如图在平面直角坐标系中已知三角形AOB是等边三角形点A的坐标

合集下载

2021年中考数学模拟试题(44)(解析版)

2021年中考数学模拟试题(44)(解析版)

2021年中考数学模拟试题一、选择题1. 若a 是最大的负整数,b 是绝对值最小的有理数,c 是倒数等于它本身的自然数,则代数式a 2017+2016b+c 2018的值为( )A. 2018B. 2016C. 2017D. 0【答案】D【解析】【分析】根据已知求出a=-1,b=0,c=1,代入求出即可.【详解】根据题意知a=-1、b=0、c=1,则原式=(-1)2017+2016×0+12018 =-1+0+1=0,故选D .【点睛】考查了绝对值、倒数、负数和求代数式的值等知识点,能根据题意求出a 、b 、c 的值是解此题的关键.2. 16的算术平方根是( )A. 4±B. 4-C. 2D. 4 【答案】D【解析】【分析】根据算术平方根的定义求解即可,如果一个正数x 的平方等于a ,即x 2=a ,那么x 叫做a 的算术平方根.【详解】16的算术平方根是.故选D .【点睛】本题考查了算术平方根的求法,熟练掌握算术平方根的定义是解答本题的关键, 正数有一个正的算术平方根,0的平方根是0,负数没有算术平方根.3. 如图是由几个相同的正方体搭成的一个几何体,从正面看到的平面图形是( )A. B. C. D.【答案】D【解析】【分析】正面看到的平面图形即为主视图.【详解】立体图形的主视图为:D ;左视图为:C ;俯视图为:B故选:D .【点睛】本题考查三视图,考查的是空间想象能力,解题关键是在脑海中构建出立体图形.4. 对于任意的x 值都有227221x M N x x x x +=++-+-,则M ,N 值为( ) A. M =1,N =3B. M =﹣1,N =3C. M =2,N =4D. M =1,N =4 【答案】B【解析】【分析】先计算21M N x x ++-=()()222M N x M N x x ++-++- ,根据已知可得关于M 、N 的二元一次方程组227M N M N +⎧⎨-+⎩== ,解之可得.【详解】解:21M Nx x ++- =()()()()1221M x N x x x -+++- =()()222M N x M N x x ++-++-∴2272x x x ++-=()()222M N x M N x x ++-++- ∴227M N M N +⎧⎨-+⎩==, 解得:13M N -⎧⎨=⎩=, 故选B .【点睛】本题主要考查分式的加减法,解题的关键是熟练掌握分式的加减法则,并根据已知等式得出关于M 、N 的方程组.5. 如图,点A ,B ,C 在⊙O 上,∠A =50°,则∠BOC 的度数为( )A. 40°B. 50°C. 80°D. 100°【答案】D【解析】【分析】 由题意直接根据圆周角定理求解即可.【详解】解:∵∠A=50°,∴∠BOC=2∠A=100°.故选:D .【点睛】本题考查圆周角定理的运用,熟练掌握圆周角定理是解题的关键.6. 如图,在平面直角坐标系中,△ABC 位于第二象限,点A 的坐标是(﹣2,3),先把△ABC 向右平移4个单位长度得到△A 1B 1C 1,再把△A 1B 1C 1绕点C 1顺时针旋转90°得到△A 2B 2C 1,则点A 的对应点A 2的坐标是( )A. (5,2)B. (1,0)C. (3,﹣1)D. (5,﹣2)【答案】A【解析】【分析】根据平移变换,旋转变换的性质画出图象即可解决问题;【详解】解:如图,△A2B2C1即所求.观察图象可知:A2(5,2)故选A.【点睛】本题考查旋转变换,平移变换等知识,解题的关键是熟练掌握基本知识,正确作出图形是解决问题的关键.二、填空题7. 将201800000用科学记数法表示为_____.【答案】2.018×108.【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:将201800000用科学记数法表示为2.018×108. 故答案为2.018×108. 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.8. x 的取值范围是_____.【答案】x >2019【解析】【分析】根据二次根式的定义进行解答.x-2019≥ 0,所以x 的取值范围是x ≥ 2019.【点睛】本题考查了二次根式的定义,熟练掌握二次根式的定义是本题解题关键.9. 因式分解:a 3﹣2a 2b+ab 2=_____.【答案】a (a ﹣b )2.【解析】【分析】先提公因式a ,然后再利用完全平方公式进行分解即可.【详解】原式=a (a 2﹣2ab+b 2)=a (a ﹣b )2,故答案为a (a ﹣b )2.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.10. 如果2(2a +=+,b 为有理数),则a =_____,b =_____.【答案】 (1). 6 (2). 4【解析】【分析】先计算出()2,再根据)2=可得答案.【详解】解:∵(2=+2=,∴a =6、b =4.故答案为6、4.【点睛】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则及完全平方公式.11. 若 m 、n 是方程 x 2+2018x ﹣1=0 的两个根,则 m 2n+mn 2﹣mn=_________.【答案】2019【解析】【分析】根据根与系数的关系得到 m+n=﹣2018,mn=﹣1,把 m 2n+mm 2﹣mn 分解因式得到 mn (m+n ﹣1),然后利用整体代入的方法计算.【详解】解:∵m 、n 是方程 x 2+2018x ﹣1=0 的两个根,20181m n mn +=-=-,,则原式=mn (m+n ﹣1)=﹣1×(﹣2018﹣1)=﹣1×(﹣2019)=2019,故答案为2019.【点睛】本题考查了根与系数的关系,如果一元二次方程 ax 2+bx+c=0 的两根分别为1 x 与2 x ,则1212 b c x x x x a a,.+=-⋅=解题时要注意这两个关 系的合理应用.12. 小强在最近的5场篮球赛中,得分分别为10、13、9、8、10分.若小强下一场球赛得分是16分,则小强得分的平均数、中位数和众数中,发生改变的是____【答案】平均数【解析】试题分析:根据众数、中位数、平均数的定义求解可得.解: 原数据8、9、10、10、13的平均数为15(8+9+10+10+13)=10,众数为10、中位数为10, 新数据8、9、10、10、13、16的平均数为16(8+9+10+10+13+16)=11,众数为10、中位数为10, ∴发生改变的是平均数.故答案为平均数.13. 如图,点M 、N 分别是正五边形ABCDE 的两边AB 、BC 上的点.且AM=BN ,点O 是正五边形的中心,则∠MON 的度数是_____度.【答案】72【解析】【分析】连接OA 、OB 、OC ,根据正多边形的中心角的计算公式求出∠AOB ,证明△AOM ≌△BON ,根据全等三角形的性质得到∠BON=∠AOM ,得到答案.【详解】如图,连接OA 、OB 、OC ,∠AOB=3605︒=72°, ∵∠AOB=∠BOC ,OA=OB ,OB=OC ,∴∠OAB=∠OBC ,在△AOM 和△BON 中, OA OB OAM OBN AM BN =⎧⎪∠=∠⎨⎪=⎩,∴△AOM ≌△BON ,∴∠BON=∠AOM ,∴∠MON=∠AOB=72°, 故答案为72.【点睛】本题考查的是正多边形和圆的有关计算,掌握正多边形与圆的关系、全等三角形的判定定理和性质定理是解题的关键.14. 已知G 是直角三角形ABC 的内心,∠C =90°,AC =6,BC =8,则线段CG 的长为______.【答案】2【解析】试题分析: 作GD ⊥AC 于点D ,作GE ⊥BC 于E ,作GM ⊥AB 于M ,连接GA 、GB 、GC ,根据勾股定理求出AB ,根据三角形的面积公式得出S △ACB =S △GAC +S △GBC +S △GAB ,代入求出GE =2,由等腰直角三角形的性质和勾股定理即可得出CG 的长.解:作GD ⊥AC 于点D ,作GE ⊥BC 于点E ,作GM ⊥AB 于M ,连接GA 、GB 、GC .如图所示:设GM =r ,则GM =GD =GE =r ,∵AC =6,BC =8,∠C =90∘,由勾股定理得:AB =10,根据三角形的面积公式得:S △ACB =S △GAC +S △GBC +S △GAB , ∴12AC ×BC =12AC ×r +12BC ×r +12AB ×r , 即:12×6×8=12×6r +12×8r +12×10r , 解得:r =2.则GE =2,∵G 是直角三角形ABC 的内心,∴∠GCE =12∠C =45∘, ∴CG 2GE 2. 故答案为2.15. 如果抛物线221y x x m =++-经过原点,那么m 的值等于________.【答案】1【解析】【分析】将点(0,0)代入抛物线方程,列出关于m 的方程,然后解方程即可.【详解】解:根据题意,知点(0,0)在抛物线221y x x m -=++上,∴0=m -1,解得,m=1;故答案是:1.【点睛】本题考查了待定系数法求二次函数的解析式.解答该题需知:二次函数图象上的点的坐标,都满足该二次函数的解析式.16. 如图,在反比例函数图象中,△AOB是等边三角形,点A在双曲线的一支上,将△AOB绕点O顺时针旋转α (0°<α<360°),使点A仍在双曲线上,则α=_____.【答案】30°、180°、210°【解析】【分析】根据等边三角形的性质,双曲线的轴对称性和中心对称性即可求解.【详解】解:根据反比例函数的轴对称性,A点关于直线y=x对称,∵△OAB是等边三角形,∴∠AOB=60°,∴AO与直线y=x的夹角是15°,∴α=2×15°=30°时点A落在双曲线上,根据反比例函数的中心对称性,∴点A旋转到直线OA上时,点A落在双曲线上,∴此时α=180°,根据反比例函数的轴对称性,继续旋转30°时,点A落在双曲线上,∴此时α=210°;故答案为30°、180°、210°.【点睛】本题考查了反比例函数的综合运用,旋转的性质,等边三角形的性质.关键是通过旋转及双曲线的对称性得出结论.三、解答题17. 计算:-10 12sin452) 2π⎛⎫-︒⎪⎝⎭.【答案】3【解析】【分析】按顺序先分别进行负指数幂的计算、特殊角的三角函数值、绝对值的化简、0次幂的计算,然后再按运算顺序进行计算即可. 【详解】-1012sin45+2+(2018-)2π⎛⎫-︒ ⎪⎝⎭=2-222⨯++1 =3.【点睛】本题考查了实数的混合运算,熟练掌握负指数幂的运算法则、特殊角的三角函数值、0次幂的运算法则是解本题的关键.18. 解方程:x 21x 1x-=-. 【答案】2x =.【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】去分母得:x 2-2x+2=x 2-x ,解得:x=2,检验:当x=2时,方程左右两边相等,所以x=2是原方程的解.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.19. 我省有关部门要求各中小学要把“阳光体育”写入课表,为了响应这一号召,某校围绕着“你最喜欢的体育活动项目是什么?(只写一项)”的问题,对在校学生进行了随机抽样调查,从而得到一组数据,如图1是根据这组数据绘制的条形统计图,请结合统计图回答下列问题:(1)该校对多少名学生进行了抽样调查?(2)本次抽样调查中,最喜欢足球活动的有多少人?占被调查人数的百分比是多少?(3)若该校九年级共有400名学生,图2是根据各年级学生人数占全校学生总人数的百分比绘制的扇形统计图,请你估计全校学生中最喜欢篮球活动的人数约为多少?【答案】(1)该校对50名学生进行了抽样调查;(2)最喜欢足球活动的人占被调查人数的20%;(3)全校学生中最喜欢篮球活动的人数约为720人.【解析】【分析】(1)根据条形统计图,求个部分数量的和即可;(2)根据部分除以总体求得百分比;(3)根据扇形统计图中各部分占总体的百分比之和为1,求出百分比即可求解.【详解】(1)4+8+10+18+10=50(名)答:该校对50名学生进行了抽样调查.(2)最喜欢足球活动的有10人,10=20%50, ∴最喜欢足球活动的人占被调查人数的20%.(3)全校学生人数:400÷(1﹣30%﹣24%﹣26%)=400÷20%=2000(人)则全校学生中最喜欢篮球活动的人数约为2000×1850=720(人). 【点睛】此题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚的表示出每个项目的数据;扇形统计图中各部分占总体的百分比之和为1,直接反应部分占全体的百分比的大小.20. 甲、乙、丙、丁四名同学进行一次乒乓球单打比赛,要从中选两位同学打第一场比赛.(1)若由甲挑一名选手打第一场比赛,选中乙的概率是 ;(2)任选两名同学打第一场,求恰好选中甲、乙两位同学的概率.【答案】(1)13(2)16【解析】【分析】(1) 直接利用概率公式求解;(2)共有乙、丙、丁三位同学,恰好选中甲、乙两位同学有12种情况.【详解】(1)(1)∵共有乙、丙、丁三位同学,恰好选中乙同学的只有一种情况,∴P(恰好选中乙同学)=13;(2)随机选两位同学打第一场比赛,可能出现的结果有12种,即(甲,乙)、(甲,丙)、(甲,丁)、(乙,甲)、(乙,丙),(乙,丁)、(丙,甲)、(丙,乙)、(丙,丁)、(丁,甲)、(丁,乙),(丁,丙)、并且它们出现的可能性相等.恰好选中甲、乙两位同学(记为事件A)的结果有2种,即(甲,乙)、(乙,甲),所以P(A)=16.【点睛】本题考查列表法和树状图法,解题关键在于作出正确的判断.21. 已知2x﹣y=1,且﹣1<x<2,求y的取值范围.【答案】-3<y<3【解析】试题分析:利用2x-y=1变形,用含y的式子表示x,再根据-1<x<2列出不等式组,解之即可.解:由2x-y=1,得x=12y+,则由-1<x<2得:112122yy+⎧>-⎪⎪⎨+⎪<⎪⎩,解得:-3<y<3.22. 平行四边形ABCD中,过A作AE⊥BC,垂足为E,连DE、F为线段DE上一点,且∠1=∠B.求证:△ADF∽△DEC.【答案】证明见试题解析.【解析】试题分析:先由平行线的性质得出∠ADF=∠DEC,∠C+∠B=180°,再由∠1=∠B,∠1+∠AFD=180°可得出∠C=∠AFD,由此可得出结论.试题解析:证明:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠ADF=∠DEC,∠C+∠B=180°.∵∠1=∠B,∠1+∠AFD=180°,∴∠C=∠AFD,∴△ADF∽△DEC.考点:1.相似三角形的判定;2.平行四边形的性质.23. 某长方体包装盒的表面积为146cm2,其展开图如图所示.求这个包装盒的体积.【答案】这个包装盒的体积为90cm3【解析】试题分析:设这种长方体包装盒的高为x cm,则长为(13-2x)cm,宽为12(14-2x)cm.根据长方体表面公式,即可列出方程,求解即可.解:设高为x cm,则长为(13-2x)cm,宽为12(14-2x)cm.由题意,得,[(13-2x)12(14-2x)+12(14-2x)x+x(13-2x)]×2=146,解得:x1=2,x2=-9(舍去).∴长为:9cm,宽为:5cm.长方体的体积为:9×5×2=90cm3.答:这个包装盒的体积为90cm3.点睛:本题主要涉及立体图形的平面展开图、立体图形的表面积、体积.解题的关键是设高为x cm,利用长方体表面积公式建立方程.24. 如图,已知∠ABM=30°,AB=20,C是射线BM上一点.(1)在下列条件中,可以唯一确定BC长的是;(填写所有符合条件的序号)①AC=13;②tan∠ACB=125;③△ABC的面积为126.(2)在(1)的答案中,选择一个作为条件,画出示意图,求BC的长.【答案】(1)②③;(2)答案见解析.【解析】试题分析:根据给出的条件作出辅助线,根据锐角三角函数的概念和勾股定理求出BC的长,得到(1)(2)的答案.解:(1)②③;(2)方案一:选②作AD⊥BC于D,则∠ADB=∠ADC=90°.在Rt△ABD中,∵∠ADB=90°,∴AD=AB·sin B=10,BD=AB·cos B=3在Rt△ACD中,∵∠ADC=90°,∴CD=tan ADACB=256.∴BC=BD+CD=3256.25. 在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用32m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm.(1)若花园的面积为252m2,求x的值;(2)若在P处有一棵树与墙CD,AD的距离分别是17m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.【答案】(1)18m或14m;(2)花园面积的最大值是255平方米.【解析】【分析】(1)根据AB=x米可知BC=(32-x)米,再根据矩形的面积公式即可得出结论;(2)根据P处有一棵树与墙CD、AD的距离分别是18米和8米求出x的取值范围,再根据(1)中的函数关系式即可得出结论.【详解】解:(1)设AB=x米,可知BC=(32-x)米,根据题意得:x(32-x)=252.解这个方程得:x1=18,x2=14,答:x的长度18m或14m.(2)设周围的矩形面积为S,则S=x(32-x)=-(x-16)2+256.∵在P处有一棵树与墙CD,AD的距离是17m和6米,∴6≤x≤15.∴当x=15时,S最大= -(15-16)2+256=255(平方米).答:花园面积的最大值是255平方米.【点睛】本题考查二次函数的应用,熟知矩形的面积公式及二次函数的增减性是解题关键.26. 阅读:已知△ABC,用直尺与圆规,在直线BC上方的平面内作一点M(不与点A重合),使∠BMC=∠BAC(如图1).小明利用“同弧所对的圆周角相等”这条性质解决了这个问题,下面是他的作图过程:第一步:分别作AB、BC的中垂线(虚线部分),设交点为O;第二步:以O为圆心,OA为半径画圆(即△ABC的外接圆)第三步:在弦BC上方的弧上(异于A点)取一点M,连结MB、MC,则∠BMC=∠BAC.(如图2)思考:如图2,在矩形ABCD中,BC=6,CD=10,E CD上一点,DE=2.(1)请利用小明上面操作所获得的经验,在矩形ABCD内部用直尺与圆规作出一点P.点P满足:∠BPC =∠BEC,且PB=PC.(要求:用直尺与圆规作出点P,保留作图痕迹.)(2)求PC的长.【答案】(1)详见解析;(2)310【解析】【分析】(1)作BC 的垂直平分线,交BE 于点O ,以O 为圆心,OB 为半径作圆,交垂直平分线于点P ,则点P 为所求.(2)先根据AD=6,CD=10,DE=2知CE=8,BE=10,从而得OB=OP=5,再由BQ=CQ=12BC=3得OQ=4,再根据勾股定理求解可得.【详解】解:(1)如图所示,点P 即为所求:(2)∵CD =10,DE =2, ∴CE =8,∵BC =AD =6,∴BE =10,则OP =OB =5,∵BQ =CQ =12BC =3, ∴OQ =4,则PQ =9,∴PC 22CQ PQ +2239+=10.【点睛】本题考查作图-复杂作图,解题的关键是掌握圆周角定理、线段垂直平分线的尺规作图、矩形的性质及勾股定理等知识点.27. 如图,在Rt △ABO 中,∠BAO =90°,AO =AB ,BO =2,点A 的坐标(﹣8,0),点C 在线段AO 上以每秒2个单位长度的速度由A向O运动,运动时间为t秒,连接BC,过点A作AD⊥BC,垂足为点E,分别交BO于点F,交y轴于点D.(1)用t表示点D的坐标;(2)如图1,连接CF,当t=2时,求证:∠FCO=∠BCA;(3)如图2,当BC平分∠ABO时,求t的值.【答案】(1)(0,2t);(2)见解析;(3)t=421)【解析】【分析】(1)由已知条件可证明△ABC≌△OAD,根据全等三角形的性质即可求出点D的坐标;(2)由(1)的结论可证明△FOD≌△FOC,从而∠FCO=∠FDO,再根据(1)中△ABC≌△OAD,可得∠ACB=∠ADO,进而∠FCO=∠ACB得证;(3)在AB上取一点K,使得AK=AC,连接CK.设AK=AC=m,则CK2m,根据角平分线的性质和三角形外角和定理可得KB=KC2m,从而求得m的值,进而t的值也可求出.【详解】解:(1)∵AD⊥BC,∴∠AEB=90°=∠BAC=∠AOD,∴∠ABC+∠BAE=90°,∠BAE+∠OAD=90°,∴∠ABC=∠OAD,∵AB=OA,∴△ABC≌△OAD(ASA),∴OD=AC=2t,∴D(0,2t).故答案为(0,2t);(2)如图1中,∵AB=AO,∠BAO=90°,OB=82,∴AB=AO=8,∵t=2,∴AC=OD=4,∴OC=OD=4,∵OF=OF,∠FOD=∠FOC,∴△FOD≌△FOC(SAS),∴∠FCO=∠FDO,∵△ABC≌△OAD,∴∠ACB=∠ADO,∴∠FCO=∠ACB;(3)如图2中,在AB上取一点K,使得AK=AC,连接CK.设AK=AC=m,则CK=2m.∵CB平分∠ABO,∴∠ABC=22.5°,∵∠AKC=45°=∠ABC+∠KCB,∴∠KBC=∠KCB=225°,∴KB=KC2m,∴m =8,∴m =81),∴t =81)2=4﹣1). 【点睛】全等三角形的判定和性质、角平分线的性质、三角形的外角和定理等知识都是本题的考点,熟练掌握相关知识并正确运用是解题的关键.。

一次函数代数几何综合问题

一次函数代数几何综合问题

一次函数代几综合问题一.填空题(共6小题)1.如图,直线和x轴、y轴分别交于点A、B.若以线段AB为边作等边三角形ABC,则点C的坐标是.2.一次函数y=x+4分别交x轴、y轴于A、B两点,在x轴上取一点,使△ABC为等腰三角形,则这样的点C的坐标为.3.如图,平面直角坐标系中,已知直线y=x上一点P(1,1),C为y轴上一点,连接PC,线段PC绕点P顺时针旋转90°至线段PD,过点D作直线AB⊥x轴,垂足为B,直线AB与直线y=x交于点A,且BD=2AD,连接CD,直线CD与直线y=x交于点Q,则点Q的坐标为.4.如图,已知直线l:y=x,过点A(0,1)作y轴的垂线交直线l于点B,过点B作直线l的垂线交y轴于点A1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2;…;按此作法继续下去,则点A4的坐标为.5.在直角坐标系中,正方形A1B1C1O1、A2B2C2C1、…、A n B n C n C n﹣1按如图所示的方式放置,其中点A1、A2、A3、…、A n均在一次函数y=kx+b的图象上,点C1、C2、C3、…、C n均在x轴上.若点B1的坐标为(1,1),点B2的坐标为(3,2),则点A n的坐标为.6.如图,直线1:与x轴、y轴分别相交于点A、B,△AOB与△ACB关于直线l对称,则点C的坐标为.二.解答题(共24小题)7.已知一次函数y=2x﹣4的图象与x轴、y轴分别相交于点A、B,点P在该函数的图象上,P到x轴、y 轴的距离分别为d1、d2.(1)当P为线段AB的中点时,求d1+d2的值;(2)直接写出d1+d2的范围,并求当d1+d2=3时点P的坐标;(3)若在线段AB上存在无数个P点,使d1+ad2=4(a为常数),求a的值.8.在平面直角坐标系xOy中,边长为6的正方形OABC的顶点A,C分别在x轴和y轴的正半轴上,直线y=mx+2与OC,BC两边分别相交于点D,G,以DG为边作菱形DEFG,顶点E在OA边上.(1)如图1,当CG=OD时,直接写出点D和点G的坐标,并求直线DG的函数表达式;(2)如图2,连接BF,设CG=a,△FBG的面积为S.①求S与a的函数关系式;②判断S的值能否等于等于1?若能,求此时m的值,若不能,请说明理由;(3)如图3,连接GE,当GD平分∠CGE时,m的值为.9.认真阅读材料,然后回答问题:我们知道,在数轴上,x=1表示一个点.而在平面直角坐标系中,x=1表示一条直线;我们还知道,以二元一次方方程2x﹣y+1=0的所有解为坐标的点组成的图形就是一次函数y=2x+1的图象,它也是一条直线,如图1可以得出:直线x=1与直线y=2x+1的交点P的坐标(1,3)就是方程组在直角坐标系中,x≤1表示一个平面区域,即直线x=1以及它左侧的部分,如图2;y≧2x+1也表示一个平面区域,即直线y=2x+1以及它上方的部分,如图3.回答下列问题:请你自己作一个直角坐标系,并在直角坐标系中(1)用作图象的方法求出方程组的解.(2)用阴影表示,所围成的区域.10.如图,直线l1的解析表达式为:y=3x﹣3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C.(1)求△ADC的面积;(2)在直线l2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,则点P的坐标为;(3)若点H为坐标平面内任意一点,在坐标平面内是否存在这样的点H,使以A、D、C、H为顶点的四边形是平行四边形?若存在,请直接写出点H的坐标;若不存在,请说明理由.11.如图,在平面直角坐标系中,已知直线l1和l2相交于点A,它们的解析式分别为l1:y=x,l2:y=﹣x+.直线l2与两坐标轴分别相交于点B和点C,点P在线段OB上从点O出发.以每秒1个单位的速度向点B运动,同时点Q从点B出发以每秒4个单位的速度沿B→O→C→B的方向向点B运动,过点P作直线PM⊥OB分别交l1,l2于点M,N.连接MQ.设点P,Q运动的时间是t秒(t>0)(1)求点A的坐标;(2)点Q在OC上运动时,试求t为何值时,四边形MNCQ为平行四边形;(3)试探究是否存在某一时刻t,使MQ∥OB?若存在,求出t的值;若不存在,请说明理由.12.已知,将边长为5的正方形ABCO放置在如图所示的直角坐标系中,使点A在x轴上,点C在y轴上.点M(t,0)在x轴上运动,过A作直线MC的垂线交y轴于点N.(1)当t=1时,求直线MC的解析式;(2)设△AMN的面积为S,求S关于t的函数解析式并写出相应t的取值范围;(3)在该平面直角坐标系中,第一象限内取点P(2,y),是否存在以M、N、C、P为顶点的四边形是直角梯形?若存在,直接写出点P的坐标;若不存在,请说明理由.13.如图①,以四边形AOCD的顶点O为原点建立直角坐标系,点A、C、D的坐标分别为(0,2)、(2,0)、(2,2),点P(m,0)是x轴上一动点,m是大于0的常数,以AP为一边作正方形APQR(QR落在第一象限),连接CQ.(1)请判断四边形AOCD的形状,并说明理由:(2)连接RD,请判断△ARD的形状,并说明理由:(3)如图②,随着点P(m,0)的运动,正方形APQR的大小会发生改变,若设CQ所在直线的表达式为y=kx+b(k≠0),求k的值.14.如图,将边长为4的正方形纸片,置于平面直角坐标系内,顶点A在坐标原点,AB在x轴正方向上,E、F分别是AD、BC的中点,M在DC上,将△ADM沿折痕AM折叠,使点D折叠后恰好落在EF上的P点处.(1)求点M、P的坐标;(2)求折痕AM所在直线的解析式;(3)设点H为直线AM上的点,是否存在这样的点H,使得以H、A、P为顶点的三角形为等腰三角形?若存在,请直接写出点H的坐标;若不存在,请说明理由.15.如图①,在平面直角坐标系中,A点坐标为(3,0),B点坐标为(0,4).动点M从点O出发,沿OA方向以每秒1个单位长度的速度向终点A运动;同时,动点N从点A出发沿AB方向以每秒个单位长度的速度向终点B运动.设运动了x秒.(1)点N的坐标为(,);(用含x的代数式表示)(2)当x为何值时,△AMN为等腰三角形;(3)如图②,连接ON得△OMN,△OMN可能为正三角形吗?若不能,点M的运动速度不变,试改变点N的运动速度,使△OMN为正三角形,并求出点N的运动速度.16.已知直线y=﹣x+4与x轴和y轴分别交与B、A两点,另一直线经过点B和点D(11,6).(1)求AB、BD的长度,并证明△ABD是直角三角形;(2)在x轴上找点C,使△ACD是以AD为底边的等腰三角形,求出C点坐标;(3)一动点P速度为1个单位/秒,沿A﹣﹣B﹣﹣D运动到D点停止,另有一动点Q从D点出发,以相同的速度沿D﹣﹣B﹣﹣A运动到A点停止,两点同时出发,PQ的长度为y(单位长),运动时间为t(秒),求y关于t的函数关系式.17.如图:直线y=kx+3与x轴、y轴分别交于A、B两点,,点C(x,y)是直线y=kx+3上与A、B不重合的动点.(1)求直线y=kx+3的解析式;(2)当点C运动到什么位置时△AOC的面积是6;(3)过点C的另一直线CD与y轴相交于D点,是否存在点C使△BCD与△AOB全等?若存在,请求出点C的坐标;若不存在,请说明理由.18.如图,在平面直角坐标系中,已知O为原点,四边形ABCD为平行四边形,A、B、C的坐标分别是A(﹣5,1),B(﹣2,4),C(5,4),点D在第一象限.(1)写出D点的坐标;(2)求经过B、D两点的直线的解析式,并求线段BD的长;(3)将平行四边形ABCD先向右平移1个单位长度,再向下平移1个单位长度所得的四边形A1B1C1D1四个顶点的坐标是多少?并求出平行四边形ABCD与四边形A1B1C1D1重叠部分的面积.19.如图1,在平面直角坐标系中,已知△AOB是等边三角形,点A的坐标是(0,4),点B在第一象限,点P是x轴上的一个动点,连接AP,并把△AOP绕着点A按逆时针方向旋转,使边AO与AB重合,得到△ABD.(1)求直线AB的解析式;(2)当点P运动到点(,0)时,求此时DP的长及点D的坐标;(3)是否存在点P,使△OPD的面积等于?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.20.已知,直线y=﹣x+1与x轴,y轴分别交于点A、B,以线段AB为直角边在第一象限内作等腰Rt△ABC,∠BAC=90度.且点P(1,a)为坐标系中的一个动点.(1)求三角形ABC的面积S△ABC;(2)证明不论a取任何实数,三角形BOP的面积是一个常数;(3)要使得△ABC和△ABP的面积相等,求实数a的值.21.如图,在直角坐标系xoy中,一次函数的图象与x轴交于点A,与y轴交于点B.(1)已知OC⊥AB于C,求C点坐标;(2)在x轴上是否存在点P,使△PAB为等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.22.如图1,在正方形ABOC中,BD平分∠OBC,交OA于点D.(1)若正方形ABOC的边长为2,对角线BC与OA相交于点E.则:①BC的长为;②DE的长为;③根据已知及求得的线段OB、BC、DE的长,请找出它们的数量关系?(2)如图2,当直角∠BAC绕着其顶点A顺时针旋转时,角的两边分别与x轴正半轴、y轴正半轴交于点C1和B1,连接B1C1交OA于P.B1D平分∠OB1C1,交OA于点D,过点D作DE⊥B1C1,垂足为E,请猜想线段OB、B1C1、DE三者之间的数量关系,并证明你的猜想;(3)在(2)的条件下,当B1E=6,C1E=4时,求直线B1D的解析式.23.如图,一次函数的函数图象与x轴、y轴分别交于点A、B,以线段AB为直角边在第一象限内作Rt△ABC,且使∠ABC=30°;(1)如果点P(m,)在第二象限内,试用含m的代数式表示四边形AOPB的面积,并求当△APB与△ABC面积相等时m的值;(2)如果△QAB是等腰三角形并且点Q在坐标轴上,请求出点Q所有可能的坐标;(3)是否存在实数a,b使一次函数和y=ax+b的图象关于直线y=x对称?若存在,求出的值;若不存在,请说明理由.24.一次函数的图象与x轴、y轴分别交于点A(8,0)和点B(0,6).(1)确定此一次函数的解析式.(2)求坐标原点O到直线AB的距离.(3)点P是线段AB上的一个动点,过点P作PM垂直于x轴于M,作PN垂直于y轴于N,记L=PM+PN,问L是否存在最大值和最小值?若存在,求出此时P点到原点O的距离,若不存在请说明理由.25.已知直线y=2x+4与x轴交于点A,与y轴交于点B,点P在坐标轴上,且PO=2AO.求△ABP的面积.26.已知A(1,5),B(3,﹣1)两点,在x轴上取一点M,使AM﹣BM取得最大值时,则M的坐标为.27.如图,在平面直角坐标系中,直线分别交于x轴,y轴于B、A两点,D、E分别是OA、OB的中点,点P从点D出沿DE方向运动,过点P作PQ⊥AB于Q,过点Q作QR∥OA交OB于R,当点Q与B点重合时,点P停止运动.(1)求A、B两点的坐标;(2)求PQ的长度;(3)是否存在点P,使△PQR为等腰三角形?若存在,请求出所有满足要求的点R的坐标;若不存在,请说明理由.28.如图,直线y=﹣2x+2与x轴、y轴分别交于A、B两点,将△OAB绕点O逆时针方向旋转90°后得到△OCD.(1)填空:点C的坐标是(,),点D的坐标是(,);(2)设直线CD与AB交于点M,求线段BM的长;(3)在y轴上是否存在点P,使得△BMP是等腰三角形?若存在,请求出所有满足条件的点P的坐标;若不存在,请说明理由.29.已知△ABC,∠BAC=90°,AB=AC=4,BD是AC边上的中线,分别以AC,AB所在直线为x轴,y 轴建立直角坐标系(如图).(1)在BD所在直线上找出一点P,使四边形ABCP为平行四边形,画出这个平行四边形,并简要叙述其过程;(2)求直线BD的函数关系式;(3)直线BD上是否存在点M,使△AMC为等腰三角形?若存在,求点M的坐标;若不存在,说明理由.30.如图,一次函数的图象与x轴、y轴交于点A、B,以线段AB为边在第一象限内作等边△ABC,(1)求△ABC的面积;(2)如果在第二象限内有一点P(a,);试用含有a的代数式表示四边形ABPO的面积,并求出当△ABP的面积与△ABC的面积相等时a的值;(3)在x轴上,是否存在点M,使△MAB为等腰三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.。

北师版八年级数学上册课件(BS) 第三章 位置与坐标 平面直角坐标系 第2课时 平面直角坐标系的应用

北师版八年级数学上册课件(BS) 第三章 位置与坐标 平面直角坐标系 第2课时 平面直角坐标系的应用
(2)取线段 CD 的中点 M,线段 AD 的中点 N,因为 C(0,4),D(-3,4),A(- 6,0),所以点 M(-32 ,4),点 N(-92 ,2)(答案不唯一)
10.(2021·沈阳月考)棋在中国有着三千多年的历史,由于用具简单,趣味性强, 成为流行极为广泛的益智游戏.如图是局象棋残局,若在中国象棋盘上建立平面 直角坐标系,使表示棋子“马”和“車”的点的坐标分别为(4,3),(-2,1),则 表示“炮”的点的坐标为A( )
数学 八年级上册 北师版
第三章 位置与坐标
3.2 平面直角坐标系
第2课时 平面直角坐标系的应用
知识点:建立平面直角坐标系确定点的坐标 1.如图,小明从点O出发,先向西走40米,再向南走30米到达点M,如果点M 的位置用(-40,-30)表示,那么(10,20)表示的位置是( B )
A.点A B.点B C.点C D.点D
6.(射阳模拟)如图,在下列正方形网格中,标注了射阳县城四个大型超市的大 致位置(小方格的边长为1个单位).若用(0,-2)表示苏果超市的位置,用(4,1)表 示文峰超市的位置,则大润发超市的位置可表示为_(_-__1_,__4_)_.
7.(2020·吉州区期末)如图,一个小正方形网格的边长表示50米.A同学上学 时从家中出发,先向东走250米,再向北走50米就到C=6,建立适当的平面直角坐标系, 并写出点A,B,C的坐标.
解:如图,作 AO⊥BC,以点 O 为原点建立平面直角坐标系,因为 AB=AC=5, 所以 OB=OC=12 BC=3,在 Rt△AOB 中,因为 AB=5,OB=3,所以 OA=
AB2-OB2 =4,所以 A 点坐标为(0,4),B 点坐标为(-3,0),C 点坐标为(3, 0).(答案不唯一)

