水分,当温度升高时不能挥发,温度降低到冰点以下也不结冰.6、共质体(symplast)与质外体(apoplast)共质体:包括所有细胞的原生质,即所有细胞生活的部分.原生质体之间有胞间连丝将它们联系在一起,整个根系中的共质体部分是连续的体系,它对水传导的阻力很大.质外体:指没有原生质的部分,包括细胞壁、细胞间隙以及中柱内的木质导管.质外体对水分运输的阻力很小. 共质体运输:通过活细胞运输径向运输距离虽短,但运输阻力大,速度慢. 质外体运输:是在维管束的死细胞(导管或管胞)和细胞壁与细胞间隙中运输.7、主动吸水(active absorption of water)与被动吸水主动吸水:植物根系通过自身的生理代谢活动所引起的吸水过程称为主动吸水.被动吸水:由于地上枝叶的蒸腾作用产生蒸腾拉力所引起的吸水过程称为被动吸水.8、蒸腾效率与蒸腾系数蒸腾效率或蒸腾比率:植物每消耗1kg水所生产干物质的克数.蒸腾系数或需水量:植物制造1g干物质所消耗的水量(g).它是蒸腾效率的倒数,一般植物的蒸腾系数为125-1000.9、蒸腾作用:是植物体内的水分,以气态方式从植物的表面向外界散失的过程.10、永久萎蔫系数(permanent wilting coefficient);植物刚刚发生永久萎蔫时土壤中尚存留点水分含量.11、根压(root pressure);靠根系的生理活动,使液流由根部上升的压力.12、小孔律(law of small pores);气体通过多孔表面的扩散速率,不与小孔的面积成正比,而与小孔的周长成正比.13、SPAC(Soil-plant-atmosphere-continuum):土壤—植物—大气连续体系.水分经由土壤到达植物根表皮,进入根系后,通过植物茎,到达叶片,再由叶气孔扩散到宁静空气层,最后参与大气湍流交换,形成了一个统一的,动态的相互反馈连续系统.第二章植物的矿质及氮素营养1、矿质元素(mineral element):灰分中的物质为各种矿质的氧化物、硫酸盐、磷酸盐等,构成灰分的元素称为灰分元素又称为矿质元素.2、必需元素(essential element):是植物生长发育必不可少的元素. 必需元素的三条标准是:1.由于缺乏该元素,植物生长发育受阻,不能完成其生活史;2.除去该元素,表现为专一的病症,这种缺素病症可用加入该元素的方法预防和恢复正常;3.该元素在植物营养生理上表现直接的效果,不是由于土壤的物理、化学、微生物条件的改善而产生的间接效果.3、离子的主动吸收与被动吸收被动吸收:溶质顺电化学势梯度进入质外体的吸收过程,不需要代谢提供能量.主动吸收:溶质跨膜进入细胞质和液泡的过程,要利用呼吸释放的能量逆电化学势梯度吸收.4、协助扩散(facilitated diffusion):协助扩散是小分子物质经膜转运蛋白协助,顺浓度梯度或电化学梯度跨膜的转运,不需要细胞提供能量.5、膜转运蛋白(fransport protein):指膜上存在的转运离子跨膜的内在蛋白.可分为通道蛋白和载体蛋白两类.6、载体(carrier):也是内部蛋白,载体转运时被转运物质首先与载体蛋白的活性部位结合,并由此导致载体蛋白构象变化,将被运物质暴露于膜的另一侧.7、离子通道(ion channel):是细胞膜中一类内在蛋白构成的孔道.可为化学方式或电学方式激活,控制离子通过细胞膜的顺势流动.8、离子的选择吸收(selective absorption):是指植物对同一溶液中不同离子或同一盐的阳离子和阴离子,吸收的比例不同的现象.9、平衡溶液(balanced solution):植物能良好生长的含有适当比例的多盐溶液.10、生理酸性盐与生理碱性盐生理酸性盐:植物对其阳离子吸收大于阴离子,长期施用可使土壤酸化的盐.生理碱性盐:植物对其阴离子吸收大于阳离子,长期施用可使土壤碱化的盐.11、单盐毒害与离子拮抗(ion antagonism)单盐毒害:任何植物,假若培养在某一单盐溶液中,不久即呈现不正常状态,最后死亡.这种现象称单盐毒害.离子拮抗:离子间能够互相消除单盐毒害的现象,称离子拮抗,也称离子对抗.第三章植物的呼吸作用1.呼吸作用(respiration):生活细胞内的有机物,在酶的参与下,逐步氧化分解并释放能量的过程. 2.EMP途径(EMP pathway):即糖酵解,己糖在细胞质中分解成丙酮酸的过程.3.三羧酸循环(tricarboxylic acid cycle,TCAC):在有氧条件下丙酮酸在线粒体基质中彻底氧化分解为二氧化碳的途径.4.PPP(pentose phosphate pathway):即戊糖磷酸途径,葡萄糖在细胞质内直接氧化分解,并以戊糖磷酸为重要中间产物的有氧呼吸途径.5.生物氧化(biological oxidation):也称细胞氧化,广义上指生物体内各种有机物质的氧化分解过程,狭义上指发生在线粒体内一系列传递氢和电子的氧化还原过程.6.呼吸链(respiration chain):即呼吸电子传递链,指线粒体内膜上由呼吸传递体组成的电子传递的总轨道.7.巴斯德效应(Pasteur effect):从有氧条件转入无氧条件时酵毋菌的发酵作用增强,反之,从无氧转入有氧时酵毋菌的发酵作用受到抑制,这种氧气抑制酒精发酵的现象叫做巴斯德效应.8.氧化磷酸化(oxidative phosphorylation):氧化磷酸化就是呼吸链上的磷酸化作用,也就是当NADH+H+上的一对电子被传递至氧时,所发生的ADP被磷酸化为ATP的作用.9.能荷调节(regulation of energy charge):细胞中腺苷酸(AMP,ADP,ATP)对呼吸作用和其他一些代谢有明显的调节作用.10.抗氰呼吸(Cyanide resistat repiration):对氰化物不敏感的那一部分呼吸.抗氰呼吸可以在某些条件下与电子传递主路交替运行.11.呼吸商(respiration quotient RQ):植物组织在一定时间内,放出二氧化碳的量与吸收氧气的量的比值叫做呼吸商,又称呼吸系数.12.末端氧化酶(terminal oxidase):处于生物氧化一系列反应的最末端的氧化酶.除了线粒体内膜上的细胞色素氧化酶和抗氰氧化酶之外,还有存在于细胞质中的酚氧化酶、抗坏血酸氧化酶和乙醇酸氧化酶等. 13.无氧呼吸消失点(anaerobic respiration extinetion point):无氧呼吸停止进行的最低氧浓度(10%左右)称为无氧呼吸消失点.第四章植物的光合作用1.光合作用(photosynthesis):通常是指绿色植物吸收光能,把二氧化碳和水合成有机物,同时释放氧气的过程.从广义上讲,光合作用是光养生物利用光能把二氧化碳合成有机物的过程.2.原初反应(primany reaction):是光合作用起始的光物理化学过程,包括光能的吸收、传递与电荷的分离,即天线色素吸收光能并传递给中心色素分子,使之激发,被激发的中心色素分子将高能电子传给原初电子受体.同时又从原初电子供体获得电子.原初反应的速度极快.3.作用中心色素(reaction center pigment):又称为反应中心色素,是指少数特殊状态的叶绿素a分子,具有光化学活性,将获得的光能进行电荷分离,直接参与光化学反应的色素.4.聚光色素(light harvesting pigment):聚光色素没有光化学活性,不直接参与光化学反应,类似无线电天线将吸收的光能以诱导共振方式传递给作用中心色素.包括:大部分叶绿素a分子、全部叶绿素b、类胡萝卜素分子.5.希尔反应(Hill reaction):离体叶绿体在有适当氢受体存在时照光发生放氧的反应称为希尔反应. 6.红降现象(red drop)与爱默生效应(Emerson effect)红降现象:光合作用的量子产额在波长大于680nm时急剧下降的现象.爱默生效应:指如果用波长大于685nm的红光补充一个波长较短的红光(650nm),则量子产额比分别单独用这种光照射的产量产额之和还要高,这种现象为双光增益效应.7.PSI(photosystem I)与PSII(photosystem II)PSI:光系统 I,作用中心I,其作用中心色素最大吸收峰在700nm处,也称P700; PSII:光系统II,作用中心II,其作用中心色素最大吸收峰在680nm处,也称P680. 8.Rubisco(RuBP carboxylase/oxygenase):1,5-二磷酸核酮糖羧化酶/加氧酶9.荧光现象(fluorescence):激发态的叶绿素分子回到基态时,可以光子形式释放能量.处在第一单线态的叶绿素分子回至基态时所发出的光称为荧光.10.作用中心(reaction centre):是叶绿体中进行光合原初反应的最基本的色素蛋白结构.它至少包括:1个作用中心色素分子(P);1个原初电子受体(A);1个原初电子供体(D).作用中心基本成分是由结构蛋白质和脂类组成.11.光合链(photosynthetic chain):由PSII和PSI以及一系列电子传递体组成的使水中的电子最终传给NADP+的电子传递轨道称为光合电子传递链,简称光合链12.光合磷酸化(photophosphorylation):光下在叶绿体(或载色体)中发生的由ADP与Pi合成ATP的反应. 13.光呼吸(photorespiration):植物的绿色细胞在光照下吸收氧气释放CO2的过程,由于这种反应仅在光下发生,需叶绿体参与,并与光合作用同时发生,故称作为光呼吸.因为光呼吸的底物乙醇酸和其氧化产物乙醛酸,以及后者经转氨作用形成的甘氨酸皆为C2化合物,因此光呼吸途径又称为C2光呼吸碳氧循环14.生物产量(biolgical yield)与经济产量(economic yield) 生物产量:植物一生中合成并积累下来的全部有机物质. 经济产量:指对人类有直接经济价值的光合生产量.15.表观光合速率或净光合速率:指光合作用实际同化的CO2量减掉同一时间内呼吸释放的CO2量的差值,常用单位是CO2mg/dm2.hr.16.光补偿点与光饱和点(1ight saturation point):光补偿点:随着光强的增高,光合速率相应提高,当到达某一光强时,叶片的光合速率等于呼吸速率,即CO2吸收量等于O2释放量,表观光合速率为零,这时的光强称为光补偿点.光饱和点:当达到某一光强时,光合速率就不再随光强的增高而增加,这种现象称为光饱和现象.开始达到光合速率最大值时的光强称为光饱和点.17.CO2补偿点与CO2饱和点(CO2 saturation point): CO2补偿点:指光合速率与呼吸速率相等时,也就是净光合速率为零时环境中的CO2浓度.CO2饱和点:当CO2达到某一浓度时,光合速率达到最大值,开始达到光合最大速率时的CO2浓度称为CO2饱和点.18.光能利用率:植物光合作用积累的有机物中所含的化学能占光能投入量的百分比.