一次函数和几何综合题含答案

一次函数和几何综合题含答案

一次函数和几何综合题含答案1.(2013•天水)如图1,在平面直角坐标系中,已知△AOB是等边三角形,点A的坐标是(0,4),点B在第一象限,点P是x轴上的一个动点,连接AP,并把△AOP绕着点A按逆时针方向旋转,使边AO与AB重合,得到△ABD.(1)求直线AB的解析式;(2)当点P运动到点(,0)时,求此时DP的长及点D的坐标;(3)是否存在点P,使△OPD的面积等于?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.2.(2013•济宁)如图,直线y=﹣x+4与坐标轴分别交于点A、B,与直线y=x交于点C.在线段OA上,动点Q以每秒1个单位长度的速度从点O出发向点A做匀速运动,同时动点P从点A出发向点O做匀速运动,当点P、Q其中一点停止运动时,另一点也停止运动.分别过点P、Q作x轴的垂线,交直线AB、OC于点E、F,连接EF.若运动时间为t秒,在运动过程中四边形PEFQ总为矩形(点P、Q重合除外).(1)求点P运动的速度是多少?(2)当t为多少秒时,矩形PEFQ为正方形?(3)当t为多少秒时,矩形PEFQ的面积S最大?并求出最大值.3.(2013•绥化)如图,直线MN与x轴,y轴分别相交于A,C两点,分别过A,C两点作x轴,y轴的垂线相交于B 点,且OA,OC(OA>OC)的长分别是一元二次方程x2﹣14x+48=0的两个实数根.(1)求C点坐标;(2)求直线MN的解析式;(3)在直线MN上存在点P,使以点P,B,C三点为顶点的三角形是等腰三角形,请直接写出P点的坐标.4.(2013•齐齐哈尔)如图,平面直角坐标系中,直线l分别交x轴、y轴于A、B两点(OA<OB)且OA、OB的长分别是一元二次方程x2﹣(+1)x+=0的两个根,点C在x轴负半轴上,且AB:AC=1:2(1)求A、C两点的坐标;(2)若点M从C点出发,以每秒1个单位的速度沿射线CB运动,连接AM,设△ABM的面积为S,点M的运动时间为t,写出S关于t的函数关系式,并写出自变量的取值范围;(3)点P是y轴上的点,在坐标平面内是否存在点Q,使以A、B、P、Q为顶点的四边形是菱形?若存在,请直接写出Q点的坐标;若不存在,请说明理由.5.(2013春•屯留县期末)如图,四边形OABC是菱形,点C在x轴上,AB交y轴于点H,AC交y轴于点M.已知点A(﹣3,4).(1)求AO的长;(2)求直线AC的解析式和点M的坐标;(3)点P从点A出发,以每秒2个单位的速度沿折线A﹣B﹣C运动,到达点C终止.设点P的运动时间为t秒,△PMB 的面积为S.①求S与t的函数关系式;②求S的最大值.6.(2012•鞍山)如图,正方形ABCO的边OA、OC在坐标轴上,点B坐标(3,3),将正方形ABCO绕点A顺时针旋转角度α(0°<α<90°),得到正方形ADEF,ED交线段OC于点G,ED的延长线交线段BC于点P,连AP、AG.(1)求证:△AOG≌△ADG;(2)求∠PAG的度数;并判断线段OG、PG、BP之间的数量关系,说明理由;(3)当∠1=∠2时,求直线PE的解析式.7.(2012•桃源县校级自主招生)如图,点A在y轴上,点B在x轴上,且OA=OB=1,经过原点O的直线l交线段AB于点C,过C作OC的垂线,与直线x=1相交于点P,现将直线L绕O点旋转,使交点C从A向B运动,但C点必须在第一象限内,并记AC的长为t,分析此图后,对下列问题作出探究:(1)当△AOC和△BCP全等时,求出t的值;(2)通过动手测量线段OC和CP的长来判断它们之间的大小关系并证明你得到的结论;(3)①设点P的坐标为(1,b),试写出b关于t的函数关系式和变量t的取值范围.②求出当△PBC为等腰三角形时点P的坐标.8.(2012秋•海陵区期末)如图1,在平面直角坐标系中,直线AB与x轴交于点A,与y轴交于点B,与直线OC交于点C.(1)若直线AB解析式为y=﹣2x+12,直线OC解析式为y=x,①求点C的坐标;②求△OAC的面积.(2)如图2,作∠AOC的平分线ON,若AB⊥ON,垂足为E,△OAC的面积为6,且OA=4,P、Q分别为线段OA、OE上的动点,连接AQ与PQ,试探索AQ+PQ是否存在最小值?若存在,求出这个最小值;若不存在,说明理由.9.(2012秋•成都校级期末)如图,在平面直角坐标系xOy中,已知直线PA是一次函数y=x+m(m>0)的图象,直线PB是一次函数y=﹣3x+n(n>m)的图象,点P是两直线的交点,点A、B、C、Q分别是两条直线与坐标轴的交点.(1)用m、n分别表示点A、B、P的坐标及∠PAB的度数;(2)若四边形PQOB的面积是,且CQ:AO=1:2,试求点P的坐标,并求出直线PA与PB的函数表达式;(3)在(2)的条件下,是否存在一点D,使以A、B、P、D为顶点的四边形是平行四边形?若存在,求出点D的坐标;若不存在,请说明理由.10.(2012秋•綦江县校级期末)如图,一次函数的函数图象与x轴、y轴分别交于点A、B,以线段AB 为直角边在第一象限内作Rt△ABC,且使∠ABC=30°.(1)求△ABC的面积;(2)如果在第二象限内有一点P(m,),试用含m的代数式表示△APB的面积,并求当△APB与△ABC面积相等时m的值;(3)是否存在使△QAB是等腰三角形并且在坐标轴上的点Q?若存在,请写出点Q所有可能的坐标;若不存在,请说明理由.参考答案与试题解析一.解答题(共10小题)1.(2013•天水)如图1,在平面直角坐标系中,已知△AOB是等边三角形,点A的坐标是(0,4),点B在第一象限,点P是x轴上的一个动点,连接AP,并把△AOP绕着点A按逆时针方向旋转,使边AO与AB重合,得到△ABD.(1)求直线AB的解析式;(2)当点P运动到点(,0)时,求此时DP的长及点D的坐标;(3)是否存在点P,使△OPD的面积等于?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.考点:一次函数综合题.专题:压轴题.分析:(1)过点B作BE⊥y轴于点E,作BF⊥x轴于点F.依题意得BF=OE=2,利用勾股定理求出OF,然后可得点B的坐标.设直线AB的解析式是y=kx+b,把已知坐标代入可求解.(2)由△ABD由△AOP旋转得到,证明△ABD≌△AOP.AP=AD,∠DAB=∠PAO,∠DAP=∠BAO=60°,△ADP是等边三角形.利用勾股定理求出DP.在Rt△BDG中,∠BGD=90°,∠DBG=60°.利用三角函数求出BG=BD•cos60°,DG=BD•sin60°.然后求出OH,DH,然后求出点D的坐标.(3)本题分三种情况进行讨论,设点P的坐标为(t,0):①当P在x轴正半轴上时,即t>0时,关键是求出D点的纵坐标,方法同(2),在直角三角形DBG中,可根据BD即OP的长和∠DBG的正弦函数求出DG的表达式,即可求出DH的长,根据已知的△OPD的面积可列出一个关于t的方程,即可求出t的值.②当P在x轴负半轴,但D在x轴上方时.即<t≤0时,方法同①类似,也是在直角三角形DBG用BD的长表示出DG,进而求出GF的长,然后同①.③当P在x轴负半轴,D在x轴下方时,即t≤时,方法同②.综合上面三种情况即可求出符合条件的t的值.解答:解:(1)如图1,过点B作BE⊥y轴于点E,作BF⊥x轴于点F.由已知得:BF=OE=2,OF==,∴点B的坐标是(,2)设直线AB的解析式是y=kx+b(k≠0),则有.解得.∴直线AB的解析式是y=x+4;(2)如图2,∵△ABD由△AOP旋转得到,∴△ABD≌△AOP,∴AP=AD,∠DAB=∠PAO,∴∠DAP=∠BAO=60°,∴△ADP是等边三角形,∴DP=AP=.如图2,过点D作DH⊥x轴于点H,延长EB交DH于点G,则BG⊥DH.方法(一)在Rt△BDG中,∠BGD=90°,∠DBG=60°.∴BG=BD•cos60°=×=.DG=BD•sin60°=×=.∴OH=EG=,DH=∴点D的坐标为(,)方法(二)易得∠AEB=∠BGD=90°,∠ABE=∠BDG,∴△ABE∽△BDG,∴;而AE=2,BD=OP=,BE=2,AB=4,则有,解得BG=,DG=;∴OH=,DH=;∴点D的坐标为(,).(3)假设存在点P,在它的运动过程中,使△OPD的面积等于.设点P为(t,0),下面分三种情况讨论:①当t>0时,如图,BD=OP=t,DG=t,∴DH=2+t.∵△OPD的面积等于,∴,解得,(舍去)∴点P1的坐标为(,0).②∵当D在y轴上时,根据勾股定理求出BD==OP,∴当<t≤0时,如图,BD=OP=﹣t,DG=﹣t,∴GH=BF=2﹣(﹣t)=2+t.∵△OPD的面积等于,∴,解得,,∴点P2的坐标为(,0),点P3的坐标为(,0).③当t≤时,如图3,BD=OP=﹣t,DG=﹣t,∴DH=﹣t﹣2.∵△OPD的面积等于,∴(﹣t)[﹣(2+t)]=,解得(舍去),∴点P4的坐标为(,0),综上所述,点P的坐标分别为P1(,0)、P2(,0)、P3(,0)、P4(,0).点评:本题综合考查的是一次函数的应用,包括待定系数法求解析式、旋转的性质、相似三角形的判定和性质、三角形面积公式的应用等,难度较大.2.(2013•济宁)如图,直线y=﹣x+4与坐标轴分别交于点A、B,与直线y=x交于点C.在线段OA上,动点Q以每秒1个单位长度的速度从点O出发向点A做匀速运动,同时动点P从点A出发向点O做匀速运动,当点P、Q其中一点停止运动时,另一点也停止运动.分别过点P、Q作x轴的垂线,交直线AB、OC于点E、F,连接EF.若运动时间为t秒,在运动过程中四边形PEFQ总为矩形(点P、Q重合除外).(1)求点P运动的速度是多少?(2)当t为多少秒时,矩形PEFQ为正方形?(3)当t为多少秒时,矩形PEFQ的面积S最大?并求出最大值.考点:一次函数综合题.专题:压轴题.分析:(1)根据直线y=﹣x+4与坐标轴分别交于点A、B,得出A,B点的坐标,再利用EP∥BO,得出==,据此可以求得点P的运动速度;(2)当PQ=PE时,以及当PQ=PE时,矩形PEFQ为正方形,分别求出即可;(3)根据(2)中所求得出s与t的函数关系式,进而利用二次函数性质求出即可.解答:解:(1)∵直线y=﹣x+4与坐标轴分别交于点A、B,∴x=0时,y=4,y=0时,x=8,∴==,当t秒时,QO=FQ=t,则EP=t,∵EP∥BO,∴==,∴AP=2t,∵动点Q以每秒1个单位长度的速度从点O出发向点A做匀速运动,∴点P运动的速度是每秒2个单位长度;(2)如图1,当PQ=PE时,矩形PEFQ为正方形,则∵OQ=FQ=t,PA=2t,∴QP=8﹣t﹣2t=8﹣3t,∴8﹣3t=t,解得:t=2;如图2,当PQ=PE时,矩形PEFQ为正方形,∵OQ=t,PA=2t,∴OP=8﹣2t,∴QP=t﹣(8﹣2t)=3t﹣8,∴t=3t﹣8,解得:t=4;(3)如图1,当Q在P点的左边时,∵OQ=t,PA=2t,∴QP=8﹣t﹣2t=8﹣3t,∴S矩形PEFQ=QP•QF=(8﹣3t)•t=8t﹣3t2,当t=﹣=时,S矩形PEFQ的最大值为:=,如图2,当Q在P点的右边时,∵OQ=t,PA=2t,∴2t>8﹣t,∴t,∴QP=t﹣(8﹣2t)=3t﹣8,∴S矩形PEFQ=QP•QF=(3t﹣8)•t=3t2﹣8t,∵当点P、Q其中一点停止运动时,另一点也停止运动,∴<t≤4,当t=﹣=时,S矩形PEFQ的最大,∴t=4时,S矩形PEFQ的最大值为:3×42﹣8×4=16,点评:此题主要考查了二次函数与一次函数的综合应用,得出P,Q不同的位置进行分类讨论得出是解题关键.3.(2013•绥化)如图,直线MN与x轴,y轴分别相交于A,C两点,分别过A,C两点作x轴,y轴的垂线相交于B 点,且OA,OC(OA>OC)的长分别是一元二次方程x2﹣14x+48=0的两个实数根.(1)求C点坐标;(2)求直线MN的解析式;(3)在直线MN上存在点P,使以点P,B,C三点为顶点的三角形是等腰三角形,请直接写出P点的坐标.考点:一次函数综合题.专题:压轴题.分析:(1)通过解方程x2﹣14x+48=0可以求得OC=6,OA=8.则C(0,6);(2)设直线MN的解析式是y=kx+b(k≠0).把点A、C的坐标分别代入解析式,列出关于系数k、b的方程组,通过解方程组即可求得它们的值;(3)需要分类讨论:PB为腰,PB为底两种情况下的点P的坐标.根据等腰三角形的性质、两点间的距离公式以及一次函数图象上点的坐标特征进行解答.解答:解:(1)解方程x2﹣14x+48=0得x1=6,x2=8.∵OA,OC(OA>OC)的长分别是一元二次方程x2﹣14x+48=0的两个实数根,∴OC=6,OA=8.∴C(0,6);(2)设直线MN的解析式是y=kx+b(k≠0).由(1)知,OA=8,则A(8,0).∵点A、C都在直线MN上,∴,解得,,∴直线MN的解析式为y=﹣x+6;(3)∵A(8,0),C(0,6),∴根据题意知B(8,6).∵点P在直线MNy=﹣x+6上,∴设P(a,﹣a+6)当以点P,B,C三点为顶点的三角形是等腰三角形时,需要分类讨论:①当PC=PB时,点P是线段BC的中垂线与直线MN的交点,则P1(4,3);②当PC=BC时,a2+(﹣a+6﹣6)2=64,解得,a=,则P2(﹣,),P3(,);③当PB=BC时,(a﹣8)2+(a﹣6+6)2=64,解得,a=,则﹣a+6=﹣,∴P4(,﹣).综上所述,符合条件的点P有:P1(4,3),P2(﹣,)P3(,),P4(,﹣).点评:本题考查了一次函数综合题.其中涉及到的知识点有:待定系数法求一次函数解析式,一次函数图象上点的坐标特征,等腰三角形的性质.解答(3)题时,要分类讨论,防止漏解.另外,解答(3)题时,还利用了“数形结合”的数学思想.4.(2013•齐齐哈尔)如图,平面直角坐标系中,直线l分别交x轴、y轴于A、B两点(OA<OB)且OA、OB的长分别是一元二次方程x2﹣(+1)x+=0的两个根,点C在x轴负半轴上,且AB:AC=1:2(1)求A、C两点的坐标;(2)若点M从C点出发,以每秒1个单位的速度沿射线CB运动,连接AM,设△ABM的面积为S,点M的运动时间为t,写出S关于t的函数关系式,并写出自变量的取值范围;(3)点P是y轴上的点,在坐标平面内是否存在点Q,使以A、B、P、Q为顶点的四边形是菱形?若存在,请直接写出Q点的坐标;若不存在,请说明理由.考点:一次函数综合题.专题:压轴题.分析:(1)通过解一元二次方程x2﹣(+1)x+=0,求得方程的两个根,从而得到A、B两点的坐标,再根据两点之间的距离公式可求AB的长,根据AB:AC=1:2,可求AC的长,从而得到C点的坐标;(2)分①当点M在CB边上时;②当点M在CB边的延长线上时;两种情况讨论可求S关于t的函数关系式;(3)分AQ=AB,BQ=BA,BQ=QA三种情况讨论可求Q点的坐标.解答:解:(1)x2﹣(+1)x+=0,(x﹣)(x﹣1)=0,解得x1=,x2=1,∵OA<OB,∴OA=1,OB=,∴A(1,0),B(0,),∴AB=2,又∵AB:AC=1:2,∴AC=4,∴C(﹣3,0);(2)∵AB=2,AC=4,BC=2,∴AB2+BC2=AC2,即∠ABC=90°,由题意得:CM=t,CB=2.①当点M在CB边上时,S=2﹣t(0≤t);②当点M在CB边的延长线上时,S=t﹣2(t>2);(3)存在.①当AB是菱形的边时,如图所示,在菱形AP1Q1B中,Q1O=AO=1,所以Q1点的坐标为(﹣1,0),在菱形ABP2Q2中,AQ2=AB=2,所以Q2点的坐标为(1,2),在菱形ABP3Q3中,AQ3=AB=2,所以Q3点的坐标为(1,﹣2),②当AB为菱形的对角线时,如图所示的菱形AP4BQ4,设菱形的边长为x,则在Rt△AP4O中,AP42=AO2+P4O2,即x2=12+(﹣x)2,解得x=,所以Q4(1,).综上可得,平面内满足条件的Q点的坐标为:Q1(﹣1,0),Q2(1,﹣2),Q3(1,2),Q4(1,).点评:考查了一次函数综合题,涉及的知识点有:解一元二次方程,两点之间的距离公式,三角形面积的计算,函数思想,分类思想的运用,菱形的性质,综合性较强,有一定的难度.5.(2013春•屯留县期末)如图,四边形OABC是菱形,点C在x轴上,AB交y轴于点H,AC交y轴于点M.已知点A(﹣3,4).(1)求AO的长;(2)求直线AC的解析式和点M的坐标;(3)点P从点A出发,以每秒2个单位的速度沿折线A﹣B﹣C运动,到达点C终止.设点P的运动时间为t秒,△PMB 的面积为S.①求S与t的函数关系式;②求S的最大值.考点:一次函数综合题;解二元一次方程组;待定系数法求一次函数解析式;三角形的面积;角平分线的性质;勾股定理;菱形的性质.专题:计算题.分析:(1)根据A的坐标求出AH、OH,根据勾股定理求出即可;(2)根据菱形性质求出B、C的坐标,设直线AC的解析式是y=kx+b,把A(﹣3,4),C(5,0)代入得到方程组,求出即可;(3)①过M作MN⊥BC于N,根据角平分线性质求出MN,P在AB上,根据三角形面积公式求出即可;P 在BC上,根据三角形面积公式求出即可;②求出P在AB的最大值和P在BC上的最大值比较即可得到答案.解答:(1)解:∵A(﹣3,4),∴AH=3,OH=4,由勾股定理得:AO==5,答:OA的长是5.(2)解:∵菱形OABC,∴OA=OC=BC=AB=5,5﹣3=2,∴B(2,4),C(5,0),设直线AC的解析式是y=kx+b,把A(﹣3,4),C(5,0)代入得:,解得:,∴直线AC的解析式为,当x=0时,y=2.5∴M(0,2.5),答:直线AC的解析式是,点M的坐标是(0,2.5).(3)①解:过M作MN⊥BC于N,∵菱形OABC,∴∠BAC=∠OCA,∵MO⊥CO,MN⊥BC,∴OM=MN,当0≤t<2.5时,P在AB上,MH=4﹣2.5=,S=×BP×MH=×(5﹣2t)×=﹣t+,∴,当t=2.5时,P与B重合,△PMB不存在;当2.5<t≤5时,P在BC上,S=×PB×MN=×(2t﹣5)×=t﹣,∴,答:S与t的函数关系式是(0≤t<2.5)或(2.5<t≤5).②解:当P在AB上时,高MH一定,只有BP取最大值即可,即P与A重合,S最大是×5×=,同理在BC上时,P与C重合时,S最大是×5×=,∴S的最大值是,答:S的最大值是.点评:本题主要考查对勾股定理,三角形的面积,菱形的性质,角平分线性质,解二元一次方程组,用待定系数法求一次函数的解析式等知识点的理解和掌握,综合运用这些性质进行计算是解此题的关键.6.(2012•鞍山)如图,正方形ABCO的边OA、OC在坐标轴上,点B坐标(3,3),将正方形ABCO绕点A顺时针旋转角度α(0°<α<90°),得到正方形ADEF,ED交线段OC于点G,ED的延长线交线段BC于点P,连AP、AG.(1)求证:△AOG≌△ADG;(2)求∠PAG的度数;并判断线段OG、PG、BP之间的数量关系,说明理由;(3)当∠1=∠2时,求直线PE的解析式.考点:一次函数综合题.专题:压轴题.分析:(1)由AO=AD,AG=AG,利用“HL”可证△AOG≌△ADG;(2)利用(1)的方法,同理可证△ADP≌△ABP,得出∠1=∠DAG,∠DAP=∠BAP,而∠1+∠DAG+∠DAP+∠BAP=90°,由此可求∠PAG的度数;根据两对全等三角形的性质,可得出线段OG、PG、BP之间的数量关系;(3)由△AOG≌△ADG可知,∠AGO=∠AGD,而∠1+∠AGO=90°,∠2+∠PGC=90°,当∠1=∠2时,可证∠AGO=∠AGD=∠PGC,而∠AGO+∠AGD+∠PGC=180°,得出∠AGO=∠AGD=∠PGC=60°,即∠1=∠2=30°,解直角三角形求OG,PC,确定P、G两点坐标,得出直线PE的解析式.解答:(1)证明:∵∠AOG=∠ADG=90°,∴在Rt△AOG和Rt△ADG中,∵,∴△AOG≌△ADG(HL);(2)解:PG=OG+BP.由(1)同理可证△ADP≌△ABP,则∠DAP=∠BAP,由(1)可知,∠1=∠DAG,又∠1+∠DAG+∠DAP+∠BAP=90°,所以,2∠DAG+2∠DAP=90°,即∠DAG+∠DAP=45°,故∠PAG=∠DAG+∠DAP=45°,∵△AOG≌△ADG,△ADP≌△ABP,∴DG=OG,DP=BP,∴PG=DG+DP=OG+BP;(3)解:∵△AOG≌△ADG,∴∠AGO=∠AGD,又∵∠1+∠AGO=90°,∠2+∠PGC=90°,∠1=∠2,∴∠AGO=∠AGD=∠PGC,又∵∠AGO+∠AGD+∠PGC=180°,∴∠AGO=∠AGD=∠PGC=60°,∴∠1=∠2=30°,在Rt△AOG中,AO=3,AG=2OG,AG2=AO2+OG2,∴OG=,则G点坐标为:(,0),CG=3﹣,在Rt△PCG中,PG=2CG=2(3﹣),PC==3﹣3,则P点坐标为:(3,3﹣3),设直线PE的解析式为y=kx+b,则,解得,所以,直线PE的解析式为y=x﹣3.点评:本题考查了一次函数的综合运用.关键是根据正方形的性质证明三角形全等,根据三角形全等的性质求角、边的关系,利用特殊角解直角三角形,求P、G两点坐标,确定直线解析式.7.(2012•桃源县校级自主招生)如图,点A在y轴上,点B在x轴上,且OA=OB=1,经过原点O的直线l交线段AB于点C,过C作OC的垂线,与直线x=1相交于点P,现将直线L绕O点旋转,使交点C从A向B运动,但C点必须在第一象限内,并记AC的长为t,分析此图后,对下列问题作出探究:(1)当△AOC和△BCP全等时,求出t的值;(2)通过动手测量线段OC和CP的长来判断它们之间的大小关系并证明你得到的结论;(3)①设点P的坐标为(1,b),试写出b关于t的函数关系式和变量t的取值范围.②求出当△PBC为等腰三角形时点P的坐标.考点:一次函数综合题.专题:压轴题;探究型.分析:(1)△AOC和△BCP全等,则AO=BC=1,又∵AB=,t=AB﹣BC=﹣1;(2)过点C作x轴的平行线,交OA与直线BP于点T、H,证△OTC≌△CHP即可;(3)根据题意可直接得出b=1﹣t;当t=0或1时,△PBC为等腰三角形,即P(1,1),P(1,1﹣),但t=0时,点C不在第一象限,所以不符合题意.解答:解:(1)△AOC和△BCP全等,则AO=BC=1,又AB=,所以t=AB﹣BC=﹣1;(2)OC=CP.证明:过点C作x轴的平行线,交OA与直线BP于点T、H.∵PC⊥OC,∴∠OCP=90°,∵OA=OB=1,∴∠OBA=45°,∵TH∥OB,∴∠BCH=45°,又∠CHB=90°,∴△CHB为等腰直角三角形,∴CH=BH,∵∠AOB=∠OBH=∠BHT=90°,∴四边形OBHT为矩形,∴OT=BH,∴OT=CH,∵∠TCO+∠PCH=90°,∠CPH+∠PCH=90°,∴∠TCO=∠CPH,∵HB⊥x轴,TH∥OB,∴∠CTO=∠THB=90°,TO=HC,∠TCO=∠CPH,∴△OTC≌△CHP,∴OC=CP;(3)①∵△OTC≌△CHP,∴CT=PH,∴PH=CT=AT=AC•cos45°=t,∴BH=OT=OA﹣AT=1﹣t,∴BP=BH﹣PH=1﹣t,∴;(0<t<)②t=0时,△PBC是等腰直角三角形,但点C与点A重合,不在第一象限,所以不符合,PB=BC,则﹣t=|1﹣t|,解得t=1或t=﹣1(舍去),∴当t=1时,△PBC为等腰三角形,即P点坐标为:P(1,1﹣).点评:主要考查了函数和几何图形的综合运用.解题的关键是会灵活的运用函数的性质和点的意义表示出相应的线段的长度,再结合三角形全等和等腰三角形的性质求解.试题中贯穿了方程思想和数形结合的思想,请注意体会.8.(2012秋•海陵区期末)如图1,在平面直角坐标系中,直线AB与x轴交于点A,与y轴交于点B,与直线OC交于点C.(1)若直线AB解析式为y=﹣2x+12,直线OC解析式为y=x,①求点C的坐标;②求△OAC的面积.(2)如图2,作∠AOC的平分线ON,若AB⊥ON,垂足为E,△OAC的面积为6,且OA=4,P、Q分别为线段OA、OE上的动点,连接AQ与PQ,试探索AQ+PQ是否存在最小值?若存在,求出这个最小值;若不存在,说明理由.考点:一次函数综合题.专题:综合题;数形结合.分析:(1)①联立两个函数式,求解即可得出交点坐标,即为点C的坐标.②欲求△OAC的面积,结合图形,可知,只要得出点A和点C的坐标即可,点C的坐标已知,利用函数关系式即可求得点A的坐标,代入面积公式即可.(2)在OC上取点M,使OM=OP,连接MQ,易证△POQ≌△MOQ,可推出AQ+PQ=AQ+MQ;若想使得AQ+PQ存在最小值,即使得A、Q、M三点共线,又AB⊥OP,可得∠AEO=∠CEO,即证△AEO≌△CEO(ASA),又OC=OA=4,利用△OAC的面积为6,即可得出AM=3,AQ+PQ存在最小值,最小值为3.解答:解:(1)①由题意,(2分)解得所以C(4,4)(3分)②把y=0代入y=﹣2x+12得,x=6,所以A点坐标为(6,0),(4分)所以.(6分)(2)存在;由题意,在OC上截取OM=OP,连接MQ,∵OQ平分∠AOC,∴∠AOQ=∠COQ,又OQ=OQ,∴△POQ≌△MOQ(SAS),(7分)∴PQ=MQ,∴AQ+PQ=AQ+MQ,当A、Q、M在同一直线上,且AM⊥OC时,AQ+MQ最小.即AQ+PQ存在最小值.∵AB⊥ON,所以∠AEO=∠CEO,∴△AEO≌△CEO(ASA),∴OC=OA=4,∵△OAC的面积为6,所以AM=12÷4=3,∴AQ+PQ存在最小值,最小值为3.(9分)点评:本题主要考查一次函数的综合应用,具有一定的综合性,要求学生具备一定的数学解题能力,有一定难度.9.(2012秋•成都校级期末)如图,在平面直角坐标系xOy中,已知直线PA是一次函数y=x+m(m>0)的图象,直线PB是一次函数y=﹣3x+n(n>m)的图象,点P是两直线的交点,点A、B、C、Q分别是两条直线与坐标轴的交点.(1)用m、n分别表示点A、B、P的坐标及∠PAB的度数;(2)若四边形PQOB的面积是,且CQ:AO=1:2,试求点P的坐标,并求出直线PA与PB的函数表达式;(3)在(2)的条件下,是否存在一点D,使以A、B、P、D为顶点的四边形是平行四边形?若存在,求出点D的坐标;若不存在,请说明理由.考点:一次函数综合题.专题:开放型.分析:(1)已知直线解析式,令y=0,求出x的值,可求出点A,B的坐标.联立方程组求出点P的坐标.推出AO=QO,可得出∠PAB=45°.(2)先根据CQ:AO=1:2得到m、n的关系,然后求出S△AOQ,S△PAB并都用字母m表示,根据S四边形PQOB=S△PAB ﹣S△AOQ积列式求解即可求出m的值,从而也可求出n的值,继而可推出点P的坐标以及直线PA与PB的函数表达式.(3)本题要依靠辅助线的帮助.求证相关图形为平行四边形,继而求出D1,D2,D3的坐标.解答:解:(1)在直线y=x+m中,令y=0,得x=﹣m.∴点A(﹣m,0).在直线y=﹣3x+n中,令y=0,得.∴点B(,0).由,得,∴点P(,).在直线y=x+m中,令x=0,得y=m,∴|﹣m|=|m|,即有AO=QO.又∵∠AOQ=90°,∴△AOQ是等腰直角三角形,∴∠PAB=45°.(2)∵CQ:AO=1:2,∴(n﹣m):m=1:2,整理得3m=2n,∴n=m,∴==m,而S四边形PQOB=S△PAB﹣S△AOQ=(+m)×(m)﹣×m×m=m2=,解得m=±4,∵m>0,∴m=4,∴n=m=6,∴P().∴PA的函数表达式为y=x+4,PB的函数表达式为y=﹣3x+6.(3)存在.过点P作直线PM平行于x轴,过点B作AP的平行线交PM于点D1,过点A作BP的平行线交PM于点D2,过点A、B分别作BP、AP的平行线交于点D3.①∵PD1∥AB且BD1∥AP,∴PABD1是平行四边形.此时PD1=AB,易得;②∵PD2∥AB且AD2∥BP,∴PBAD2是平行四边形.此时PD2=AB,易得;③∵BD3∥AP且AD3∥BP,此时BPAD3是平行四边形.∵BD3∥AP且B(2,O),∴y BD3=x﹣2.同理可得y AD3=﹣3x﹣12,得,∴.点评:本题的综合性强,主要考查的知识点为一次函数的应用,平行四边形的判定以及面积的灵活计算.难度较大.10.(2012秋•綦江县校级期末)如图,一次函数的函数图象与x轴、y轴分别交于点A、B,以线段AB 为直角边在第一象限内作Rt△ABC,且使∠ABC=30°.(1)求△ABC的面积;(2)如果在第二象限内有一点P(m,),试用含m的代数式表示△APB的面积,并求当△APB与△ABC面积相等时m的值;(3)是否存在使△QAB是等腰三角形并且在坐标轴上的点Q?若存在,请写出点Q所有可能的坐标;若不存在,请说明理由.考点:一次函数综合题.专题:综合题.分析:(1)先求出A、B两点的坐标,再由一个角等于30°,求出AC的长,从而计算出面积;(2)过P作PD⊥x轴,垂足为D,先求出梯形ODPB的面积和△AOB的面积之和,再减去△APD的面积,即是△APB的面积;根据△APB与△ABC面积相等,求得m的值;(3)假设存在点Q,使△QAB是等腰三角形,求出Q点的坐标即可.解答:解:(1)∵一次函数的解析式为函数图象与x轴、y轴分别交于点A、B,∴A(1,0),B(0,),∴AB=2,设AC=x,则BC=2x,由勾股定理得,4x2﹣x2=4,解得x=,S△ABC==;(2)过P作PD⊥x轴,垂足为D,S△APB=S梯形ODPB+S△AOB﹣S△APD==,﹣=,解得m=;(3)∵AB==2,∴当AQ=AB时,点Q1(3,0),Q2(﹣1,0),Q3(0,﹣);当AB=BQ时,点Q4(0,+2),Q2(0,﹣2),Q2(﹣1,0);当AQ=BQ时,点Q6(0,),Q2(﹣1,0),综上可得:(0,),(0,),(﹣1,0)(3,0),(0,),(0,)点评:此题主要考查平面直角坐标系中图形的面积的求法.解答此题的关键是根据一次函数的特点,分别求出各点的坐标再计算.。

2020年中考数学10道压轴题(附答案)(4)

2020年中考数学10道压轴题(附答案)(4)

2020年中考数学10道压轴题(附答案)1.已知:如图,抛物线y=-x 2+bx+c 与x 轴、y 轴分别相交于点A (-1,0)、B (0,3)两点,其顶点为D. (1) 求该抛物线的解析式;(2) 若该抛物线与x 轴的另一个交点为E. 求四边形ABDE 的面积;(3) △AOB 与△BDE 是否相似?如果相似,请予以证明;如果不相似,请说明理由. (注:抛物线y=ax 2+bx+c(a ≠0)的顶点坐标为⎪⎪⎭⎫⎝⎛--a b ac a b 44,22)2. 如图,在Rt ABC △中,90A ∠=o ,6AB =,8AC =,D E ,分别是边AB AC ,的中点,点P 从点D 出发沿DE 方向运动,过点P 作PQ BC ⊥于Q ,过点Q 作QR BA ∥交AC 于R ,当点Q 与点C 重合时,点P 停止运动.设BQ x =,QR y =.(1)求点D 到BC 的距离DH 的长;(2)求y 关于x 的函数关系式(不要求写出自变量的取值范围); (3)是否存在点P ,使PQR△为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由.3在△ABC 中,∠A =90°,AB =4,AC =3,M 是AB 上的动点(不与A ,B 重合),过M 点作MN ∥BC 交AC 于点N .以MN 为直径作⊙O ,并在⊙O 内作内接矩形AMPN .令AM =x .(1)用含x 的代数式表示△MNP 的面积S ; (2)当x 为何值时,⊙O 与直线BC 相切? (3)在动点M 的运动过程中,记△MNP 与梯形BCNM 重合的面积为y ,试求y 关于x 的函数表达式,并求x 为何值时,y 的值最大,最大值是多少?4.如图1,在平面直角坐标系中,己知ΔAOB 是等边三角形,点A 的坐标是(0,4),点B 在第一象限,点P 是x 轴上的一个动点,连结AP ,并把ΔAOP 绕着点A 按逆时针方向A BCD ERP H QA BCM N P图 3OABC MND图 2OACMNP图 1O旋转.使边AO与AB重合.得到ΔABD.(1)求直线AB的解析式;(2)当点P运动到点(3,0)时,求此时DP的长及点D的坐标;(3)是否存在点P,使ΔOPD的面积等于3,若存在,请求出符合条件的点P的坐标;若不存在,4请说明理由.5如图,菱形ABCD的边长为2,BD=2,E、F分别是边AD,CD上的两个动点,且满足AE+CF=2.(1)求证:△BDE≌△BCF;(2)判断△BEF的形状,并说明理由;(3)设△BEF的面积为S,求S的取值范围.6如图,抛物线21:23L y x x =--+交x 轴于A 、B 两点,交y 轴于M 点.抛物线1L 向右平移2个单位后得到抛物线2L ,2L 交x 轴于C 、D 两点.(1)求抛物线2L 对应的函数表达式;(2)抛物线1L 或2L 在x 轴上方的部分是否存在点N ,使以A ,C ,M ,N 为顶点的四边形是平行四边形.若存在,求出点N 的坐标;若不存在,请说明理由;(3)若点P 是抛物线1L 上的一个动点(P 不与点A 、B 重合),那么点P 关于原点的对称点Q 是否在抛物线2L 上,请说明理由.7.如图,在梯形ABCD 中,AB ∥CD ,AB =7,CD =1,AD =BC =5.点M ,N 分别在边AD ,BC 上运动,并保持MN ∥AB ,ME ⊥AB ,NF ⊥AB ,垂足分别为E ,F .(1)求梯形ABCD 的面积; (2)求四边形MEFN 面积的最大值.(3)试判断四边形MEFN 能否为正方形,若能, 求出正方形MEFN 的面积;若不能,请说明理由.8.如图,点A (m ,m +1),B (m +3,m -1)都在反比例函数xk y 的图象上.(1)求m ,k 的值;(2)如果M 为x 轴上一点,N 为y 轴上一点,以点A ,B ,M ,N 为顶点的四边形是平行四边形,试求直线MN 的函数表达式.(3)选做题:在平面直角坐标系中,点P 的坐标为(5,0),点Q 的坐标为(0,3),把线段PQ 向右平 移4个单位,然后再向上平移2个单位,得到线段P 1Q 1, 则点P 1的坐标为 ,点Q 1的坐标为 .C D A BE F NMxO yAB 友情提示:本大题第(1)小题4分,第(2)小题7分.对完成第(2)小题有困难的同学可以做下面的(3)选做题.选做题2分,所得分数计入总分.但第(2)、(3)小题都做的,第(3)小题的得分不重复计入总分.x O y 123 1 QP 2 P 1Q 19.如图16,在平面直角坐标系中,直线33y x =--与x 轴交于点A ,与y 轴交于点C ,抛物线223(0)3y ax x c a =-+≠经过A B C ,,三点. (1)求过A B C ,,三点抛物线的解析式并求出顶点F 的坐标; (2)在抛物线上是否存在点P ,使ABP △为直角三角形,若存在,直接写出P 点坐标;若不存在,请说明理由;(3)试探究在直线AC 上是否存在一点M ,使得MBF △的周长最小,若存在,求出M 点的坐标;若不存在,请说明理由.10.如图所示,在平面直角坐标系中,矩形ABOC 的边BO 在x 轴的负半轴上,边OC 在y 轴的正半轴上,且1AB =,3OB =,矩形ABOC绕点O 按顺时针方向旋转60o 后得到矩形EFOD .点A 的对应点为点E ,点B 的对应点为点F ,点C 的对应点为点D ,抛物线2y ax bx c =++过点A E D ,,.(1)判断点E 是否在y 轴上,并说明理由; (2)求抛物线的函数表达式;A OxyBFC(3)在x 轴的上方是否存在点P ,点Q ,使以点O B P Q ,,,为顶点的平行四边形的面积是矩形ABOC 面积的2倍,且点P 在抛物线上,若存在,请求出点P ,点Q 的坐标;若不存在,请说明理由.11.已知:如图14,抛物线2334y x =-+与x 轴交于点A ,点B ,与直线34y x b =-+相交于点B ,点C ,直线34y x b =-+与y 轴交于点E . (1)写出直线BC 的解析式. (2)求ABC △的面积.(3)若点M 在线段AB 上以每秒1个单位长度的速度从A 向B 运动(不与A B ,重合),同时,点N 在射线BC 上以每秒2个单位长度的速度从B 向C 运动.设运动时间为t 秒,请写出MNB △的面积S 与t 的函数关系式,并求出点M 运动多少时间时,MNB △的面积最大,最大面积是多少?y xOD EC FA B12.在平面直角坐标系中△ABC的边AB在x轴上,且OA>OB,以AB为直径的圆过点C若C的坐标为(0,2),AB=5, A,B两点的横坐标X A,X B是关于X的方程2(2)10-++-=的两根:x m x n(1)求m,n的值(2)若∠ACB的平分线所在的直线l交x轴于点D,试求直线l对应的一次函数的解析式(3)过点D任作一直线`l分别交射线CA,CB(点C除外)于点M,N,则11+的值是否为定值,若是,求出定值,若不CM CN是,请说明理由13.已知:如图,抛物线y=-x 2+bx+c 与x 轴、y 轴分别相交于点A (-1,0)、B (0,3)两点,其顶点为D. (1)求该抛物线的解析式;(2)若该抛物线与x 轴的另一个交点为E. 求四边形ABDE 的面积;(3)△AOB 与△BDE 是否相似?如果相似,请予以证明;如果不相似,请说明理由. (注:抛物线y=ax 2+bx+c(a ≠0)的顶点坐标为⎪⎪⎭⎫ ⎝⎛--a bac a b 44,22)14.已知抛物线c bx ax y ++=232,ACO BNDML`(Ⅰ)若1==b a ,1-=c ,求该抛物线与x 轴公共点的坐标;(Ⅱ)若1==b a ,且当11<<-x 时,抛物线与x 轴有且只有一个公共点,求c 的取值范围;(Ⅲ)若0=++c b a ,且01=x 时,对应的01>y ;12=x 时,对应的02>y ,试判断当10<<x 时,抛物线与x 轴是否有公共点?若有,请证明你的结论;若没有,阐述理由.15.已知:如图①,在Rt △ACB 中,∠C =90°,AC =4cm ,BC =3cm ,点P 由B 出发沿BA 方向向点A 匀速运动,速度为1cm/s ;点Q 由A 出发沿AC 方向向点C 匀速运动,速度为2cm/s ;连接PQ .若设运动的时间为t (s )(0<t <2),解答下列问题:(1)当t 为何值时,PQ ∥BC ?(2)设△AQP 的面积为y (2cm ),求y 与t 之间的函数关系式; (3)是否存在某一时刻t ,使线段PQ 恰好把Rt △ACB 的周长和面积同时平分?若存在,求出此时t 的值;若不存在,说明理由;(4)如图②,连接PC ,并把△PQC 沿QC 翻折,得到四边形PQP ′C ,那么是否存在某一时刻t ,使四边形PQP ′C 为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.图②A Q CPB图①QP16.已知双曲线k y x =与直线14y x =相交于A 、B 两点.第一象限上的点M (m ,n )(在A 点左侧)是双曲线k y x=上的动点.过点B 作BD ∥y 轴于点D.过N (0,-n )作NC ∥x 轴交双曲线k y x=于点E ,交BD 于点C.(1)若点D 坐标是(-8,0),求A 、B 两点坐标及k 的值. (2)若B 是CD 的中点,四边形OBCE 的面积为4,求直线CM 的解析式.(3)设直线AM 、BM 分别与y 轴相交于P 、Q 两点,且MA =pMP ,MB =qMQ ,求p -q 的值.压轴题答案1. 解:( 1)由已知得:310c b c =⎧⎨--+=⎩解得c=3,b=2∴抛物线的线的解析式为2y x =-+(2)4)所以对称轴为x=1,A,E 关于称,所以E(3,0)D BCE NO A Myx设对称轴与x 轴的交点为F所以四边形ABDE 的面积=ABO DFE BOFD S S S ∆∆++梯形=111()222AO BO BO DF OF EF DF ⋅++⋅+⋅=11113(34)124222⨯⨯++⨯+⨯⨯ =9 (3)相似如图,2222112BG DG +=+=22223332BO OE +=+= 22222425DF EF ++=所以2220BD BE +=, 220DE =即: 222BD BE DE +=,所以BDE ∆是直角三角形所以90AOB DBE ∠=∠=︒,且2AO BO BD BE ==所以AOB DBE ∆∆:.2 解:(1)Q Rt A ∠=∠,6AB =,8AC =,10BC ∴=.Q 点D 为AB 中点,132BD AB ∴==. 90DHB A ∠=∠=o Q ,B B ∠=∠.BHD BAC ∴△∽△, DH BD AC BC ∴=,3128105BD DH AC BC ∴==⨯=g . (2)QR AB Q ∥,90QRC A ∴∠=∠=o .C C ∠=∠Q ,RQC ABC ∴△∽△, RQ QCAB BC∴=,10610y x-∴=,即y 关于x 的函数关系式为:365y x =-+. (3)存在,分三种情况:①当PQ PR =时,过点P 作PM QR ⊥于M ,则QM RM =.1290∠+∠=o Q ,290C ∠+∠=o ,1C ∴∠=∠.84cos 1cos 105C ∴∠===,45QM QP ∴=, 1364251255x ⎛⎫-+ ⎪⎝⎭∴=,185x ∴=. ②当PQ RQ =时,312655x -+=, 6x ∴=.③当PR QR =时,则R 为PQ 中垂线上的点, 于是点R 为EC 的中点,11224CR CE AC ∴===.tan QR BAC CR CA ==Q , 366528x -+∴=,152x ∴=.综上所述,当x 为185或6或152时,PQR △为等腰三角形. 3解:(1)∵MN ∥BC ,∴∠AMN =∠B ,∠ANM =∠C . ∴ △AMN ∽ △ABC .∴AM AN AB AC=,即43x AN =. ∴ AN =43x . (2)分ABCD ERP H QM 21 A BCD E RP HQA BCD E R PHQACM NP 图 1O∴ S =2133248MNP AMN S S x x x ∆∆==⋅⋅=.(0<x <4) ……………3分(2)如图2,设直线BC 与⊙O 相切于点D ,连结AO ,OD ,则AO =OD =21MN .在Rt △ABC 中,BC =22AB AC +=5.由(1)知 △AMN ∽ △ABC .∴AM MN AB BC=,即45x MN=.∴ 54MN x =, ∴58OD x =. (5)分过M 点作MQ ⊥BC 于Q ,则58MQ OD x ==. 在Rt △BMQ 与Rt △BCA 中,∠B 是公共角, ∴ △BMQ ∽△BCA . ∴ BM QMBC AC=.∴55258324xBM x ⨯==,25424AB BM MA x x =+=+=. ∴ x =4996. ∴ 当x =4996时,⊙O 与直线B C 相切. (7)分(3)随点M 的运动,当P 点落在直线BC 上时,连结AP ,则O 点为AP 的中点.∵ MN ∥BC ,∴ ∠AMN =∠B ,∠AOM =∠APC . ∴ △AMO ∽ △ABP . ∴12AM AO AB AP ==. AM =MB =2. ABCMND图 2O QAC MNP图 3O故以下分两种情况讨论: ① 当0<x ≤2时,2Δ83x S y PMN ==.∴ 当x=2时,2332.82y =⨯=最大 (8)分② 当2<x <4时,设PM ,PN 分别交BC 于E ,F .∵ 四边形AMPN 是矩形, ∴ PN ∥AM ,PN =AM =x . 又∵ MN ∥BC ,∴ 四边形MBFN 是平行四边形. ∴ FN =BM =4-x . ∴ ()424PF x x x =--=-. 又△PEF ∽ △ACB . ∴2PEF ABC S PF AB S ∆∆⎛⎫= ⎪⎝⎭.∴ ()2322PEF S x ∆=-. (9)分MNP PEF y S S ∆∆=-=()222339266828x x x x --=-+-.……………………1分当2<x <4时,29668y x x =-+-298283x ⎛⎫=--+ ⎪⎝⎭. ∴当83x =时,满足2<x<4,2y =最大. (11)分综上所述,当83x =时,y 值最大,最大值是ABCMN图 4OEF2. …………………………12分4 解:(1)作BE ⊥OA ,∴ΔAOB 是等边三角形∴BE=OB ·sin60o =23B(3∵A(0,4),设AB 的解析式为4y kx =+,所以2342k +=,解得33k =-,以直线AB 的解析式为343y x =-+ (2)由旋转知,AP=AD, ∠PAD=60o , ∴ΔAPD 是等边三角形,PD=PA=2219AO OP +如图,作BE ⊥AO,DH ⊥OA,GB ⊥DH,显然ΔGBD 中∠GBD=30° ∴GD=12BD=33+3=53,∴GB=32BD=32,OH=OE+HE=OE+BG=37222+= ∴D(532,72) (3)设OP=x,则由(2)可得D(323,22x x +)若ΔOPD 的面积为:133(2)2x x +=g 解得:2321x -±=所以2321-±,0) yxH G E DBA OP567解:(1)分别过D ,C 两点作DG ⊥AB 于点G ,CH ⊥AB 于点H . ……………1分 ∵ AB ∥CD ,∴ DG =CH ,DG ∥CH .∴ 四边形DGHC 为矩形,GH =CD =1.∵ DG =CH ,AD =BC ,∠AGD =∠BHC =90°, ∴ △AGD ≌△BHC (HL ).∴ AG =BH =2172-=-GH AB =3. ………2分 ∵ 在Rt △AGD 中,AG =3,AD =5, ∴ DG =4.C D ABE F NMG H∴()174162ABCD S +⨯==梯形. ………………………………………………3分(2)∵ MN ∥AB ,ME ⊥AB ,NF ⊥AB , ∴ ME =NF ,ME ∥NF . ∴ 四边形MEFN 为矩形. ∵ AB ∥CD ,AD =BC , ∴ ∠A =∠B .∵ ME =NF ,∠MEA =∠NFB =90°, ∴ △MEA ≌△NFB (AAS ).∴ AE =BF . ……………………4分 设AE =x ,则EF =7-2x . ……………5分 ∵ ∠A =∠A ,∠MEA =∠DGA =90°, ∴ △MEA ∽△DGA . ∴ DGMEAG AE =.∴ME =x 34. …………………………………………………………6分 ∴ 6494738)2(7342+⎪⎭⎫ ⎝⎛--=-=⋅=x x x EF ME S MEFN矩形. (8)分当x =47时,ME =37<4,∴四边形MEFN 面积的最大值为649.……………9分(3)C D E FNMG H能. ……………………………………………………………………10分由(2)可知,设AE =x ,则EF =7-2x ,ME =x 34.若四边形MEFN 为正方形,则ME =EF . 即=34x 7-2x .解,得1021=x . ……………………………………………11分∴ EF =21147272105x -=-⨯=<4.∴ 四边形MEFN 能为正方形,其面积为251965142=⎪⎭⎫⎝⎛=MEFNS 正方形.8解:(1)由题意可知,()()()131-+=+m m m m .解,得 m =3. ………………………………3分∴ A (3,4),B (6,2);∴ k =4×3=12. ……………………………4分 (2)存在两种情况,如图:①当M 点在x 轴的正半轴上,N 点在y 轴的正半轴 上时,设M 1点坐标为(x 1,0),N 1点坐标为(0,y 1).∵ 四边形AN 1M 1B 为平行四边形,∴ 线段N 1M 1可看作由线段AB 向左平移3个单位, 再向下平移2个单位得到的(也可看作向下平移2个单位,再向左平移3个单位得到的).由(1)知A 点坐标为(3,4),B 点坐标为(6,2), ∴ N 1点坐标为(0,4-2),即N 1(0,2); ………………………………5分xO yAB M 1N 1M 2 N 2M 1点坐标为(6-3,0),即M 1(3,0). ………………………………6分设直线M 1N 1的函数表达式为21+=x k y ,把x =3,y =0代入,解得321-=k .∴ 直线M 1N 1的函数表达式为232+-=x y . (8)分②当M 点在x 轴的负半轴上,N 点在y 轴的负半轴上时,设M 2点坐标为(x 2,0),N 2点坐标为(0,y 2).∵ AB ∥N 1M 1,AB ∥M 2N 2,AB =N 1M 1,AB =M 2N 2, ∴ N 1M 1∥M 2N 2,N 1M 1=M 2N 2.∴ 线段M 2N 2与线段N 1M 1关于原点O 成中心对称. ∴ M 2点坐标为(-3,0),N 2点坐标为(0,-2). ………………………9分设直线M 2N 2的函数表达式为22-=x k y ,把x =-3,y =0代入,解得322-=k ,∴ 直线M 2N 2的函数表达式为232--=x y .所以,直线MN 的函数表达式为232+-=x y 或232--=x y . (11)分(3)选做题:(9,2),(4,5). ………………………………………………2分 9解:(1)Q 直线33y x =-x 轴交于点A ,与y 轴交于点C .(10)A ∴-,,(03)C -, ········································· 1分Q 点A C ,都在抛物线上,23033a c c ⎧=++⎪∴⎨⎪-=⎩ 333a c ⎧=⎪∴⎨⎪=-⎩ ∴抛物线的解析式为2323333y x x =-- ····················· 3分 ∴顶点4313F ⎛⎫- ⎪ ⎪⎝⎭, ··········································· 4分(2)存在 ················································ 5分 1(03)P -, ··················································· 7分 2(23)P -, ··················································9分(3)存在 ·············································· 10分 理由: 解法一:延长BC 到点B ',使B C BC '=,连接B F '交直线AC 于点M ,则点M 就是所求的点.······························· 11分 过点B '作B H AB '⊥于点H .B Q 点在抛物线2323333y x x =--上,(30)B ∴, 在Rt BOC △中,3tan 3OBC ∠=,30OBC ∴∠=o ,23BC =,在Rt BB H '△中,1232B H BB ''==,36BH B H '==,3OH ∴=,(323)B '∴--, (12)分设直线B F '的解析式为y kx b =+A O xyBFC HBM233433k b k b ⎧-=-+⎪∴⎨-=+⎪⎩ 解得36332k b ⎧=⎪⎪⎨⎪=-⎪⎩33362y x ∴=- ············································ 13分3333362y x y x ⎧=--⎪∴⎨=-⎪⎩ 解得371037x y ⎧=⎪⎪⎨⎪=-⎪⎩,310377M ⎛⎫∴- ⎪ ⎪⎝⎭, ∴在直线AC上存在点M ,使得MBF △的周长最小,此时310377M ⎛⎫- ⎪ ⎪⎝⎭,. ··········································· 14分解法二:过点F 作AC 的垂线交y 轴于点H ,则点H 为点F 关于直线AC 的对称点.连接BH 交AC 于点M ,则点M 即为所求. 11分过点F 作FG y ⊥轴于点G ,则OB FG ∥,BC FH ∥.90BOC FGH ∴∠=∠=o ,BCO FHG ∠=∠HFG CBO ∴∠=∠同方法一可求得(30)B ,. 在Rt BOC △中,3tan 3OBC ∠=,30OBC ∴∠=o ,可求得33GH GC ==,GF ∴为线段CH 的垂直平分线,可证得CFH △为等边三角形, AC ∴垂直平分FH .即点H 为点F 关于AC 的对称点.5303H ⎛⎫∴- ⎪ ⎪⎝⎭, ············· 12分设直线BH 的解析式为y kx b =+,由题意得A OxyBF C HM G03533k b b =+⎧⎪⎨=⎪⎩ 解得539533k b ⎧=⎪⎪⎨⎪=⎪⎩553393y ∴=··········································· 13分55339333y x y x ⎧=⎪∴⎨⎪=⎩ 解得37103x y ⎧=⎪⎪⎨⎪=⎪⎩310377M ⎛∴- ⎝⎭, ∴在直线AC上存在点M ,使得MBF △的周长最小,此时31037M ⎛ ⎝⎭. 110解:(1)点E 在y 轴上 ·································· 1分 理由如下:连接AO ,如图所示,在Rt ABO △中,1AB =Q ,3BO =,2AO ∴=1sin 2AOB ∴∠=,30AOB ∴∠=o 由题意可知:60AOE ∠=o306090BOE AOB AOE ∴∠=∠+∠=+=o o oQ 点B 在x 轴上,∴点E 在y 轴上. (3)分(2)过点D 作DM x ⊥轴于点M1OD =Q ,30DOM ∠=o∴在Rt DOM △中,12DM =,32OM =Q 点D 在第一象限,∴点D 的坐标为3122⎛⎫⎪ ⎪⎝⎭, ····································· 5分由(1)知2EO AO ==,点E 在y 轴的正半轴上∴点E 的坐标为(02),∴点A 的坐标为(31), ······································ 6分Q 抛物线2y ax bx c =++经过点E ,2c ∴=由题意,将(31)A ,,312D ⎫⎪⎪⎝⎭,代入22y ax bx =++中得 3321331242a b a ⎧+=⎪⎨+=⎪⎩ 解得8953a b ⎧=-⎪⎪⎨⎪=⎪⎩∴所求抛物线表达式为:285329y x x =-+ (9)分(3)存在符合条件的点P ,点Q . ······················ 10分 理由如下:Q 矩形ABOC 的面积3AB BO ==g ∴以O B P Q ,,,为顶点的平行四边形面积为3由题意可知OB 为此平行四边形一边, 又3OB =QOB ∴边上的高为2 ······································· 11分依题意设点P 的坐标为(2)m ,Q 点P 在抛物线285329y x x =-+上 2853229m ∴-+= 解得,10m =,2538m =-1(02)P ∴,,25328P ⎛⎫- ⎪ ⎪⎝⎭,Q 以O B P Q ,,,为顶点的四边形是平行四边形,PQ OB ∴∥,3PQ OB ==, ∴当点1P 的坐标为(02),时,点Q 的坐标分别为1(32)Q -,,2(32)Q ,;当点2P 的坐标为5328⎛⎫- ⎪ ⎪⎝⎭,时,点Q 的坐标分别为313328Q ⎛⎫-⎪ ⎪⎝⎭,,43328Q ⎛⎫⎪ ⎪⎝⎭,. ·············· 14分(以上答案仅供参考,如有其它做法,可参照给分) 11解:(1)在2334y x =-+中,令0y =23304x ∴-+= 12x ∴=,22x =-(20)A ∴-,,(20)B , ······················ 1分又Q 点B 在34y x b =-+上 302b ∴=-+ 32b = BC ∴的解析式为3342y x =-+ ·································2分 (2)由23343342y x y x ⎧=-+⎪⎪⎨⎪=-+⎪⎩,得11194x y =-⎧⎪⎨=⎪⎩ 2220x y =⎧⎨=⎩ ···················· 4分914C ⎛⎫∴- ⎪⎝⎭,,(20)B ,y xO D EC FA B Mx yA B CE M D P N O4AB ∴=,94CD = ··········································· 5分 1994242ABCS ∴=⨯⨯=△ ·········································6分(3)过点N 作NP MB ⊥于点PEO MB ⊥Q NP EO ∴∥BNP BEO ∴△∽△ ············································7分 BN NPBE EO∴=················································· 8分由直线3342y x =-+可得:302E ⎛⎫ ⎪⎝⎭, ∴在BEO △中,2BO =,32EO =,则52BE = 25322t NP∴=,65NP t ∴= ········································ 9分 16(4)25S t t ∴=-g g2312(04)55S t t t =-+<< ······································ 10分2312(2)55S t =--+ ·········································· 11分Q 此抛物线开口向下,∴当2t =时,125S =最大∴当点M 运动2秒时,MNB △的面积达到最大,最大为125.12解: (1)m=-5,n=-3 (2)y=43x+2(3)是定值.因为点D 为∠ACB 的平分线,所以可设点D 到边AC,BC 的距离均为h ,设△ABC AB 边上的高为H, 则利用面积法可得:222CM h CN h MN H⋅⋅⋅+=(CM+CN )h=MN ﹒HCM CN MNH h+=又 H=CM CNMN⋅化简可得 (CM+CN)﹒1MN CM CN h=⋅故 111CM CN h+=13解:( 1)由已知得:310c b c =⎧⎨--+=⎩解得 c=3,b=2∴抛物线的线的解析式为223y x x =-++ (2)由顶点坐标公式得顶点坐标为(1,4)所以对称轴为x=1,A,E 关于x=1设对称轴与x 轴的交点为F所以四边形ABDE 的面积=ABO DFE BOFD S S S ∆∆++梯形=111()222AO BO BO DF OF EF DF ⋅++⋅+⋅=11113(34)124222⨯⨯++⨯+⨯⨯ =9 (3)相似如图,2222112BG DG +=+=yxDEA BFOG22223332BO OE +=+= 22222425DF EF ++=所以2220BD BE +=, 220DE =即: 222BD BE DE +=,所以BDE ∆是直角三角形所以90AOB DBE ∠=∠=︒,且22AO BO BD BE ==所以AOB DBE ∆∆:.14解(Ⅰ)当1==b a ,1-=c 时,抛物线为1232-+=x x y , 方程01232=-+x x 的两个根为11-=x ,312=x .∴该抛物线与x 轴公共点的坐标是()10-,和103⎛⎫⎪⎝⎭,. ········· 2分(Ⅱ)当1==b a 时,抛物线为c x x y ++=232,且与x 轴有公共点. 对于方程0232=++c x x ,判别式c 124-=∆≥0,有c ≤31. ······ 3分①当31=c 时,由方程031232=++x x ,解得3121-==x x .此时抛物线为31232++=x x y 与x 轴只有一个公共点103⎛⎫-⎪⎝⎭,. · 4分②当31<c 时,11-=x 时,c c y +=+-=1231, 12=x 时,c c y +=++=5232.由已知11<<-x 时,该抛物线与x 轴有且只有一个公共点,考虑其对称轴为31-=x ,应有1200.y y ⎧⎨>⎩≤, 即1050.c c +⎧⎨+>⎩≤,解得51c -<-≤.综上,31=c 或51c -<-≤. ······························ 6分(Ⅲ)对于二次函数c bx ax y ++=232,由已知01=x 时,01>=c y ;12=x 时,0232>++=c b a y , 又0=++c b a ,∴b a b a c b a c b a +=++++=++22)(23. 于是02>+b a .而c a b --=,∴02>--c a a ,即0>-c a .∴0>>c a . ············································· 7分 ∵关于x 的一元二次方程0232=++c bx ax 的判别式0])[(412)(4124222>+-=-+=-=∆ac c a ac c a ac b ,∴抛物线c bx ax y ++=232与x 轴有两个公共点,顶点在x 轴下方.8分 又该抛物线的对称轴abx 3-=,由0=++c b a ,0>c ,02>+b a , 得a b a -<<-2, ∴32331<-<a b . 又由已知01=x 时,01>y ;12=x 时,02>y ,观察图象,可知在10<<x 范围内,该抛物线与x 轴有两个公共点. ··· 10分15 解:(1)由题意:BP =tcm ,AQ =2tcm ,则CQ =(4-2t)cm , ∵∠C =90°,AC =4cm ,BC =3cm ,∴AB =5cm ∴AP =(5-t )cm ,x∵PQ ∥BC ,∴△APQ ∽△ABC ,∴AP ∶AB =AQ ∶AC ,即(5-t )∶5=2t ∶4,解得:t =107∴当t 为107秒时,PQ ∥BC ………………2分(2)过点Q 作QD ⊥AB 于点D ,则易证△AQD ∽△ABC ∴AQ ∶QD =AB ∶BC ∴2t ∶DQ =5∶3,∴DQ =65t∴△APQ 的面积:12×AP ×QD =12(5-t )×65t ∴y 与t 之间的函数关系式为:y =2335t t -………………5分(3)由题意:当面积被平分时有:2335t t -=12×12×3×4,解得:t 55± 当周长被平分时:(5-t )+2t =t +(4-2t )+3,解得:t =1∴不存在这样t 的值………………8分(4)过点P 作PE ⊥BC 于E易证:△PAE ∽△ABC ,当PE =12QC 时,△PQC 为等腰三角形,此时△QCP ′为菱形∵△PAE ∽△ABC ,∴PE ∶PB =AC ∶AB ,∴PE ∶t =4∶5,解得:PE =45t∵QC =4-2t ,∴2×45t =4-2t,解得:t =109∴当t =109时,四边形PQP ′C 为菱形 此时,PE =89,BE =23,∴CE =73………………10分在Rt △CPE 中,根据勾股定理可知:PC 22PE CE +2287()()93+=5059505cm ………………12分16 解:(1)∵D (-8,0),∴B 点的横坐标为-8,代入14y x =中,得y =-2.∴B 点坐标为(-8,-2).而A 、B 两点关于原点对称,∴A (8,2)从而k =8×2=16(2)∵N (0,-n ),B 是CD 的中点,A ,B ,M ,E 四点均在双曲线上,∴mn =k ,B (-2m ,-2n),C (-2m ,-n ),E (-m ,-n )DCNO S 矩形=2mn =2k ,DBO S △=12mn =12k ,OEN S △=12mn =12k.∴OBCE S 矩形=DCNO S 矩形―DBO S △―OEN S △=k.∴k =4.由直线14y x =及双曲线4y x=,得A (4,1),B (-4,-1) ∴C (-4,-2),M (2,2)设直线CM 的解析式是y ax b =+,由C 、M 两点在这条直线上,得4222a b a b -+=-⎧⎨+=⎩,解得a =b =23∴直线CM 的解析式是y =23x +23.(3)如图,分别作AA 1⊥x 轴,MM 1⊥x 轴,垂足分别为A 1,M设A 点的横坐标为a ,则B 点的横坐标为-a.于是111A M MA a mp MP M O m-===, 同理MB m aq MQ m+== ∴p -q =a m m --m am+=-2D B CE N O A My xQ A 1M 1。

2023年江苏省中考数学模拟题(二模)精选按题型分层分类汇编-05填空题(提升题)

2023年江苏省中考数学模拟题(二模)精选按题型分层分类汇编-05填空题(提升题)

2023年江苏省中考数学模拟题(二模)精选按题型分层分类汇编-05填空题(提升题)一.倒数(共1小题)1.(2022•秦淮区二模)﹣的相反数是 ,﹣的倒数是 .二.一元二次方程的解(共1小题)2.(2022•常州二模)关于x的一元二次方程x2﹣3x+k=0有一个根为1,则k的值等于 .三.一次函数的应用(共1小题)3.(2022•宜兴市二模)某店家进一批应季时装共400件,要在六周内卖完,每件时装成本500元.前两周每件按1000元标价出售,每周只卖出20件.为了将时装尽快销售完,店家进行了一次调查并得出每周时装销售数量与时装价格折扣的关系如下:价格折扣原价9折8折7折6折5折每周销售数量(单位:件)20254090100150为盈利最大,店家选择将时装打折销售,后四周最多盈利元.四.反比例函数系数k的几何意义(共1小题)4.(2022•海陵区二模)如图,在平面直角坐标系中,有Rt△AOD,∠A=90°,AO=AD,点D在x轴的正半轴上,点C为反比例函数y=(k>0,x>0)的图象与AD边的交点,点B在AO边上,且BC∥OD,若,△ABC的面积为5,则k= .五.反比例函数图象上点的坐标特征(共1小题)5.(2022•广陵区二模)已知反比例函数y=(k≠0)的图象过点A(a,y1),B(a+1,y2),若y2>y1,则a的取值范围为 .六.二次函数图象上点的坐标特征(共1小题)6.(2022•鼓楼区二模)已知点(﹣2,m)、(2,p)和(4,q)在二次函数y=ax2+bx(a<0)的图象上.若pq<0,则p,q,m的大小关系是(用“<”连接).七.二次函数综合题(共1小题)7.(2022•广陵区二模)如图,分别过点P i(i,0)(i=1、2、…、n)作x轴的垂线,交的图象于点Ai ,交直线于点Bi.则= .八.全等三角形的判定与性质(共1小题)8.(2022•江都区二模)如图,AB=AC=3,AD∥BC,CD=5,∠ABD=2∠DBC,则BD = .九.等腰三角形的性质(共1小题)9.(2022•武进区二模)如图、在△ABC中,AB=AC,∠BAC=100°,BD平分∠ABC,且BD=AB,连接AD,DC.则∠BDC的度数为°.一十.等边三角形的判定与性质(共1小题)10.(2022•玄武区二模)如图,在平面直角坐标系中,△AOB是等边三角形,点B在x轴上,C,D分别是边AO,AB上的点,且CD∥OB,OC=2AC,若CD=2,则点A的坐标是.一十一.平行四边形的性质(共2小题)11.(2022•鼓楼区校级二模)如图,在▱ABCD中,∠ABC,∠BCD的平分线分别交AD于点E,F.若AB=a,CF=b,则BE的长为.(用含a,b的代数式表示)12.(2022•鼓楼区二模)如图,正六边形ABCDEF与平行四边形GHMN的位置如图所示,若∠ABG=19°,则∠NMD的度数是°.一十二.菱形的性质(共2小题)13.(2022•玄武区二模)如图,菱形ABCD和正五边形AEFGH,F,G分别在BC,CD上,则∠1﹣∠2= °.14.(2022•广陵区二模)如图,菱形ABCD中,对角线AC、BD相交于点O、H为AD边上的中点,若OH的长为2,则菱形ABCD的周长等于 .一十三.矩形的性质(共1小题)15.(2022•金坛区二模)如图,在矩形ABCD中,DE⊥AC,垂足为E.若BC=5,tan∠DAE=,则AB= .一十四.正方形的性质(共1小题)16.(2022•惠山区校级二模)如图,已知正方形ABCD的边长为4,P是CD边上的一点,连接BP,以BP为一边在正方形内部作∠PBQ=45°,过点A作AE∥BP,交BQ的延长线于点E,则BP•BE= .一十五.三角形的外接圆与外心(共1小题)17.(2022•仪征市二模)如图,△ABC内接于⊙O,AB=BC,AD是⊙O的直径.若∠DAB =60°,则∠DBC= °.一十六.正多边形和圆(共1小题)18.(2022•海陵区二模)已知正多边形的一个外角为72°,则该正多边形的内角和为 .一十七.翻折变换(折叠问题)(共2小题)19.(2022•金坛区二模)如图,在Rt△ABC中,∠ACB=90°,sin B=,D是边BC的中点,点E在AB边上,将△BDE沿直线DE翻折,使点B落在同一平面内点F处,线段FD交边AB于点G,若FD⊥AB时,则= .20.(2022•宿城区二模)如图,点P在平行四边形ABCD的边BC上,将△ABP沿直线AP 翻折,点B恰好落在边AD的垂直平分线MN上,如果AB=10,AD=16,tan B=,那么BP的长为.一十八.旋转的性质(共1小题)21.(2022•惠山区校级二模)如图,已知△ABC为等边三角形,AB=6,将边AB绕点A顺时针旋转α(0°<α<120°)得到线段AD,连接CD,CD与AB交于点G,∠BAD的平分线交CD于点E,点F为CD上一点,且DF=2CF,则∠AEC= °;连接AF,则AF+2BF的最小值为.一十九.相似三角形的判定与性质(共4小题)22.(2022•武进区二模)如图、正六边形ABCDEF中,G是边AF上的点,GF=AB=1,连接GC,将GC绕点C顺时针旋转60°得G'C、G′C交DE于点H,则线段HG′的长为.23.(2022•灌南县二模)如图,⊙O半径为4,在Rt△ABC中,∠B=90°,点A,B在⊙O 上,点C在⊙O内,且tan A=.当点A在圆上运动时,则线段OC的最小值为.24.(2022•秦淮区二模)如图①,是形如“T”形的拼块,其每个拐角都是直角,各边长度如图所示.如图②,用4个同样的拼块拼成的图案,恰好能放入一个边长为6的正方形中,则a的值为.25.(2022•仪征市二模)如图,在锐角三角形ABC中,BC=8,sin A=,BN⊥AC于点N,CM⊥AB于点M,连接MN,则△AMN面积的最大值是.二十.用样本估计总体(共1小题)26.(2022•宜兴市二模)叶子是植物进行光合作用的重要部分,研究植物的生长情况会关注叶面的面积.在研究水稻等农作物的生长时,经常用一个简洁的经验公式S=来估算叶面的面积,其中a,b分别是稻叶的长和宽(如图1),k是常数,则由图1可知k1(填“>”“=”或“<”).试验小组采集了某个品种的稻叶的一些样本,发现绝大部分稻叶的形状比较狭长(如图2),大致都在稻叶的处“收尖”.根据图2进行估算,对于此品种的稻叶,经验公式中k的值约为(结果保留小数点后两位).2022年江苏省中考数学模拟题(二模)精选按题型分层分类汇编-04填空题(提升题)参考答案与试题解析一.倒数(共1小题)1.(2022•秦淮区二模)﹣的相反数是 ,﹣的倒数是 ﹣3.【解答】解:﹣的相反数是;﹣的倒数是﹣3;故答案为:,﹣3.二.一元二次方程的解(共1小题)2.(2022•常州二模)关于x的一元二次方程x2﹣3x+k=0有一个根为1,则k的值等于 2.【解答】解:把x=1代入方程得1﹣3+k=0,解得k=2.故答案为2.三.一次函数的应用(共1小题)3.(2022•宜兴市二模)某店家进一批应季时装共400件,要在六周内卖完,每件时装成本500元.前两周每件按1000元标价出售,每周只卖出20件.为了将时装尽快销售完,店家进行了一次调查并得出每周时装销售数量与时装价格折扣的关系如下:价格折扣原价9折8折7折6折5折每周销售数量(单位:件)20254090100150为盈利最大,店家选择将时装打7折销售,后四周最多盈利72000元.【解答】解:∵400﹣20×2=360(件),∴要在六周内卖完,后四周每周至少要卖360÷4=90(件),∴折扣应该在8折以下.设后四周的利润为y,折扣为x(x≤7),依题意得y=(1000×﹣500)×360=36000x﹣180000,∵36000>0,∴y随着x的增大而增大,∴当x=7时,y有最大值,此时y=36000×7﹣180000=72000,∴当打七折时,后四周的最大盈利为72000元,故答案为:7;72000.四.反比例函数系数k的几何意义(共1小题)4.(2022•海陵区二模)如图,在平面直角坐标系中,有Rt△AOD,∠A=90°,AO=AD,点D在x轴的正半轴上,点C为反比例函数y=(k>0,x>0)的图象与AD边的交点,点B在AO边上,且BC∥OD,若,△ABC的面积为5,则k= .【解答】解:过点B作BE⊥y轴于点E,过点C作CF⊥OD于点F,∵OA=OD,BC∥OD,∴OB=CD,AB=AC,∵,∴,∴BC=5OB,∵∠A=90°,AB=AC,∴BC=AB,∴5OB=AB,∴AB=5OB,∴,∵BE⊥y轴于点E,CF⊥OD于点F,∴四边形OECF 的面积=k ,且△OBE 的面积=△CFD 的面积, ∴四边形OBCD 的面积=k , ∵BC ∥OD , ∴,即, 解得k =. 故答案为:.五.反比例函数图象上点的坐标特征(共1小题) 5.(2022•广陵区二模)已知反比例函数y =(k ≠0)的图象过点A (a ,y 1),B (a +1,y 2),若y 2>y 1,则a 的取值范围为 ﹣1<a <0 . 【解答】解:∵反比例函数y =(k ≠0)中的k 2>0,∴反比例函数y =(k ≠0)的图象经过第一、三象限,且在每一象限内y 随x 的增大而减小.∵y 2>y 1,a +1>a ,∴点A 位于第三象限,点B 位于第一象限, ∴,解得﹣1<a <0. 故答案是:﹣1<a <0.六.二次函数图象上点的坐标特征(共1小题)6.(2022•鼓楼区二模)已知点(﹣2,m )、(2,p )和(4,q )在二次函数y =ax 2+bx (a <0)的图象上.若pq <0,则p ,q ,m的大小关系是 m <q <p (用“<”连接).【解答】解:∵A (﹣2,m )、B (2,p )和C (4,q )在二次函数y =ax 2+bx (a <0)的图象上. 且pq <0,∴抛物线的对称轴在y 轴的右侧,且对称性直线x =a (1<a <2),如图所示, 观察图象可知:m <q <p .故答案为:m<q<p.七.二次函数综合题(共1小题)7.(2022•广陵区二模)如图,分别过点P i(i,0)(i=1、2、…、n)作x轴的垂线,交的图象于点Ai ,交直线于点Bi.则= .【解答】解:根据题意,知A1、A2、A3、…An的点都在函与直线x=i(i=1、2、…、n)的图象上,B1、B2、B3、…B n的点都在直线与直线x=i(i=1、2、…、n)图象上,∴A1(1,)、A2(2,2)、A3(3,)…An(n,n2);B1(1,﹣)、B2(2,﹣1)、B3(3,﹣)…B n(n,﹣);∴A1B1=|﹣(﹣)|=1,A2B2=|2﹣(﹣1)|=3,A3B3=|﹣(﹣)|=6,…A nB n=|n2﹣(﹣)|=;∴=1,=,…=.∴,=1++…+,=2[+++…+],=2(1﹣+﹣+﹣+…+﹣),=2(1﹣),=.故答案为:.八.全等三角形的判定与性质(共1小题)8.(2022•江都区二模)如图,AB=AC=3,AD∥BC,CD=5,∠ABD=2∠DBC,则BD = +3.【解答】解:如图,延长BA至F,使AF=AB,过点F作FE⊥BD于点E,连接AE,设∠DBC=α,∵FE⊥BD,∴∠FEB=90°,又∵AB=AF=3,∴AB=AE=AF=3,∴∠ABE=∠AEB=2α,又∵AD∥BC,∴∠DBC=∠ADB=α,∴∠EAD=∠BEA﹣∠BDA=α,∴AE=DE=3,∵AD∥BC,∴∠F AD=∠ABC=∠ABD+∠DBC=3α,∵AB=AC,∴∠ABC=∠ACB=∠CAD=3α,∴∠F AD=∠CAD,∵AD=AD,AF=AC,∴△F AD≌△CAD(SAS),∴DF=CD=5,∴EF2=DF2﹣DE2=52﹣32=16,在Rt△BEF中,BE==,∴BD=BE+DE=+3.故答案为:+3.九.等腰三角形的性质(共1小题)9.(2022•武进区二模)如图、在△ABC中,AB=AC,∠BAC=100°,BD平分∠ABC,且BD=AB,连接AD,DC.则∠BDC的度数为130°.【解答】解:∵AB=AC,∠BAC=100°,∴∠ABC=∠ACB=40°,∵BD平分∠ABC,∴∠ABD=∠DBC=20°,∵BD=AB,∴∠ADB=∠DAB=80°,延长AD到点E,使得AE=BC,∵BD=AB=AC,∠CAD=∠DBC,∴△DBC≌△CAE(SAS),∴CD=CE,∠BDC=∠ACE,∴∠CDE=∠CED=α,∵∠ADB=80°,∴∠BDE=100°,∴∠BDC=∠ACE=100°+α,∴20°+100°+α+α=180°,∴α=30°,∴∠BDC=130°,故答案为:130.一十.等边三角形的判定与性质(共1小题)10.(2022•玄武区二模)如图,在平面直角坐标系中,△AOB是等边三角形,点B在x轴上,C,D分别是边AO,AB上的点,且CD∥OB,OC=2AC,若CD=2,则点A的坐标是(3,3) .【解答】解:∵CD∥OB,∴△ACD∽△AOB,∴,∵OC=2AC,CD=2,∴AO=3AC,∴,解得OB=6,作AE⊥OB于点E,∵△AOB是等边三角形,∴OE=OB=3,OA=OB=6,∴AE===3,∴点A的坐标为(3,3),故答案为:(3,3).一十一.平行四边形的性质(共2小题)11.(2022•鼓楼区校级二模)如图,在▱ABCD中,∠ABC,∠BCD的平分线分别交AD于点E,F.若AB=a,CF=b,则BE的长为.(用含a,b的代数式表示)【解答】解:过点E作EH∥AB交BC于H,连接AH,AH交BE于O,如图所示:∵四边形ABCD是平行四边形,∴AD∥BC,∠BAD=∠BCD,∴∠AEB=∠EBH,四边形ABHE是平行四边形,∵BE平分∠ABC,∴∠ABE=∠EBH,∴AB=AE,∴四边形ABHE是菱形,∴AH⊥BE,OB=OE,OA=OH,AH平分∠BAD,∴∠AHB=∠HAD=∠BAD,∵CF平分∠BCD,∴∠FCB=∠BCD,∴∠AHB=∠FCB,∴AH∥CF,∴四边形AHCF是平行四边形,∴AH=CF=b,∴OA=AH=,在Rt△AOB中,由勾股定理得:OB===,∴BE=2OB=,故答案为:.12.(2022•鼓楼区二模)如图,正六边形ABCDEF与平行四边形GHMN的位置如图所示,若∠ABG=19°,则∠NMD的度数是41°.【解答】解:∵四边形GHMN是平行四边形,∴GH∥MN,∴∠NMD=∠H,∵六边形ABCDEF是正六边形,∴∠ABC=∠BCD=(6﹣2)×180°×=120°,∴∠BCH=180°﹣∠BCD=60°,∵∠GBC=∠ABC﹣∠ABG=120°﹣19°=101°,∴∠H=∠GBC﹣∠BCH=101°﹣60°=41°,∴∠NMD=41°,故答案为:41.一十二.菱形的性质(共2小题)13.(2022•玄武区二模)如图,菱形ABCD和正五边形AEFGH,F,G分别在BC,CD上,则∠1﹣∠2= 36°.【解答】解:如图,过M作EM∥BC,∵五边形AEFGH是正五边形,∴∠AEF=∠EAH=×(5﹣2)×180°=108°,∵四边形ABCD是菱形,∴AD∥BC,∴AD∥EM,∴∠AEM+∠DAE=180°,即∠AEM+∠2+∠EAH=180°,∴∠2=180°﹣∠AEM﹣∠EAH=180°﹣∠AEM﹣108°=72°﹣∠AEM,∵EM∥BC,∴∠1+∠AEM=108°,∴∠1=108°﹣∠AEM,∴∠1﹣∠2=108°﹣∠AEM﹣(72°﹣∠AEM)=108°﹣∠AEN﹣72°+∠AEM=36°,故答案为:36.14.(2022•广陵区二模)如图,菱形ABCD中,对角线AC、BD相交于点O、H为AD边上的中点,若OH的长为2,则菱形ABCD的周长等于 16.【解答】解:∵菱形ABCD中,对角线AC、BD相交于点O,∵AC⊥BD.∵为AD边上的中点,OH=2,∴AD=2OH=4,∴菱形ABCD的周长=4×4=16.故答案为:16.一十三.矩形的性质(共1小题)15.(2022•金坛区二模)如图,在矩形ABCD中,DE⊥AC,垂足为E.若BC=5,tan∠DAE=,则AB= .【解答】解:∵四边形ABCD是矩形,∴∠ADC=90°,BC=AD=5,∵,∴AB=CD=,故答案为:.一十四.正方形的性质(共1小题)16.(2022•惠山区校级二模)如图,已知正方形ABCD的边长为4,P是CD边上的一点,连接BP,以BP为一边在正方形内部作∠PBQ=45°,过点A作AE∥BP,交BQ的延长线于点E,则BP•BE= 16.【解答】解:如图,连接AP,作EM⊥PB于M,∵AE∥PB,∴S△PBE=S△ABP=S正方形ABCD=8,∴•PB•EM=8,∵∠EBM=45°,∠EMB=90°,∴EM=BE,∴•PB•BE=8,∴PB•BE=16.故答案为:16.一十五.三角形的外接圆与外心(共1小题)17.(2022•仪征市二模)如图,△ABC内接于⊙O,AB=BC,AD是⊙O的直径.若∠DAB =60°,则∠DBC= 30°.【解答】解:∵AD为⊙O的直径,∴∠ABD=90°,∵∠DAB=60°,∴∠D=∠C=90°﹣60°=30°,∵AB=BC,∴∠CAB=∠C=30°,∴∠DAC=∠DAB﹣∠CAB=60°﹣30°=30°,∴∠DBC=∠DAC=30°,故答案为:30.一十六.正多边形和圆(共1小题)18.(2022•海陵区二模)已知正多边形的一个外角为72°,则该正多边形的内角和为 540° .【解答】解:多边形的边数为:360°÷72°=5,正多边形的内角和的度数是:(5﹣2)•180°=540°.故答案为:540°.一十七.翻折变换(折叠问题)(共2小题)19.(2022•金坛区二模)如图,在Rt△ABC中,∠ACB=90°,sin B=,D是边BC的中点,点E在AB边上,将△BDE沿直线DE翻折,使点B落在同一平面内点F处,线段FD交边AB于点G,若FD⊥AB时,则= 4.【解答】解:过点B作BH∥DE,交GD的延长线于点H,∵FD⊥AB,∴∠DGB=90°,∵sin B=,设DG=3x,∴BD=5x,BC=2BD=10x,∴BG==4x,由翻折可得∠BDE=∠EDF,∵DE∥BH,∴∠FDE=∠BHF,∠BDE=∠DBH,∴∠BHF=∠DBH,∴DH=DB=5x,∵∠DGE=∠BGH,∴△DEG∽△HBG,∴,∴EG=,则BE=4x﹣=,∵∠BGD=∠C=90°,∠DBG=∠ABC,∴△BDG∽△BAC,∴,即,∴AB=x,∴AE=AB﹣BE=10x,∴=4.故答案为:4.20.(2022•宿城区二模)如图,点P在平行四边形ABCD的边BC上,将△ABP沿直线AP 翻折,点B恰好落在边AD的垂直平分线MN上,如果AB=10,AD=16,tan B=,那么BP的长为或14.【解答】解:①如图1,过A作AH⊥BC于H,连接DB′,设BB′与AP交于E,AD的垂直平分线交AD于M,BC于N,∵tan B==,设AH=4x,BH=3x,∴AB==5x=10,∴x=2,∴AH=8,BH=6,∵将△ABP沿直线AP翻折,点B恰好落在边AD的垂直平分线MN上,∴AB′=AB=10,AM=DM=AD=8,∠AMN=∠HNM=90°,∴四边形AHNM是正方形,MB′===6,∴HN=MN=8,∴BN=14,B′N=2,∴BB′==10,∴BE=BB′=5,∵∠BEP=∠BNB′=90°,∠PBE=∠B′BN,∴△BPE∽△BB′N,∴=,∴=,∴BP=;②如图2,由①知,MN=8,MB′=6,BN=14,∴NB=NB′,∴点N在BB′的垂直平分线上,∵将△ABP沿直线AP翻折,点B恰好落在边AD的垂直平分线上,∴点P也在BB′的垂直平分线上,∴点P与N重合,∴BP=BN=14,综上所述,BP的长为或14.故答案为:或14.一十八.旋转的性质(共1小题)21.(2022•惠山区校级二模)如图,已知△ABC为等边三角形,AB=6,将边AB绕点A顺时针旋转α(0°<α<120°)得到线段AD,连接CD,CD与AB交于点G,∠BAD的平分线交CD于点E,点F为CD上一点,且DF=2CF,则∠AEC= 60°;连接AF,则AF+2BF的最小值为6.【解答】解:∵将边AB绕点A顺时针旋转α(0°<α<120°)得到线段AD,如图1,∴∠BAD=α,AB=AD,∵△ABC是等边三角形,∴AB=AC,∠BAD=60°,∴AC=AD,∴∠ADC=∠ACD,∵AE平分∠BAD,∴∠DAE=∠BAE,∴∠ACD+∠BAE=∠CDA+∠DAE=∠AEC,又∵∠AEC+∠ACD+∠BAE+∠BAC=180°,∴∠AEC=60°;如图2,过F作FH∥AD,交AC于H,取AC的中点M,连接FM,则AM=CM=3,∴△CFH∽△CDA,∴==,∵DF=2FC,∴==,∴CH=FH=2,∴MH=3﹣2=1,∵==,=,∴=,∵∠FHM=∠AHF,∴△FHM∽△AHF,∴==,∴FM=AF,∴当B、F、M三点共线时,BF+FM=BF+AF的长最小,如图3,此时BM⊥AC,∴BM==3,∵AF+2BF=2(AF+BF)=2BM,∴AF+2BF的最小值是6.故答案为:60,6.一十九.相似三角形的判定与性质(共4小题)22.(2022•武进区二模)如图、正六边形ABCDEF中,G是边AF上的点,GF=AB=1,连接GC,将GC绕点C顺时针旋转60°得G'C、G′C交DE于点H,则线段HG′的长为.【解答】解:∵GF=AB=1,∴AB=3,AG=2如图,过点G作GP∥AB交BC于点P,过点A作AN∥BC交GP于点N,则四边形ABPN 是平行四边形,∴BP=AN,PN=AB=3,∵正六边形ABCDEF,∴∠BAF=∠B=∠BCD=∠D=120°,AF=AB=BC=CD=DE=EF=3,∴AG=AB﹣GF=3﹣1=2,∵AN∥BC,∴∠BAN=180°﹣∠B=180°﹣120°=60°,∴∠NAG=∠BAF﹣∠BAN=120°﹣60°=60°,∴△ANG为等边三角形,∴NG=AN=AG=2,∴PG=PN+NG=3+2=5,过点G作GJ⊥CD于点J,则CJ=AG=2,连接DF,过点E作EK⊥DF于点K,则DF=2DK,∠DEK=120°÷2=60°,在Rt△DEK中,DK=DE•sin60°=3×=,∴DF=2×=,∴GJ=DF=,在Rt△CGJ中,CG==.∵∠GCH=60°,∴∠PCG+∠DCH=∠BCD﹣∠GCH=120°﹣60°=60°,∵∠DHC+∠DCH=180°﹣∠D=180°﹣120°=60°,∴∠PCG+∠DCH=∠DHC+∠DCH,∴∠PCG=∠DHC,∵∠CPG=∠D,∴△CPG∽△HDC,∴,即,∴HC=,∴HG'=CG'﹣CH=CG﹣CH==.故答案为:.23.(2022•灌南县二模)如图,⊙O半径为4,在Rt△ABC中,∠B=90°,点A,B在⊙O 上,点C在⊙O内,且tan A=.当点A在圆上运动时,则线段OC的最小值为2.【解答】解:延长BC交⊙O于点F,连接AF,∵∠B=90°,∴AF是⊙O的直径,且AF=2×4=8,∵tan∠A=,∴∠CAB和∠ACB的大小为定值,当OC⊥AF时,OC最小,设BC=3x,则AB=4x,∴AC==5x,∵CO⊥AF,点O是AF的中点,∴CF=AF=5x,∴BF=CF+CB=5x+3x=8x,在Rt△ABF中,AB2+BF2=AF2,∴(4x)2+(8x)2=82,解得:x=,∴AC=5x=2,在Rt△AOC中,OC2+OA2=AC2,∴OC2=(2)2﹣42=4,∴OC=2,∴OC的最小值为2,故答案为:2.24.(2022•秦淮区二模)如图①,是形如“T”形的拼块,其每个拐角都是直角,各边长度如图所示.如图②,用4个同样的拼块拼成的图案,恰好能放入一个边长为6的正方形中,则a的值为.【解答】解:如图:由题意得:BC=EF=2a,CD=a,DE=3a,∠DEF=∠BCD=∠CDE=90°,∴CE===a,∵四边形AGHM是正方形,∴∠A=∠G=90°,∴∠ABC+∠ACB=90°,∵∠ACB+∠DCE=90°,∴∠ABC=∠DCE,∴△ABC∽△DCE,∴===,∴AC=3AB,在Rt△ABC中,AB2+AC2=BC2,∴AB2+9AB2=(2a)2,∴AB=a,∴AC=3AB=a,∵∠DEF=∠CDE=90°,∴DC∥EF,∴∠DCE=∠FEG,∴∠ABC=∠FEG,∴△ABC≌△GEF(AAS),∴EG=AB=a,∴AC+CE+EG=6,∴a+a+a=6,∴a=,故答案为:.25.(2022•仪征市二模)如图,在锐角三角形ABC中,BC=8,sin A=,BN⊥AC于点N,CM⊥AB于点M,连接MN,则△AMN面积的最大值是.【解答】解:画出△ABC的外接圆⊙O,连接OB,∵BC=8,sin A=,∴点A在优弧BC上运动,当A'O⊥BC时,△A'BC的面积最大,∴BH=4,∵∠BOH=∠BAC,∴BO=5,OH=3,∴AH=8,cos∠BOH=,∴S△ABC最大为=32,由勾股定理得,A'B=A'C=4,∵CM⊥AB,∴cos∠MAC=,∴AM=,同理AN=,∴AM=AN,∴△AMN∽△ABC,∴,∴,∴S△AMN=,故答案为:.二十.用样本估计总体(共1小题)26.(2022•宜兴市二模)叶子是植物进行光合作用的重要部分,研究植物的生长情况会关注叶面的面积.在研究水稻等农作物的生长时,经常用一个简洁的经验公式S=来估算叶面的面积,其中a,b分别是稻叶的长和宽(如图1),k是常数,则由图1可知k> 1(填“>”“=”或“<”).试验小组采集了某个品种的稻叶的一些样本,发现绝大部分稻叶的形状比较狭长(如图2),大致都在稻叶的处“收尖”.根据图2进行估算,对于此品种的稻叶,经验公式中k的值约为 1.27(结果保留小数点后两位).【解答】解:由图1可知,矩形的面积大于叶的面积,即S<ab,∴S=<ab,∴k>1,由图2可知,叶片的尖端可以近似看作等腰三角形,∴稻叶可以分为等腰三角形及矩形两部分,∴矩形的长为4t,等腰三角形的高为3t,稻叶的宽为b,∴k==≈1.27,故答案为:>,1.27.。