第六章植物的生长物质1.植物激素(plant hormones,phytohormones):在植物体内合成的、能从合成部位运往作用部位、对植物生长发育产生显著调节作用的微量小分子有机物.目前国际上公认的植物激素有五大类:生长素类、赤霉素类、细胞分裂素类、脱落酸、乙烯.另外有人建议将油菜素甾体类、茉莉酸类也列为植物激素.2.三重反应(triple response):乙烯对植物生长具有的抑制茎的伸长生长、促进茎或根的增粗和使茎横向生长(即使茎失去负向地性生长)的三方面效应.3.植物生长调节剂(plant growth regulators):人们研究并合成的与天然植物激素具有同样生理作用的有机化合物.4.植物生长物质(plant growth substances):能够调节植物生长发育的微量化学物质,包括植物激素和植物生长调节剂、抑制物质、植物生长调节剂.5.生长抑制剂(growth inhibitor):抑制顶端分生组织生长的生长调节剂,它能干扰顶端细胞分裂,引起茎伸长的停顿和破坏顶端优势,其作用不能被赤霉素所恢复,常见的有脱落酸、青鲜素、水杨酸、整形素等. 6.生长延缓剂(growth retardant):抑制植物亚顶端分生组织生长的生长调节剂,它能抑制节间伸长而不抑制顶芽生长,其效应可被活性GA所解除.生产中广泛使用的生长延缓剂有矮壮素、烯效唑、缩节安等. 7.极性运输(polar transport):只能从形态学的一端运向另一端的运输,如生长素的运输,只能从形态学的上端运向形态学的下端,而不能从形态学下端运向上端.8.激素受体:能与激素特异结合并引起特殊生理效应的物质,一般是属于蛋白质.第七章植物的生长生理1、植物的生长(growth)和发育(development):植物的生长:在生命周期中,植物的细胞、组织和器官的数目、体积或干重的不可逆增加长.植物的发育:是指植物的生命周期中,细胞、器官或整体在遗传基因支配和环境条件影响下,在形态结构和功能上有序的变化过程.包括生长和分化两个方面.2、细胞的分化(differentiatkm) 脱分化(dedifferentiation) 再分化(redifferentiation) :细胞的分化:从一种同质的细胞类型转变成形态结构和功能与原来不相同的异质细胞类型的过程称为分化.它可在细胞、组织、器官的不同水平上表现出来.脱分化:植物已经分化的细胞在切割损伤或在适宜的培养基上诱导形成失去分化状态的、结构均一的愈伤组织或细胞团的过程. 再分化:由处于脱分化状态的愈伤组织或细胞再度分化形成不同类型细胞、组织、器官乃至最终再生成植株的过程.3、植物细胞的全能性(totipotency):植物体每一个细胞都具有分化成一个完整植株的潜在能力,即具有形成完整生物个体的全套基因.4、黄化现象(ctiolation):在黑暗中生长的植物茎柔嫩而细长,叶片似小鳞片状紧贴于茎上,茎的顶端一直保持弯曲状态而不伸展;内部组织分化不完全,薄壁细胞多,输导和机械组织不发达,茎叶中没有叶绿素,整个植株呈黄白色.5、.生长协调最适温度(grow coordinate temperature):能使植株生长最健壮的温度.协调最适温度通常要比生长最适温度低.6、温周期现象(thermoperiodicity):植株或器官的生长速率随昼夜温度变化而发生有规律变化的现象.7、光形态建成(photomorphogenesis):由光调节植物生长、分化与发育的过程称为植物的光形态建成,或称光控发育作用.8、蓝光效应(blue effect):蓝紫光抑制生长,促进分化,抑制黄化现象的产生,诱导向光性反应,这种现象称为蓝光效应.9、光敏色素(Phytochrome,Phy):一种对红光和远红光的吸收有逆转效应、参与光形态建成、调节植物发育的色素蛋白.11、生长相关性(correlation):植物各部分之间的相互制约与协调的现象.12、顶端优势(apical dominance):植物的顶芽生长占优势而抑制侧芽生长的现象.13、根冠比(root top ratio,R/I):植物地下部分与地上部分干重或鲜重的比值,它能反映植物的生长状况以及环境条件对地上部与地下部生长的不同影响.14、生长大周期(grand period of growth):植物器官或整株植物的生长速度表现出"慢-快-慢"的基本规律,即开始时生长缓慢,以后逐渐加快,然后又减慢以至停止.这一生长全过程称为生长大周期.15、生物钟(biological clock) rhythm):生命活动中有内源性节奏的周期变化现象.亦称生理钟.由于这种内源性节奏的周期接近24小时,因此又称为近似昼夜节奏.16、向光性(phototropism):植物随光的方向而弯曲生长的现象.包括正向光性、负向光性、横向光性. 第八章植物的成花生理1、春化作用(vernalization)与春化处理(vernalization)春化作用:低温诱导促使植物开花的作用叫春化作用.一般冬小麦等冬性禾谷类作物和某些二年植物以及一些多年生草本植物的开花都需要经过春化作用.春化处理:对萌动的种子或幼苗进行人为的低温处理,使之完成春化作用促进成花的措施称为春化处理.1、光周期现象与光周期诱导(photoperiodic induction)光周期现象:昼夜的相对长度对植物生长发育的影响叫做光周期现象.光周期诱导:植物在达到一定的生理年龄时,经过一定天数的适宜光周期处理,以后即使处于不适宜的光周期下,仍能保持这种刺激的效果而开花,这种诱导效应叫做光周期诱导.3、临界日长(critical daylength)与临界夜长(critical dark period)临界日长:引起长日植物成花的最短日照长度或引起短日植物成花的最长日照长度.临界夜长:引起短日植物成花的最短暗期长度或长日植物成花的最长暗期长度.同临界日长相比,临界暗期对诱导成花更为重要.4、识别蛋白:存在于花粉与柱头上能够起识别作用的蛋白质.5、群体效应:一定面积内,画粉数量越多,密度越大,花粉的萌发和生长也就越好.6、花熟状态(ripeness to flower state):植物经过一定的营养生长期后具有了能感受环境条件而诱导开花的生理状态被称为花熟状态.花熟状态是植物从营养生长转为生殖生长的转折点.7、C/N比学说(carbon/nitrogen ratio):C为碳水化合物,N为可利用的含氮化合物,当植物体内C/N比值高时,有利于生殖体的形成,促进开花;反之,有利于营养生长,延迟开花.8、长日植物(long-day plant,LDP)与短日植物(short-day plant,SDP)长日植物:在24小时昼夜周期中,日照长度长于一定时数才能成花的植物.短日植物:在24小时昼夜周期中,日照长度短于一定时数才能成花的植物.第九章植物的生殖与衰老1、休眠(dormancy):植物的整体或某一部分生长暂时停顿的现象.它是植物抵制不良自然环境的一种自身保护性的生物学特性.一、二年生植物大多以种子为休眠器官;多年生落叶树以休眠芽过冬;多种多年生草本植物则以休眠的根系、鳞茎、球茎、块根、块茎等渡过不良环境.2、单性结实(parthenocarp):不经过受精作用,子房直接发育成果实的现象.单性结实一般都形成无籽果实,故又称"无籽结实".3、生长素梯度学说(auxin gradient theory):不是叶片内生长素的绝对含量,而是横过离层区两边生长素的浓度梯度影响脱落.梯度大,即远轴端生长素含量高,不易脱落;梯度小时,即近轴端生长素含量高于或等于远轴端的量,则促进脱落.4、生理后熟(after-ripening):种子胚的分化发育虽已完成(形态上貌似成熟),其实生理上尚未成熟.经某些生理生化变化(主要是要完成内部有机物和激素等物质的转化,积累种子萌发所要的一些物质)后,才具备发芽的能力,这种现象称为生理后熟.5、生物自由基(biological radicals)和活性氧(active oxygen)生物自由基:自由基是具有未配对价电子的基因或分子.生物自由基,通过生物自身代谢产生的一类自由基. 活性氧:化学性质活泼、氧化能力很强的含氧物质的总称,包括含氧自由基和含氧非自由基.6、呼吸跃变:果实成熟过程中,呼吸速率突然增高,然后又迅速下降的现象.呼吸跃变的产生与外界温度和果实内乙烯的释放密切相关.呼吸跃变是果实进入完熟的一种特征.7、衰老(senescence):在正常条件下发生在生物体的机能衰退并逐渐趋于死亡的现象,具体指的是植物的细胞、组织、器官或整个植株的生理功能衰退的现象.第十章植物的抗逆生理1、逆境(stress)与植物的抗逆性(stress resistance)逆境:对植物生存生长不利的各种环境因素的总称.逆境的种类可分为生物逆境、理化逆境等类型.植物的抗逆性:植物在长期系统发育中逐渐形成的对逆境的适应和抵抗能力.2、渗透调节(osmotic adjustment)和渗调蛋白(osmoregulation protein)渗透调节:指细胞通过增加或减少胞液中的溶质调节细胞的渗透势,以期达到与外界环境渗透势相平衡的调节.渗调蛋白:干旱和盐渍都能诱导植物产生一些新的蛋白质,这些蛋白质的合成或积累起着调节细胞渗透势的作用.3、交叉适应(cross adaptation):植物经历了某种逆境后,能提高对另一些逆境的抵抗能力,这种对不良环境之间的相互适应作用,称为植物的"交叉适应".4、膜脂相变:指膜脂在一定条件下的物相变化,也就是液晶相-凝胶相或液晶相-液相的相互转变.这主要是由温度变化引起的.5、膜脂过氧化作用:指生物膜中不饱和脂肪酸在自由基诱发下发生的过氧化反应,其结果不仅使膜中不饱和脂肪酸含量降低,引起膜流动性下降以致膜相分离和膜通透性增大,膜的正常功能破坏,而且膜脂过氧化物MDA等也能直接对细胞起毒害作用.6、水合补偿点:缺水会导致植物光合作用降低,当植物因缺水而使其光合速率与呼吸速率相等(即净光合速率为零)时,植物叶片的水势称为水合补偿点.7、干旱(drought):土壤缺水,大气干燥,导致植物过度水分亏缺的现象.8、SOD(super-oxide dismutase):超氧化物歧化酶.存在于植物细胞中最重要的清除自由基的酶,能催化生物体内分子氧活化的第一个中间产物氧自由基发生歧化反应,生成氧气和过氧化氢.SOD分Cu-Zn-SOD,Mn-SOD和Fe-SOD三种类型,主要分布在叶绿体、线粒体和细胞质中9、活性氧:化学性质活泼、氧化能力很强的含氧物质的总称,包括含氧自由基和含氧非自由基.10、环境污染(environmental pollution):由于某些原因(人类生产生活)排放到环境中的各种有害物质(污染物)的量超过了生态系统的自然净化能力,造成环境污染.11、诱导抗病性:利用特定的因子处理植物,改变其对病害的反应,产生局部或系统的抗性称为诱导抗病性.。