一次函数解答题25道题

一次函数解答题25道题

⼀次函数解答题25道题⼀次函数解答题⼀、综合题(共25题)1.某农户承包荒⼭种植某产品种蜜柚.已知该蜜柚的成本价为8元/千克,投⼊市场销售时,调查市场⾏情,发现该蜜柚销售不会亏本,且每天销量y(千克)与销售单价x(元/千克)之间的函数关系如图所⽰.(1)求y与x的函数关系式,并写出x的取值范围;(2)当该品种蜜柚定价为多少时,每天销售获得的利润最⼤?最⼤利润是多少?2.如图,在直⾓坐标系中放⼊⼀个矩形纸⽚ABCO,将纸⽚翻折后,点B恰好落在x轴上,记为B',折痕为CE.直线CE的关系式是y=﹣x+8,与x轴相交于点F,且AE=3.(1)求OC长度;(2)求点B'的坐标;(3)求矩形ABCO的⾯积.3.某商场销售⼀种商品,进价为每个20元,规定每个商品售价不低于进价,且不⾼于60元.经调查发现,每天的销售量y(个)与每个商品的售价x(元)满⾜⼀次函数关系,其部分数据如下表所⽰:(1)求y与x之间的函数关系式;(2)设商场每天获得的总利润为w(元),求w与x之间的函数关系式;(3)不考虑其他因素,当商品的售价为多少元时,商场每天获得的总利润最⼤,最⼤利润是多少?4.“五·⼀”期间,九年⼀班同学从学校出发,去距学校6千⽶的本溪⽔洞游玩,同学们分为步⾏和骑⾃⾏车两组,在去⽔洞的全过程中,骑⾃⾏车的同学⽐步⾏的同学少⽤40分钟,已知骑⾃⾏车的速度是步⾏速度的3倍.(1)求步⾏同学每分钟⾛多少千⽶?(2)如图是两组同学前往⽔洞时的路程y(千⽶)与时间x(分钟)的函数图象.完成下列填空:①表⽰骑车同学的函数图象是线段________;②已知A点坐标(30,0),则B点的坐标为(________).5.为奖励在演讲⽐赛中获奖的同学,班主任派学习委员⼩明为获奖同学买奖品,要求每⼈⼀件.⼩明到⽂具店看了商品后,决定奖品在钢笔和笔记本中选择.如果买4个笔记本和2⽀钢笔,则需86元;如果买3个笔记本和1⽀钢笔,则需57元.(1)求购买每个笔记本和钢笔分别为多少元?(2)售货员提⽰,买钢笔有优惠,具体⽅法是:如果买钢笔超过10⽀,那么超出部分可以享受8折优惠,若买x(x>0)⽀钢笔需要花y元,请你求出y与x的函数关系式;(3)在(2)的条件下,⼩明决定买同⼀种奖品,数量超过10个,请帮⼩明判断买哪种奖品省钱.6.甲、⼄两地相距300千⽶,⼀辆货车和⼀辆轿车先后从甲地出发向⼄地,如图,线段OA 表⽰货车离甲地距离y(千⽶)与时间x(⼩时)之间的函数关系;折线BCD表⽰轿车离甲地距离y(千⽶)与x(⼩时)之间的函数关系.请根据图象解答下列问题:(1)轿车到达⼄地后,货车距⼄地多少千⽶?(2)求线段CD对应的函数解析式.(3)轿车到达⼄地后,马上沿原路以CD段速度返回,求货车从甲地出发后多长时间再与轿车相遇(结果精确到0.01).7.直线n与过原点的直线m交于点P,P点的坐标如图所⽰,直线n与y轴交于点A;若OA=OP;(1)求A点的坐标;(2)求直线m,n的函数表达式;(3)求△AOP的⾯积.8.“低碳⽣活,绿⾊出⾏”的理念已深⼊⼈⼼,现在越来越多的⼈选择骑⾃⾏车上下班或外出旅游.周末,⼩红相约到郊外游玩,她从家出发0.5⼩时后到达甲地,玩⼀段时间后按原速前往⼄地,刚到达⼄地,接到妈妈电话,快速返回家中.⼩红从家出发到返回家中,⾏进路程y(km)随时间x(h)变化的函数图象⼤致如图所⽰.(1)⼩红从甲地到⼄地骑车的速度为________km/h;(2)当1.5≤x≤2.5时,求出路程y(km)关于时间x(h)的函数解析式;并求⼄地离⼩红家多少千⽶?9.某⼯⼚甲、⼄两车间接到加⼯⼀批零件的任务,从开始加⼯到完成这项任务共⽤了9天,⼄车间在加⼯2天后停⽌加⼯,引⼊新设备后继续加⼯,直到与甲车间同时完成这项任务为⽌,设甲、⼄车间各⾃加⼯零件总数为y(件),与甲车间加⼯时间x(天),y与x之间的关系如图(1)所⽰.由⼯⼚统计数据可知,甲车间与⼄车间加⼯零件总数之差z(件)与甲车间加⼯时间x(天)的关系如图(2)所⽰.(1)甲车间每天加⼯零件为________件,图中d值为________.(2)求出⼄车间在引⼊新设备后加⼯零件的数量y与x之间的函数关系式.(3)甲车间加⼯多长时间时,两车间加⼯零件总数为1000件?10.如图1,在平⾯直⾓坐标系中,已知△AOB是等边三⾓形,点A的坐标是(0,4),点B 在第⼀象限,点P是x轴上的⼀个动点,连接AP,并把△AOP绕着点A按逆时针⽅向旋转,使边AO与AB重合,得到△ABD.(1)求直线AB的解析式;(2)当点P运动到点(,0)时,求此时DP的长及点D的坐标;(3)是否存在点P,使△OPD的⾯积等于?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.11.端午节期间,甲、⼄两⼈沿同⼀路线⾏驶,各⾃开车同时去离家560千⽶的景区游玩,甲先以每⼩时60千⽶的速度匀速⾏驶1⼩时,再以每⼩时m千⽶的速度匀速⾏驶,途中体息了⼀段时间后,仍按照每⼩时m千⽶的速度匀速⾏驶,两⼈同时到达⽬的地,图中折线、线段分别表⽰甲、⼄两⼈所⾛的路程甲,⼄与时间之间的函数关系的图象请根据图象提供的信息,解决下列问题:(1)图中E点的坐标是________,题中________ ,甲在途中休息________h;(2)求线段CD的解析式,并写出⾃变量x的取值范围;(3)两⼈第⼆次相遇后,⼜经过多长时间两⼈相距20km?12.如图,在平⾯直⾓坐标系中,⼀次函数y=kx+b的图像经过点A(﹣2,6),且与x轴相交于点B,与正⽐例函数y=3x的图像交于点C,点C的横坐标为1.(1)求k、b的值;(2)若点D在y轴负半轴上,且满⾜S△COD=S△BOC,求点D的坐标.13.如图,在平⾯直⾓坐标系中,⼀次函数的图像与x轴和y轴分别相交于A、B两点.动点P从点A出发,在线段AO上以每秒3个单位长度的速度向点O作匀速运动,到达点O停⽌运动.点A关于点P的对称点为点Q,以线段PQ为边向上作正⽅形PQMN.设运动时间为t秒.(1)当t=秒时,点Q的坐标是________;(2)在运动过程中,设正⽅形PQMN与△AOB重叠部分的⾯积为S,求S与t的函数表达式;(3)若正⽅形PQMN对⾓线的交点为T,请直接写出在运动过程中OT+PT的最⼩值.14.如图,Rt△AOB 在平⾯直⾓坐标系中,点O与坐标原点重合,点A在x轴上,点B在y轴上,,,将△AOB沿直线BE折叠,使得OB边落在AB上,点O与点D重合. (1)求直线BE的解析式; (2)求点D的坐标;(3)x轴上是否存在点P,使△PAD为等腰三⾓形?若存在,请直接写出点P的坐标,若不存在,请说明理由。

中考数学冲刺专题讲义 平面直角坐标系下的图形变化(含答案)

中考数学冲刺专题讲义 平面直角坐标系下的图形变化(含答案)

2020中考数学冲刺专题平面直角坐标系下的图形变化(含答案)1. 如图,在平面直角坐标系中,点A(3,0),B(0,-4),C是x轴上一动点,过C作CD∥AB 交y轴于点D.(∥)求OCOD的值;(∥)若以A,B,C,D为顶点的四边形的面积等于54,求点C的坐标;(∥)将∥AOB绕点A按顺时针方向旋转90°得到∥AO′B′,设D的坐标为(0,n),当点D落在∥AO′B′内部(包括边界)时,求n的取值范围.(直接写出答案即可)第1题图解:(∥)∥点A的坐标是(3,0),B的坐标是(0,-4),∥OA=3,OB=4.∥CD∥AB,∥∥AOB∥∥COD,∥OCOD=OAOB=34;(∥)设OC=3x,则OD=4x,则AC=3+3x,BD=4+4x,当点C 在x 轴负半轴上时: ∥四边形ABCD 的面积是54,∥12AC ·BD =54,即12(3+3x )(4+4x )=54, 解得:x =2或-4(舍去). 则点C 的坐标是(-6,0); 当点C 在x 轴的正半轴上时, S 四边形ABCD =12×3x ·4x -12×3×4=54, 解得:x =10或x =-10(舍去). 则点C 的坐标是(310,0); (∥)O ′的坐标是(3,3),则O ′B ′与y 轴的交点坐标是(0,3); 则B ′的坐标是(-1,3).设直线AB ′的解析式是y =kx +b , 根据题意得:⎩⎪⎨⎪⎧3k +b =0-k +b =3,解得:⎩⎪⎨⎪⎧k =-34,b =94,则直线AB ′的解析式是y =-34x +94, 当x =0时,y =94.即直线AB′与y轴的交点是(0,94).则n的范围是94≤n≤3.第1题解图2. 在平面直角坐标系中,点A(-2,0),B(2,0),C(0,2),点D,点E分别是AC,BC的中点,将∥CDE绕点C逆时针旋转得到∥CD′E′,旋转角为α,连接AD′,BE′.(∥)如图∥,若0°<α<90°,当AD′∥CE′时,求α的大小;(∥)如图∥,若90°<α<180°,当点D′落在线段BE′上时,求sin∥CBE′的值;(∥)若直线AD′与直线BE′相交于点P,求点P的横坐标m的取值范围.第2题图解:(∥)∥A(-2,0),B(2,0),C(0,2),∥OA=OB=OC,∥∥ACB=90°,∥∥CD′E′是∥CDE旋转得到的,∥∥D ′CE ′=90°,∥AD ′∥CE ′,∥∥AD ′C =∥D ′CE ′=90°, ∥D 为AC 的中点,∥CD =12AC , ∥CD =CD ′,∥CD ′=12AC , 在Rt∥ACD ′中,cos α=CD ′AC =12, ∥α=60°;(∥)设F 为D ′E ′的中点,连接CF ,如解图∥, ∥CD ′=CE ′,∥E ′CD ′=90°, ∥CF ∥BE ′,CF =12D ′E ′=1, 又∥BC =OB 2+OC 2=22,∥在Rt∥BCF 中,sin∥CBE ′=CF BC =24;(∥)如解图∥,以C 为圆心,CD ′为半径作∥C ,当AD ′与∥C 相切时AP 最长,易得四边形CD ′PE ′是正方形,作PH ∥AB 于点H . ∥CD ′=CD =12AC =2, ∥∥C 的半径为2, ∥在Rt ∥ACD ′中,AD ′=(22)2-(2)2=6,∥AP =AD ′+PD ′=6+2,∥cos∥P AB=APAB=AHAP,∥AH=2+3,∥点P横坐标的最大值为 3.如解图∥,当BE′与∥C相切时AP最短,易得四边形CD′PE′是正方形,作PH∥AB于点H.根据对称性可知OH=3,∥点P横坐标的最小值为-3,∥点P横坐标的取值范围为-3≤m≤ 3.图∥ 图∥ 图∥第2题解图3. 在平面直角坐标系中,一张矩形纸片OBCD按图∥所示放置,已知OB=10,BC=6,将这张纸片折叠,使点O落在边CD上,记作点A,折痕与边OD(含端点)交于点E,与边OB(含端点)或其延长线交于点F.(∥)如图∥,若点E的坐标为(0,4),求点A的坐标;(∥)将矩形沿直线y=-12x+n折叠,求点A的坐标;(∥)将矩形沿直线y=kx+n折叠,点F在边OB上(含端点),直接写出k的取值范围.第3题图解:(∥)∥点E的坐标为(0,4),∥OE=AE=4,∥四边形OBCD是矩形,∥OD=BC=6,∥DE=2,∥AD=AE2-DE2=23,∥点A的坐标为(23,6);(∥)由于直线EF解析式是y=-12x+n,∥OE=n,点F的坐标为(2n,0),连接OA,如解图∥,则EF垂直平分OA,易得∥AOD∥∥EFO,∥ADOD =OEOF=12,则AD=12OD=3,∥点A的坐标为(3,6);(∥)-1≤k≤-1 3.【解法提示】当点F与点B重合时,AB=OB=10,∥AC=102-62=8,则AD=2,易得∥ADE∥∥BCA,则ADBC =DEAC,即26=DE8,∥DE=83,∥OE=103,∥n=103,直线EF的解析式为y=kx+103,令x=10,则y=0,即0=10k+103,∥k=-13;当点E与点D重合时,如解图∥,点F(6,0),易得直线EF的解析式为y=-x+6,此时k=-1,综上所述,k的取值范围是-1≤k≤-13.第3题解图4. 如图,在平面直角坐标系xOy中,O为坐标原点,直线y=-x+4与x轴交于点A,与y轴交于点B.(∥)求点A,B的坐标;(∥)在直线AB上是否存在点P,使∥OAP是以OA为底边的等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.(∥)若将Rt∥AOB折叠,使OB边落在AB上,点O与点D重合,折痕为BC,求折痕BC所在直线的解析式.第4题图解:(∥)在y=-x+4中,令x=0可得y=4,令y=0可求得x=4,∥A(4,0),B(0,4);(∥)如解图∥,作线段OA的垂直平分线,交x轴于点E,交AB于点P,则OP=P A,即P点即为满足条件的点,∥OA=4,∥OE=2,在y=-x+4中,当x=2时,可得y=2,∥P点坐标为(2,2);(∥)如解图∥,设C(t,0),则AC=OA-OC=4-t,∥OA=OB=4,∥AB=42,由折叠的性质可得BD=OB=4,CD=OC=t,∥ADC=∥BOC=90°,∥AD =AB -BD =42-4,在Rt∥ACD 中,由勾股定理可得AC 2=AD 2+CD 2,即(4-t )2=t 2+(42-4)2,解得t =42-4, ∥C (42-4,0),设直线BC 解析式为y =kx +b , ∥⎩⎪⎨⎪⎧b =4(42-4)k +b =0, 解得⎩⎪⎨⎪⎧k =-1-2b =4,∥折痕BC 的解析式为y =-(1+2)x +4.第4题解图5. 如图,在平面直角坐标系中,O 是坐标原点,点A 的坐标为(-8,0),直线BC 经过点B (-8,6),C (0,6),将四边形OABC 绕点O ,按顺时针方向旋转α度得到四边形OA ′B ′C ′,此时直线OA ′,直线B ′C ′分别与直线BC 相交于点P 、Q .(∥)如图∥,当四边形OA ′B ′C ′的顶点B ′落在y 轴正半轴上时,求BPBQ 的值; (∥)如图∥,当四边形OA ′B ′C ′的顶点B ′落在直线BC 上时,求∥OPB ′的面积:(∥)在四边形OABC 旋转过程中,当0°<a ≤180°时,是否存在这样的点P 和点Q ,使BP =12BQ ?若存在,请直接写出....点P 的坐标;若不存在,请说明理由.第5题图解:(∥)∥∥POC=∥B′OA′,∥PCO=∥B′A′O=90°,∥∥POC∥∥B′OA′,∥CPA′B′=OCOA′,即CP6=68,∥CP=92,BP=BC-CP=8-92=72,同理∥B′CQ∥∥B′C′O,∥CQC′O=B′CB′C′,即CQ6=10-68,∥CQ=3,BQ=BC+CQ=11,∥BPBQ=7211=722;(∥)在∥COP和∥A′B′P中,∥∥CPO=∥A′PB′,∥OCP=∥A′=90°,OC=B′A′,∥∥COP∥∥A′B′P(AAS),∥OP=B′P,设B′P=OP=x,在Rt∥COP中,CP2+CO2=OP2,即(8-x)2+62=x2,解得x =254,∥S ∥OPB ′=12×254×6=754;(∥)存在这样的点P 和点Q ,使BP =12BQ ,点P 的坐标是(-9-362,6),(-74,6). 【解法提示】过点Q 作QH ∥OA ′于点H ,连接OQ , 则QH =OC ′=OC ,∥S ∥POQ =12PQ ·OC ,S ∥POQ =12OP ·QH , ∥PQ =OP .设BP =x ,∥BP =12BQ ,∥BQ =2x ,∥如解图∥,当点P 在点B 左侧时,OP =PQ =BP +BQ =3x , 在Rt∥COP 中,PC 2+CO 2=OP 2,即(8+x )2+62=(3x )2, 解得x 1=1+362,x 2=1-362(舍去), ∥PC =BP +BC =9+362, ∥P (-9-362,6);∥如解图∥,当点P 在点B 的右侧时, OP =PQ =BQ -BP =x ,PC =8-x , 在Rt∥COP 中,PC 2+CO 2=PO 2, 即(8-x )2+62=x 2,解得x =254,∥PC=BC-BP=8-254=74,∥P(-74,6),综上所述,存在点P(-9-362,6),P(-74,6),使BP=12BQ.图∥ 图∥第5题解图6. 如图,在平面直角坐标系中,已知∥AOB是等边三角形,点A的坐标是(0,4),点B在第一象限,点P是x轴上的一个动点,连接AP,并把∥AOP绕着点A按逆时针方向旋转,使边AO 与AB重合,得到∥ABD.(∥)求点B的坐标;(∥)当点P运动到点(t,0)时,试用含t的式子表示点D的坐标;(∥)是否存在点P,使∥OPD的面积等于34,若存在,请求出符合条件的点P的坐标(直接写出结果即可).第6题图解:(∥)如解图∥,过点B作BE∥y轴于点E,作BF∥x轴于点F,由已知得BF=OE=2,OF=42-22=23,∥点B的坐标是(23,2);第6题解图∥(∥)∥∥ABD由∥AOP旋转得到,∥∥ABD∥∥AOP,∥AP=AD,∥DAB=∥P AO,∥∥DAP=∥BAO=60°,∥∥ADP是等边三角形,∥DP=AP=16+t2,如解图∥,过点D作DH∥x轴于点H,延长EB交DH于点G,则BG∥DH,∥在Rt∥BDG中,∥BGD=90°,∥DBG=60°,∥BG=BD·cos60°=t×12=t2,DG=BD·sin60°=t×32=32t,∥OH=EG=23+t2,DH=2+32t,∥点D的坐标为(23+t2,2+32t);第6题解图∥(∥)存在,点P 的坐标为(21-233,0),(-33,0),(-3,0),(-21-233,0).【解法提示】假设存在点P ,使∥OPD 的面积等于34,设点P 为(t ,0),下面分三种情况讨论: ∥当t >0时, BD =OP =t ,DG =32t , ∥DH =2+32t ,∥∥OPD 的面积等于34, ∥12t (2+32t )=34, 解得t 1=21-233,t 2=-21-233(舍去),∥点P 1的坐标为(21-233,0 );∥当-433<t ≤0时,BD =OP =-t ,BG =-32t , ∥DH =2-(-32t )=2+32t , ∥∥OPD 的面积等于34, ∥-12t (2+32t )=34, 解得t 1=-33,t 2=-3,∥点P 2的坐标为(-33,0),点P 3的坐标为(-3,0); ∥当t ≤-433时,BD =OP =-t ,DG =-32t , ∥DH =-32t -2, ∥∥OPD 的面积等于34, ∥12t (2+32t )=34,解得t 1=21-233(舍去),t 2=-21-233,∥点P 4的坐标为(-21-233,0)综上所述,点P 的坐标分别为P 1(21-233,0)、P 2(-33,0)、P 3(-3,0)、P 4(-21-233,0).7. 如图∥,等腰直角∥ABC 的斜边AB 长为4,矩形ODEF 的边OD 长为2,DE 长为4,将等腰直角∥ABC 沿x 轴向右平移得到等腰直角∥A ′B ′C ′.(∥)当线段A ′C ′所在直线经过点E 时,求此时直线A ′C ′的解析式;(∥)连接C ′F ,C ′E ,当线段C ′F 和线段C ′E 之和最短时,求矩形ODEF 和等腰直角∥A ′B ′C ′重叠部分的面积;(∥)当矩形ODEF 和等腰直角∥A ′B ′C ′重叠部分的面积为2.5时,求直线A ′C ′与y 轴交点的坐标(直接写出答案即可).第7题图解:(∥)当A ′C ′所在直线经过点E ,如解图∥. ∥∥CAB =45°, ∥∥C ′A ′B ′=45°, 在Rt∥EA ′D 中,DE =4, ∥A ′D =4, ∥OD =2, ∥A ′O =2, ∥A ′(-2,0),设直线A ′C ′的解析式为y =kx +b ,将两点A ′(-2,0),E (2,4)代入 得⎩⎪⎨⎪⎧-2k +b =02k +b =4,解得⎩⎪⎨⎪⎧k =1b =2. ∥A ′C ′此时的解析式为y =x +2;第7题解图∥(∥)∥点C的运动轨迹为直线y=2.∥点E关于点C′的运动轨迹的对称点为点D.连接FD,如解图∥,当C运动到FD的中点时,FC′+C′D最小,即FD的长,即FC′+EC′最小.∥此时A′C′与OF交于M,B′C′与DE交于N,∥OA′=OM=1,B′D=DN=1,即S∥B′DN=S∥A′OM=1.则S五边形ODNC′M=S∥A′B′C′-S∥B′DN-S∥A′OM=4×2×12-1×1×12-1×1×12=4-1=3.第7题解图∥(∥)直线A′C′与y轴交点的坐标为(0,2+22)或(0,2-22).【解法提示】当C在y轴上时,此时B′与D重合,∥矩形ODEF与∥A′B′C′重合部分为∥COB.∥S ∥COB =12×2×2=2<2.5,故当重叠部分面积为2.5时,C ′必在矩形ODEF 内部,此时重合部分面积S =S ∥A ′B ′C ′-S ∥B ′DN -S ∥A ′OM =2.5,∥4-S ∥B ′DN -S ∥A ′OM =2.5, 即12OM 2+12DN 2=1.5, ∥OM 2+DN 2=3, 而OM =OA ′,DN =DB ′, OA ′+DB ′=A ′B ′-OD =2, ∥OM +DN =2,DN =2-OM , ∥OM 2+(2-OM )2=3, OM 2+OM 2-4OM +4-3=0, 2OM 2-4OM +1=0,解得OM =2+22或OM =2-22, 故当重合部分面积为2.5时,直线A ′C ′与y 轴交点的坐标为(0,2+22)或(0,2-22).8. 在平面直角坐标系中,O 为原点,四边形OABC 是矩形,点A 、C 的坐标分别为(3,0)、(0,1),点D 是边BC 上的动点(与端点B 、C 不重合),过点D 作直线y =-12x +b 交边OA 于点E . (∥)如图∥,求点D 和点E 的坐标(用含b 的式子表示);(∥)如图∥,若矩形OABC关于直线DE的对称图形为矩形O1A1B1C1,试探究矩形O1A1B1C1与矩形OABC的重叠部分的面积是否发生变化?若不变,求出重叠部分的面积;若改变,请说明理由;(∥)矩形OABC绕着它的对称中心旋转,如果重叠部分的形状是菱形,请直接写出这个菱形的面积的最小值和最大值.第8题图解:(∥)∥四边形OABC是矩形,∥CB∥x轴,由点A、C的坐标分别为(3,0)、(0,1)可得点D的纵坐标为1,当y=1时,-12x+b=1,解得:x=2b-2,∥点D的坐标为(2b-2,1),当y=0时,-12x+b=0,解得:x=2b,∥点E的坐标为(2b,0);(∥)如解图,设CB与O1A1的交点为点M,C1B1与OA的交点为点N,∥四边形OABC,四边形O1A1B1C1是矩形,∥CB∥OA,C1B1∥O1A1,∥四边形DMEN是平行四边形,∥矩形OABC关于直线DE的对称图形为矩形O1A1B1C1,∥∥1=∥2,∥CB∥OA,∥∥2=∥3,∥∥1=∥3,∥DM=ME,∥平行四边形DMEN是菱形,过点D作DH∥OA于点H,由D(2b-2,1),E(2b,0)可知CD=2b-2,OE=2b,OH=CD=2b-2,DH=1,∥EH=OE-OH=2b-(2b-2)=2,设菱形DMEN的边长为m,在Rt∥DHN中,DH=1,HN=EH-NE=2-m,DN=m,由DH2+HN2=DN2,得:12+(2-m)2=m2,解得m=54,∥S菱形DMEN=NE·DH=54×1=54,∥重叠部分菱形DMEN 的面积不变,为54;第8题解图(∥)当NE =1时,菱形面积的最小值是1; 当NE =53时,菱形面积的最大值是53.(D 与C 重合,A 与E 重合,设DN =AN =x , 在Rt∥DNO 中利用勾股定理列出方程计算)9. 如图,在平面直角坐标系中,已知点A 的坐标为(0,2),∥ABO 为等边三角形,P 是x 轴上的一个动点(不与O 点重合),将线段AP 绕A 点按逆时针方向旋转60°,P 点的对应点为点Q . (∥)求点B 的坐标;(∥)当点P 在x 轴负半轴运动时,求证:∥ABQ =90°;(∥)连接OQ ,在点P 运动的过程中,当OQ ∥AB 时,求点P 的坐标.第9题图解:(∥)如解图∥,过点B 作BC ∥x 轴于点C ,∥∥AOB 为等边三角形,且OA =2, ∥∥AOB =60°,OB =OA =2, ∥∥BOC =30°,而∥OCB =90°, ∥BC =12OB =1,OC =3, ∥点B 的坐标为B (3,1);(∥)由题意得AP =AQ, AO =AB, ∥P AQ =∥OAB , ∥∥P AO =∥QAB=60°.在∥APO 与∥AQB 中,⎩⎪⎨⎪⎧AP =AQ ∥P AO =∥QAB AO =AB ,∥∥APO ∥∥AQB , ∥∥ABQ =∥AOP =90°; (∥)当点P 在x 轴正半轴上时, ∥∥OAB =60°,∥将AP 绕点A 逆时针旋转60°时,点Q 在点B 上方, ∥OQ 和AB 必相交,当点P 在x 轴负半轴上时,点Q 在点B 的下方, ∥AB ∥OQ ,∥BQO =90°,∥BOQ =∥ABO =60°. 在Rt∥BOQ 中,OB =2,∥OBQ =90°-∥BOQ =30°, ∥BQ =3,由(∥)可知,∥APO∥∥AQB,∥OP=BQ=3,∥此时点P的坐标为(-3,0).第9题解图10. 如图∥,平面直角坐标系中,矩形OABC,B(5,4),将矩形沿过点C的直线翻折,使点B 落在线段OA上的点D处,折痕交AB于点E,P(m,0)是射线OA上一动点过点P作x轴的垂线,分别交直线CE和直线CB于点Q和点R.(∥)求点E的坐标;(∥)在点P的运动过程中,求CRQR的值;(∥)设直线CE交x轴于点F,直线PR交直线CD于点K,连接KE,当∥CKE=∥CFO时,求出m的值和线段CQ的长.图∥ 备用图第10题图解:(∥)设E(5,y),∥AE =y ,BE =4-y ,由旋转得CD =BC =5,DE =BE =4-y , 在Rt∥COD 中,CO =4,OD =CD 2-CO 2=3,∥AD =AO -DO =5-3=2, 在Rt∥DAE 中,DE 2=AD 2+AE 2, ∥(4-y )2=22+y 2, 解得y =32, ∥E (5,32);(∥)如解图∥,∥PQ ∥x 轴, ∥PQ ∥AB , ∥∥CQR ∥∥CEB , ∥CR QR =CB EB =54-32=2;图∥ 图∥第10题解图(∥)如解图∥,∥∥CKE =∥CFO ,∥KCE =∥FCD ,∥∥KCE∥∥FCD,∥CKCF=CECD.∥C(0,4),E(5,3 2),∥直线CE的解析式为y=-12x+4,CE=52+(4-32)2=552.∥F(8,0).∥CF=CO2+FO2=4 5.∥C(0,4),D(3,0),∥直线CD的解析式为y=-43x+4.设K(m,-43m+4),∥KR=|-43m+4-4|=43m,∥CR=m,∥CK=CR2+KR2=m2+(43m)2=53m,∥CKCF=CECD,∥53m45=5525,解得m=6;∥Q在直线CE上,∥Q(6,1),∥CQ=CR2+QR2=62+(4-1)2=3 5.。

初三数学图形的对称平移与旋转试题

初三数学图形的对称平移与旋转试题

初三数学图形的对称平移与旋转试题1.如图,在Rt△ABC中,,AC=4,BC=3,点D为AB的中点,将△ACD绕着点C 逆时针旋转,使点A落在CB的延长线处,点D落在点处,则长为.【答案】【解析】解:∵在Rt△ABC中,∠ACB=90°,AC=4,BC=3,∴AB=5,∵点D为AB的中点,∴CD=AD=BD=AB=2.5,过D′作D′E⊥BC,∵将△ACD绕着点C逆时针旋转,使点A落在CB的延长线A′处,点D落在点D′处,∴CD′=AD=A′D′,∴D′E==1.5,∵A′E=CE=2,BC=3,∴BE=1,∴BD′=,故答案为:.【考点】旋转的性质.2.下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】D.【解析】解:A、此图形是轴对称图形,不是中心对称图形,故此选项错误;B、此图形是轴对称图形,不是中心对称图形,故此选项错误;C、此图形不是轴对称图形,是中心对称图形,故此选项错误;D、此图形是轴对称图形,也是中心对称图形,故此选项正确;故选:D.【考点】中心对称图形;轴对称图形3.下列四个图形中,既是轴对称图形,又是中心对称图形是A.⑴、⑵B.⑴、⑶C.⑴、⑷D.⑵、⑶【答案】B.【解析】(1)是轴对称图形,也是中心对称图形,符合题意;(2)不是轴对称图形,也不是中心对称图形,不符合题意;(3)是轴对称图形,也是中心对称图形,符合题意;(4)是轴对称图形,不是中心对称图形,不符合题意.故选B.【考点】1.中心对称图形;2.轴对称图形.4.下列图形中,既是轴对称图形,又是中心对称图形的是()A.矩形B.平行四边形C.角D.等边三角形【答案】A.【解析】等边三角形、角是轴对称图形,不是中心对称图形;平行四边形不是轴对称图形,是中心对称图形;矩形是轴对称图形,也是中心对称图形.故选A.【考点】1.轴对称图形;2.中心对称图形.5.在平面直角坐标系中,∆ABC的顶点坐标是A(-7,1)、B(1,1)、C(1,7),线段DE的端点坐标是D(7,-1)、E(-1,-7)(1)试说明如何平移线段AC,使其与线段ED重合将线段AC先向______(上,下)平移_______个单位,再向_______(左,右)平移 _______个单位;(2)将∆ABC绕坐标原点逆时针旋转,使AC的对应边为DE,请直接写出点B的对应点F的坐标;(3)画出(2)中的∆DEF,并和∆ABC 同时绕坐标原点O逆时针旋转90o,画出旋转后的图形.【答案】(1)下,8,右,6;(2)F(-l,-1);(3)画图见解析.【解析】(1)将线段AC先向右平移6个单位,再向下平移8个单位即可得出符合要求的答案;(2)根据A,C对应点的坐标特点,即可得出F点的坐标;(3)分别将D,E,F,A,B,C绕坐标原点O逆时针旋转90°,画出图象即可.试题解析:(1)将线段AC先向下平移8个单位.,再向右平移6个单位(其它平移方式也可以);(2)根据A,C对应点的坐标即可得出F(-l,-1);(3)画出如图所示的正确图形.考点: 1.作图-旋转变换;2.作图-平移变换.6.在Rt△POQ中,OP=OQ,M是PQ的中点,把一三角尺的直角顶点放在M处,以M为旋转中心,旋转三角尺,三角尺的两直角边与△POQ的两直角边分别交于点A、B.求证:MA=MB.【答案】证明见解析.【解析】过点M作ME⊥OP于点E,作MF⊥OQ于点F,可得四边形OEBF是矩形,根据三角形的中位线定理可得ME=MF,再根据同角的余角相等可得∠AME=∠BMF,再利用“角边角”证明△AME和△BMF全等,根据全等三角形对应边相等即可证明.试题解析:证明:如图,过点M作ME⊥OP于点E,作MF⊥OQ于点F,∵∠O=90°,∴四边形OEMF是矩形,∵M是PQ的中点,OP=OQ=4,∠O=90°,∴ME=OQ=2,MF=OP=2,∴ME=MF,∴四边形OEMF是正方形,∵∠AME+∠AMF=90°,∠BMF+∠AMF=90°,∴∠AME=∠BMF,在△AME和△BMF中,,∴△AME≌△BMF(ASA),∴MA=MB;考点: 1.旋转的性质;2.全等三角形的判定与性质;3.等腰直角三角形.7.下列图形中,是中心对称图形的是 ( )A.B.C.D.【答案】C.【解析】中心对称图形是图形沿对称中心旋转180度后与原图重合,因此符合的是选项C.故选C.【考点】中心对称图形.8.如图所示,直角坐标系内,A(-4,3),B(-2,0),C(-1,2),请你在图中画出△ABC 关于原点O的对称的图形即△A′B′C′,并写出A′、B′、C′的坐标,求出△A′B′C′的面积.【答案】作图见解析,A′(4,-3)、B′(2,0)、C′(1,-2),.【解析】试题解析:作图如下:A′(4,-3)、B′(2,0)、C′(1,-2).△A′B′C′的面积=3×3-×1×2-×1×3-×2×3=.【考点】1.作图-中心对称变换;2.转换思想的应用.9.已知四边形ABCD和四边形CEFG都是正方形 ,且AB>CE.(1)如图1,连接BG、DE.求证:BG=DE;(2)如图2,如果正方形ABCD的边长为,将正方形CEFG绕着点C旋转到某一位置时恰好使得CG//BD,BG=BD.①求的度数;②请直接写出正方形CEFG的边长的值.【答案】(1)BG=DE;(2)①②正方形的边长为.【解析】解:(1)证明:∵四边形和为正方形,∴,,.∴..∴△≌△.∴.(2)①连接BE .由(1)可知:BG="DE."∵,∴.∴.∵,∴.∴∵,∴△≌△.∴.∵,∴.∴△.∴②正方形的边长为.【考点】三角形全等.10.如图所示,△ABC与△A’B’C’关于点O成中心对称,则下列结论不成立的是()A.点A与点A’是对称点B.BO=B’O’C.∠ACB=∠C’A’B’D.△ABC≌△A’B’C’【答案】C.【解析】成中心对称的图形的性质:中心对称的两个图形全等,对称点到对称中心的距离相等,由题,A正确;B正确;C根据OA=OA′,OB=OB′,∠AOB=∠A′OB′,得到△AOB≌△A′OB′.则∠ACB=∠A’C’B’,C不正确;D正确,故选C.【考点】1.中心对称;2.平行线的判定;3.全等三角形的判定与性质.11.如图,在△ABC中,AB=2,BC=3.6,∠B=60°,将△ABC绕点A按顺时针方向旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上时,CD的长为.【答案】1.6.【解析】由旋转的性质得到AD=AB,又由∠B=60°,可证得△ABD是等边三角形,继而可得BD=AB=2,因为BC=3.6,所以CD=BC-BD=3.6-2=1.6.故填1.6.【考点】旋转的性质.12.如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣6,0)、C(﹣1,0).(1)请直接写出点A关于y轴对称的点的坐标;(2)将△ABC绕坐标原点O逆时针旋转90度.画出图形,直接写出点B的对应点的坐标;(3)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.【答案】(1)(2,3);(2)作图见试题解析,B(0,﹣6);(3)D的坐标为(﹣7,3)或(﹣5,﹣3)或(3,3).【解析】(1)关于y轴的轴对称问题,对称点的坐标特点是:横坐标互为相反数,纵坐标相等;(2)坐标系里旋转90°,充分运用两条坐标轴互相垂直的关系画图;(3)分别以AB,BC,AC为平行四边形的对角线,考虑第四个顶点D的坐标,有三种可能结果.试题解析:(1)点A关于y轴对称的点的坐标是(2,3);(2)图形如下,点B的对应点的坐标是(0,﹣6);(3)以A、B、C为顶点的平行四边形的第四个顶点D的坐标为(﹣7,3)或(﹣5,﹣3)或(3,3).【考点】1.作图-旋转变换;2.作图题.13.下列图形中,不是中心对称图形的是( ).A. B. C. D.【答案】D【解析】根据中心对称图形的定义:如果把一个图形绕某一点旋转180度后能与原来的图形重合,这个图形就是中心对称图形。

浙教版2019--2020年八年级数学下册第六章:反比例函数 培优检测(含解析)

浙教版2019--2020年八年级数学下册第六章:反比例函数 培优检测(含解析)

2020年初中数学浙教版八年级下册第六章培优检测学校:___________姓名:___________班级:___________考号:___________一、单选题1.关于反比例函数4y x=-,下列说法正确的是( ) A .函数图像经过点(2,2);B .函数图像位于第一、三象限;C .当0x >时,函数值y 随着x 的增大而增大;D .当1x >时,4y <-. 2.已知压强的计算公式是p =FS,我们知道,刀具在使用一段时间后,就会变钝.如果刀刃磨薄,刀具就会变得锋利.下列说法中,能正确解释刀具变得锋利这一现象的是( )A .当受力面积一定时,压强随压力的增大而增大B .当受力面积一定时,压强随压力的增大而减小C .当压力一定时,压强随受力面积的减小而减小D .当压力一定时,压强随受力面积的减小而增大3.如图,平面直角坐标系中,矩形ABCD 的边AB :BC =3:2,点A (3,0),B (0,6)分别在x 轴,y 轴上,反比例函数y =kx的图象经过点D ,则k 值为( )A .﹣14B .14C .7D .﹣74.如图,已知直线12y x =与双曲线(0)ky k x =>交于A 、B 两点,点B 坐标为(-4,-2),C 为双曲线(0)ky k x=>上一点,且在第一象限内,若△AOC 面积为6,则点C 坐标为( )A.(4,2)B.(2,3)C.(3,4)D.(2,4)5.在同一平面直角坐标系中,函数y=﹣x+k与y=kx(k为常数,且k≠0)的图象大致是()A.B.C.D.6.如图,四边形OABC和四边形BDEF都是正方形,反比例函数kyx=在第一象限的图象经过点E,若两正方形的面积差为8,则k的值为()A.6B.8C.12D.167.函数kyx=和1yx=在第一象限内的图像如图,P是kyx=的图象上一动点,PC⊥x轴于点C,交的图象于点A,PD ⊥y 轴于点D,交kyx=的图像于点B,当点P在kyx=的图像上运动时,下列结论错误的是()A .△ODB 与△OCA 的面积相等 B .当点 A 是 PC 的中点时,点 B 一定是 PD 的中点 C .CA DBPA PB=D .当四边形 OCPD 为正方形时,四边形PAOB 的面积最大8.如图,在平面直角坐标系中,矩形OABC 的顶点A ,B 在反比例函数ky x=()00k x >>,的图像上,纵坐标分别为1和3,则k 的值为( )A .23B .3C .2D .39.如图,反比例函数ky x=(x >0)的图象经过矩形OABC 对角线的交点M ,分别于AB 、BC 交于点D 、E ,若四边形ODBE 的面积为12,则k 的值为( )A .1B .2C .3D .410.如图,在平面直角坐标系中,梯形OACB 的顶点O 是坐标原点,OA 边在y 轴正半轴上,OB 边在x 轴正半轴上,且OA ∥BC ,双曲线y=k x(x >0)经过AC 边的中点,若S 梯形OACB =4,则双曲线y=kx的k 值为( )A .5B .4C .3D .2二、填空题11.如图,点A 在双曲线y =kx的第一象限的那一支上,AB 垂直于x 轴与点B ,点C 在x 轴正半轴上,且OC =2AB ,点E 在线段AC 上,且AE =3EC ,点D 为OB 的中点,若△ADE 的面积为3,则k 的值为_____.12.如图,含30°的直角三角板ABC(其中∠ABC=90 )的三个顶点均在反比例函数1y x=的图象上,且斜边AC 经过原点O ,则直角三角板ABC 的面积为_____________.13.已知反比例函数的图象经过点(m ,4)和点(8,-2),则m 的值为________. 14.如图,四边形ABCD 的项点都在坐标轴上,若//,AB CD AOB V 与COD △面积分别为8和18,若双曲线ky x=恰好经过BC 的中点E ,则k 的值为__________.15.如图,已知点A 1、A 2、A 3、…、A n 在x 轴上,且OA 1=A 1A 2=A 2A 3=…=A n ﹣1A n =1,分别过点A 1、A 2、A 3、……、A n 作x 轴的垂线,交反比例函数y =2x(x >0)的图象于点B 1、B 2、B 3、…、B n ,过点B 2作B 2P 1⊥A 1B 1于点P 1,过点B 3作B 3P 2⊥A 2B 2于点P 2,…,若记△B 1P 1B 2的面积为S 1,△B 2P 2B 3的面积为S 2,…,△B n P n B n +1的面积为S n ,则S 1+S 2+…+S 2019=_____.三、解答题16.如图,一次函数1y k x b =+的图像与反比例函数2k y x=的图像交于(4,)C m -,F 两点,与,x y 轴分别交于,(0,3)B A -两点,且32OA OB =.(1)求一次函数和反比例函数的解析式;(2)若点E 与点B 关于y 轴对称,连接,FE EC ,求EFC ∆的面积. 17.如图,正方形AOCB 的边长为4,反比例函数的图象过点E (3,4).(1)求反比例函数的解析式;(2)反比例函数的图象与线段BC交于点D,直线12y x b=-+过点D,与线段AB相交于点F,求点F的坐标;(3)连接OF,OE,探究∠AOF与∠EOC的数量关系,并证明.(4)若点P是x轴上的动点,点Q是(1)中的反比例函数在第一象限图象上的动点,且使得△PDQ为等腰直角三角形,请求出点P的坐标.18.如图,在平面直角坐标系xOy中,△OA1B1是等边三角形,点B1的坐标是(2,0),反比例函数y=kx的图象经过点A1.(1)求反比例函数的解析式.(2)如图,以B1为顶点作等边三角形B1A2B2,使点B2在x轴上,点A2在反比例函数y=kx的图象上.若要使点B2在反比例函数y=kx的图象上,需将△B1A2B2向上平移多少个单位长度?19.如图,一次函数y=kx+b的图象与反比例函数y=mx的图象交于A、B两点,点A的坐标是(﹣2,1),点B的坐标是(1,n);(1)分别求一次函数与反比例函数的解析式;(2)求△AOB的面积;(3)直接写出不等式kx+b≥mx的解集.20.如图,一次函数y kx b =+的图象与反比例函数my x=的图象交于()2,1A -,()1,B n 两点.()1求一次函数与反比例函数的表达式; ()2求AOB V 的面积;()3根据所给条件,请直接写出不等式m kx b x+<的解集.答案与解析1.C【解析】直接利用反比例函数的性质分别分析得出答案. 【详解】A 、关于反比例函数y=-4x ,函数图象经过点(2,-2),故此选项错误; B 、关于反比例函数y=-4x ,函数图象位于第二、四象限,故此选项错误;C 、关于反比例函数y=-4x ,当x >0时,函数值y 随着x 的增大而增大,故此选项正确;D 、关于反比例函数y=-4x,当x >1时,y >-4,故此选项错误;故选C . 【名师点评】此题主要考查了反比例函数的性质,正确掌握相关函数的性质是解题关键. 2.D 【解析】如果刀刃磨薄,指的是受力面积减小;刀具就会变得锋利指的是压强增大.故选D. 3.B 【解析】过点D 作DF ⊥x 轴于点F ,则∠AOB =∠DF A =90°,∴∠OAB +∠ABO =90°, ∵四边形ABCD 是矩形,∴∠BAD =90°,AD =BC ,∴∠OAB +∠DAF =90°,∴∠ABO =∠DAF , ∴△AOB ∽△DF A ,∴OA :DF =OB :AF =AB :AD , ∵AB :BC =3:2,点A (3,0),B (0,6),∴AB :AD =3:2,OA =3,OB=6,∴DF =2,AF =4,∴OF =OA +AF =7,∴点D 的坐标为:(7,2),∴k 14=,故选B. 4.D【解析】解:因为B 点坐标为(-4,-2),所以A 点坐标为(4,2), 那么双曲线的解析式为8y x= , 设C 点坐标为()m n , ,那么8114622mn n m =⎧⎪⎨⎛⎫-⋅⋅= ⎪⎪⎝⎭⎩ ,解得24m n =⎧⎨=⎩, 所以C 点的坐标为(2,4). 故选:D. 5.C【解析】分k >0,k <0时两种情况分别判断选项的正确与否即可解答. 【详解】∵函数y =﹣x +k 与y =kx(k 为常数,且k ≠0), ∴当k >0时,y =﹣x +k 经过第一、二、四象限,y =kx经过第一、三象限,故选项D 错误; 当k <0时,y =﹣x +k 经过第二、三、四象限,y =kx经过第二、四象限,故选项C 正确,选项A 、B 错误,故选C . 【名师点评】此题考查反比例函数的图象,熟记反比例函数图象的性质即可正确解答. 6.B【解析】设正方形OABC 、BDEF 的边长分别为a 和b ,则D (a ,a-b ),F (a+b ,a ),由反比例函数图像上点的坐标特征得到E (a+b ,a+bk),由于点E 与点D 的纵坐标相同,所以a+bk=a-b ,则a 2-b 2=k ,最后利用正方形的面积公式即可解答. 【详解】解: 设正方形OABC 、BDEF 的边长分别为a 和b ,则D (a ,a-b ),F (a+b ,a ), 由反比例函数图像上点的坐标特征得到E (a+b ,a+bk), ∵点E 与点D 的纵坐标相同 ∴a+bk=a-b,即a 2-b 2=k 又∵a 2-b 2=8 ∴k=8 故答案为B . 【名师点评】本题考查了反比例函数比例系数k 的几何意义以及正方形的性质,学会设未知数和正确的使用数形结合思想是解答本题的关键. 7.D【解析】根据反比例函数的图象和性质,特别是反比例函数k 的几何意义,对四个选项逐一进行分析,即可得出正确答案 【详解】解:A 、由于点A 和点D 均在同一个反比例函数1y x=的图象上, 所以12ODB S =V ,12OCA S =V , 故ODB △和OCA V 的面积相等, 故本选项正确; B 、如图,连接OP ,则2ODP OCP kS S ==V V ,Q A 是PC 的中点,OAP S ∴=V 1224OAC kkS =⨯=V , ODB S =V Q 4OCA kS =V ,4OBP ODP ODB kS S S ∴=-=V V V ,即4OBP ODB kS S ==V V ,∴B 一定是PD 的中点,故本选项正确; C 、设,k P m m ⎛⎫ ⎪⎝⎭, 则1,A m m ⎛⎫ ⎪⎝⎭,,m kB k m ⎛⎫ ⎪⎝⎭, 11,,,k m m CA PA DB PB m mm m k k∴==-==-, 故1111CA mk PA k m m ==--,11mDB km PBk m k ==--,∴=CA DB PA PB, 故本选项正确;D 、由于矩形OCPD 、三角形ODB 、三角形OCA 的面积为定值, 所以四边形PAOB 的面积不会发生变化, 故本选项错误; 故选:D . 【名师点评】本题考查了反比例函数综合题,关键是设P 点坐标,利用点与点的坐标关系以及反比例函数的性质表现相关线段的长,要对每一个结论进行判断. 8.B【解析】过A 作AD ⊥x 轴于D ,过B 作BE ⊥AD 于E ,依据△ABE ∽△OAD ,即可得到,设A (k ,1),B (3k ,3),即可得到1223kk =,进而得出k 的值.【详解】如图,过A 作AD ⊥x 轴于D ,过B 作BE ⊥AD 于E ,则∠E=∠ADO=90°,又∵∠BAO=90°,∴∠OAD+∠AOD=∠OAD+∠BAE=90°, ∴∠AOD=∠BAE , ∴△ABE ∽△OAD , ∴AD ODBE AE=, 设A (k ,1),B (3k ,3),则OD=k ,AD=1,AE=2,BE=23k , ∴1223kk =,解得k=±3 ∵k >0, ∴3 故选B . 【名师点评】本题考查了矩形的性质、相似三角形的判定与性质以及反比例函数图象上点的坐标与k 之间的关系.解决问题的关键是作辅助线构造相似三角形. 9.D【解析】可设出点D 、E 的坐标,易知点B 坐标,根据中点的性质表示出点M 坐标,代入ky x=可得n 、m 间关系,由=OABC OCE OAD OACE S S S S --X V V 四边形可求出k 值. 【详解】解:设点D 的坐标为(,)k m m ,点E 的坐标为(,)k n n ,则点B 的坐标为(,)k n m, M Q 为OB 的中点(,)22n k M m∴又Q 反比例函数ky x=(x >0)的图象经过矩形OABC 对角线的交点M 22k k n m ∴=4n m ∴=(4,)k B m m ∴ 11,,442222OCE OAD OABC k k k k kS m S n S m k m n m∴=⋅==⋅==⋅=V V W=41222OABC OCE OAD OACE k kS S S S k ∴--=--=X V V 四边形4k ∴=故选:D. 【名师点评】本题考查了反比例函数的图象与坐标轴围成的图形的面积,灵活的应用反比例函数图象上的点坐标表示三角形的面积是解题的关键. 10.D【解析】过AC 的中点P 作//DE x 轴交y 轴于D ,交BC 于E ,作PF x ⊥轴于F ,如图,先根据“AAS ”证明PAD PCE ≅V V ,则PAD PCE S S =V V ,得到BODE AOBC S S =矩形梯形,再利用12DOFP BODE S S =矩形矩形得到114222DOFP AOBC S S ==⨯=矩形梯形,然后根据反比例函数()0ky k x=≠系数k 的几何意义得2k =,再去绝对值即可得到满足条件的k 的值. 【详解】过AC 的中点P 作//DE x 轴交y 轴于D ,交BC 于E ,作PF x ⊥轴于F ,如图,在PAD △和PCE V 中,APD CPE ADP PEC PA PC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴PAD PCE ≅V V (AAS ), ∴PAD PCE S S =V V , ∴BODE AOBC S S =矩形梯形, Q 12DOFP BODE S S =矩形矩形, ∴114222DOFPAOBC S S ==⨯=矩形梯形, ∴2k =,而0k >,∴2k =.故选:D . 【名师点评】本题考查了反比例函数()0k y k x =≠系数k 的几何意义:从反比例函数()0ky k x=≠图象上任意一点向x 轴于y 轴作垂线,垂线与坐标轴所围成的矩形面积为k .11.163. 【解析】由AE =3EC ,△ADE 的面积为3,可知△ADC 的面积为4,再根据点D 为OB 的中点,得到△ADC 的面积为梯形BOCA 面积的一半,即梯形BOCA 的面积为8,设A (x,kx),从而表示出梯形BOCA 的面积关于k 的等式,求解即可. 【详解】 如图,连接DC ,∵AE=3EC ,△ADE 的面积为3,∴△CDE 的面积为1. ∴△ADC 的面积为4.∵点A 在双曲线y =kx 的第一象限的那一支上, ∴设A 点坐标为 (x,kx).∵OC =2AB ,∴OC=2x.∵点D 为OB 的中点,∴△ADC 的面积为梯形BOCA 面积的一半,∴梯形BOCA 的面积为8.∴梯形BOCA 的面积=11(2)3822k k x x x x x +⋅=⋅⋅=,解得16k 3=. 【名师点评】反比例函数综合题,曲线上点的坐标与方程的关系,相似三角形的判定和性质,同底三角形面积的计算,梯形中位线的性质. 12.23【解析】设点A 坐标为(n ,1n ),则B 点坐标为(1n,n ), 由△ABO 是等边三角形,可得OA=AB ,根据两点间距离公式可求出2221OA 4n n=+=,则OA=AB=2,BC=3然后即可求出面积. 【详解】解:设点A 坐标为(n ,1n ),则B 点坐标为(1n,n ), ∵O 是AC 中点, ∴OA=OB ,∠A=60°,∴△ABO 是等边三角形,∴OA=AB ,∴2222111n n n n n n ⎛⎫⎛⎫+=-+- ⎪ ⎪⎝⎭⎝⎭, 整理得:2222112()4n n n n+=+-, ∴2214n n +=, 即OA=AB=2, ∴BC=23,1223232ABC S =⨯⨯=V【名师点评】本题考查了反比例函数的图像和性质,求出OB 的值是解题关键. 13.-4. 【解析】试题解析:设反比例函数的解析式为:y=,把(8,-2)代入y=得,中k=-16∴y=-把(m ,4)代入y=-得,m=-4. 考点:反比例函数图象上点的坐标特征. 14.6【解析】根据AB//CD ,得出△AOB 与△OCD 相似,利用△AOB 与△OCD 的面积分别为8和18,得:AO :OC=BO :OD=2:3,然后再利用同高三角形求得S △COB =12,设B 、 C 的坐标分别为(a ,0)、(0,b ),E 点坐标为(12a ,12b )进行解答即可. 【详解】 解:∵AB//CD , ∴△AOB ∽△OCD ,又∵△ABD 与△ACD 的面积分别为8和18,∴△ABD与△ACD的面积比为4:9,∴AO:OC=BO:OD=2:3∵S△AOB=8∴S△COB=12设B、C的坐标分别为(a,0)、(0,b),E点坐标为(12a,12b)则OB=| a | 、OC=| b |∴12|a|×|b|=12即|a|×|b|=24∴|12a|×|12b|=6又∵kyx=,点E在第三象限∴k=xy=12a×12b=6故答案为6.【名师点评】本题考查了反比例函数综合题应用,根据已知求出S△COB=12是解答本题的关键.15.2019 2020.【解析】由反比例函数图像上点的坐标特征可得:B1、B2、B3、…、B n的坐标,从而可得出B1P1、B2P2、B3P3、…、B n P n的长度,根据三角形的面积公式即可得出S n=12A n A n+1•B n P n=1n(n1)+,将其代入S1+S₂+…+S2019中即可解答.【详解】解:根据题意可知:点B1(1,2)、B2(2,1)、B3(3,23)、…、B n(n,2n),∴B1P1=2﹣1=1,B2P2=1﹣2133=,B3P3=211326-=,…,B n P n=2221(1)n n n n-=++,∴S n=12A n A n+1•B n P n=1n(n1)+,∴S1+S2+…+S2019=1111 122334(1)n n++++⨯⨯⨯+K=1﹣1111111 2233420192020 +-+-++-L=1﹣12020 =20192020. 故答案为:20192020.【名师点评】本题考查了反比例函数图像上点的坐标特征以及三角形的面积,根据反比例函数图象上点的坐标特征结合三角形的面积得到S n =12A n A n +1•B n P n =1n(n 1)+,是解题的关键.16.(1)12y x=-;(2)18. 【解析】(1)先求出B 点坐标,再用待定系数法求一次函数的解析式,再求出C 点坐标,用待定系数法求反比例函数解析式;(2)先由对称性质求E 点坐标,再联立方程组求得F 点坐标,最后根据三角形面积公式求面积. 【详解】解:(1)∵A (0,-3) ∴OA=3, ∵OA=32OB , ∴OB=2, ∴B (-2,0).将(0,3),(2,0)A B --代入一次函数1y k x b =+,得1320b k b =-⎧⎨-+=⎩,解得13,23.k b ⎧=-⎪⎨⎪=-⎩∴一次函数的解析式为332y x =--. Q 点(4,)C m -在一次函数332y x =--的图像上,3(4)33,(4,3)2m C ∴=-⨯--=∴-.Q 点(4,3)C -在反比例函数2ky x =的图像上,24312k ∴=-⨯=-, ∴反比例函数的解析式为12y x=-.(2)Q 点E 与点B 关于y 轴对称,(2,0)B -,(2,0)E ∴,2(2)4BE ∴=--=.联立33,212,y x y x ⎧=--⎪⎪⎨⎪=-⎪⎩解得114,3x y =-⎧⎨=⎩或222,6.x y =⎧⎨=-⎩ (2,6)F ∴-,1146431822EFC EFB EBC S S S ∆∆∆∴=+=⨯⨯+⨯⨯=.【名师点评】本题考查了反比例函数和一次函数的交点问题,待定系数法求一次函数和二次函数的解析式,三角形的面积等,熟练掌握待定系数法是解题的关键. 17.(1)y =12x ;(2)点F 的坐标为(2,4);(3)∠AOF =12∠EOC ,理由见解析;(4)P 的坐标是(197,0)或(-5,00)或(5,0) 【解析】(1)设反比例函数的解析式为y =kx,把点E (3,4)代入即可求出k 的值,进而得出结论;(2)由正方形AOCB 的边长为4,故可知点D 的横坐标为4,点F 的纵坐标为4,由于点D 在反比例函数的图象上,所以点D 的纵坐标为3,即D (4,3),由点D 在直线12y x b =-+上可得出b 的值,进而得出该直线的解析式,再把y=4代入直线的解析式即可求出点F 的坐标;(3)在CD 上取CG=AF=2,连接OG ,连接EG 并延长交x 轴于点H ,由全等三角形的判定定理可知△OAF ≌△OCG ,△EGB ≌△HGC (ASA ),故可得出EG=HG ,设直线EG 的解析式为y=mx+n ,把E (3,4),G (4,2)代入即可求出直线EG 的解析式,故可得出H 点的坐标,在Rt △AOF 中,AO=4,AE=3,根据勾股定理得OE=5,可知OC=OE ,即OG 是等腰三角形底边EF 上的中线,所以OG 是等腰三角形顶角的平分线,由此即可得出结论; (4)分△PDQ 的三个角分别是直角,三种情况进行讨论,作DK ⊥x 轴,作QR ⊥x 轴,作DL ⊥QR ,于点L ,即可构造全等的直角三角形,设出P 的坐标,根据点在图象上,则一定满足函数的解析式即可求解, 【详解】 解:(1)设反比例函数的解析式y =k x, ∵反比例函数的图象过点E (3,4), ∴4=3k,即k =12, ∴反比例函数的解析式y =12x; (2)∵正方形AOCB 的边长为4, ∴点D 的横坐标为4,点F 的纵坐标为4, ∵点D 在反比例函数的图象上, ∴点D 的纵坐标为3,即D (4,3), ∵点D 在直线y =﹣12x +b 上, ∴3=﹣12×4+b , 解得:b =5,∴直线DF 为y =﹣12x +5, 将y =4代入y =﹣12x +5,得4=﹣12x +5,解得:x =2,∴点F 的坐标为(2,4), (3)∠AOF =12∠EOC ,理由为: 证明:在CD 上取CG =AF =2,连接OG ,连接EG 并延长交x 轴于点H ,OAF OCG V V 在和中,4902AO CO OAF OCG AF CG ==⎧⎪∠=∠=︒⎨⎪==⎩,∴△OAF ≌△OCG (SAS ),∴∠AOF =∠COG ,EGB HGC V V 在和,290EGB HGC BG CG GBC GCH ∠=∠⎧⎪==⎨⎪∠=∠=︒⎩, ∴△EGB ≌△HGC (ASA ),∴EG =HG ,设直线EG :y =mx +n ,∵E (3,4),G (4,2),∴3442m n m n +=⎧⎨+=⎩,解得210m n =-⎧⎨=⎩, ∴直线EG :y =﹣2x +10,令y =﹣2x +10=0,得x =5,∴H (5,0),OH =5,在Rt △AOE 中,AO =4,AE =3,根据勾股定理得OE =5,∴OH =OE ,∴OG 是等腰三角形底边EH 上的中线,∴OG 是等腰三角形顶角的平分线,∴∠EOG =∠GOH ,∴∠EOG =∠GOC =∠AOF ,即∠AOF =12∠EOC ; (4)当Q 在D 的右侧(如图1),且∠PDQ =90°时,作DK ⊥x 轴,作QL ⊥DK ,于点L ,则△DPK≌△QDK,设P的坐标是(a,0),则KP=DL=4-a,QL=DK=3,则Q的坐标是(4+3,4-3+a)即(7,-1+a),把(7,-1+a)代入y=12x得:7(-1+a)=12,解得:a=197,则P的坐标是(197,0);当Q在D的左侧(如图2),且∠PDQ=90°时,作DK⊥x轴,作QR⊥x轴,作DL⊥QR,于点L,则△QDL≌△PDK,则DK=DL=3,设P的坐标是b,则PK=QL=4-b,则QR=4-b+3=7-b,OR=OK-DL=4-3=1,则Q的坐标是(1,7-b),代入y=12x得:b=-5,则P的坐标是(-5,0);当Q在D的右侧(如图3),且∠DQP=90°时,作DK⊥x轴,作QR⊥x轴,作DL⊥QR,于点L,则△QDL≌△PQK,则DK=DL=3,设Q的横坐标是c,则纵坐标是12c,则QK=QL=12c,又∵QL=c-4,∴c-4=12c,解得:c=-2(舍去)或6,则PK=DL=DR-LR=DR-QK=3-126=1,∴OP=OK-PK=6-1=5,则P的坐标是(5,0);当Q在D的左侧(如图3),且∠DQP=90°时,不成立;当∠DPQ=90°时,(如图4),作DK⊥x轴,作QR⊥x轴,则△DPR≌△PQK,∴DR=PK=3,RP=QK,设P的坐标是(d,0),则RK=QK=d-4,则OK=OP+PK=d+3,则Q 的坐标是(d +3,d -4),代入y =12x 得: (d +3)(d -4)=12,解得:d =197+或197-(舍去), 则P 的坐标是(197+,0), 综上所述,P 的坐标是(197,0)或(-5,0)或(1972+,0)或(5,0), 【名师点评】 本题是反比例函数综合题,掌握待定系数法求解析式,反比例函数的性质是解题的关键. 18.(1)y =3x;(2)需将△B 1A 2B 2向上平移6个单位长度. 【解析】(1)根据等边三角形的性质求点A 1的坐标,利用待定系数法可得反比例函数的解析式;(2)如图2,过点A 2作A 2G ⊥x 轴于点G ,设B 1G =a ,则A 2G =3a ,表示点A 2的坐标,通过代入计算可得a 的值,根据等边三角形的性质确定点B 2的坐标,可得结论.【详解】解:(1)如图1,过点A 1作A 1H ⊥x 轴于点H .∵△OA 1B 1是等边三角形,点B 1的坐标是(2,0),∴OA 1=OB 1=2,OH =1,∴A 1H 22100A H -2221-3,∴A 1(13).∵点A1在反比例函数y=kx的图象上,∴k=3.∴反比例函数的解析式为y=3x;(2)如图2,过点A2作A2G⊥x轴于点G,设B1G=a,则A2G=3a,∴A2(2+a3).∵点A2在反比例函数y=3x的图象上,33,解得a12﹣1,a22﹣1(不合题意,舍去),经检验a2﹣1是方程的根∴a2﹣1,∴△B1A2B2的边长是22﹣1),∴B2(2,0),∴把x=2代入y 3,得y3226∴(2,64y3∴若要使点B2在反比例函数y=kx的图象上,需将△B1A2B2向上平移64个单位长度.【名师点评】本题考查了反比例函数的几何问题,掌握反比例函数的性质、勾股定理、等边三角形的性质是解题的关键.19.(1)y=﹣x﹣1;(2)32;(3)x≤﹣2或0<x≤1.【解析】(1)运用待定系数法先求出反比例函数的解析式,再求得B点的坐标,然后把点A、B代入y=kx+b即可得到一次函数的表达式;(2)先确定点C的坐标,再根据S△AOB=S△AOC+S△COB进行计算即可;(3)根据A(-2.1),B(1,-2),结合图像可得不等式kx+b>mx的解集.【详解】解:(1)把点A的坐标(﹣2,1)代入一反比例函数y=mx,可得:m=﹣2×1=﹣2,∴反比例函数为y=﹣2x,∵反比例函数y=mx的图象经过B点,∴n=﹣21=﹣2,∴B(1,﹣2),把A(﹣2,1),B(1,﹣2)代入y=kx+b得212k bk b-+=⎧⎨+=-⎩解得k=﹣1,b=﹣1∴一次函数为y=﹣x﹣1;(2)在直线y=﹣x﹣1中,令x=0,则y=﹣1,∴C(0,﹣1),即OC=1,∴S△AOB=S△AOC+S△BOC=12OC×2+12OC×1=12×1×(2+1)=32;(3)不等式kx+b≥mx的解集是x≤﹣2或0<x≤1.【名师点评】本题主要考查了一次函数与反比例函数交点问题,解题关键在于运用待定系数法求函数解解析式.20.()1 2y x =-,1y x =--;()2 32AOB S =V ;()320x -<<,1x >. 【解析】(1)把A (-2,1)代入反比例函数y=m x,求出m 的值即可;把B (1,n )代入反比例函数的解析式可求出n ,从而确定B 点坐标为(1,-2),然后利用待定系数法即可求出一次函数的解析式;(2)设直线y=-x-1与x 轴的交点为C ,根据解析式求得C 的坐标,然后根据S △ABC=S △OAC+S △OBC 即可求得;(3)观察函数图象得到当-2<x <0或x >1时,一次函数的图象都在反比例函数的图象的下方,即一次函数的值小于反比例函数的值.【详解】()1把点()2,1A -代入反比例函数m y x=得: 12m =-, 解得:2m =-, 即反比例函数的解析式为:2y x=-, 把点()1,B n 代入反比例函数2y x =-得: 2n =-,即点A 的坐标为:()2,1-,点B 的坐标为:()1,2-,把点()2,1A -和点()1,2B -代入一次函数y kx b =+得:{212k b k b -+=+=-, 解得:{11k b =-=-,即一次函数的表达式为:1y x =--, ()2把0y =代入一次函数1y x =--得:10x --=,解得:1x =-,即点C 的坐标为:()1,0-,OC 的长为1,点A 到OC 的距离为1,点B 到OC 的距离为2,AOB OAC OBC S S S =+V V V ,11111222=⨯⨯+⨯⨯, 32=, ()3如图可知:m kx b x+<的解集为:20x -<<,1x >. 【名师点评】 本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数的交点坐标同时满足两个函数解析式;利用待定系数法求函数的解析式.也考查了观察函数图象的能力.。

2020年全国中考数学试题精选分类(8)——三角形(含解析)

2020年全国中考数学试题精选分类(8)——三角形(含解析)