植物生理学名词解释1

植物生理学名词解释1

名词解释:蒸腾作用:指水分以气体状态,通过植物体的表面(主要是叶子),从体内散失到体外的现象。

光合作用:绿色植物吸收阳光的能量,同化CO2 和水,制造有机物质并释放氧气的过程。

光呼吸:植物的绿色细胞依赖光照,吸收 O2 和放出 CO2 的过程。

三羧酸循环:糖酵解进行到丙酮酸后,在有氧条件下,通过一个包括三羧酸和二羧酸的循环而逐步氧化分解,直到形成水和 CO2 为止。

光周期:在一天之中,白天和黑夜的相对长度。

细胞全能性:指植物体的每个细胞都携带着一套完整的基因组,并具有发育成完整植株的潜在能力。

生长大周期:开始时生长缓慢,以后逐渐加快,达到最高点,然后生长速率又减慢以至停止。

呼吸越变:当果实成熟到一定时期,其呼吸速率突然增高,最后又突然下降,这种现象称为呼吸越变生物固氮:某些微生物把空气中的游离氮固定转化为含氮化合物的过程。

水势:水溶液的化学势与纯水的化学势之差,除以水的偏摩尔体积所得商。

渗透势:亦称溶质势,是由于溶质颗粒的存在,降低了水的自由能,因而其水势低于纯水水势的水势下降值。

压力势:指细胞的原生质体吸水膨胀,对细胞壁产生一种作用力相互作用的结果,与引起富有弹性的细胞壁产生一种限制原生质体膨胀的反作用力。

质外体途径:指水分通过细胞壁、细胞间隙等没有细胞质部分的移动,阻力小,移动速度快。

共质体途径:指水分从一个细胞的细胞质经过胞间连丝,移动到另一个细胞的细胞质,形成一个细胞质的连续体,移动速度较慢。

渗透作用:水分从水势高的系统通过半透膜向水势低的系统移动的现象。

根压:由于水势梯度引起水分进入中柱后产生的压力。

蒸腾速率:植物在一定时间内单位叶面积蒸腾的水量。

水分临界期:植物对水分不足特别敏感的时期。

矿质营养:植物对矿物质的吸收、转运和同化。

大量元素:植物需要量较大的元素。

微量元素:植物需要量极微,稍多即发生毒害的元素。

溶液培养:是在含有全部或部分营养元素的溶液中栽培植物的方法选择透性:细胞膜质对不同物质的透性不同。

植物生理学名词解释

植物生理学名词解释

植物生理学名词解释名词解释1. 根压——植物根系的生理活动使液流从根部上升的压力2. 蒸腾作用——水分通过植物体表面(如叶片等),以气体状态从体内散失到体外的现象3. 水分临界期——指在植物生长发育过程中对缺水最为敏感,最易受害的阶段4. 内聚力学说——以水分具有较大的内聚力保证由叶至根水柱不断,来解释水分上升原因的学说5. 矿质营养——植物对矿物质的吸收、转运和同化以及矿质在生命活动中的作用,通称为矿质营养6. 必需元素——指在植物营养生理上表现为直接的效果、如果缺乏时则植物生育发生障碍,不能完成生活史、以及去除时植物表现出专一的、可以预防和恢复的症状的一类元素7. 单盐毒害——溶液中只有一种金属离子对植物起有害作用的现象8. 离子对抗——在发生单盐毒害的溶液中,如加入少量其他金属离子来减弱或消除单盐毒害的作用叫离子对抗9. 平衡溶液——含有适当比例的多盐溶液,对植物生长有良好作用的溶液10. 还原氨基化——还原氨直接使酮酸氨基化而形成相应氨基酸的过程11. 胞饮作用——物质吸附在质膜上,然后通过膜的内折而转移到细胞内的攫取物质及液体的过程12. 通道蛋白——在细胞质膜上构成圆形孔道的内在蛋白13. 植物营养临界期——植物在生长发育过程中,对某种养分的需要虽然绝对数量不一定很多;但有很迫切的时期,如供应量不能满足植物的要求,会使生长发育受到很大影响,以后很难弥补损失14. C3途径——以RUBP为CO2受体,CO2固定后最初产物为PGA三碳化合物的光合途径16. C4途径——以PEP为CO2受体,CO2固定后最的初产物是四碳双羧酸的光合途径15. 交换吸附——根部细胞在吸收离子的过程中,同时进行着离子的吸附与解吸附的过程,总有一部分离子被其它离子所置换,所以细胞吸附离子具有交换性质17. 光系统——能吸收光能并将吸收的光能转化成电能的机构。