2020年全国中考数学试题精选分类(8)——三角形一.选择题(共35小题)1.(2020•朝阳)如图,在正方形ABCD中,对角线AC,BD相交于点O,点E在BC边上,且CE=2BE,连接AE交BD于点G,过点B作BF⊥AE于点F,连接OF并延长,交BC于点M,过点O作OP⊥OF交DC于点N,S四边形MONC=,现给出下列结论:①;②sin∠BOF=;③OF=;④OG=BG;其中正确的结论有()A.①②③B.②③④C.①②④D.①③④2.(2020•盘锦)我国古代数学著作《九章算术》记载了一道有趣的问题.原文是:今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深、葭长各几何.译为:有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,水的深度与这根芦苇的长度分别是多少?设芦苇的长度是x尺.根据题意,可列方程为()A.x2+102=(x+1)2B.(x﹣1)2+52=x2C.x2+52=(x+1)2D.(x﹣1)2+102=x23.(2020•大连)如图,△ABC中,∠A=60°,∠B=40°,DE∥BC,则∠AED的度数是()A.50°B.60°C.70°D.80°4.(2020•呼伦贝尔)如图,在△ABC中,BD,CE分别是边AC,AB上的中线,BD⊥CE 于点O,点M,N分别OB,OC的中点,若OB=8,OC=6,则四边形DEMN的周长是()A.14B.20C.22D.28 5.(2020•呼伦贝尔)如图,AB=AC,AB的垂直平分线MN交AC于点D,若∠C=65°,则∠DBC的度数是()A.25°B.20°C.30°D.15°6.(2020•南通)如图,在△ABC中,AB=2,∠ABC=60°,∠ACB=45°,D是BC的中点,直线l经过点D,AE⊥l,BF⊥l,垂足分别为E,F,则AE+BF的最大值为()A.B.2C.2D.3 7.(2020•河池)如图,AB是⊙O的直径,CD是弦,AE⊥CD于点E,BF⊥CD于点F.若FB=FE=2,FC=1,则AC的长是()A.B.C.D.8.(2020•宿迁)在△ABC中,AB=1,BC=,下列选项中,可以作为AC长度的是()A.2B.4C.5D.6 9.(2020•湖北)如图,已知△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=90°,BD,CE交于点F,连接AF.下列结论:①BD=CE;②BF⊥CF;③AF平分∠CAD;④∠AFE=45°.其中正确结论的个数有()A.1个B.2个C.3个D.4个10.(2020•吉林)将一副三角尺按如图所示的方式摆放,则∠α的大小为()A.85°B.75°C.65°D.60°11.(2020•绵阳)在螳螂的示意图中,AB∥DE,△ABC是等腰三角形,∠ABC=124°,∠CDE=72°,则∠ACD=()A.16°B.28°C.44°D.45°12.(2020•毕节市)如图,在一个宽度为AB长的小巷内,一个梯子的长为a,梯子的底端位于AB上的点P,将该梯子的顶端放于巷子一侧墙上的点C处,点C到AB的距离BC 为b,梯子的倾斜角∠BPC为45°;将该梯子的顶端放于另一侧墙上的点D处,点D到AB的距离AD为c,且此时梯子的倾斜角∠APD为75°,则AB的长等于()A.a B.b C.D.c 13.(2020•广西)《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(读kǔn,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图1、2(图2为图1的平面示意图),推开双门,双门间隙CD的距离为2寸,点C和点D距离门槛AB都为1尺(1尺=10寸),则AB的长是()A.50.5寸B.52寸C.101寸D.104寸14.(2020•玉林)如图是A,B,C三岛的平面图,C岛在A岛的北偏东35°方向,B岛在A岛的北偏东80°方向,C岛在B岛的北偏西55°方向,则A,B,C三岛组成一个()A.等腰直角三角形B.等腰三角形C.直角三角形D.等边三角形15.(2020•包头)如图,∠ACD是△ABC的外角,CE∥AB.若∠ACB=75°,∠ECD=50°,则∠A的度数为()A.50°B.55°C.70°D.75°16.(2020•淄博)如图,在△ABC中,AD,BE分别是BC,AC边上的中线,且AD⊥BE,垂足为点F,设BC=a,AC=b,AB=c,则下列关系式中成立的是()A.a2+b2=5c2B.a2+b2=4c2C.a2+b2=3c2D.a2+b2=2c2 17.(2020•威海)七巧板是大家熟悉的一种益智玩具.用七巧板能拼出许多有趣的图案.小李将一块等腰直角三角形硬纸板(如图①)切割七块,正好制成一副七巧板(如图②).已知AB=40cm,则图中阴影部分的面积为()A.25cm2B.cm2C.50cm2D.75cm218.(2020•宜昌)如图,点E,F,G,Q,H在一条直线上,且EF=GH,我们知道按如图所作的直线l为线段FG的垂直平分线.下列说法正确的是()A.l是线段EH的垂直平分线B.l是线段EQ的垂直平分线C.l是线段FH的垂直平分线D.EH是l的垂直平分线19.(2020•青海)等腰三角形的一个内角为70°,则另外两个内角的度数分别是()A.55°,55°B.70°,40°或70°,55°C.70°,40°D.55°,55°或70°,40°20.(2020•常州)如图,AB是⊙O的弦,点C是优弧AB上的动点(C不与A、B重合),CH⊥AB,垂足为H,点M是BC的中点.若⊙O的半径是3,则MH长的最大值是()A.3B.4C.5D.6 21.(2020•烟台)如图,点G为△ABC的重心,连接CG,AG并延长分别交AB,BC于点E,F,连接EF,若AB=4.4,AC=3.4,BC=3.6,则EF的长度为()A.1.7B.1.8C.2.2D.2.4 22.(2020•湘潭)如图,∠ACD是△ABC的外角,若∠ACD=110°,∠B=50°,则∠A =()A.40°B.50°C.55°D.60°23.(2020•烟台)如图,△OA1A2为等腰直角三角形,OA1=1,以斜边OA2为直角边作等腰直角三角形OA2A3,再以OA3为直角边作等腰直角三角形OA3A4,…,按此规律作下去,则OA n的长度为()A.()n B.()n﹣1C.()n D.()n﹣1 24.(2020•河北)如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按图的方式组成图案,使所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是()A.1,4,5B.2,3,5C.3,4,5D.2,2,4 25.(2020•陕西)如图,在3×3的网格中,每个小正方形的边长均为1,点A,B,C都在格点上,若BD是△ABC的高,则BD的长为()A.B.C.D.26.(2020•鄂州)如图,在△AOB和△COD中,OA=OB,OC=OD,OA<OC,∠AOB=∠COD=36°.连接AC,BD交于点M,连接OM.下列结论:①∠AMB=36°,②AC=BD,③OM平分∠AOD,④MO平分∠AMD.其中正确的结论个数有()个.A.4B.3C.2D.1 27.(2020•河北)如图,从笔直的公路l旁一点P出发,向西走6km到达l;从P出发向北走6km也到达l.下列说法错误的是()A.从点P向北偏西45°走3km到达lB.公路l的走向是南偏西45°C.公路l的走向是北偏东45°D.从点P向北走3km后,再向西走3km到达l28.(2020•福建)如图,面积为1的等边三角形ABC中,D,E,F分别是AB,BC,CA的中点,则△DEF的面积是()A.1B.C.D.29.(2020•聊城)如图,在△ABC中,AB=AC,∠C=65°,点D是BC边上任意一点,过点D作DF∥AB交AC于点E,则∠FEC的度数是()A.120°B.130°C.145°D.150°30.(2020•河南)如图,在△ABC中,AB=BC=,∠BAC=30°,分别以点A,C为圆心,AC的长为半径作弧,两弧交于点D,连接DA,DC,则四边形ABCD的面积为()A.6B.9C.6D.3 31.(2020•自贡)如图,在Rt△ABC中,∠ACB=90°,∠A=50°,以点B为圆心,BC 长为半径画弧,交AB于点D,连接CD,则∠ACD的度数是()A.50°B.40°C.30°D.20°32.(2020•南充)如图,在等腰△ABC中,BD为∠ABC的平分线,∠A=36°,AB=AC =a,BC=b,则CD=()A.B.C.a﹣b D.b﹣a 33.(2020•金华)如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD与正方形EFGH.连结EG,BD相交于点O、BD与HC相交于点P.若GO=GP,则的值是()A.1+B.2+C.5﹣D.34.(2020•宁波)△BDE和△FGH是两个全等的等边三角形,将它们按如图的方式放置在等边三角形ABC内.若求五边形DECHF的周长,则只需知道()A.△ABC的周长B.△AFH的周长C.四边形FBGH的周长D.四边形ADEC的周长35.(2020•新疆)如图,在△ABC中,∠A=90°,D是AB的中点,过点D作BC的平行线交AC于点E,作BC的垂线交BC于点F,若AB=CE,且△DFE的面积为1,则BC 的长为()A.2B.5C.4D.10二.填空题(共5小题)36.(2020•阜新)如图,把△ABC沿AB边平移到△A1B1C1的位置,图中所示的三角形的面积S1与四边形的面积S2之比为4:5,若AB=4,则此三角形移动的距离AA1是.37.(2020•葫芦岛)如图,∠MON=45°,正方形ABB1C,正方形A1B1B2C1,正方形A2B2B3C2,正方形A3B3B4C3,…,的顶点A,A1,A2,A3,…,在射线OM上,顶点B,B1,B2,B3,B4,…,在射线ON上,连接AB2交A1B1于点D,连接A1B3交A2B2于点D1,连接A2B4交A3B3于点D2,…,连接B1D1交AB2于点E,连接B2D2交A1B3于点E1,…,按照这个规律进行下去,设△ACD与△B1DE的面积之和为S1,△A1C1D1与△B2D1E1的面积之和为S2,△A2C2D2与△B3D2E2的面积之和为S3,…,若AB=2,则S n等于.(用含有正整数n的式子表示)38.(2020•丹东)如图,在矩形OAA1B中,OA=3,AA1=2,连接OA1,以OA1为边,作矩形OA1A2B1使A1A2=OA1,连接OA2交A1B于点C;以OA2为边,作矩形OA2A3B2,使A2A3=OA2,连接OA3交A2B1于点C1;以OA3为边,作矩形OA3A4B3,使A3A4=OA3,连接OA4交A3B2于点C2;…按照这个规律进行下去,则△C2019C2020A2022的面积为.39.(2020•绵阳)如图,四边形ABCD中,AB∥CD,∠ABC=60°,AD=BC=CD=4,点M是四边形ABCD内的一个动点,满足∠AMD=90°,则点M到直线BC的距离的最小值为.40.(2020•雅安)对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示的“垂美”四边形ABCD,对角线AC、BD交于点O.若AD=2,BC=4,则AB2+CD2=.三.解答题(共10小题)41.(2020•西藏)如图,△ABC中,D为BC边上的一点,AD=AC,以线段AD为边作△ADE,使得AE=AB,∠BAE=∠CAD.求证:DE=CB.42.(2020•大连)如图1,△ABC中,点D,E,F分别在边AB,BC,AC上,BE=CE,点G在线段CD上,CG=CA,GF=DE,∠AFG=∠CDE.(1)填空:与∠CAG相等的角是;(2)用等式表示线段AD与BD的数量关系,并证明;(3)若∠BAC=90°,∠ABC=2∠ACD(如图2),求的值.43.(2020•鞍山)如图,在四边形ABCD中,∠B=∠D=90°,点E,F分别在AB,AD 上,AE=AF,CE=CF,求证:CB=CD.44.(2020•山西)阅读与思考如图是小宇同学的数学日记,请仔细阅读,并完成相应的任务.×年×月×日星期日没有直角尺也能作出直角今天,我在书店一本书上看到下面材料:木工师傅有一块如图①所示的四边形木板,他已经在木板上画出一条裁割线AB,现根据木板的情况,要过AB上的一点C,作出AB 的垂线,用锯子进行裁割,然而手头没有直角尺,怎么办呢?办法一:如图①,可利用一把有刻度的直尺在AB上量出CD=30cm,然后分别以D,C为圆心,以50cm与40cm为半径画圆弧,两弧相交于点E,作直线CE,则∠DCE必为90°.办法二:如图②,可以取一根笔直的木棒,用铅笔在木棒上点出M,N两点,然后把木棒斜放在木板上,使点M与点C重合,用铅笔在木板上将点N对应的位置标记为点Q,保持点N不动,将木棒绕点N旋转,使点M落在AB上,在木板上将点M对应的位置标记为点R.然后将RQ延长,在延长线上截取线段QS=MN,得到点S,作直线SC,则∠RCS=90°.我有如下思考:以上两种办法依据的是什么数学原理呢?我还有什么办法不用直角尺也能作出垂线呢?……任务:(1)填空:“办法一”依据的一个数学定理是;(2)根据“办法二”的操作过程,证明∠RCS=90°;(3)①尺规作图:请在图③的木板上,过点C作出AB的垂线(在木板上保留作图痕迹,不写作法);②说明你的作法所依据的数学定理或基本事实(写出一个即可).45.(2020•沈阳)如图,在平面直角坐标系中,△AOB的顶点O是坐标原点,点A的坐标为(4,4),点B的坐标为(6,0),动点P从O开始以每秒1个单位长度的速度沿y轴正方向运动,设运动的时间为t秒(0<t<4),过点P作PN∥x轴,分别交AO,AB于点M,N.(1)填空:AO的长为,AB的长为;(2)当t=1时,求点N的坐标;(3)请直接写出MN的长为(用含t的代数式表示);(4)点E是线段MN上一动点(点E不与点M,N重合),△AOE和△ABE的面积分别表示为S1和S2,当t=时,请直接写出S1•S2(即S1与S2的积)的最大值为.46.(2020•毕节市)如图(1),大正方形的面积可以表示为(a+b)2,同时大正方形的面积也可以表示成两个小正方形面积与两个长方形的面积之和,即a2+2ab+b2.同一图形(大正方形)的面积,用两种不同的方法求得的结果应该相等,从而验证了完全平方公式:(a+b)2=a2+2ab+b2.把这种“同一图形的面积,用两种不同的方法求出的结果相等,从而构建等式,根据等式解决相关问题”的方法称为“面积法”.(1)用上述“面积法”,通过如图(2)中图形的面积关系,直接写出一个多项式进行因式分解的等式:.(2)如图(3),Rt△ABC中,∠C=90°,CA=3,CB=4,CH是斜边AB边上的高.用上述“面积法”求CH的长;(3)如图(4),等腰△ABC中,AB=AC,点O为底边BC上任意一点,OM⊥AB,ON ⊥AC,CH⊥AB,垂足分别为点M,N,H,连接AO,用上述“面积法”求证:OM+ON =CH.47.(2020•河池)(1)如图(1),已知CE与AB交于点E,AC=BC,∠1=∠2.求证:△ACE≌△BCE.(2)如图(2),已知CD的延长线与AB交于点E,AD=BC,∠3=∠4.探究AE与BE 的数量关系,并说明理由.48.(2020•吉林)如图,△ABC是等边三角形,AB=4cm,动点P从点A出发,以2cm/s 的速度沿AB向点B匀速运动,过点P作PQ⊥AB,交折线AC﹣CB于点Q,以PQ为边作等边三角形PQD,使点A,D在PQ异侧.设点P的运动时间为x(s)(0<x<2),△PQD与△ABC重叠部分图形的面积为y(cm2).(1)AP的长为cm(用含x的代数式表示).(2)当点D落在边BC上时,求x的值.(3)求y关于x的函数解析式,并写出自变量x的取值范围.49.(2020•随州)勾股定理是人类最伟大的十个科学发现之一,西方国家称之为毕达哥拉斯定理.在我国古书《周髀算经》中就有“若勾三,股四,则弦五”的记载,我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”(如图1),后人称之为“赵爽弦图”,流传至今.(1)①请叙述勾股定理;②勾股定理的证明,人们已经找到了400多种方法,请从下列几种常见的证明方法中任选一种来证明该定理;(以下图形均满足证明勾股定理所需的条件)(2)①如图4、5、6,以直角三角形的三边为边或直径,分别向外部作正方形、半圆、等边三角形,这三个图形中面积关系满足S1+S2=S3的有个;②如图7所示,分别以直角三角形三边为直径作半圆,设图中两个月形图案(图中阴影部分)的面积分别为S1,S2,直角三角形面积为S3,请判断S1,S2,S3的关系并证明;(3)如果以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程就可以得到如图8所示的“勾股树”.在如图9所示的“勾股树”的某部分图形中,设大正方形M的边长为定值m,四个小正方形A,B,C,D的边长分别为a,b,c,d,已知∠1=∠2=∠3=∠α,则当∠α变化时,回答下列问题:(结果可用含m的式子表示)①a2+b2+c2+d2=;②b与c的关系为,a与d的关系为.50.(2020•烟台)如图,在等边三角形ABC中,点E是边AC上一定点,点D是直线BC 上一动点,以DE为一边作等边三角形DEF,连接CF.【问题解决】如图1,若点D在边BC上,求证:CE+CF=CD;【类比探究】如图2,若点D在边BC的延长线上,请探究线段CE,CF与CD之间存在怎样的数量关系?并说明理由.2020年全国中考数学试题精选分类(8)——三角形参考答案与试题解析一.选择题(共35小题)1.(2020•朝阳)如图,在正方形ABCD中,对角线AC,BD相交于点O,点E在BC边上,且CE=2BE,连接AE交BD于点G,过点B作BF⊥AE于点F,连接OF并延长,交BC于点M,过点O作OP⊥OF交DC于点N,S四边形MONC=,现给出下列结论:①;②sin∠BOF=;③OF=;④OG=BG;其中正确的结论有()A.①②③B.②③④C.①②④D.①③④【答案】D【解答】解:如图,过点O作OH∥BC交AE于点H,过点O作OQ⊥BC交BC于点Q,过点B作BK⊥OM交OM的延长线于点K,∵四边形ABCD是正方形,∴,∴OB=OC,∠BOC=90°,∴∠BOM+∠MOC=90°.∵OP⊥OF,∴∠MON=90°,∴∠CON+∠MOC=90°,∴∠BOM=∠CON,∴△BOM≌△CON(ASA),∴S△BOM=S△CON,∴,∴,∴.∵CE=2BE,∴,∴.∵BF⊥AE,∴,∴,∴,∴,∴,∴,∴.∵AD∥BC,∴,故①正确;∵OH∥BC,∴,∴.∵∠HGO=∠EGB,∴△HOG≌△EBG(AAS),∴OG=BG,故④正确;∵OQ2+MQ2=OM2,∴,∴,故③正确;∵,即,∴,∴,故②错误;∴正确的有①③④.故选:D.2.(2020•盘锦)我国古代数学著作《九章算术》记载了一道有趣的问题.原文是:今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深、葭长各几何.译为:有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,水的深度与这根芦苇的长度分别是多少?设芦苇的长度是x尺.根据题意,可列方程为()A.x2+102=(x+1)2B.(x﹣1)2+52=x2C.x2+52=(x+1)2D.(x﹣1)2+102=x2【答案】B【解答】解:设芦苇长x尺,由题意得:(x﹣1)2+52=x2,故选:B.3.(2020•大连)如图,△ABC中,∠A=60°,∠B=40°,DE∥BC,则∠AED的度数是()A.50°B.60°C.70°D.80°【答案】D【解答】解:∵∠C=180°﹣∠A﹣∠B,∠A=60°,∠B=40°,∴∠C=80°,∵DE∥BC,∴∠AED=∠C=80°,故选:D.4.(2020•呼伦贝尔)如图,在△ABC中,BD,CE分别是边AC,AB上的中线,BD⊥CE 于点O,点M,N分别OB,OC的中点,若OB=8,OC=6,则四边形DEMN的周长是()A.14B.20C.22D.28【答案】B【解答】解:∵BD和CE分别是△ABC的中线,∴DE=BC,DE∥BC,∵M和N分别是OB和OC的中点,OB=8,OC=6,∴MN=BC,MN∥BC,OM=OB=4,ON=OC=3,∴四边形MNDE为平行四边形,∵BD⊥CE,∴平行四边形MNDE为菱形,∴BC==10,∴DE=MN=EM=DN=5,∴四边形MNDE的周长为20,故选:B.5.(2020•呼伦贝尔)如图,AB=AC,AB的垂直平分线MN交AC于点D,若∠C=65°,则∠DBC的度数是()A.25°B.20°C.30°D.15°【答案】D【解答】解:∵AB=AC,∠C=∠ABC=65°,∴∠A=180°﹣65°×2=50°,∵MN垂直平分AB,∴AD=BD,∴∠A=∠ABD=50°,∴∠DBC=∠ABC﹣∠ABD=15°,故选:D.6.(2020•南通)如图,在△ABC中,AB=2,∠ABC=60°,∠ACB=45°,D是BC的中点,直线l经过点D,AE⊥l,BF⊥l,垂足分别为E,F,则AE+BF的最大值为()A.B.2C.2D.3【答案】A【解答】解:如图,过点C作CK⊥l于点K,过点A作AH⊥BC于点H,在Rt△AHB中,∵∠ABC=60°,AB=2,∴BH=1,AH=,在Rt△AHC中,∠ACB=45°,∴AC===,∵点D为BC中点,∴BD=CD,在△BFD与△CKD中,,∴△BFD≌△CKD(AAS),∴BF=CK,延长AE,过点C作CN⊥AE于点N,可得AE+BF=AE+CK=AE+EN=AN,在Rt△ACN中,AN<AC,当直线l⊥AC时,最大值为,综上所述,AE+BF的最大值为.故选:A.7.(2020•河池)如图,AB是⊙O的直径,CD是弦,AE⊥CD于点E,BF⊥CD于点F.若FB=FE=2,FC=1,则AC的长是()A.B.C.D.【答案】B【解答】解:连接BC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACE+∠BCF=90°,∵BF⊥CD,∴∠CFB=90°,∴∠CBF+∠BCF=90°,∴∠ACE=∠CBF,∵AE⊥CD,∴∠AEC=∠CFB=90°,∴△ACE∽△CBF,∴,∵FB=FE=2,FC=1,∴CE=CF+EF=3,BC===,∴=,∴AC=,故选:B.8.(2020•宿迁)在△ABC中,AB=1,BC=,下列选项中,可以作为AC长度的是()A.2B.4C.5D.6【答案】A【解答】解:∵在△ABC中,AB=1,BC=,∴﹣1<AC<+1,∵﹣1<2<+1,4>+1,5>+1,6>+1,∴AC的长度可以是2,故选项A正确,选项B、C、D不正确;故选:A.9.(2020•湖北)如图,已知△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=90°,BD,CE交于点F,连接AF.下列结论:①BD=CE;②BF⊥CF;③AF平分∠CAD;④∠AFE=45°.其中正确结论的个数有()A.1个B.2个C.3个D.4个【答案】C【解答】解:如图,作AM⊥BD于M,AN⊥EC于N,设AD交EF于O.∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS),∴EC=BD,∠BDA=∠AEC,故①正确∵∠DOF=∠AOE,∠DFO=∠EAO=90°,∴BD⊥EC,故②正确,∵△BAD≌△CAE,AM⊥BD,AN⊥EC,∴AM=AN,∴F A平分∠EFB,∴∠AFE=45°,故④正确,若③成立,则∠AEF=∠ABD=∠ADB,推出AB=AD,由题意知,AB不一定等于AD,所以AF不一定平分∠CAD,故③错误,故选:C.10.(2020•吉林)将一副三角尺按如图所示的方式摆放,则∠α的大小为()A.85°B.75°C.65°D.60°【答案】B【解答】解:如图所示,∵∠BCD=60°,∠BCA=45°,∴∠ACD=∠BCD﹣∠BCA=60°﹣45°=15°,∠α=180°﹣∠D﹣∠ACD=180°﹣90°﹣15°=75°,故选:B.11.(2020•绵阳)在螳螂的示意图中,AB∥DE,△ABC是等腰三角形,∠ABC=124°,∠CDE=72°,则∠ACD=()A.16°B.28°C.44°D.45°【答案】C【解答】解:延长ED,交AC于F,∵△ABC是等腰三角形,∠ABC=124°,∴∠A=∠ACB=28°,∵AB∥DE,∴∠CFD=∠A=28°,∵∠CDE=∠CFD+∠ACD=72°,∴∠ACD=72°﹣28°=44°,故选:C.12.(2020•毕节市)如图,在一个宽度为AB长的小巷内,一个梯子的长为a,梯子的底端位于AB上的点P,将该梯子的顶端放于巷子一侧墙上的点C处,点C到AB的距离BC 为b,梯子的倾斜角∠BPC为45°;将该梯子的顶端放于另一侧墙上的点D处,点D到AB的距离AD为c,且此时梯子的倾斜角∠APD为75°,则AB的长等于()A.a B.b C.D.c 【答案】D【解答】解:过点C作CE⊥AD于E,如图所示:则四边形ABCE是矩形,∴AB=CE,∠CED=∠DAP=90°,∵∠BPC=45°,∠APD=75°,∴∠CPD=180°﹣45°﹣75°=60°,∵CP=DP=a,∴△CPD是等边三角形,∴CD=DP,∠PDC=60°,∵∠ADP=90°﹣75°=15°,∴∠EDC=15°+60°=75°,∴∠EDC=∠APD,在△EDC和△APD中,,∴△EDC≌△APD(AAS),∴CE=AD,∴AB=AD=c,故选:D.13.(2020•广西)《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(读kǔn,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图1、2(图2为图1的平面示意图),推开双门,双门间隙CD的距离为2寸,点C和点D距离门槛AB都为1尺(1尺=10寸),则AB的长是()A.50.5寸B.52寸C.101寸D.104寸【答案】C【解答】解:如图2所示:由题意得:OA=OB=AD=BC,设OA=OB=AD=BC=r寸,则AB=2r,DE=10,OE=CD=1,AE=r﹣1,在Rt△ADE中,AE2+DE2=AD2,即(r﹣1)2+102=r2,解得:r=50.5,∴2r=101(寸),∴AB=101寸,故选:C.14.(2020•玉林)如图是A,B,C三岛的平面图,C岛在A岛的北偏东35°方向,B岛在A岛的北偏东80°方向,C岛在B岛的北偏西55°方向,则A,B,C三岛组成一个()A.等腰直角三角形B.等腰三角形C.直角三角形D.等边三角形【答案】A【解答】解:如图,过点C作CD∥AE交AB于点D,∴∠DCA=∠EAC=35°,∵AE∥BF,∴CD∥BF,∴∠BCD=∠CBF=55°,∴∠ACB=∠ACD+∠BCD=35°+55°=90°,∴△ABC是直角三角形.∵∠CAD=∠EAD﹣∠CAE=80°﹣35°=45°,∴∠ABC=180°﹣∠ACB﹣∠CAD=45°,∴CA=CB,∴△ABC是等腰直角三角形.故选:A.15.(2020•包头)如图,∠ACD是△ABC的外角,CE∥AB.若∠ACB=75°,∠ECD=50°,则∠A的度数为()A.50°B.55°C.70°D.75°【解答】解:∵∠ACB=75°,∠ECD=50°,∴∠ACE=180°﹣∠ACB﹣∠ECD=55°,∵AB∥CE,∴∠A=∠ACE=55°,故选:B.16.(2020•淄博)如图,在△ABC中,AD,BE分别是BC,AC边上的中线,且AD⊥BE,垂足为点F,设BC=a,AC=b,AB=c,则下列关系式中成立的是()A.a2+b2=5c2B.a2+b2=4c2C.a2+b2=3c2D.a2+b2=2c2【答案】A【解答】解:设EF=x,DF=y,∵AD,BE分别是BC,AC边上的中线,∴点F为△ABC的重心,AE=AC=b,BD=a,∴AF=2DF=2y,BF=2EF=2x,∵AD⊥BE,∴∠AFB=∠AFE=∠BFD=90°,在Rt△AFB中,4x2+4y2=c2,①在Rt△AEF中,x2+4y2=b2,②在Rt△BFD中,4x2+y2=a2,③②+③得5x2+5y2=(a2+b2),∴4x2+4y2=(a2+b2),④①﹣④得c2﹣(a2+b2)=0,即a2+b2=5c2.17.(2020•威海)七巧板是大家熟悉的一种益智玩具.用七巧板能拼出许多有趣的图案.小李将一块等腰直角三角形硬纸板(如图①)切割七块,正好制成一副七巧板(如图②).已知AB=40cm,则图中阴影部分的面积为()A.25cm2B.cm2C.50cm2D.75cm2【答案】C【解答】解:如图:设OF=EF=FG=x(cm),∴OE=OH=2x,在Rt△EOH中,EH=2x,由题意EH=20cm,∴20=2x,∴x=5,∴阴影部分的面积=(5)2=50(cm2)故选:C.18.(2020•宜昌)如图,点E,F,G,Q,H在一条直线上,且EF=GH,我们知道按如图所作的直线l为线段FG的垂直平分线.下列说法正确的是()A.l是线段EH的垂直平分线B.l是线段EQ的垂直平分线C.l是线段FH的垂直平分线D.EH是l的垂直平分线【答案】A【解答】解:如图:A.∵直线l为线段FG的垂直平分线,∴FO=GO,l⊥FG,∵EF=GH,∴EF+FO=OG+GH,即EO=OH,∴l为线段EH的垂直平分线,故此选项正确;B.∵EO≠OQ,∴l不是线段EQ的垂直平分线,故此选项错误;C.∵FO≠OH,∴l不是线段FH的垂直平分线,故此选项错误;D.∵l为直线,EH不能平分直线l,∴EH不是l的垂直平分线,故此选项错误;故选:A.19.(2020•青海)等腰三角形的一个内角为70°,则另外两个内角的度数分别是()A.55°,55°B.70°,40°或70°,55°C.70°,40°D.55°,55°或70°,40°【答案】D【解答】解:分情况讨论:(1)若等腰三角形的顶角为70°时,底角=(180°﹣70°)÷2=55°;(2)若等腰三角形的底角为70°时,它的另外一个底角为70°,顶角为180°﹣70°﹣70°=40°.故选:D.20.(2020•常州)如图,AB是⊙O的弦,点C是优弧AB上的动点(C不与A、B重合),CH⊥AB,垂足为H,点M是BC的中点.若⊙O的半径是3,则MH长的最大值是()A.3B.4C.5D.6【答案】A【解答】解:∵CH⊥AB,垂足为H,∴∠CHB=90°,∵点M是BC的中点.∴MH=BC,∵BC的最大值是直径的长,⊙O的半径是3,∴MH的最大值为3,故选:A.21.(2020•烟台)如图,点G为△ABC的重心,连接CG,AG并延长分别交AB,BC于点E,F,连接EF,若AB=4.4,AC=3.4,BC=3.6,则EF的长度为()A.1.7B.1.8C.2.2D.2.4【答案】A【解答】解:∵点G为△ABC的重心,∴AE=BE,BF=CF,∴EF==1.7,故选:A.22.(2020•湘潭)如图,∠ACD是△ABC的外角,若∠ACD=110°,∠B=50°,则∠A =()A.40°B.50°C.55°D.60°【答案】D【解答】解:∵∠ACD是△ABC的外角,∴∠ACD=∠B+∠A,∴∠A=∠ACD﹣∠B,∵∠ACD=110°,∠B=50°,∴∠A=60°,故选:D.23.(2020•烟台)如图,△OA1A2为等腰直角三角形,OA1=1,以斜边OA2为直角边作等腰直角三角形OA2A3,再以OA3为直角边作等腰直角三角形OA3A4,…,按此规律作下去,则OA n的长度为()A.()n B.()n﹣1C.()n D.()n﹣1【答案】B【解答】解:∵△OA1A2为等腰直角三角形,OA1=1,∴OA2=;∵△OA2A3为等腰直角三角形,∴OA3=2=;∵△OA3A4为等腰直角三角形,∴OA4=2=.∵△OA4A5为等腰直角三角形,∴OA5=4=,……∴OA n的长度为()n﹣1.故选:B.24.(2020•河北)如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按图的方式组成图案,使所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是()A.1,4,5B.2,3,5C.3,4,5D.2,2,4【答案】B【解答】解:当选取的三块纸片的面积分别是1,4,5时,围成的直角三角形的面积是=,当选取的三块纸片的面积分别是2,3,5时,围成的直角三角形的面积是=;当选取的三块纸片的面积分别是3,4,5时,围成的三角形不是直角三角形;当选取的三块纸片的面积分别是2,2,4时,围成的直角三角形的面积是=,∵,∴所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是2,3,5,故选:B.25.(2020•陕西)如图,在3×3的网格中,每个小正方形的边长均为1,点A,B,C都在格点上,若BD是△ABC的高,则BD的长为()A.B.C.D.【答案】D【解答】解:由勾股定理得:AC==,∵S△ABC=3×3﹣=3.5,∴,∴,∴BD=,故选:D.26.(2020•鄂州)如图,在△AOB和△COD中,OA=OB,OC=OD,OA<OC,∠AOB=∠COD=36°.连接AC,BD交于点M,连接OM.下列结论:①∠AMB=36°,②AC=BD,③OM平分∠AOD,④MO平分∠AMD.其中正确的结论个数有()个.A.4B.3C.2D.1【答案】B【解答】解:∵∠AOB=∠COD=36°,∴∠AOB+∠BOC=∠COD+∠BOC,即∠AOC=∠BOD,在△AOC和△BOD中,∴△AOC≌△BOD(SAS),∴∠OCA=∠ODB,AC=BD,故②正确;∵∠OAC=∠OBD,由三角形的外角性质得:∠AMB+∠OBD=∠OAC+∠AOB,∴∠AMB=∠AOB=36°,故①正确;作OG⊥AM于G,OH⊥DM于H,如图所示,则∠OGA=∠OHB=90°,∵△AOC≌△BOD,∴OG=OH,∴MO平分∠AMD,故④正确;假设OM平分∠AOD,则∠DOM=∠AOM,在△AMO与△DMO中,,∴△AMO≌△DMO(ASA),∴AO=OD,∵OC=OD,∴OA=OC,而OA<OC,故③错误;正确的个数有3个;故选:B.27.(2020•河北)如图,从笔直的公路l旁一点P出发,向西走6km到达l;从P出发向北走6km也到达l.下列说法错误的是()A.从点P向北偏西45°走3km到达lB.公路l的走向是南偏西45°C.公路l的走向是北偏东45°D.从点P向北走3km后,再向西走3km到达l【答案】A【解答】解:如图,由题意可得△P AB是腰长6km的等腰直角三角形,则AB=6km,如图所示,过P点作AB的垂线PC,则PC=3km,则从点P向北偏西45°走3km到达l,选项A错误;则公路l的走向是南偏西45°或北偏东45°,选项B,C正确;则从点P向北走3km后到达BP中点D,此时CD为△P AB的中位线,故CD=AP=3,故再向西走3km到达l,选项D正确.故选:A.28.(2020•福建)如图,面积为1的等边三角形ABC中,D,E,F分别是AB,BC,CA的中点,则△DEF的面积是()A.1B.C.D.【答案】D【解答】解:∵D,E,F分别是AB,BC,CA的中点,∴DE=AC,DF=BC,EF=AB,∴=,∴△DEF∽△ABC,∴=()2=()2=,∵等边三角形ABC的面积为1,∴△DEF的面积是,故选:D.29.(2020•聊城)如图,在△ABC中,AB=AC,∠C=65°,点D是BC边上任意一点,过点D作DF∥AB交AC于点E,则∠FEC的度数是()A.120°B.130°C.145°D.150°【答案】B【解答】解:∵AB=AC,∠C=65°,∴∠B=∠C=65°,∵DF∥AB,∴∠CDE=∠B=65°,∴∠FEC=∠CDE+∠C=65°+65°=130°;故选:B.30.(2020•河南)如图,在△ABC中,AB=BC=,∠BAC=30°,分别以点A,C为圆心,AC的长为半径作弧,两弧交于点D,连接DA,DC,则四边形ABCD的面积为()A.6B.9C.6D.3【答案】D【解答】解:连接BD交AC于O,∵AD=CD,AB=BC,∴BD垂直平分AC,∴BD⊥AC,AO=CO,∵AB=BC,∴∠ACB=∠BAC=30°,∵AC=AD=CD,∴△ACD是等边三角形,∴∠DAC=∠DCA=60°,∴∠BAD=∠BCD=90°,∠ADB=∠CDB=30°,∵AB=BC=,∴AD=CD=AB=3,∴四边形ABCD的面积=2×=3,故选:D.31.(2020•自贡)如图,在Rt△ABC中,∠ACB=90°,∠A=50°,以点B为圆心,BC 长为半径画弧,交AB于点D,连接CD,则∠ACD的度数是()A.50°B.40°C.30°D.20°【答案】D【解答】解:∵在Rt△ABC中,∠ACB=90°,∠A=50°,∴∠B=40°,∵BC=BD,∴∠BCD=∠BDC=(180°﹣40°)=70°,∴∠ACD=90°﹣70°=20°,故选:D.32.(2020•南充)如图,在等腰△ABC中,BD为∠ABC的平分线,∠A=36°,AB=AC =a,BC=b,则CD=()A.B.C.a﹣b D.b﹣a【答案】C【解答】解:∵在等腰△ABC中,BD为∠ABC的平分线,∠A=36°,∴∠ABC=∠C=2∠ABD=72°,∴∠ABD=36°=∠A,∴BD=AD,∴∠BDC=∠A+∠ABD=72°=∠C,∴BD=BC,∵AB=AC=a,BC=b,∴CD=AC﹣AD=a﹣b,故选:C.33.(2020•金华)如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD与正方形EFGH.连结EG,BD相交于点O、BD与HC相交于点P.若GO=GP,则的值是()A.1+B.2+C.5﹣D.【答案】B【解答】解:∵四边形EFGH为正方形,∴∠EGH=45°,∠FGH=90°,∵OG=GP,∴∠GOP=∠OPG=67.5°,∴∠PBG=22.5°,又∵∠DBC=45°,∴∠GBC=22.5°,∴∠PBG=∠GBC,∵∠BGP=∠BGC=90°,BG=BG,∴△BPG≌△BCG(ASA),∴PG=CG.设OG=PG=CG=x,∵O为EG,BD的交点,∴EG=2x,FG=x,∵四个全等的直角三角形拼成“赵爽弦图”,∴BF=CG=x,∴BG=x+x,∴BC2=BG2+CG2==,∴=.故选:B.34.(2020•宁波)△BDE和△FGH是两个全等的等边三角形,将它们按如图的方式放置在等边三角形ABC内.若求五边形DECHF的周长,则只需知道()A.△ABC的周长B.△AFH的周长C.四边形FBGH的周长D.四边形ADEC的周长【答案】A【解答】解:∵△GFH为等边三角形,∴FH=GH,∠FHG=60°,∴∠AHF+∠GHC=120°,∵△ABC为等边三角形,∴AB=BC=AC,∠ACB=∠A=60°,∴∠GHC+∠HGC=120°,∴∠AHF=∠HGC,∴△AFH≌△CHG(AAS),∴AF=CH.∵△BDE和△FGH是两个全等的等边三角形,∴BE=FH,∴五边形DECHF的周长=DE+CE+CH+FH+DF=BD+CE+AF+BE+DF,=(BD+DF+AF)+(CE+BE),=AB+BC.∴只需知道△ABC的周长即可.故选:A.35.(2020•新疆)如图,在△ABC中,∠A=90°,D是AB的中点,过点D作BC的平行线交AC于点E,作BC的垂线交BC于点F,若AB=CE,且△DFE的面积为1,则BC 的长为()A.2B.5C.4D.10【答案】A【解答】解:过A作AH⊥BC于H,∵D是AB的中点,∴AD=BD,∵DE∥BC,∴AE=CE,∴DE=BC,∵DF⊥BC,∴DF∥AH,DF⊥DE,∴BF=HF,∴DF=AH,∵△DFE的面积为1,∴DE•DF=1,∴DE•DF=2,∴BC•AH=2DE•2DF=4×2=8,∴AB•AC=8,∵AB=CE,∴AB=AE=CE=AC,∴AB•2AB=8,∴AB=2(负值舍去),∴AC=4,∴BC==2.故选:A.二.填空题(共5小题)36.(2020•阜新)如图,把△ABC沿AB边平移到△A1B1C1的位置,图中所示的三角形的面积S1与四边形的面积S2之比为4:5,若AB=4,则此三角形移动的距离AA1是.【答案】.【解答】解:∵把△ABC沿AB边平移到△A1B1C1的位置,∴AC∥A1C1,∴△ABC∽△A1BD,∵S△A1BD:S四边形ACDA1=4:5,∴S:S△ABC=4:9,∴A1B:AB=2:3,∵AB=4,∴A1B=,∴AA1=4﹣=.故答案为:.37.(2020•葫芦岛)如图,∠MON=45°,正方形ABB1C,正方形A1B1B2C1,正方形A2B2B3C2,正方形A3B3B4C3,…,的顶点A,A1,A2,A3,…,在射线OM上,顶点B,B1,B2,B3,B4,…,在射线ON上,连接AB2交A1B1于点D,连接A1B3交A2B2于点D1,连接A2B4交A3B3于点D2,…,连接B1D1交AB2于点E,连接B2D2交A1B3于点E1,…,按照这个规律进行下去,设△ACD与△B1DE的面积之和为S1,△A1C1D1与△B2D1E1的面积之和为S2,△A2C2D2与△B3D2E2的面积之和为S3,…,若AB=2,则S n等于×4n﹣1.(用含有正整数n的式子表示)【答案】.【解答】解:设△ADC的面积为S,。

八年级数学上册第5章平面直角坐标系专题训练13直角坐标系中几何问题习题课件新版苏科版

八年级数学上册第5章平面直角坐标系专题训练13直角坐标系中几何问题习题课件新版苏科版
点A'的坐标.
1
2
3
4
5
6
7
8
9
解:作A'H⊥ y 轴于 H ,则∠OHA'=90°.
∵ B (2,0),∴ OB =2.由旋转可得△A'OB'是等边三角形
且OB'= OB =2.∴OA'=OB'=2.
∵A'H⊥OB',∴ OH =HB'=1,
∴A'H= ′ − = − = ,∴A'(- ,
(3)如图③所示, PD = OD =5,点 P 在点 D 的右侧.过点
P 作 PE ⊥ x 轴于点 E ,则 PE =4.在Rt△ PDE 中,由勾股
定理得 DE = − = − =3,∴ OE = OD
+ DE =5+3=8,∴此时点 P 的坐标为(8,4).综上所
垂直平分线交 x 轴于点 C ,则点 C 的坐标为
点拨:如图,连接 BC ,
设 OC = x ,
∵ A (8,0), B (0,4),
∴ OA =8, OB =4.
1
2
3
4
5
6
7
8
9
(3,0)
.