由不同的中心色素和一些天线色素、电子供体和电子受体组成的蛋白色素复合体。

植物生理学名词解释

植物生理学名词解释

植物生理学名词解释一、1.植物生理学是研究植物生命活动规律与细胞环境相互关系的科学,在细胞结构与功能的基础上研究植物环境刺激的信号转导、能量代谢和物质代谢。

二、1.水分代谢:植物对水分的吸收、运输、利用和散失的过程。

2.水势:相同温度下一个含水的系统中一偏摩尔体积的水与一偏摩尔体积纯水之间的化学势差称为水势。

把纯水的水势定义为零,溶液的水势值则是负值。

3.压力势:植物细胞中由于静水质的存在而引起的水势增加的值。

4.渗透势:溶液中固溶质颗粒的存在而引起的水势降低的值。

5.根压:由于植物根系生理活动而促使液流从根部上升的压力。

伤流和吐水现象是根压存在的证据。

6.自由水:与细胞组分之间吸附力较弱,可以自由移动的水。

7.渗透作用:溶液中的溶剂分子通过半透膜扩散的现象。

对于水溶液而言,是指水分子从水势高处通过半透膜向水势低处扩散的现象。

8.束缚水:与细胞组分紧密结合不能自由移动、不易蒸发散失的水。

9.衬质势:由于衬质(表面能吸附水分的物质,如纤维素、蛋白质、淀粉等)的存在而使体系水势降低的数值。

10. 吐水:从未受伤的叶片尖端或边缘的水孔向外溢出液滴的现象。

11. 伤流:从受伤或折断的植物组织伤口处溢出液体的现象。

12.蒸腾拉力:由于蒸腾作用产生的一系列水势梯度使导管中水分上升的力量。

13.蒸腾作用:水分通过植物体表面(主要是叶片)以气体状态从体内散失到体外的现象。

14.蒸腾效率:植物在一定生育期内所积累干物质量与蒸腾失水量之比,常用 g·kg-l表示。

15.蒸腾系数:植物每制造 1g干物质所消耗水分的 g数,它是蒸腾效率的倒数,又称需水量。

16.抗蒸腾剂:能降低蒸腾作用的物质,它们具有保持植物体中水分平衡,维持植株正常代谢的作用。

抗蒸腾剂的种类很多,如有的可促进气孔关闭。

17.吸胀作用:亲水胶体物质吸水膨胀的现象称为吸胀作用。

胶体物质吸引水分子的力量称为吸胀。

18.永久萎蔫系数:将叶片刚刚显示萎蔫的植物,转移至阴湿处仍不能恢复原状,此时土壤中水分重量与土壤干重的百分比叫做永久萎蔫系数。

植物生理学名词解释

植物生理学名词解释

第一章植物的水分生理名词解释水势 water potential:水溶液的化学势与纯水的化学势之差除以水的偏摩尔体积所得的商;渗透势 osmotic potential:由于溶质颗粒的存在,降低了水的自由能因而其水势低于纯水的水势;压力势pressure potential:细胞的原生质体吸水膨胀,对细胞壁产生一种作用,与此同时引起富有弹性的细胞壁产生一种原生质体膨胀的反作用力;质外体 apoplast:由细胞壁及细胞间隙等空间组成的体系;共质体symplast:由穿过细胞壁的胞间连丝把细胞相连,构成一个相互联系的原生质的整体;渗透作用osmosis:水分从水势高的系统通过半透膜向水势低的系统移动的现象;根压root pressure:靠根部水势梯度使水沿导管上升的动力;蒸腾作用transpiration:指水分以气体状态通过植物体表面从体内散失到体外的现象;蒸腾速率transpiration rate:植物在一定时间内单位面积蒸腾的水量;蒸腾比率transpiration ratioTR:蒸腾作用丧失水分与光合作用同化CO物质的量比2值;水分利用率water use efficiencyWUE:TR的倒数;内聚力学说cohesion theory:以水分具有较大的内聚力是以抵抗张力,保证由叶至根水柱不断来解释水分上升的学说;水分临界期critical period of water:植物在生命周期中,对水最敏感、最易受伤害的时期;简答1、从植物生理学角度分析“有收无收在于水”;①水是细胞质主要成分②代谢作用过程的反应物质③植物对物质吸收和运输的溶剂④保持植物固有形态第二章植物的矿质营养名词解释矿质营养mineral nutrition:植物对矿物质的吸收、转运和同化;大量元素macroelement:植物对某些元素需要量相对较大大于10mmol/kg干重,C、H、O、N、P、S、K、Ca、Mg微量元素microelement:植物需要量极微小于10mmol/kg干重,稍多即发生毒害,Cl、Fe、B、Mn、Zn、Cu、Ni、Mo溶液培养solution culture:在含有全部或部分营养元素的溶液中栽培植物;透性permeability:细胞质膜具有让物质通过的性质;选择透性selective permeability:质膜对各种物质的通过难易不一,有些容易通过,有些则不易或不能通过;胞饮作用pinocytosis:细胞通过膜的内陷从外界直接摄取物质进入细胞的过程;被动运输passive transport:离子或溶质跨过生物膜不需要代谢供给能量,是顺电化学势梯度向下运输的方式;主动运输active transport:离子或溶质跨过生物膜需要代谢供给能量,逆电化学势梯度向上进行运输的方式;转运蛋白transport protein:在叶绿体内膜上有很多运输蛋白;离子通道ion channel:细胞膜中由通道蛋白构成的孔道,控制离子通过细胞膜;载体carrier:跨膜运输的内在蛋白,在跨膜区域不形成明显的孔道结构;单项运输载体uniport carrier:协助阳离子如K+、NH4+顺着电势进入细胞, 这是一种被动的单向传递体;同向运输器symporter:将溶质与H+同向转运过膜;反向运输器antiporter:将溶质与H+异向转运过膜;离子泵ion pump:利用ATP水解释放的能量,逆着电化学势跨膜转运离子,实际上是膜载体蛋白;生物固氮biological nitrogen fixation:某些微生物把空气中的游离氮固定转化为含氮化合物的过程;诱导酶induced enzyme:植物本来不含某种酶,但在特定外来物质的诱导下可以生成这种酶;临界含量critical concentration:获得最高产量的最低养分含量;生物膜biomembranes:细胞的外周膜和内膜系统统称生物膜;简答题1、无土栽培技术在农业生产上有哪些应用无土栽培中用人工配制的,供给植物矿物营养的需要;为使植株得以竖立,可用、、、、等作为支持,并可保持的通气;多年的实践证明,、黄豆、、、、、、、、、叶、番茄、等作物,无土栽培的产量都比土壤栽培的高;2、在作物栽培时为什么不能施用过量的化肥怎样施肥才比较合理3、①作物根部细胞吸收矿质元素的离子载体和通道时有限的,当施肥过多,不仅会烧伤作物,而且植物也吸收不了;②充足的基肥,分期追肥,具体施肥时期和数量根据植株生长情况决定;4、叶子变黄可能是哪些因素引起的请分析并提出证明的方法5、①缺乏N、Mg、Fe、Mn、Cu、Zn:N和Mg是组成叶绿素的成分,其他元素可能是叶绿素形成过程中某些酶的活化剂,在叶绿素形成过程中起间接作用;可用溶液培养法或砂基培养法;②光照强度:光线过弱,会不利于叶绿素的合成,使叶片变黄;可以在同等条件下培养两份植株,一份维持原状,另一份在光线较弱的条件下培养,比较两份植株哪一份先出现叶片变黄的现象;第三章植物的光合作用名词解释光合作用photosynthesis:绿色植物吸收阳光的能量,同化二氧化碳和水,制造有机物并释放氧气的过程;吸收光谱absorption spectrum:反映某种物质吸收光波的光谱;增益效应enhancement effect:因两种波长的光协同作用而增加光合效率的现象;光反应light reaction:必须在光下才能进行的,由光引起的光化学反应;碳反应carbon reaction:在暗处或光处都能进行的,由若干酶催化的化学反应;光合单位photosynthetic unit:结合于类囊体膜上能完成光化学反应的最小结构的功能单位;包括了聚光色素系统和光合反应中心;聚光色素天线色素:光系统中只收集光能并将其传递给中心色素,本身不直接参与光化学反应的色素;原初反应primary reaction:光合作用中从叶绿素分子受光激发到引起第一个光化学反应为止的过程;反应中心reaction center:在光合作用中,接受聚光性叶绿素的电子激发能,变成电荷分离的能量系统,是由具有特殊的叶绿素的蛋白复合体构成产生的电子和电子穴,为光合作用中电子传递反应的动力;希尔反应Hill reaction:在光照下,离体叶绿体类囊体能将含有高铁的化合物还原为低铁化合物,并释放氧;光合链photosynthetic chain:在类囊体膜上的PS II和PS I之间几种排列紧密的电子传递体完成电子传递的总轨道;光合磷酸化photophosphorylation:叶绿体利用光能驱动电子传递建立跨类囊体膜的质子动力势PMF,质子动力势就把ADP和无机磷酸合成ATP;光合速率photosynthetic rate:单位时间、单位叶面积吸收CO2的物质的量或放出O2,或积累干物质的质量;同化力assimilatory power:用于同化碳反应中的CO2的ATP和NADPH;卡尔文循环Calvin cycle:所有植物光合作用碳同化的基本途径,包括羧化阶段、还原阶段和更新阶段;C4途径C4-dicarboxylic acid pathway:C4植物的CO2同化的途径四碳二羧酸途径;光抑制photoinhibition:当光能超过光合系统所能利用的数量时,光合功能下降的现象;景天酸代谢途径crassulaceae acid metabolism pathway:有机酸合成日变化的代谢类型;光呼吸photorespiration:植物的绿色细胞依赖光照,吸收O2和放出CO2的过程;表观光合作用apparent photosynthesis:测定光合速率时,没有把叶子的线粒体呼吸和光呼吸考虑在内;真正光合作用real photosynthesis:表观光合作用+呼吸作用+光呼吸光饱和light saturation:当达到某一光强度时,光合速率不再增加;温室效应greenhouse effect:大气中的CO2能强烈吸收红外线,太阳辐射的能量在大气层中就“易入难出”,温度上升,像温室一样;CO2补偿点CO2compensation point:当光合吸收的CO2量等于呼吸放出的CO2量,这个时候外界的CO2含量就叫做CO2补偿点;光补偿点light compensation point:同一片叶子在同一时间内,光合过程中吸收的CO2与光呼吸和呼吸作用过程中放出的CO2等量时的光照强度;光能利用率efficiency for solar energy utilization:植物光合作用所累积的有机物所含的能量,占照射在单位地面上的日光能量的比率;简答题1.一般来说,C4植物比C3植物的光合产量要高,试从它们各自的光合特征及生理特征比较分析;①生理上,C4植物比C3植物的光合作用强,C4植物光合速率比C3植物快②C4植物的CO2补偿点比C3植物低,C4植物耐旱性比C3植物强③C4植物的光呼吸比C3植物低④C4植物淀粉积累在维管束鞘薄壁细胞,叶肉细胞没有;C3植物淀粉积累在叶肉细胞,维管束鞘薄壁细胞没有;⑤C4植物有花环型结构,C3没有第四章植物的呼吸作用名词解释呼吸作用respiration:将植物体内的物质不断分解同时释放能量;有氧呼吸aerobic respiration:生活细胞在氧气的参与下,把某些有机物质彻底氧化分解,放出二氧化碳和水,同时释放能量的过程;无氧呼吸anaerobic respiration:在无氧条件下,细胞把某些有机物分解成为不彻底的氧化产物,同时释放能量的过程;糖酵解glycolysis:细胞质基质中的己糖经过一系列酶促反应步骤分解成丙酮酸;三羧酸循环tricarboxylic acid cycle:糖酵解进行到丙酮酸后,在有氧的条件下,用过一个包括三羧酸和二羧酸的循环而逐步氧化分解,直到形成二氧化碳和水为止;磷酸戊糖途径pentose phosphate pathway:葡萄糖在细胞质基质和质体中可溶性酶直接氧化,产生NADPH和一些磷酸糖的酶促过程;生物氧化biological oxidation:有机物质在生物体细胞内进行氧化分解,生成二氧化碳、水和释放能量的过程;呼吸链respiratory chain:呼吸代谢中间产物的电子和质子,沿着一系列有顺序的电子传递体组成的电子传递体途径,传递到分子氧的总过程;解偶联uncoupling:呼吸链与氧化磷酸化的偶联遭到破坏的现象;氧化磷酸化oxidative phosphorylation:在生物氧化中,电子经过线粒体电子传递链传递到氧,伴随着ATP合酶催化,使ADP和磷酸合成ATP的过程;呼吸速率respiratory rate:在一定时间内所放出的二氧化碳的体积或所吸收的氧气的体积;呼吸商respiratory quotient:植物组织在一定时间内,放出二氧化碳的物质的量与吸收氧气的物质的量的比率;表示呼吸底物的性质和氧气供应状态的一种指标;抗氰呼吸cyanide-resistant respiration:在氰化物存在下,某些植物呼吸不受抑制; ADP/O比:每传递两个电子到氧合成ATP的数量;交替氧化酶alternative oxidase:抗氰呼吸的末端氧化酶,可把电子传递给氧;底物水平磷酸化作用substrate level phosphorylation:由于底物的分子磷酸直接转到ADP而形成ATP;巴斯德效应Pasteur effect:氧有抑制酒精发酵的现象,即氧可以降低糖类的分解代谢和减少糖酵解产物的积累;末端氧化酶terminal oxidase:把底物的电子传递到电子系统的最后一步,将电子传递给分子氧并形成水或过氧化氢的酶;能荷energy charge:ATP-ADP-AMP系统中可利用的高能磷酸键的度量;温度系数temperature coefficient:由于温度升高10℃而引起的反应速率的增加;第五章植物同化物的运输胞间连丝plasmodesmate:连接两个相邻植物细胞的胞质通道,行使水分、营养物质、小的信号分子,以及大分子的胞质运输功能;压力流学说pressure-flow theory:筛管中溶液流运输是由源端和库端之间渗透产生的压力梯度推动的;韧皮部装载phloem loading:光合产物从韧皮部周围的叶肉细胞装到筛分子-伴胞复合体的整个过程;多聚体-陷阱模型polymer-trapping model:叶肉细胞合成的蔗糖运到维管束鞘细胞,经过众多的胞间连丝,进入居间细胞,居间细胞内的运输蔗糖分别与1或2个半乳糖分子合成棉子糖或水苏糖;韧皮部卸出phloem unloading:装载在韧皮部的同化物输出到库的接受细胞的过程;库强度sink strength:库容量×库活力配置allocation:源叶中新形成同化物转化为贮藏利用和运输用;分配partitioning:新形成同化物在各种库之间的分布;第六章植物的次级代谢产物初级代谢产物primary metabolite:糖类、脂肪、核酸和蛋白质等光合作用的直接产物;次级代谢产物secondary metabolite:由糖类等有机物次级代谢衍生出来的物质;萜类terpene:存在自然界中、分子式为异戊二烯单位的倍数的烃类及其含氧衍生物;酚类phenol:芳香族环上的氢原子被羟基或功能衍生物取代后生成的化合物;生物碱alkaloid:通常含有一个含氮杂环,其碱性即来自含氮杂环;第七章细胞信号传导跨膜信号转换transmembrane transduction:信号与细胞表面的受体结合之后,通过受体将信号传递进入细胞内;信号signal:对植物来说,环境变化就是信号;受体receptor:能够特异的识别并结合信号、在细胞内放大和传递信号的物质;CaM钙调蛋白calmodulin:细胞中的胞质溶胶蛋白;细胞内受体intracellular receptor:位于亚细胞组分如细胞核;内质网以及液泡膜上的受体;细胞表面受体cell surface receptor:位于细胞表面的受体;蛋白激酶protein kinases:位于细胞表面的另一受体具有激酶的性质;第二信使secondary messenger:能将接受的细胞外信号转换为细胞内信号的物质;级联反应cascades:通过多次的逐级放大使较弱的输入信号转变为极强的输出信号,导致各种生理响应的过程;双元系统two-component system:受体有两个基本部分,一是作为感应蛋白的组氨酸激酶HK,另一个是应答调控蛋白RR;泛素-蛋白酶体途径ubiquitin-proteasome pathway:泛素激活酶E1、泛素结合酶E2和泛素连接酶E3在泛素和靶蛋白结合中其重要作用,而26S蛋白酶体识别泛素化标记的蛋白质后,将其降解成为小片段多肽;第八章植物生长物质名词解释植物生长物质plant growth substance:调节植物生长发育的物质;植物激素plant