∵ CD 垂直平分 AB ,
∴ BC = AC =8- x .
∵∠ BOC =90°,∴ BC2= OB2+ OC2,
=2,∴此时点 P 的坐标为(2,4);
1
2
3
4
5
6
7
8
9
(2)如图②所示, OP = OD =5.过点 P 作 PE ⊥ x 轴于点
E ,则 PE =4.
在Rt△ POE 中,由勾股定理得 OE = − =

人教版2021年九年级上册:23.1.2 旋转作图 同步练习(含答案)

人教版2021年九年级上册:23.1.2 旋转作图 同步练习(含答案)

人教版2021年九年级上册:23.1图形的旋转同步练习第2课时旋转作图一、选择题1.下列图形绕某个点旋转72°后能与自身重合的是()2.如图是几种汽车轮轴的图案,图案绕中心旋转90°后能与原来的图案重合的是()3.下列选项中可以看成由下方图形绕着一个顶点顺时针旋转90°而形成的图形的是 ()4.[芜湖期中]正三角形绕其中心旋转一定角度后,与自身重合,旋转角至少为()A.30°B.60°C.120°D.180°5.在平面直角坐标系中,将点A(1,2)绕点P(-1,1)顺时针旋转90°到点A'处,则点A'的坐标为()A.(-2,3)B.(-3,0)C.(1,0)D.(0,-1)6.如图,将线段AB绕点C(4,0)顺时针旋转90°得到线段A'B',那么点A(2,5)的对应点A'的坐标是()A.(9,2)B.(7,2)C.(9,4)D.(7,4)7.(2020·赤峰)下列图形绕某一点旋转一定角度都能与原图形重合,其中旋转角度最小的是()8.(2020·青岛)如图,将△ABC 先向上平移1个单位长度,再绕点P 按逆时针方向旋转90°,得到△A ′B ′C ′,则点A 的对应点A ′的坐标是( )A .(0,4)B .(2,-2)C .(3,-2)D .(-1,4)9.(2020·枣庄)如图,平面直角坐标系中,点B 在第一象限,点A 在x 轴的正半轴上,∠AOB =∠B =30°,OA =2.将△AOB 绕点O 逆时针旋转90°,点B 的对应点B ′的坐标是( )A.()-3,3B.()-3,3C.()-3,2+3D.()1,2+3二、填空题10.旋转作图的步骤和方法:(1)确定旋转中心、____________及____________; (2)作出图形的关键点经过旋转后的__________; (3)按一定的顺序连接对应点.11.把一个图案进行旋转变换,选择不同的旋转中心、不同的旋转方向、不同的_____________,会有不同的效果.12.正八边形绕它的中心旋转一定角度后能与自身完全重合,则其旋转的角度至少为 . 三、解答题13.如图,在平面直角坐标系中,等边△OAB 的边长为2,y 轴的正半轴恰好是△OAB 的角平分线,先将△OAB 绕点O 按顺时针方向旋转120°,再关于y 轴对称后得到△A 1B 1O ,求点A 1的坐标..14.在图中作出“三角旗”绕点O 逆时针旋转90°后的图案.15.如图,在平面直角坐标系中,已知△AOB是等边三角形,点A的坐标是(0,3),点B在第一象限,∠OAB的平分线交x轴于点P,把△AOP绕着点A按逆时针方向旋转,使边AO与AB重合,得到△ABD,连接DP.求DP的长及点D的坐标.16.(2020·鄂尔多斯)(1)【操作发现】如图①,在边长为1个单位长度的小正方形组成的网格中,△ABC的三个顶点均在格点上.①请按要求画图:将△ABC绕点A顺时针方向旋转90°,点B的对应点为点B′,点C的对应点为点C′.连接BB′.②在①中所画图形中,∠AB′B=________°.(2)【问题解决】如图②,在Rt△ABC中,BC=1,∠C=90°,延长CA到点D,使CD=1,将斜边AB绕点A顺时针旋转90°到AE,连接DE,求∠ADE的度数.17.如图,边长为3的正方形纸片ABCD的相邻边AB,AD分别在x轴、y轴的正半轴上,点E在纸片上,点E的坐标是(1,2),将正方形纸片绕其右下角的顶点按顺时针方向旋转90°至图①位置,此时点E的对应点为E1,继续绕右下角的顶点按顺时针方向旋转90°至图②位置,此时点E1的对应点为E2,以此类推,这样连续旋转2020次,求点E2020的坐标.18.[安徽中考]如图,在由边长为1个单位长度的小正方形组成的网格中,给出以格点(网格线的交点)为端点的线段AB,线段MN在网格线上.(1)画出线段AB关于线段MN所在直线对称的线段A1B1;(A1,B1分别为点A,B的对应点)(2)将线段B1A1绕点B1顺时针旋转90°得到线段B1A2,画出线段B1A2.参考答案一、选择题1.下列图形绕某个点旋转72°后能与自身重合的是(B)2.如图是几种汽车轮轴的图案,图案绕中心旋转90°后能与原来的图案重合的是(B)3.下列选项中可以看成由下方图形绕着一个顶点顺时针旋转90°而形成的图形的是 (B)4.[芜湖期中]正三角形绕其中心旋转一定角度后,与自身重合,旋转角至少为(C)A.30°B.60°C.120°D.180°5.在平面直角坐标系中,将点A(1,2)绕点P(-1,1)顺时针旋转90°到点A'处,则点A'的坐标为(D)A.(-2,3)B.(-3,0)C.(1,0)D.(0,-1)6.如图,将线段AB绕点C(4,0)顺时针旋转90°得到线段A'B',那么点A(2,5)的对应点A'的坐标是(A)A.(9,2)B.(7,2)C.(9,4)D.(7,4)7.(2020·赤峰)下列图形绕某一点旋转一定角度都能与原图形重合,其中旋转角度最小的是(C)8.(2020·青岛)如图,将△ABC先向上平移1个单位长度,再绕点P按逆时针方向旋转90°,得到△A′B′C′,则点A的对应点A′的坐标是(D)A .(0,4)B .(2,-2)C .(3,-2)D .(-1,4)9.(2020·枣庄)如图,平面直角坐标系中,点B 在第一象限,点A 在x 轴的正半轴上,∠AOB =∠B =30°,OA =2.将△AOB 绕点O 逆时针旋转90°,点B 的对应点B ′的坐标是( )A.()-3,3B.()-3,3C.()-3,2+3D.()1,2+3【点拨】如图,过点B ′作B ′H ⊥y 轴于点H . ∵∠AOB =∠B =30°,∴AB =OA =2.∵将△AOB 绕点O 逆时针旋转90°得到△A ′OB ′, ∴A ′B ′=AB =2,OA ′=OA =2,∠A ′OB ′=∠A ′B ′O =30°. ∴∠B ′A ′H =60°. ∴∠A ′B ′H =30°. ∴A ′H =12A ′B ′=1.∴B ′H =A ′B ′2-A ′H 2=3,OH =OA ′+A ′H =3. ∴点B ′的坐标是(-3,3).【答案】A 二、填空题10.旋转作图的步骤和方法:(1)确定旋转中心、____________及____________;(2)作出图形的关键点经过旋转后的__________;(3)按一定的顺序连接对应点.【答案】旋转角度旋转方向对应点11.把一个图案进行旋转变换,选择不同的旋转中心、不同的旋转方向、不同的_____________,会有不同的效果.【答案】旋转角度12.正八边形绕它的中心旋转一定角度后能与自身完全重合,则其旋转的角度至少为45°.三、解答题13.如图,在平面直角坐标系中,等边△OAB的边长为2,y轴的正半轴恰好是△OAB的角平分线,先将△OAB绕点O按顺时针方向旋转120°,再关于y轴对称后得到△A1B1O,求点A1的坐标..解:先将△OAB绕点O按顺时针方向旋转120°,点A的对应点在x轴的正半轴上,且坐标为(2,0),再关于y轴对称后得点A1的坐标为(-2,0).14.在图中作出“三角旗”绕点O逆时针旋转90°后的图案.解:如图.15.如图,在平面直角坐标系中,已知△AOB是等边三角形,点A的坐标是(0,3),点B在第一象限,∠OAB的平分线交x轴于点P,把△AOP绕着点A按逆时针方向旋转,使边AO与AB重合,得到△ABD,连接DP.求DP的长及点D的坐标.解:∵△AOB是等边三角形,∴∠OAB=60°.由旋转得∠OAB=∠PAD=60°,AD=AP.∵OA=3,AP平分∠OAB,∴∠OAP=30°,∴AP=2OP.∵OP2+32=(2OP)2,∴OP=√3,AP=2√3,∴AD=AP=2√3.∵∠OAP=30°,∠PAD=60°,∴∠OAD=30°+60°=90°,∴点D的坐标为(2√3,3).16.(2020·鄂尔多斯)(1)【操作发现】如图①,在边长为1个单位长度的小正方形组成的网格中,△ABC的三个顶点均在格点上.①请按要求画图:将△ABC绕点A顺时针方向旋转90°,点B的对应点为点B′,点C的对应点为点C′.连接BB′.解:如图①,△AB′C′即为所求.②在①中所画图形中,∠AB′B=________°.【答案】45(2)【问题解决】如图②,在Rt△ABC中,BC=1,∠C=90°,延长CA到点D,使CD=1,将斜边AB绕点A顺时针旋转90°到AE,连接DE,求∠ADE的度数.解:如图②,过点E作EH⊥CD,交CD的延长线于点H.∵∠C=∠BAE=∠H=90°,∴∠B+∠CAB=90°,∠CAB+∠EAH=90°.∴∠B=∠EAH.又∵AB=AE,∴△ABC≌△EAH(AAS).∴BC=AH,EH=AC.∵BC=CD,∴CD=AH.∴DH=AC=EH.∴∠EDH=45°.∴∠ADE=135°.17.如图,边长为3的正方形纸片ABCD的相邻边AB,AD分别在x轴、y轴的正半轴上,点E在纸片上,点E的坐标是(1,2),将正方形纸片绕其右下角的顶点按顺时针方向旋转90°至图①位置,此时点E的对应点为E1,继续绕右下角的顶点按顺时针方向旋转90°至图②位置,此时点E1的对应点为E2,以此类推,这样连续旋转2020次,求点E2020的坐标.解:∵正方形的边长为3,∴OB=3,∵点E的坐标是(1,2),将正方形纸片绕其右下角的顶点按顺时针方向旋转90°至图①位置,∴E1(5,2),以此类推,E2(8,1),E3(10,1),E4(13,2),…,观察可知:纵坐标的变化规律是四次一个循环(2,1,1,2),2020÷4=505,∴点E2020的纵坐标与点E4相同,纵坐标为2,横坐标为3×2020+1=6061,∴点E2020的坐标为(6061,2).18.[安徽中考]如图,在由边长为1个单位长度的小正方形组成的网格中,给出以格点(网格线的交点)为端点的线段AB,线段MN在网格线上.(1)画出线段AB关于线段MN所在直线对称的线段A1B1;(A1,B1分别为点A,B的对应点)(2)将线段B1A1绕点B1顺时针旋转90°得到线段B1A2,画出线段B1A2.解:(1)如图所示,线段A1B1即为所求.(2)如图所示,线段B1A2即为所求.。

中考数学专题复习试卷(五)(有答案)

中考数学专题复习试卷(五)(有答案)

第三章限时检测卷(时间:80分钟 分值:100分 得分: )一、选择题(本大题9小题,每小题3分,共27分) 1.函数y =5x -1中,自变量x 的取值范围是( D )A .x ≠0B .x >1C .x <1D .x ≠12.已知点P 位于x 轴上方,到x 轴的距离为2,到y 轴的距离为5,则点P 坐标为( D ) A .(2,5)B .(5,2)C .(2,5)或(-2,5)D .(5,2)或(-5,2)3.下列函数中,函数值y 随自变量x 的值增大而增大的是( A ) A .y =x 3B .y =-x3C .y =3xD .y =-3x4.P ,Q 为反比例函数y =-2x 图象上任意两点,若S △OAP 记为S 1,S △OBQ 记为S 2,则S 1和S 2的大小关系是( A )A .S 1=S 2B .S 1>S 2C .S 1<S 2D .无法判断5.由二次函数y =-2x 2+4x +1的图象得到y =-2x 2的图象的平移方式是( C ) A .向左移动1个单位,向上移动3个单位 B .向右移动1个单位,向上移动3个单位 C .向左移动1个单位,向下移动3个单位 D .向右移动1个单位,向下移动3个单位6.(2020温州)已知(-3,y 1),(-2,y 2),(1,y 3)是抛物线y =-3x 2-12x +m 上的点,则( B )A .y 3<y 2<y 1B .y 3<y 1<y 2C .y 2<y 3<y 1D .y 1<y 3<y 27.如图,假设篱笆(虚线部分)的长度16 m ,则所围成矩形ABCD 的最大面积是( C )A .60 m 2B .63 m 2C .64 m 2D .66 m 28.(2020宁夏)如图,函数y 1=x +1与函数y 2=2x 的图象相交于点M (1,m ),N (-2,n ).若y 1>y 2,则x 的取值范围是( D )A .x <-2或0<x <1B .x <-2或x >1C .-2<x <0或0<x <1D .-2<x <0或x >1第8题图 第9题图9.(2020恩施州)如图,已知二次函数y =ax 2+bx +c 的图象与x 轴相交于A (-2,0)、B (1,0)两点.则以下结论:①ac >0;②二次函数y =ax 2+bx +c 的图象的对称轴为x =-1;③2a +c =0;④a -b +c >0.其中正确的个数有( C )A .0个B .1个C .2个D .3个二、填空题(本大题6小题,每小题4分,共24分)10.在平面直角坐标系中,点P (2,-3)关于x 轴对称的点的坐标为 (2,3) . 11.已知点(-3,a +2)在x 轴上,则a = -2 .12.若抛物线y =(a -1)x 2开口向上,则a 的取值范围是 a >1 .13.如图,A ,B 的坐标分别为(1,0),(0,2),若将线段AB 平移至A 1B 1,点A 1,点B 1的坐标分别为(2,a ),(b ,3),则a +b = 2 .第13题图第15题图14.(2020连云港)加工爆米花时,爆开且不糊的粒数的百分比称为”可食用率”.在特定条件下,可食用率y 与加工时间x (单位:min)满足函数表达式y =-0.2x 2+1.5x -2,则最佳加工时间为 3.75 min.15.如图所示,在平面直角坐标系中,点A 在抛物线y =x 2-4x +6上运动,过点A 作AB ⊥x 轴于点B ,以AB 为斜边作Rt △ABC ,则AB 边上的中线CD 的最小值为 1 .三、解答题(一)(本大题3小题,每小题6分,共18分)16.已知函数y =2x +4的图象与x 轴交于点C ,与y 轴交于点D .(1)在如图所示的平面直角坐标系中画出y =-x +2的图象,求当x 为何值时,函数值y >0;(2)若y =-x +2图象与x 轴、y 轴分别交于A 、B 两点,求△ABO 周长;(3)函数y =2x +4的图象与函数y =-x +2的图象交于点P ,求四边形PCOB 的面积.解:(1)当x =0时,y =2;当y =0时,x =2. 函数图象如图所示,由图象可知,当x <2时,y >0. (2)由(1)得,OA =2,OB =2,∵∠AOB =90°,∴AB =22+22=22, ∴△AOB 的周长为OA +OB +AB =4+2 2.(3)依题意,得P 点坐标为⎝⎛⎭⎫-23,83,C 点坐标为(-2,0). ∵S △PCA =12×83×4=163,S △AOB =12×2×2=2,∴四边形PCOB 的面积=S △PCA -S △AOB .即163-2=103. 17.如图,在平面直角坐标系中,已知点B (0,4),等边三角形OAB 的顶点A 在反比例函数y =kx(x >0)的图象上.(1)求反比例函数的解析式;(2)把△OAB 沿y 轴向上平移a 个单位长度,对应得到△O ′A ′B ′.求当反比例函数的图象经过△O ′A ′B ′一边的中点时a 的值.解:(1)如图,过点A 作AC ⊥BO 于点C .∵△OAB 是等边三角形, ∴∠AOB =60°,OC =12OB .∵B (4,0),∴OC =2,AC =2 3.把点A 的坐标(23,2)代入y =kx ,得k =4 3.∴反比例函数的解析式是y =43x. (2)分两种情况讨论:①当反比例函数y =43x 过边A ′B ′的中点时.∵边A ′B ′的中点坐标为(3,3+a ), ∴3+a =433,得a =1.②当反比例函数y =43x 过边O ′A ′的中点时.∵边O ′A ′的中点坐标为(3,1+a ), ∴1+a =433,得a =3.综上所述,a 的值是1或3.18.如图,在平面直角坐标系xOy 中,一次函数y =3x +2的图象与y 轴交于点A ,与反比例函数y =kx (k ≠0)在第一象限内的图象交于点B ,且点B 的横坐标为1.过点A 作AC ⊥y轴交反比例函数y =kx(k ≠0)的图象于点C ,连接BC .(1)求反比例函数的表达式. (2)求△ABC 的面积.解:(1)∵点B 在一次函数y =3x +2的图象上,且点B 的横坐标为1, ∴y =3×1+2=5,∴点B 的坐标为(1,5). ∵点B 在反比例函数y =kx 的图象上,∴k =1×5=5.∴反比例函数的表达式为y =5x.(2)∵一次函数y =3x +2的图象与y 轴交于点A ,∴当x =0时,y =2.∴点A 的坐标为(0,2). ∵AC ⊥y 轴,∴点C 的纵坐标是2. ∵点C 在反比例函数y =5x 的图象上,∴当y =2时,2=5x ,解得x =52.∴AC =52.过B 作BD ⊥AC 于D ,则BD =y B -y C =5-2=3. ∴S △ABC =12AC ·BD =12×52×3=154.四、解答题(二)(本大题4小题,共31分)19.(7分)某快递公司的每位”快递小哥”日收入与每日的派送量成一次函数关系,如图所示.(1)求每位”快递小哥”的日收入y (元)与日派送量x (件)之间的函数关系式; (2)已知某”快递小哥”的日收入不少于110元,则他每日至少要派送多少件?解:(1)设每位”快递小哥”的日收入y (元)与日派送量x (件)之间的函数关系式为y =kx +b ,将(0,70)、(30,100)代入y =kx +b ,⎩⎪⎨⎪⎧b =70,30k +b =100,解得⎩⎪⎨⎪⎧k =1,b =70. ∴每位”快递小哥”的日收入y (元)与日派送量x (件)之间的函数关系式为y =x +70. (2)根据题意得x +70≥110,解得x ≥40.答:某”快递小哥”的日收入不少于110元,则他每日至少要派送40件.20.(8分)某商场经营某种品牌的玩具,购进时的单价30元,根据市场调查:在一段时间内,销售单价是40元时,销售是600件,而销售单价每涨1元,就会少售出10件玩具.(1)若设该种品牌玩具上涨x 元(0<x <60)元,销售利润为w 元,请直接写出w 与x 之间的函数关系式;(2)若想获得最大利润,应将销售价格定为多少,并求出此时的最大利润. 解:(1)根据题意,得w =(600-10x )(10+x )=-10x 2+500x +6 000. (2)w =-10x 2+500x +6 000=-10(x -25)2+12 250. ∵a =-10<0,∴当销售价格定为40+25=65(元)时,利润最大,最大利润为12 250元.答:商场销售该品牌玩具的销售单价应定为65元才能获得最大利润,最大利润是12 250元.21.(8分)如图,矩形ABCD 的两边长AB =18 cm ,AD =4 cm ,点P ,Q 分别从A 、B 同时出发,P 在边AB 上沿AB 方向以每秒2 cm 的速度匀速运动,Q 在边BC 上沿BC 方向以每秒1 cm 的速度匀速运动.当Q 到达C 点时,P ,Q 停止运动.设运动时间为x 秒,△PBQ 的面积为y (cm 2).(1)求y 关于x 的函数关系式,并写出x 的取值范围; (2)求△PBQ 的面积的最大值.解:(1)∵S △PBQ =12PB ·BQ ,PB =AB -AP =18-2x ,BQ =x ,∴y =12(18-2x )x ,即y =-x 2+9x (0<x ≤4).(2)由(1)知,y =-x 2+9x ,∴y =-⎝⎛⎭⎫x -922+814. ∵当0<x ≤92时,y 随x 的增大而增大,而0<x ≤4,∴当x =4时,y 最大值=20, 即△PBQ 的最大面积是20 cm 2.22.(8分)某游乐园有一个直径为16米的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线,在距水池中心3米处达到最高,高度为5米,且各方向喷出的水柱恰好在水池中心的装饰物处汇合.如图所示,以水平方向为x 轴,喷水池中心为原点建立直角坐标系.(1)求水柱所在抛物线(第一象限部分)的函数表达式;(2)王师傅在喷水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心多少米以内?解:(1)设水柱所在抛物线(第一象限部分)的函数表达式为y =a (x -3)2+5(a ≠0,且x >0).将(8,0)代入y =a (x -3)2+5,得25a +5=0. 解得a =-15.∴水柱所在抛物线(第一象限部分)的函数表达式为y =-15(x -3)2+5(0<x <8).(2)当y =1.8时,有-15(x -3)2+5=1.8.解得x 1=-1(舍去),x 2=7.∴为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心7米以内.。

中考二次函数专题13函数与等腰三角形综合问题(学生版)

中考二次函数专题13函数与等腰三角形综合问题(学生版)

专题13函数与等腰三角形综合问题【例1】在平面直角坐标系中,抛物线y=ax2﹣4ax+3a(a>0)与x轴交于A、B两点(点A在点B的左侧),其顶点为C.(1)求抛物线的对称轴;(2)当△ABC为等边三角形时,求a的值;(3)直线l:y=kx+b经过点A,并与抛物线交于另一点D(4,3),点P为直线l下方抛物线上一点,过点P分别作PM∥y轴交直线l于点M,PN∥x轴交直线l于点N,记W=PM+PN,求W的最大值.【例2】.如图,在平面直角坐标系xOy中,已知抛物线y=ax2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与轴交于C(0,﹣1).(1)求抛物线的函数表达式;(2)连接AC,BC,过O点的直线l∥BC,点E,D分别为直线l和抛物线上的点,试探究第一象限是否存在这样的点E,D,使△BDE为等腰直角三角形?若存在,请求出所有的E点的坐标;若不存在,请说明理由.【例3】如图,在平面直角坐标系中,二次函数y=﹣x2+bx+c的图象与坐标轴相交于A、B、C三点,其中A点坐标为(3,0),B点坐标为(﹣1,0),连接AC、BC.动点P从点A出发,在线段AC上以每秒个单位长度向点C做匀速运动;同时,动点Q从点B出发,在线段BA上以每秒1个单位长度向点A做匀速运动,当其中一点到达终点时,另一点随之停止运动,连接PQ,设运动时间为t秒.(1)求b、c的值.(2)在P、Q运动的过程中,当t为何值时,四边形BCPQ的面积最小,最小值为多少?(3)在线段AC上方的抛物线上是否存在点M,使△MPQ是以点P为直角顶点的等腰直角三角形?若存在,请求出点M的坐标;若不存在,请说明理由.【例4】如图,已知抛物线y=ax2+bx+4(a≠0)与x轴交于点A(1,0)和B,与y轴交于点C,对称轴为直线x=.(1)求抛物线的解析式;(2)如图1,若点P是线段BC上的一个动点(不与点B,C重合),过点P作y轴的平行线交抛物线于点Q,连接OQ,当线段PQ长度最大时,判断四边形OCPQ的形状并说明理由;(3)如图2,在(2)的条件下,D是OC的中点,过点Q的直线与抛物线交于点E,且∠DQE=2∠ODQ.在y轴上是否存在点F,使得△BEF为等腰三角形?若存在,求点F的坐标;若不存在,请说明理由.【例5】如图1,平面直角坐标系xOy中,A(4,3),反比例函数y=kx(k>0)的图象分别交矩形ABOC的两边AC,AB于E、F两点(E、F不与A重合),沿着EF将矩形ABOC折叠使A、D两点重合.(1)AE=(用含有k的代数式表示);(2)如图2,当点D恰好落在矩形ABOC的对角线BC上时,求CE的长度;(3)若折叠后,△ABD是等腰三角形,求此时点D的坐标.1.如图,二次函数y=x2+bx+c的图象过点A(4,﹣4),B(﹣2,m),交y轴于点C(0,﹣4).直线BO与抛物线相交于另一点D,连接AB,AD,点E是线段AB上的一动点,过点E作EF∥BD交AD于点F.(1)求二次函数y=x2+bx+c的表达式;(2)判断△ABD的形状,并说明理由;(3)在点E的运动过程中,直线BD上存在一点G,使得四边形AFGE为矩形,请判断此时AG与BD 的数量关系,并求出点E的坐标;(4)点H是抛物线的顶点,在(3)的条件下,点P是平面内使得∠EPF=90°的点,在抛物线的对称轴上,是否存在点Q,使得△HPQ是以∠PQH为直角的等腰直角三角形,若存在,直接写出符合条件的所有点Q的坐标;若不存在,请说明理由.2.如图1,抛物线y=﹣x2+bx+c过点A(﹣1,0),点B(3,0),与y轴交于点C.在x轴上有一动点E (m,0)(0<m<3),过点E作直线l⊥x轴,交抛物线于点M.(1)求抛物线的解析式及C点坐标;(2)当m=1时,D是直线l上的点且在第一象限内,若△ACD是以∠DCA为底角的等腰三角形,求点D的坐标;(3)如图2,连接BM并延长交y轴于点N,连接AM,OM,设△AEM的面积为S1,△MON的面积为S2,若S1=2S2,求m的值.3.如图,已知抛物线y=a(x+6)(x﹣2)过点C(0,2),交x轴于点A和点B(点A在点B的左侧),抛物线的顶点为D,对称轴DE交x轴于点E,连接EC.(1)直接写出a的值,点A的坐标和抛物线对称轴的表达式;(2)若点M是抛物线对称轴DE上的点,当△MCE是等腰三角形时,求点M的坐标;(3)点P是抛物线上的动点,连接PC,PE,将△PCE沿CE所在的直线对折,点P落在坐标平面内的点P′处.求当点P′恰好落在直线AD上时点P的横坐标.4.如图1所示,在平面直角坐标系中,抛物线F1:y=a(x﹣)2+与x轴交于点A(﹣,0)和点B,与y轴交于点C.(1)求抛物线F1的表达式;(2)如图2,将抛物线F1先向左平移1个单位,再向下平移3个单位,得到抛物线F2,若抛物线F1与抛物线F2相交于点D,连接BD,CD,BC.①求点D的坐标;②判断△BCD的形状,并说明理由;(3)在(2)的条件下,抛物线F2上是否存在点P,使得△BDP为等腰直角三角形,若存在,求出点P 的坐标;若不存在,请说明理由.5.如图,抛物线y=x2﹣x﹣与x轴交于点A和点B,与y轴交于点C,经过点C的直线l与抛物线交于另一点E(4,a),抛物线的顶点为点Q,抛物线的对称轴与x轴交于点D.(1)求直线CE的解析式.(2)如图2,P为直线CE下方抛物线上一动点,直线CE与x轴交于点F,连接PF,PC.当△PCF的面积最大时,求点P的坐标及△PCF面积的最大值.(3)如图3,连接CD,将(1)中抛物线沿射线CD平移得到新抛物线y′,y′经过点D,y′的顶点为点H,在直线QH上是否存在点G,使得△DQG为等腰三角形?若存在,求出点G的坐标.6.如图1,在平面直角坐标系中,抛物线y=﹣x2+bx+c经过点A(﹣5,0)和点B(1,0).(1)求抛物线的解析式及顶点D的坐标;(2)点P是抛物线上A、D之间的一点,过点P作PE⊥x轴于点E,PG⊥y轴,交抛物线于点G,过点G作GF⊥x轴于点F,当矩形PEFG的周长最大时,求点P的横坐标;(3)如图2,连接AD、BD,点M在线段AB上(不与A、B重合),作∠DMN=∠DBA,MN交线段AD于点N,是否存在这样点M,使得△DMN为等腰三角形?若存在,求出AN的长;若不存在,请说明理由.7.如图,抛物线与x轴交于A,B两点,与y轴交于点C(0,﹣2),点A的坐标是(2,0),P为抛物线上的一个动点,过点P作PD⊥x轴于点D,交直线BC于点E,抛物线的对称轴是直线x=﹣1.(1)求抛物线的函数表达式;(2)若点P在第二象限内,且PE=OD,求△PBE的面积.(3)在(2)的条件下,若M为直线BC上一点,在x轴的上方,是否存在点M,使△BDM是以BD为腰的等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.8.如图所示,二次函数y=k(x﹣1)2+2的图象与一次函数y=kx﹣k+2的图象交于A、B两点,点B在点A的右侧,直线AB分别与x、y轴交于C、D两点,其中k<0.(1)求A、B两点的横坐标;(2)若△OAB是以OA为腰的等腰三角形,求k的值;(3)二次函数图象的对称轴与x轴交于点E,是否存在实数k,使得∠ODC=2∠BEC,若存在,求出k 的值;若不存在,说明理由.9.在平面直角坐标系中,抛物线y=﹣x2+x+2与x轴交于A,B两点(点A在点B左侧),与y 轴交于点C,顶点为D,对称轴与x轴交于点Q.(1)如图1,连接AC,BC.若点P为直线BC上方抛物线上一动点,过点P作PE∥y轴交BC于点E,作PF⊥BC于点F,过点B作BG∥AC交y轴于点G.点H,K分别在对称轴和y轴上运动,连接PH,HK.当△PEF的周长最大时,求PH+HK+KG的最小值及点H的坐标.(2)如图2,将抛物线沿射线AC方向平移,当抛物线经过原点O时停止平移,此时抛物线顶点记为D′,N为直线DQ上一点,连接点D′,C,N,△D′CN能否构成等腰三角形?若能,直接写出满足条件的点N的坐标;若不能,请说明理由.10.如图,在平面直角坐标系中,点A的坐标为(m,m),点B的坐标为(n,﹣n),抛物线经过A、O、B 三点,连接OA、OB、AB,线段AB交y轴于点C.已知实数m、n(m<n)分别是方程x2﹣2x﹣3=0的两根.(1)求抛物线的解析式;(2)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E两点(点D在y轴右侧),连接OD、BD.①求△BOD面积的最大值,并写出此时点D的坐标;②当△OPC为等腰三角形时,请直接写出点P的坐标.11.如图,开口向上的抛物线与x轴交于A(x1,0)、B(x2,0)两点,与y轴交于点C,且AC⊥BC,其中x1,x2是方程x2+3x﹣4=0的两个根.(1)求点C的坐标,并求出抛物线的表达式;(2)垂直于线段BC的直线l交x轴于点D,交线段BC于点E,连接CD,求△CDE的面积的最大值及此时点D的坐标;(3)在(2)的结论下,抛物线的对称轴上是否存在点P,使得△PDE是等腰三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.12.抛物线y =ax 2+bx +3过点A (﹣1,0),点B (3,0),顶点为C .(1)求抛物线的表达式及点C 的坐标;(2)如图1,点P 在抛物线上,连接CP 并延长交x 轴于点D ,连接AC ,若△DAC 是以AC 为底的等腰三角形,求点P 的坐标;(3)如图2,在(2)的条件下,点E 是线段AC 上(与点A ,C 不重合)的动点,连接PE ,作∠PEF =∠CAB ,边EF 交x 轴于点F ,设点F 的横坐标为m ,求m 的取值范围.13.如图,直线y =﹣x +4与x 轴交于点B ,与y 轴交于点C ,抛物线y =﹣x 2+bx +c 经过B ,C 两点,与x 轴另一交点为A .点P 以每秒√2个单位长度的速度在线段BC 上由点B 向点C 运动(点P 不与点B 和点C 重合),设运动时间为t 秒,过点P 作x 轴垂线交x 轴于点E ,交抛物线于点M .(1)求抛物线的解析式;(2)如图①,过点P 作y 轴垂线交y 轴于点N ,连接MN 交BC 于点Q ,当MQ NQ =12时,求t 的值; (3)如图②,连接AM 交BC 于点D ,当△PDM 是等腰三角形时,直接写出t 的值.14.如图,抛物线y=ax2+bx+4交x轴于A(﹣3,0),B(4,0)两点,与y轴交于点C,连接AC,BC.点P是第一象限内抛物线上的一个动点,点P的横坐标为m.(1)求此抛物线的表达式;(2)过点P作PM⊥x轴,垂足为点M,PM交BC于点Q.试探究点P在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标,若不存在,请说明理由;(3)过点P作PN⊥BC,垂足为点N.请用含m的代数式表示线段PN的长,并求出当m为何值时PN 有最大值,最大值是多少?15.如图,在直角坐标系xOy中,反比例函数y=1x(x>0)的图象与直线y=kx+b交于点A(m,2)、B(4,n).连接OA、OB.(1)求直线y=kx+b的解析式;(2)若点C是y轴上的点,当△AOC为等腰三角形时,请直接写出点C的坐标;(3)求△AOB的面积.16.在平面直角坐标系xOy中,已知A(0,2),动点P在y=√33x的图象上运动(不与O重合),连接AP.过点P作PQ⊥AP,交x轴于点Q,连接AQ.(1)求线段AP长度的取值范围;(2)试问:点P运动的过程中,∠QAP是否为定值?如果是,求出该值;如果不是,请说明理由.(3)当△OPQ为等腰三角形时,求点Q的坐标.17.已知抛物线y=a(x﹣2)2+c经过点A(﹣2,0)和C(0,94),与x轴交于另一点B,顶点为D.(1)求抛物线的解析式,并写出D点的坐标;(2)如图,点E,F分别在线段AB,BD上(E点不与A,B重合),且∠DEF=∠A,则△DEF能否为等腰三角形?若能,求出BE的长;若不能,请说明理由;(3)若点P在抛物线上,且S△PBDS△CBD=m,试确定满足条件的点P的个数.18.如图所示,二次函数y=k(x﹣1)2+2的图象与一次函数y=kx﹣k+2的图象交于A、B两点,点B在点A的右侧,直线AB分别与x、y轴交于C、D两点,其中k<0.(1)求A、B两点的横坐标;(2)若△OAB是以OA为腰的等腰三角形,求k的值;(3)二次函数图象的对称轴与x轴交于点E,是否存在实数k,使得∠ODC=2∠BEC,若存在,求出k 的值;若不存在,说明理由.19.如图:一次函数y=−34x+3的图象与坐标轴交于A、B两点,点P是函数y=−34x+3(0<x<4)图象上任意一点,过点P作PM⊥y轴于点M,连接OP.(1)当AP为何值时,△OPM的面积最大?并求出最大值;(2)当△BOP为等腰三角形时,试确定点P的坐标.20.已知一次函数y=﹣3x+3的图象分别与x轴,y轴交于A,B两点,点C(3,0).(1)如图1,点D与点C关于y轴对称,点E在线段BC上且到两坐标轴的距离相等,连接DE,交y 轴于点F.①求点E的坐标;②△AOB与△FOD是否全等,请说明理由;(2)如图2,点G与点B关于x轴对称,点P在直线GC上,若△ABP是等腰三角形,直接写出点P 的坐标.。