hormone:一些在植物体内合成,并从产生之处运送到别处,对生长发育产生显着作用的微量有机物;植物激素突变体phytohormone mutant:由于基因突变而引起植物激素缺陷的突变体;植物多肽激素plant polypeptide hormone:具有调节生理过程和传递细胞信号功能的活性多肽;生长素极性运输polar transport:生长素只能从植物学的形态学上端向下端运输;三重反应triple response:黄花豌豆幼苗对乙烯的生长反应,即抑制伸长生长矮化、促进横向生长加粗、地上部分失去负向重力性生长偏上生长;植物生长调节剂plant growth regulator:一些具有植物激素活性的人工合成的物质;植物生长促进剂plant growth promotor:促进分生组织细胞分裂和伸长,促进营养器官的生长和生殖器官的发育,外施生长抑制剂可抑制其促进效能;植物生长抑制剂plant growth inhibitor:抑制顶端分生组织生长,使植物丧失顶端优势,侧枝多,叶小,生殖器官也受影响;植物生长延缓剂plant growth retardator:一大类能够抑制植物茎部近顶端分生组织生长的化合物;简答题1、要使水稻矮壮分蘖多,在水肥管理或植物生长调节剂应用方面有何建议在水肥管理中,在氮、磷、硫、锌的肥料的使用中,要适量不能使用太多,使用太多利于伸长生长;在植物生长调节剂方面,使用三碘苯甲酸TIBA、氯化氯代胆碱CCC;第九章植物的生长生理细胞周期cell cycle:细胞分裂成两个新细胞所需的时间;分化differentiation:分生组织的幼嫩细胞发育成为具有各种形态结构和生理代谢功能的成形细胞的过程;脱分化dedifferentiation:已有高度分化能力的细胞和组织,在培养条件下逐渐丧失其特有的分化能力的过程;酸生长假说acid-growth hypothesis:把生长素诱导细胞壁酸化并使其可塑性增大而导致细胞伸长的理论;细胞全能性totipotency:植物体的每个细胞都携带一套完整的基因组,并具有发育成完整植株的潜在能力;组织培养tissue culture:在控制环境条件下,在人工培植的培养基中,将离体的植物细胞、组织和器官进行培养的技术;极性polarity:在器官、组织甚至细胞中不同的轴向上存在某种形态结构和生理生化上的梯度差异;生长大周期grand period of growth:在茎的整个生长过程中,生长速率都表现出“慢-快-慢”的基本规律,即开始时生长缓慢,以后逐渐加快,达到最高点然后生长速率又减慢以至停止;顶端优势apical dominance:顶芽优先生长,而侧芽生长受抑制的现象;相关性correlation:植物各部分之间的相互制约与协调的现象;光形态建成photomorphogenesis:依赖光控制细胞的分化、结构和功能的改变,最终汇集成组织和器官的建成;暗形态建成skotomorphogenesis:暗中生长的植物幼苗表现出各种黄化特征;光敏色素phytochrome:吸收红光-远红光可逆转换的光受体;向光素phototropin:主要介导蓝光调节的器官与细胞器的运动反应;隐花色素cryptochrome:调节蓝光诱导的茎伸长抑制,还参与其他的幼苗去黄化反应、开花的光周期调节、生理钟以及花色素苷合成酶等基因表达调节;向性运动tropic movement:由光、重力等外界刺激而产生的,运动方向取决于外界的刺激方向;向光性phototropism:植物随光照入射的方向而弯曲的反应;向重力性gravitropism:植物在重力影响下,保持一定方向生长的特性;感性运动nastic movement:由外界刺激或内部时间机制而引起的,外界刺激方向不能决定运动方向;生理钟physiological clock:生物因对昼夜的适应而产生生理上有周期性波动的内在节奏;1.全面考虑,光对植物生长发育有什么影响光对植物生长的影响是多方面的,主要有下列几方面:①光是光合作用的能源和启动者,为植物的生长提供有机营养和能源②光控制植物的形态建成,即叶的伸展扩大,茎的高矮,分枝的多少、长度;根冠比等都与光照强弱和光质有关③日照时数影响植物生长与休眠;绝大多数多年生植物都是长日照条件促进生长、短日照条件诱导休眠④④光影响种子萌发,需光种子的萌发受光照的促进,而需暗种子的萌发则受光抑制,此外,一些豆科植物叶片的昼开夜合,气孔运动等都受光的调节;第十章植物的生殖生理春化作用vernalization:低温诱导植物开花的过程;脱春化作用devernalization:在春化过程结束之前,如遇高温,低温效果会削弱甚至消除的现象;光周期photoperiodism:植物对白天和黑夜的相对长度的反应;光周期诱导photoperiodic induction:植物只需要在一定时间适宜的光周期处理,以后即使处于不适宜的光周期下,仍然可以长期保持刺激的效果;长日植物long-day plant:必须长于其临界日照长度的日照才能开花的植物;短日植物short-day plant:必须短于其临界日照长度的日照才能开花的植物;日中性植物day-neutral plant:在任何日照条件下都能开花的植物;临界日长critical day length:昼夜周期中诱导短日照植物开花所必需的最长日照或者诱导长日照植物开花所必需的最短日照;临界暗期critical dark period:在昼夜周期中,短日植物能开花所需的最短暗期长度,或长日照植物能够开花所必需的最长暗期长度;开花素成花素florigen:可以从一株植物传递到另一株植物的物质;自交不亲和性self-incompatibility:植物花粉落在同花雌蕊的柱头上不能受精的现象;第十一章植物的成熟和衰老生理呼吸跃变respiratory climacteric:当果实成熟到一定程度时,呼吸速率首先是降低,然后突然升高,之后又下降的现象;单性结实parthenocarpy:不经受精而雌蕊的子房形成无籽果实的现象;休眠dormancy:成熟种子;鳞茎和芽在合适的萌发条件下仍不萌发的现象;衰老senescence:细胞、器官或整个植株生理功能衰退,趋向自然死亡的时相;程序性细胞死亡programmed cell death:主动地、生理性的细胞死亡,死亡过程由细胞内业已存在的、由基因编码的程序控制;脱落abscission:植物细胞组织或器官与植物体分离的过程;生长素梯度学说auxin gradient theory:决定脱落的不是生长素绝对浓度,而是相对浓度,即离层两侧生长素浓度梯度起着调节脱落的作用;第十二章植物的抗性生理生物胁迫biotic stress:病害、虫害和杂草;非生物胁迫abiotic stress:寒冷、高温、干旱、盐渍、水等;植物抗性生理hardiness physiology:逆境对植物生命活动的影响,以及植物对逆境的抵御抗性能力;逆境stress:对植物产生伤害的环境;热激蛋白heat-shock protein:生物受到高温刺激后大量表达的一种蛋白;冷害chilling injury:在零上低温时,虽无结冰现象,但能引起喜温植物的生理障碍,是植物受伤甚至死亡的现象;冻害freezing injury:当温度降到零以下,植物体内发生冰冻,因而受伤甚至死亡的现象;盐害salt injury:土壤盐分过多对植物造成的危害;渗透调节osmoregulation:通过加入或去除细胞内的溶质,从而使细胞内外的水分相互平衡的现象;交叉适应cross adaptation:植物处于零上低温、高温、干旱或盐渍条件下,能提高植株对另外一些逆境的抵抗能力的与不良反应之间的相互适应作用;低温胁迫low-temperature stress:低于植物最适生长温度下限的温度环境胁迫蛋白stress protein:在逆境条件下,植物关闭一些正常表达的基因,启动一些与逆境相适应的基因,形成的新的蛋白;温度补偿点temperature compensation point:当呼吸速率与光合速率相等时的温度;暂时萎蔫temporary wilting:靠降低蒸腾即能消除水分亏缺以恢复原状的萎蔫;永久萎蔫permanent wilting:如果由于土壤已无可资植物利用的水,虽然降低蒸腾仍不能消除水分亏缺以恢复原状的萎蔫;抗蒸腾剂antitranspirant:一些能降低蒸腾作用的化学药剂;植物防御素植保素phytoalexin:植物受侵染后才产生的一类低相对分子质量的抗病源微生物的化合物;。

【植物生理学名词解释】 植物生理学名词解释英文

【植物生理学名词解释】 植物生理学名词解释英文

植物生理学名词解释】植物生理学名词解释英文植物生理学名词解释名词解释:1、生长发育:是植物生命活动的外在表现。

2、生长:是指增加细胞数量和扩大细胞体积而导致植物体积和重量的增加。

3、发育:是指细胞不断分化,形成新组织、新器官,即形态建成,具体表现为种子萌发,根、茎、叶生长,开花、牢固、年老、死亡等过程。

4、代谢:是维持各种生命活动〔如生长、生殖和运动〕过程中化学转变〔包括物质合成、转化和分解〕的总称。

植物的代谢,从性质上可分为物质代谢和能量代谢;从方向上可分为同化或合成代谢和异化或分解代谢。

5、信号转导:是指单个细胞水平上,信号与受体结合后,通过信号传导系统,产生生理反应。

6、同化作用:植物从环境中汲取简洁的无机物,经过各种转变,形成各种冗杂的有机物,综合成为自身的一部分,同时把太阳光能转变为化学能,贮XX于有机物中,这种合成物质的同时获得能量的代谢过程,称为同化作用。

7、异化作用:植物将体内冗杂的有机物分解为简洁的无机物,同时把贮XX在有机物中的能量释放出来,供生命活动用,这种分解物质的同时释放能量的代谢过程,成为异化作用。

8、扩大:扩大是一种自发过程,指分子的随机热运动所造成的物质从浓度高的区域向浓度低的区域移动,扩大是物质顺着浓度梯度进行的。

9、集流:是指液体中成群的原子或分子在压力梯度下共同移动。

10、渗透作用:水分从水势高的系统通过半透膜向水势低的系统移动的现象成为渗透作用。

11、伤流:从受伤或折断的植物组织溢出液体的现象,成为伤流。

12、蒸腾作用:是指水分以气体状态,通过植物体的外表〔主要是叶子〕,从体内散失到体外的现象。

13、蒸腾速率:植物在确定时间内单位叶面积蒸腾的水量。

了解蒸腾比率和蒸腾系数。

14、荧光现象:叶绿素溶液在透射光下呈绿色,而在反射光下呈红色,这种现象称为荧光现象。

15、红降:当光波大于685nm〔远红光〕时,虽然光子仍被叶绿素大量汲取,但量子产额急剧下降,这种现象被称为红降。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2、细胞信号转导:是指细胞通过胞膜或胞内受体感受信息分子的刺激,经细胞内信号转导系统转换,从而影响细胞生物学功能的过程 。

3、代谢源(metabolic source ): 是指能够制造并输出同化物的组织、器官或部位。

如绿色植物的功能叶,种子萌发期间的胚乳或子叶,春季萌发时二年生或多年生植物的块根、块茎、种子等。

4、代谢库:接纳消耗或贮藏有机物质的组织或部位。

又称代谢池 。

5、光合性能:是指植物光合系统的生产性能或生产能力。

光合生产性能与作物产量的关系是:光合产量的多少取决于光合面积、光合性能与光合时间三项因素。

农作物经济产量与光合作用的关系可用下式表示: 经济产量=[(光合面积 X 光合能力 X 光合时间)— 消耗] X 经济系数
6、光合速率(photosynthetic rate ):是指单位时间、单位叶面积吸收CO2的量或放出O2的量。

常用单位12--••h m mol μ,1
2--••s m mol μ 7、光和生产率(photosynthetic produce rate ):又称净同化率(NAR ),是指植物在较长时间(一昼夜或一周)内,单位叶面积产生的干物质质量。

常用单位1
2--••d m g
8、氧化磷酸化:生物化学过程,是物质在体内氧化时释放的能量供给ADP 与无机磷合成ATP 的偶联反应。

主要在线粒体中进行。

9、质子泵:能逆浓度梯度转运氢离子通过膜的膜整合糖蛋白。

质子泵的驱动依赖于ATP 水解释放的能量,质子泵在泵出氢离子时造成膜两侧的pH 梯度和电位梯度。

10、水分临界期:作物对水分最敏感时期,即水分过多或缺乏对产量影响最大的时期 。

11、呼吸跃变(climacteric ):当果实成熟到一定时期,其呼吸速率突然增高,最后又突然下降的现象。

12、种子活力:即种子的健壮度,是种子发芽和出苗率、幼苗生长的潜势、植株抗逆能力和生产潜力的总和,是种子品质的重要指标。

13、种子生活力(viability ):是指种子的发芽潜在能力和种胚所具有的生命力,通常是指一批种子中具有生命力(即活的)种子数占种子总数的百分率。

14、光饱和点:在一定的光强范围内,植物的光合强度随光照度的上升而增加,当光照度上升到某一数值之后,光合强度不再继续提高时的光照度值。

15、光补偿点:植物的光合强度和呼吸强度达到相等时的光照度值。

在光补偿点以上,植物的光合作用超过呼吸作用,可以积累有机物质。

阴生植物的光补偿点低于阳生植物,C3植物低于C4植物。

16、同化力:ATP 和NADPH 是光合作用过程中的重要中间产物,一方面这两者都能暂时将能量贮藏,将来向下传递;另一方面,NADPH 的H+又能进一步还原CO2并形成中间产物。

这样就把光反应和碳反应联系起来了。

由于ATP 和NADPH 用于碳反应中的CO2同化,所以把这两种物质合成为同化力(assimilatory power ).
17、极性运输:极性运输就是物质只能从植物形态学的上端往下运输,而不能倒转过来运输。

比如生长素的极性运输:茎尖产生的生长素向下运输,再由根基向根尖运输。

生长素是唯一具有极性运输特点的植物激素,其他类似物并无此特性 。

18、生理酸性盐:选择性吸收不仅表现在对不同的盐分吸收量不同,而且对同一盐的阳
离子和阴离子吸收量也不相同。

例如,供给硫酸铵时,植物对铵离子的吸收远远大于对硫酸根离子的吸收。

由于在吸收环境中的同时,根细胞必定有相同电荷的与之交换。

所以环境中氢离子浓度的增加,pH值降低。

这种盐称为生理酸性盐。

大多铵盐属于这类盐。

相反,硝酸钠和硝酸钙属生理碱性盐。

此外,还有一类化合物的阴离子和阳离子几乎以同等速度被极吸收,对土壤溶液的酸碱性不产生影响,这类盐称为生理中性盐,如硝酸铵。

19、植物激素:是由植物自身代谢产生的一类有机物质,并自产生部位移动到作用部位,在极低浓度下就有明显的生理效应的微量物质,也被称为植物天然激素或植物内源激素。

20、乙烯的“三重效应”:①抑制茎的伸长生长;②促进茎和根的增粗;②促进茎的横向增长。

21、水通道蛋白(Aquaporin):又名水孔蛋白,是一种位于细胞膜上的蛋白质(内在膜蛋白),在细胞膜上组成“孔道”,可控制水在细胞的进出,就像是“细胞的帮浦”一样。

22、光周期现象:昼夜光照与黑暗的交替及其对植物发育,特别是开花有显著影响的现象。

23、长日植物:(LDP)是指在昼夜周期中日照长度大于某一临界值时才能开花的植物。

24、短日植物(SDP,Short-day plant):这种植物在日照长度短于某一定临界值时才能够开花,对于这种植物适当缩短光照,延长黒暗,可提早开花,在临界日长内,延长光照,就延迟开花,如果光照时数大于临界日长,就不进行花芽分化,不开花。

25、短日植物(SDP,Short-day plant):这种植物在日照长度短于某一定临界值时才能够开花,对于这种植物适当缩短光照,延长黒暗,可提早开花,在临界日长内,延长光照,就延迟开花,如果光照时数大于临界日长,就不进行花芽分化,不开花。

26、乙醇酸氧化途径:是水稻根系特有的糖降解途径,主最要特征是具有关键酶--乙醇酸氧化酶。

水稻一直生活在供氧不足的水淹条件下,当根际土壤存在某些还原性物质时,水稻根中的部分乙酰CoA不进入TCA循环,而是形成乙酸,然后,乙酸在乙醇酸氧化酶及多种每类催化下以此形成乙醇酸、乙醛酸、草酸和甲酸及CO2,并且每次氧化均形成H2O2,而H2O2又在过氧化氢酶(CAT)催化下分解释放氧,可氧化水稻根系周围的各种还原性物质(如H2S、Fe2+等),从而抑制土壤中还原性物质对水稻根系的毒害,以保证根系旺盛的生理机能,是水稻能在还原条件的水田中正常生长发育。

27、Mehler反应:指水解放出的电子经PSII和PSI两个光系统,最终传给O2的电子传递途径;由于这一电子传递途径是Meheler提出的,故称做Meheler反应。

28、渗透调节(osmotic adjustment):指植物生长在渗透胁迫条件下,其细胞在渗透上有活性和无毒害的作用的主动净增长过程。

有活性溶质增长的结果是细胞浓度增大渗透势降低,使其在低渗透势生境中能够吸收水分,此过程为渗透调节。

29、生理干旱:指植物因水分生理方面的原因不能吸收土壤中水分而造成的干旱。

例如,土壤溶液浓度过高、土壤温度过低和土壤中严重缺氧等,都能使植物根系吸水的正常生理过程遭到破坏而致缺水受害。

28、原初反应(primary reaction):叶绿素分子从被光激发至引起第一个光化学反应为止的过程。

包括光能的吸收、传递与转换,即光能被聚光色素分子吸收,并传递至作用中心,在作用中心发生最初的光化学反应,使电荷分离从而将光能转化为电能的过程。

29、必需元素:维持正常生命活动不可缺少的元素。

包括大量元素与微量元素。

30、荧光现象:是指叶绿素在透射光下为绿色,而在反射光下为红色的现象,这红光就是叶绿素受光激发后发射的荧光。

叶绿素溶液的荧光可达吸收光的10%左右。

而鲜叶的荧光程度较低,指占其吸收光的0.1~1%左右。

31、小孔律(law of small pore):气体分子通过小孔表面扩散的速率,不是与小孔的面积成正比而是与小孔的周长成正比。

32、单盐毒害(toxic action of single ion):如果将植物培养在只含一种金属离子的溶液中,即使这种离子是植物生长发育所必需的,如钾离子,而且在培养液中的浓度很低,植物也不能正常生活,不久即受害而死。

原因是当培养在仅含有1种金属盐类溶液中的植物,将很快的积累金属离子,并呈现出不正常状态,致使植物死亡的现象。

不正常状态包括根停止生长,生长区域中的细胞壁粘液化,细胞破坏,并失去细胞液,变成无结构的团块。

这种由于溶液中只含有一种金属离子而对植物起毒害作用的现象称为单盐毒害。

33、顶端优势:植物的顶芽优先生长而侧芽受抑制的现象。

34、生理休眠:在适宜的环境条件下,因为植物本身内部的原因而造成的休眠。

35、交换吸附(exchange absorption):植物根产生的H+和HC03-迅速地分别与周围溶液的阳离子和阴离子进行交换吸附从而使矿物元素达到根细胞表面的过程。

36、离子的选择性吸收(selective absorption):即植物根系吸收离子的数量与溶液中离子的数量不成比例的现象。

37、胞饮作用(pinocytosis):细胞通过质膜吸附物质并进一步通过莫得内陷而将物质转移到细胞,或进一步运送到液泡内的物质吸收方式。

38、蒸腾作用(transpiration):指植物体内的水分以气态方式从植物体的表面向外界散失的过程。

39、蒸腾速率(transpiration rate):植物在单位时间内,单位叶面积通过蒸腾作用所散失的水量称为蒸腾速率,有称蒸腾强度。

40、蒸腾效率(transpiration ratio)植物每消耗1㎏水所产生干物质的量(g),或者说,植物在一定时间内干物质的积累量与同期所消耗的水量之比称为蒸腾效率或蒸腾比率。

41、蒸腾系数(transpiration coefficient):物质制造1g干物质所消耗的水量(g)称为蒸腾系数,或需水量,它是蒸腾效率的倒数。

相关文档
最新文档