2008年浙江各地中考数学压轴题精选

2008年浙江各地中考数学压轴题精选

2008年浙江各地中考数学压轴题精选24.(08金华卷本题12分)如图,在平面直角坐标系中,已知△AOB 是等边三角形,点A 的坐标是(0,4),点B 在第一象限,点P 是x 轴上的一个动点,连结AP ,并把△AOP 绕着点A 按逆时针方向旋转,使边AO 与AB 重合,得到△ABD . (1)求直线AB 的解析式;(2)当点P 运动到点(3,0)时,求此时DP 的长及点D 的坐标; (3)是否存在点P ,使△OPD,若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由.08金华24题解答:(1)如图,过点B 作BE ⊥y 轴于点E ,作BF ⊥x 轴于点F.由已知得BF=OE=2, OF=∴点B 的坐标是(,2) ……(1分)设直线AB 的解析式是y=kx+b,则有42bb=⎧⎪⎨=+⎪⎩ 解得4k b ⎧=⎪⎨⎪=⎩……(2分) ∴直线AB 的解析式是y= x +4 ……(1分) (2) 如图,∵△ABD 由△AOP 旋转得到,∴△ABD ≌△AOP , ∴AP=AD , ∠DAB=∠PAO ,∴∠DAP=∠BAO=600, ∴△ADP 是等边三角形,∴=. ……(2分)如图,过点D 作DH ⊥x 轴于点H ,延长EB 交DH则BG ⊥DH.方法(一)在Rt △BDG 中,∠BGD=900, ∠DBG=600.∴BG=BD •cos600×12. DG=BD •sin600=32.∴72∴点D 的坐标为, 72) ……(2分)方法(二)易得∠AEB=∠BGD=900,∠ABE=∠BDG , ∴△ABE ∽△BDG , ∴BG DG BDAE BE AB ==而,, AB=4,则有24BG == ,解得BG=2 ,DG=32 ∴, DH=72∴点D 的坐标为72) ……(2分) (3)假设存在点P, 在它的运动过程中,使△OPD.设点P 为(t ,0),下面分三种情况讨论:①当t >0时,如图,BD=OP=t, DG=2t,∴DH=2+2t. ∵△OPD的面积等于4 ,∴1(2)224t +=,解得13t =, 23t = ( 舍去) .∴点P 1的坐标为 (3, 0 )②当3-<t ≤0时,如图,BD=OP=-t, BG=-2t,∴DH=GF=2-(-2t )=2+2t.∵△OPD 的面积等于4,∴ 1(2)224t t -+=,解得 13t =-, 2t =∴点P 2的坐标为(, 0),点P 3的坐标为(③当t≤3- 时,如图,BD=OP=-t, DG=-2t,∴DH=t -2.∵△OPD,∴1(2)224t += ,解得1t =(舍去), 2t =∴点P 4的坐标为, 0)综上所述,点P 的坐标分别为P 1、P 2(, 0)、P 3(, 0) 、 P 4, 0) ……(4分)24、(衢州卷本题14分)已知直角梯形纸片OABC 在平面直角坐标系中的位置如图所示,四个顶点的坐标分别为O(0,0),A(10,0),B(8,32),C(0,32),点T 在线段OA 上(不与线段端点重合),将纸片折叠,使点A 落在射线AB 上(记为点A ′),折痕经过点T ,折痕TP 与射线AB 交于点P ,设点T 的横坐标为t ,折叠后纸片重叠部分(图中的阴影部分)的面积为S ;(1)求∠OAB 的度数,并求当点A ′在线段AB 上时,S 关于t 的函数关系式; (2)当纸片重叠部分的图形是四边形时,求t 的取值范围;(3)S 存在最大值吗?若存在,求出这个最大值,并求此时t 的值;若不存在,请说明理由。

2023年湖南省怀化市中考数学真题+答案解析

2023年湖南省怀化市中考数学真题+答案解析

2023年湖南省怀化市中考数学真题+答案解析(真题部分)一、选择题(每小题4分,共40分;每小题的四个选项中只有一项是正确的,请将正确选项的代号填涂在答题卡的相应位置上)1.(4分)下列四个实数中,最小的数是()A.﹣5 B.0 C.D.2.(4分)2023年4月12日21时,正在运行的中国大科学装置“人造太阳”——世界首个全超导托卡马克东方超环(EAST)装置取得重大成果,在第122254次实验中成功实现了403秒稳态长脉冲高约束模式等离子体运行,创造了托卡马克装置高约束模式运行新的世界纪录.数据122254用科学记数法表示为()A.12.2254×104B.1.22254×104C.1.22254×105D.0.122254×1063.(4分)下列计算正确的是()A.a2•a3=a5B.a6÷a2=a3C.(ab3)2=a2b9D.5a﹣2a=34.(4分)剪纸又称刻纸,是中国最古老的民间艺术之一,它是以纸为加工对象,以剪刀(或刻刀)为工具进行创作的艺术.民间剪纸往往通过谐音、象征、寓意等手法提炼、概括自然形态,构成美丽的图案.下列剪纸中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.5.(4分)在平面直角坐标系中,点P(2,﹣3)关于x轴对称的点P′的坐标是()A.(﹣2,﹣3)B.(﹣2,3)C.(2,﹣3)D.(2,3)6.(4分)如图,平移直线AB至CD,直线AB,CD被直线EF所截,∠1=60°,则∠2的度数为()A.30°B.60°C.100°D.120°7.(4分)某县“三独”比赛独唱项目中,5名同学的得分分别是:9.6,9.2,9.6,9.7,9.4.关于这组数据,下列说法正确的是()A.众数是9.6 B.中位数是9.5C.平均数是9.4 D.方差是0.38.(4分)下列说法错误的是()A.成语“水中捞月”表示的事件是不可能事件B.一元二次方程x2+x+3=0有两个相等的实数根C.任意多边形的外角和等于360°D.三角形三条中线的交点叫作三角形的重心9.(4分)已知压力F(N)、压强p(Pa)与受力面积S(m2)之间有如下关系式:F=pS.当F为定值时,如图中大致表示压强p与受力面积S之间函数关系的是()A.B.C.D.10.(4分)如图,反比例函数y=(k>0)的图象与过点(﹣1,0)的直线AB相交于A、B两点.已=9,那么点C的坐标为()知点A的坐标为(1,3),点C为x轴上任意一点.如果S△ABCA.(﹣3,0)B.(5,0)C.(﹣3,0)或(5,0)D.(3,0)或(﹣5,0)二、填空题(每小题4分,共24分;请将答案直接填写在答题卡的相应位置上)11.(4分)要使代数式有意义,则x的取值范围是.12.(4分)分解因式:2x2﹣4x+2=.13.(4分)已知关于x的一元二次方程x2+mx﹣2=0的一个根为﹣1,则m的值为,另一个根为.14.(4分)定义新运算:(a,b)•(c,d)=ac+bd,其中a,b,c,d为实数.例如:(1,2)•(3,4)=1×3+2×4=11.如果(2x,3)•(3,﹣1)=3,那么x=.15.(4分)如图,点P是正方形ABCD的对角线AC上的一点,PE⊥AD于点E,PE=3.则点P到直线AB的距离为.16.(4分)在平面直角坐标系中,△AOB为等边三角形,点A的坐标为(1,0).把△A0B按如图所示的方式放置,并将△AOB进行变换:第一次变换将△AOB绕着原点O顺时针旋转60°,同时边长扩大为△AOB边长的2倍,得到△A1OB1;第二次旋转将△A1OB1绕着原点O顺时针旋转60°,同时边长扩大为△A1OB1边长的2倍,得到△A2OB2,….依次类推,得到△A2033OB2033,则△A2023OB2033的边长为,点A2023的坐标为.三、解答题(本大题共8小题,共86分)17.(8分)计算:|﹣2|+()﹣1﹣+(sin45°﹣1)0﹣(﹣1).18.(8分)先化简(1+)÷,再从﹣1,0,1,2中选择一个适当的数作为a的值代入求值.19.(10分)如图,矩形ABCD中,过对角线BD的中点O作BD的垂线EF,分别交AD,BC于点E,F.(1)证明:△BOF≌△DOE;(2)连接BE、DF,证明:四边形EBFD是菱形.20.(10分)为弘扬革命传统精神,清明期间,某校组织学生前往怀化市烈士陵园缅怀革命先烈.大家被革命烈士纪念碑的雄伟壮观震撼,想知道纪念碑的通高CD(碑顶到水平地面的距离),于是师生组成综合实践小组进行测量.他们在地面的A点用测角仪测得碑顶D的仰角为30°,在B点处测得碑顶D的仰角为60°,已知AB=35m,测角仪的高度是1.5m(A、B、C在同一直线上),根据以上数据求烈士纪念碑的通高CD.(≈1.732,结果保留一位小数)21.(12分)近年,“青少年视力健康”受到社会的广泛关注.某校综合实践小组为了解该校学生的视力健康状况,从全校学生中随机抽取部分学生进行视力调查.根据调查结果和视力有关标准,绘制了两幅不完整的统计图.请根据图中信息解答下列问题:(1)所抽取的学生人数为;(2)补全条形统计图,并求出扇形统计图中“轻度近视”对应的扇形的圆心角的度数;(3)该校共有学生3000人,请估计该校学生中近视程度为“轻度近视”的人数.22.(12分)如图,AB是⊙O的直径,点P是⊙O外一点,P A与⊙O相切于点A,点C为⊙O上的一点.连接PC、AC、OC,且PC=P A.(1)求证:PC为⊙O的切线;(2)延长PC与AB的延长线交于点D,求证:PD•OC=P A•OD;(3)若∠CAB=30°,OD=8,求阴影部分的面积.23.(12分)某中学组织学生研学,原计划租用可坐乘客45人的A种客车若干辆,则有30人没有座位;若租用可坐乘客60人的B种客车,则可少租6辆,且恰好坐满.(1)求原计划租用A种客车多少辆?这次研学去了多少人?(2)若该校计划租用A、B两种客车共25辆,要求B种客车不超过7辆,且每人都有座位,则有哪几种租车方案?(3)在(2)的条件下,若A种客车租金为每辆220元,B种客车租金每辆300元,应该怎样租车才最合算?24.(14分)如图一所示,在平面直角坐标系中,抛物线y=ax2+bx﹣8与x轴交于A(﹣4,0)、B(2,0)两点,与y轴交于点C.(1)求抛物线的函数表达式及顶点坐标;(2)点P为第三象限内抛物线上一点,作直线AC,连接P A、PC,求△P AC面积的最大值及此时点P的坐标;(3)设直线l1:y=kx+k﹣交抛物线于点M、N,求证:无论k为何值,平行于x轴的直线l2:y=﹣上总存在一点E,使得∠MEN为直角.2023年湖南省怀化市中考数学真题+答案解析(答案部分)一、选择题(每小题4分,共40分;每小题的四个选项中只有一项是正确的,请将正确选项的代号填涂在答题卡的相应位置上)1.(4分)下列四个实数中,最小的数是()A.﹣5 B.0 C.D.【分析】正数>0>负数;一个正数越大,其算术平方根越大;据此进行判断即可.【解析】解:∵1<2,∴<,即1<,则<,那么﹣5<0<<,则最小的数为:﹣5,故选:A.2.(4分)2023年4月12日21时,正在运行的中国大科学装置“人造太阳”——世界首个全超导托卡马克东方超环(EAST)装置取得重大成果,在第122254次实验中成功实现了403秒稳态长脉冲高约束模式等离子体运行,创造了托卡马克装置高约束模式运行新的世界纪录.数据122254用科学记数法表示为()A.12.2254×104B.1.22254×104C.1.22254×105D.0.122254×106【分析】将一个数表示为a×10n的形式,其中1≤|a|<10,n为整数,这种记数方法叫做科学记数法,据此即可得出答案.【解析】解:122254=1.22254×105,故选:C.3.(4分)下列计算正确的是()A.a2•a3=a5B.a6÷a2=a3C.(ab3)2=a2b9D.5a﹣2a=3【分析】直接利用同底数幂的乘除运算法则以及积的乘方运算法则、合并同类项法则,分别判断得出答案.【解析】解:A.a2•a3=a5,故此选项符合题意;B.a6÷a2=a4,故此选项不合题意;C.(ab3)2=a2b6,故此选项不合题意;D.5a﹣2a=3a,故此选项不合题意.故选:A.4.(4分)剪纸又称刻纸,是中国最古老的民间艺术之一,它是以纸为加工对象,以剪刀(或刻刀)为工具进行创作的艺术.民间剪纸往往通过谐音、象征、寓意等手法提炼、概括自然形态,构成美丽的图案.下列剪纸中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形和中心对称图形的定义进行逐一判断即可.【解析】解:A.原图是中心对称图形,不是轴对称图形,不符合题意;B.原图是轴对称图形,不是中心对称图形,不符合题意;C.原图既是中心对称图形,又是轴对称图形,符合题意;D.原图是轴对称图形,不是中心对称图形,不符合题意;故选:C.5.(4分)在平面直角坐标系中,点P(2,﹣3)关于x轴对称的点P′的坐标是()A.(﹣2,﹣3)B.(﹣2,3)C.(2,﹣3)D.(2,3)【分析】根据关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P′的坐标是(x,﹣y),进而得出答案.【解析】解:点P(2,﹣3)关于x轴对称的点P′的坐标是(2,3).故选:D.6.(4分)如图,平移直线AB至CD,直线AB,CD被直线EF所截,∠1=60°,则∠2的度数为()A.30°B.60°C.100°D.120°【分析】根据平移直线AB至CD,可得AB∥CD,所以∠BMF=∠2,根据对顶角相等得∠BMF =∠1=60°,所以∠2=60°.【解析】解:如图,∵平移直线AB至CD,∴AB∥CD,∴∠BMF=∠2,∵∠BMF=∠1=60°,∴∠2=60°.故选:B.7.(4分)某县“三独”比赛独唱项目中,5名同学的得分分别是:9.6,9.2,9.6,9.7,9.4.关于这组数据,下列说法正确的是()A.众数是9.6 B.中位数是9.5C.平均数是9.4 D.方差是0.3【分析】根据方差、中位数、众数及平均数的定义,结合数据进行分析即可.【解析】解:在这组数据中,9.6出现的次数最多,故众数是9.6,故选项A符合题意;把这组数据从小到大排列,排在中间的数是9.6,故中位数是9.6,故选项B不符合题意;平均数是=9.5,故选项C不符合题意;方差是:[2×(9.6﹣9.5)2+(9.2﹣9.5)2+(9.7﹣9.5)2+(9.4﹣9.5)2]=0.032,故选项D不符合题意.故选:A.8.(4分)下列说法错误的是()A.成语“水中捞月”表示的事件是不可能事件B.一元二次方程x2+x+3=0有两个相等的实数根C.任意多边形的外角和等于360°D.三角形三条中线的交点叫作三角形的重心【分析】根据随机事件的定义可以判断A;根据根的判别式可以判断B;根据任意多边形的外角和都是360°可以判断C;根据三角形重心的定义可以判断D.【解析】解:成语“水中捞月”表示的事件是不可能事件,故选项A正确,不符合题意;∵一元二次方程x2+x+3=0,∴Δ=12﹣4×1×3=﹣11<0,∴一元二次方程x2+x+3=0无实数根,故选项B错误,符合题意;任意多边形的外角和等于360°,故选项C正确,不符合题意;三角形三条中线的交点叫作三角形的重心,故选项D正确,不符合题意;故选:B.9.(4分)已知压力F(N)、压强p(Pa)与受力面积S(m2)之间有如下关系式:F=pS.当F为定值时,如图中大致表示压强p与受力面积S之间函数关系的是()A.B.C.D.【分析】根据函数的解析式判断函数的图形即可.【解析】解:∵压力F(N)、压强p(Pa)与受力面积S(m2)之间有如下关系式:F=pS.∴当F为定值时,压强p与受力面积S之间函数关系是反比例函数,故选:D.10.(4分)如图,反比例函数y=(k>0)的图象与过点(﹣1,0)的直线AB相交于A、B两点.已=9,那么点C的坐标为()知点A的坐标为(1,3),点C为x轴上任意一点.如果S△ABCA .(﹣3,0)B .(5,0)C .(﹣3,0)或(5,0)D .(3,0)或(﹣5,0)【分析】利用待定系数法求得两函数的解析式,然后解析式联立成方程组,解方程组求得点B 的坐标,根据S △ACD +S △BCD =S △ABC =9,求得CD 的长度,进而即可求得点C 的坐标.【解析】解:把点A (1,3)代入y =(k >0)得,3=,∴k =3,∴反比例函数为y =,设直线AB 为y =ax +b ,代入点D (﹣1,0),A (1,3)得, 解得,∴直线AB 为y =x +, 解,得或,∴B (﹣2,﹣),∵S △ABC =9,∴S △ACD +S △BCD =,∴CD =4,∴点C 的坐标为(﹣5,0)或(3,0).故选:D .二、填空题(每小题4分,共24分;请将答案直接填写在答题卡的相应位置上)11.(4分)要使代数式有意义,则x 的取值范围是 x ≥9 .【分析】根据代数式有意义,可得x﹣9≥0,进一步求解即可.【解析】解:∵代数式有意义,∴x﹣9≥0,∴x≥9,故答案为:x≥9.12.(4分)分解因式:2x2﹣4x+2=2(x﹣1)2.【分析】先提取公因数2,再利用完全平方公式进行二次分解.a2±2ab+b2=(a±b)2.【解析】解:2x2﹣4x+2,=2(x2﹣2x+1),=2(x﹣1)2.13.(4分)已知关于x的一元二次方程x2+mx﹣2=0的一个根为﹣1,则m的值为﹣1,另一个根为2.【分析】将x=﹣1代入原方程,可得出关于m的一元一次方程,解之即可得出m的值,再结合两根之积等于﹣2,即可求出方程的另一个根.【解析】解:将x=﹣1代入原方程可得1﹣m﹣2=0,解得:m=﹣1,∵方程的两根之积为=﹣2,∴方程的另一个根为﹣2÷(﹣1)=2.故答案为:﹣1,2.14.(4分)定义新运算:(a,b)•(c,d)=ac+bd,其中a,b,c,d为实数.例如:(1,2)•(3,4)=1×3+2×4=11.如果(2x,3)•(3,﹣1)=3,那么x=1.【分析】直接利用运算公式将原式变形,进而计算得出答案.【解析】解:(2x,3)•(3,﹣1)=3,6x﹣3=3,解得:x=1.故答案为:1.15.(4分)如图,点P是正方形ABCD的对角线AC上的一点,PE⊥AD于点E,PE=3.则点P到直线AB的距离为3.【分析】过点P作PF⊥AB于点F,根据正方形的性质易得△AEP为等腰直角三角形,AE=PE=3,再根据有三个角为直角,且邻边相等的四边形为正方形证明四边形AFPE为正方形,以此即可求解.【解析】解:过点P作PF⊥AB于点F,∵四边形ABCD为正方形,∴AB=BC=CD=AD,∠DAB=∠B=∠BCD=∠D=90°,∴∠P AE=45°,∴△AEP为等腰直角三角形,AE=PE=3,∵PE⊥AD,PF⊥AB,∴∠F AE=∠AEP=∠AFP=90°,又∵AE=PE,∴四边形AFPE为正方形,∴AE=PF=3,∴点P到直线AB的距离为3.故答案为:3.16.(4分)在平面直角坐标系中,△AOB为等边三角形,点A的坐标为(1,0).把△A0B按如图所示的方式放置,并将△AOB进行变换:第一次变换将△AOB绕着原点O顺时针旋转60°,同时边长扩大为△AOB边长的2倍,得到△A1OB1;第二次旋转将△A1OB1绕着原点O顺时针旋转60°,同时边长扩大为△A1OB1边长的2倍,得到△A2OB2,….依次类推,得到△A2033OB2033,则△A2023OB2033的边长为22023,点A2023的坐标为(22022,22022).【分析】利用等边三角形的性质,探究规律后,利用规律解决问题.【解析】解:由题意OA=1=20,OA1=2=21,OA2=4=22,OA3=8=23,…OA n=2n,∴△A2023OB2033的边长为22023,∵2023÷6=372…1,∴A2023与A1都在第四象限,坐标为(22022,22022•).故答案为:22023,(22022,22022).三、解答题(本大题共8小题,共86分)17.(8分)计算:|﹣2|+()﹣1﹣+(sin45°﹣1)0﹣(﹣1).【分析】直接利用负整数指数幂的性质以及零指数幂的性质、二次根式的性质、绝对值的性质分别化简,进而得出答案.【解析】解:原式=2+3﹣3+1+1=4.18.(8分)先化简(1+)÷,再从﹣1,0,1,2中选择一个适当的数作为a的值代入求值.【分析】直接利用分式的混合运算法则化简,进而把已知数据代入得出答案.【解析】解:原式=•=•=,当a=1或2时,分式无意义,故当a=﹣1时,原式=﹣,当a=0时,原式=﹣.19.(10分)如图,矩形ABCD中,过对角线BD的中点O作BD的垂线EF,分别交AD,BC于点E,F.(1)证明:△BOF≌△DOE;(2)连接BE、DF,证明:四边形EBFD是菱形.【分析】(1)根据矩形的对边平行得到AD∥BC,于是有∠EDO=∠FBO,根据点O是BD的中点得出DO=BO,结合对顶角相等利用ASA可证得△BOF和△DOE全等;(2)由(1)△BOF≌△DOE可得BF=DE,结合DE∥BF,可得四边形EBFD是平行四边形,再根据对角线互相垂直的平行四边形是菱形即可得证.【解析】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠EDO=∠FBO,∵点O是BD的中点,∴DO=BO,又∵∠EOD=∠FOB,∴△BOF≌△DOE(ASA);(2)证明:由(1)已证△BOF≌△DOE,∴BF=DE,∵四边形ABCD是矩形,∴AD∥BC,即DE∥BF,∴四边形EBFD是平行四边形,∵EF⊥BD,∴四边形EBFD是菱形.20.(10分)为弘扬革命传统精神,清明期间,某校组织学生前往怀化市烈士陵园缅怀革命先烈.大家被革命烈士纪念碑的雄伟壮观震撼,想知道纪念碑的通高CD(碑顶到水平地面的距离),于是师生组成综合实践小组进行测量.他们在地面的A点用测角仪测得碑顶D的仰角为30°,在B点处测得碑顶D的仰角为60°,已知AB=35m,测角仪的高度是1.5m(A、B、C在同一直线上),根据以上数据求烈士纪念碑的通高CD.(≈1.732,结果保留一位小数)【分析】根据题意可得AM=BN=CE=1.5m,AB=MN=35m,∠DEM=90°,∠DNE=60°,∠DME =30°,先利用三角形的外角性质可得∠DMN=∠MDN=30°,从而可得DN=MN=35m,然后在Rt△DNE中,利用锐角三角函数的定义求出DE的长,即可得的答案.【解析】解:由题意得:AM=BN=CE=1.5m,AB=MN=35m,∠DEM=90°,∠DNE=60°,∠DME=30°,∵∠DNE是△DMN的外角,∴∠MND=∠DNE﹣∠DMN=30°,∴∠DMN=∠MDN=30°,∴DN=MN=35m,在Rt△DNE中,DE=DN•sin60°=35×=(m),∴DC=DE+CE=+1.5≈+1.5≈31.8(m).答:烈士纪念碑的通高CD约为31.8m.21.(12分)近年,“青少年视力健康”受到社会的广泛关注.某校综合实践小组为了解该校学生的视力健康状况,从全校学生中随机抽取部分学生进行视力调查.根据调查结果和视力有关标准,绘制了两幅不完整的统计图.请根据图中信息解答下列问题:(1)所抽取的学生人数为200;(2)补全条形统计图,并求出扇形统计图中“轻度近视”对应的扇形的圆心角的度数;(3)该校共有学生3000人,请估计该校学生中近视程度为“轻度近视”的人数.【分析】(1)由“视力正常人数及其所占百分比可得总人数;(2)用(1)的结论乘15%可得“中度近视”的人数,进而得出“高度近视”的人数,再补全条形统计图;用360°乘“轻度近视”所占比例可得扇形统计图中“轻度近视”对应的扇形的圆心角的度数;(3)用3000乘样本中“轻度近视”所占比例可得答案.【解析】解:(1)所抽取的学生人数为:90÷45%=200.故答案为:200;(2)样本中“中度近视”的人数为:200×15%=30(人),“高度近视”的人数为:200﹣90﹣70﹣30=10(人),补全条形统计图如下:扇形统计图中“轻度近视”对应的扇形的圆心角的度数为:360°×=126°;(3)3000×=1050(人),答:估计该校学生中近视程度为“轻度近视”的人数约1050人.22.(12分)如图,AB是⊙O的直径,点P是⊙O外一点,P A与⊙O相切于点A,点C为⊙O上的一点.连接PC、AC、OC,且PC=P A.(1)求证:PC为⊙O的切线;(2)延长PC与AB的延长线交于点D,求证:PD•OC=P A•OD;(3)若∠CAB=30°,OD=8,求阴影部分的面积.【分析】(1)先由切线的性质得∠P AO=90°,然后依据“SSS”判定△POC和△POA全等,从而得∠PCO=∠P AO=90°,据此即可得出结论;(2)由∠DCO=∠DAP=90°,∠ODC=∠PDA可判定△ODC和△PDA相似,进而根据相似三角形的性质可得出结论;(3)连接BC,过点C作CE⊥OB于点E,先证△OCB为等边三角形,再设OE=a,则OA=OB =OC=2a,,在Rt△CDE和在Rt△DOC中,由勾股定理得CD2=CE2+DE2=OD2﹣OC2,由此可求出a的值,进而得⊙O的半径为4,然后根据S阴影=S△DOC﹣S扇形BOC即可得出答案.【解析】(1)证明:∵AB为⊙O的直径,P A为⊙O的切线,∴P A⊥OA,即:∠P AO=90°,∵点C在⊙O上,∴OC=OA,在△POC和△POA中,,∴△POC≌△POA(SSS),∴∠PCO=∠P AO=90°,即:PC⊥OC,又OC为⊙O的半径,∴PC为⊙O的切线.(2)证明:由(1)可知:OC⊥PD,∴∠DCO=∠DAP=90°,又∠ODC=∠PDA,∴△ODC∽△PDA,∴,即:PD•OC=P A•OD.(3)解:连接BC,过点C作CE⊥OB于点E,∵∠CAB=30°,∴∠COB=60°,又OC=OB,∴△OCB为等边三角形,∵CE⊥OB,∴OE=BE,设OE=a,显然a≠0,则OA=OB=OC=2a,在Rt△OCE中,OE=a,OC=2a,由勾股定理得:,∵OD=8,∴DE=OD﹣OE=8﹣a,在Rt△CDE中,,DE=8﹣a,由勾股定理得:,在Rt△DOC中,OC=2a,OD=8,由勾股定理得:CD2=OD2﹣OC2=82﹣(2a)2,,整理得:a2﹣2a=0,∵a≠0,∴a=2,∴OC=2a=4,,∴,又∵,∴.23.(12分)某中学组织学生研学,原计划租用可坐乘客45人的A种客车若干辆,则有30人没有座位;若租用可坐乘客60人的B种客车,则可少租6辆,且恰好坐满.(1)求原计划租用A种客车多少辆?这次研学去了多少人?(2)若该校计划租用A、B两种客车共25辆,要求B种客车不超过7辆,且每人都有座位,则有哪几种租车方案?(3)在(2)的条件下,若A种客车租金为每辆220元,B种客车租金每辆300元,应该怎样租车才最合算?【分析】(1)设原计划租用A种客车x辆,则这次研学去了(45x+30)人,根据这次去研学的人数不变,可得出关于x的一元一次方程,解之即可得出结论;(2)设租用B种客车y辆,则租用A种客车(25﹣y)辆,根据“租用的25辆客车可乘坐人数不少于1200人,且租用的B种客车不超过7辆”,可得出关于y的一元一次不等式组,解之可得出y 的取值范围,再结合y为正整数,即可得出各租车方案;(3)利用总租金=每辆A种客车的租金×租用A种客车的辆数+每辆B种客车的租金×租用B种客车的辆数,可分别求出各选择各方案所需总租金,比较后,即可得出结论.【解析】解:(1)设原计划租用A种客车x辆,则这次研学去了(45x+30)人,根据题意得:45x+30=60(x﹣6),解得:x=26,∴45x+30=45×26+30=1200.答:原计划租用A种客车26辆,这次研学去了1200人;(2)设租用B种客车y辆,则租用A种客车(25﹣y)辆,根据题意得:,解得:5≤y≤7,又∵y为正整数,∴y可以为5,6,7,∴该学校共有3种租车方案,方案1:租用5辆B种客车,20辆A种客车;方案2:租用6辆B种客车,19辆A种客车;方案3:租用7辆B种客车,18辆A种客车;(3)选择方案1的总租金为300×5+220×20=5900(元);选择方案2的总租金为300×6+220×19=5980(元);选择方案3的总租金为300×7+220×18=6060(元).∵5900<5980<6060,∴租用5辆B种客车,20辆A种客车最合算.24.(14分)如图一所示,在平面直角坐标系中,抛物线y=ax2+bx﹣8与x轴交于A(﹣4,0)、B(2,0)两点,与y轴交于点C.(1)求抛物线的函数表达式及顶点坐标;(2)点P为第三象限内抛物线上一点,作直线AC,连接P A、PC,求△P AC面积的最大值及此时点P的坐标;(3)设直线l1:y=kx+k﹣交抛物线于点M、N,求证:无论k为何值,平行于x轴的直线l2:y=﹣上总存在一点E,使得∠MEN为直角.【分析】(1)运用待定系数法,将A(﹣4,0)、B(2,0)代入y=ax2+bx﹣8,即可求得抛物线的函数表达式,再利用配方法或顶点坐标公式即可求得抛物线的顶点坐标;(2)运用待定系数法可得直线AC的解析式为y=﹣2x﹣8,设P(t,t2+2t﹣8),过点P作PF∥y轴,交AC于点F,则F(t,﹣2t﹣8),进而可得S△P AC =S△P AF+S△PCF=2(﹣t2﹣4t)=﹣2(t+2)2+8,运用二次函数的性质即可求得答案;(3)由直线l1:y=kx+k﹣交抛物线于点M、N,可得x2+(2﹣k)x+﹣k=0,利用根与系数关系可得x M+x N=k﹣2,x M x N=﹣k,利用两点间距离公式可得MN2=(x M﹣x N)2+(y M﹣y N)2=(1+k2)2,设MN的中点为O′,过点O′作O′E⊥直线l2,垂足为E,O′E=MN,以MN为直径的⊙O′一定经过点E,所以∠MEN=90°,即证得结论.【解析】(1)解:∵抛物线y=ax2+bx﹣8与x轴交于A(﹣4,0)、B(2,0)两点,∴,解得:,∴抛物线的函数表达式为y=x2+2x﹣8,∵y=x2+2x﹣8=(x+1)2﹣9,∴抛物线的顶点坐标为(﹣1,﹣9);(2)解:∵抛物线y=x2+2x﹣8与y轴交于点C,∴C(0,﹣8),设直线AC的解析式为y=mx+n,则,解得:,∴直线AC的解析式为y=﹣2x﹣8,设P(t,t2+2t﹣8),过点P作PF∥y轴,交AC于点F,如图,则F(t,﹣2t﹣8),∴PF=﹣2t﹣8﹣(t2+2t﹣8)=﹣t2﹣4t,∴S△P AC =S△P AF+S△PCF=PF•(t+4)+PF•(﹣t)=2PF=2(﹣t2﹣4t)=﹣2(t+2)2+8,∵﹣2<0,∴当t=﹣2时,S△P AC的最大值为8,此时点P(﹣2,﹣8);(3)证明:∵直线l1:y=kx+k﹣交抛物线于点M、N,∴x2+2x﹣8=kx+k﹣,整理得:x2+(2﹣k)x+﹣k=0,∴x M+x N=k﹣2,x M x N=﹣k,∵y M=kx M+k﹣,y N=kx N+k﹣,∴y M﹣y N=k(x M﹣x N),∴MN2=(x M﹣x N)2+(y M﹣y N)2=(1+k2)(x M﹣x N)2=(1+k2)[(x M+x N)2﹣4x M x N]=(1+k2)[(k﹣2)2﹣4(﹣k)]=(1+k2)2,∵设MN的中点为O′,∴O′(,k2﹣),过点O′作O′E⊥直线l2:y=﹣,垂足为E,如图,∴E(,﹣),∴O′E=k2﹣﹣(﹣)=(1+k2),∴O′E=MN,∴以MN为直径的⊙O′一定经过点E,∴∠MEN=90°,∴在直线l2:y=﹣上总存在一点E,使得∠MEN为直角.。

八年级上册数学质量检测试题附答案

八年级上册数学质量检测试题附答案

八年级上册数学质量检测试题附答案数学考试前做检测题对八年级数学考试尤为重要,能够锻炼学生们的解题能力。

以下是店铺为你整理的八年级上册数学质量检测试题,希望对大家有帮助!八年级上册数学质量检测试题一、选择题:在每小题给出的四个选项中,只有一项符合题意,请把你认为正确的选项填入括号中。

本大题共10小题,共40分.1. 化简二次根式等于A. 3B. -3C. ±3D.2. 若实数x、y满足,则xy的值为A. -5B. 5C. -6D. 63. 在下列图形中,既是中心对称图形又是轴对称图形的是A. 等腰三角形B. 正方形C. 平行四边形D. 等腰梯形4. 函数的自变量x的取值范围为A. x≠1B. x≥-1C. x>-1且x≠1D. x≥-1且x≠15. 下列二次根式中,与是同类二次根式的是A. B. C. D.6. 如图是一个中心对称图形,点A为对称中心,若∠C=90°,∠B=30°,BC=1,则BB′的长为A. 4B.C.D.7. 菱形的两条对角线的长分别是6和8,则这个菱形的周长是A. 5B. 20C. 24D. 408. 下列命题正确的是A. 平行四边形的对角线相等B. 矩形的对角线互相平分C. 菱形的对角线相等且互相平分D. 等腰梯形的一组对边相等且平行9. 已知点的坐标为,为坐标原点,连结,将线段绕点按逆时针方向旋转得,则点的坐标为A. B. C. D.10. 图1中的“箭头”是以AC所在直线为对称轴的轴对称图形,, .图2到图4是将“箭头”沿虚线剪拼成正方形的过程,则图1中的长为A. 1B.C. 2D.二、填空题:请把你认为正确的选项填入表格内.本大题共6小题,每空4分,共36分.11. 计算: =____________, =___________, =____________.12. 在梯形ABCD中,AD∥BC,点E、F分别是AB、CD的中点,若AD=5,BC=7,则EF= .13. 一块木板如图所示,已知AB=4,BC=3,DC=12,AD=13,∠B=90°,木板的面积为 .14. 在平行四边形ABCD中,AB=5,BC=7,∠B、∠C的平分线分别交AD于E、F,则EF= .15. 如图,Rt△ABC中,∠C=90°,AC=3,BC=4,点P为AB边上任一点,过P分别作PE⊥AC于E,PF⊥BC于F,则线段EF的最小值是 .16. 如图,在平面直角坐标系xOy中,,,,,…,以为对角线作第一个正方形,以为对角线作第二个正方形,以为对角线作第三个正方形,…,如果所作正方形的对角线都在y轴上,且的长度依次增加1个单位,顶点都在第一象限内(n≥1,且n为整数).那么的纵坐标为 ;用n的代数式表示的纵坐标为 .三、解答题:本大题共7小题,共44分.17. (5分)计算: .18. (5分)计算: .19. (6分)已知:如图,梯形中,∥ ,,,,,点为中点,于点,求的长.20. (6分)列分式方程解应用题:小明乘坐火车从某地到上海去参观世博园,已知此次行程为2160千米,城际直达动车组的平均时速是特快列车的1.6倍.小明购买火车票时发现,乘坐动车组比乘坐特快列车少用6小时.求小明乘坐动车组到上海需要的时间.21. (7分) 阅读理解:对于任意正实数,, .,只有当时,等号成立.结论:在 ( 均为正实数)中,若为定值,则,只有当时,有最小值 .根据上述内容,回答下列问题:(1)若,只有当时,有最小值 .(2)探索应用:已知,,点P为双曲线上的任意一点,过点作轴于点,轴于点 .求四边形面积的最小值,并说明此时四边形的形状.22. (8分)如图,在平面直角坐标系中,O为坐标原点,△AOB为等边三角形,点A的坐标是( ,),点B在第一象限,AC是∠OAB的平分线,并且与y轴交于点E,点M为直线AC上一个动点,把△AOM 绕点A顺时针旋转,使边AO与边AB重合,得到△ABD.(1)求直线OB的解析式;(2)当点M与点E重合时,求此时点D的坐标;(3)设点M的纵坐标为m,求△OMD的面积S关于m的函数解析式.23. (7分)已知,正方形ABCD中,△BEF为等腰直角三角形,且BF为底,取DF的中点G,连接EG、CG.(1)如图1,若△BEF的底边BF在BC上,猜想EG和CG的数量关系为 ;(2)如图2,若△BEF的直角边BE在BC上,则(1)中的结论是否还成立?请说明理由;(3)如图3,若△BEF的直角边BE在∠DBC内,则(1)中的结论是否还成立?说明理由.八年级上册数学质量检测试题答案一、选择题:在每小题给出的四个选项中,只有一项符合题意.本大题共10小题,共40分.题号 1 2 3 4 5 6 7 8 9 10答案 A C B D A D B B C D二、填空题:本大题共6小题,共36分.题号 11 12 13 14 15 16答案 6 24 3 2三、解答题:本大题共7小题,共44分.17. 解:原式= …………………………………………4分= .…………………………………………5分18. 解:原式= …………………………………………4分= .…………………………………………5分19. 解:过点作∥ ,交于点.……………………………1分∴ .∵ ∥ ,∴ 四边形为平行四边形.……………………………………2分∴ .∵ ,∴ .………………………………… …3分∵ ,,∴ .∴ 在△ 中,. ……………………………………4分又∵ 为中点,∴ .……………………………………5分∵ 于,∴ .……………………………………6分(若学生使用其他方法,只要解法正确,皆给分.)20. 解:设小明乘坐动车组到上海需要小时.……………1分依题意,得. …………………………3分解得. ……………………………………4分经检验:是方程的解,且满足实际意义. ………5分答:小明乘坐动车组到上海需要小时. ………6分21. 解:(1) m= 1 (填不扣分),最小值为2 ; ……………………2分(2)设,则,,………………………………………………………3分,化简得:,………………………………………………4分,只有当…………………………………………………5分∴S ≥2×6+12=24.∴S四边形ABCD有最小值24. ……………………………… ……………………6分此时,P(3,4),C(3,0),D(0,4),∴ AB=BC=CD=DA=5,∴ 四边形ABCD是菱形. ……………………………………………………7分22. 解:(1)B( ,); …………………………………………………1分:. ………………………………………………… …2分(2)如图1,由题意轴, .则点的横坐标为; ……………………………………3分此时,即点 ( ,).……………………………4分(3)过作轴,设,如图2,当时,.………………………………………5分如图3,当时,由,∴ , .. ……………………………………………6分如图4,当时,. ……………………………………………7分如图5,当时,由,∴ , ... ……………………………… ……………8分∴ (四种情况讨论正确一种给1分)23. (1)GC =EG. ……………………………………………………………1分(2)如图,延长EG交CD于M,易证△GEF≌△GMD,得G为EM的中点.易得CG为直角△ECM的斜边上的中线.于是有GC=GE.……………………………………………3分(3)如图,延长EG到M,使EG=GM,连接CM、CE.易证△EFG≌△MDG,则EF=DM、∠EFG=∠MDG.∵∠DBE+∠DFE+∠BDF=90°,∴∠DBE+∠GDM+∠BDF=90°. ∴∠MDC+∠DBE=45°.∵∠EBC+∠DBE=45°,∴∠EBC=∠MDC.进而易证△CBE≌△CDM,∴E C=CM、∠ECB=∠MCD.易得∠ECM=90°,∴CG为直角△ECM斜边EM的中线.∴EG=GC.………………………………………………………3分其他证法:(1)EG =CG. (1)分(2)成立. ……………………………………………………………2分证明:过点F作BC的平行线交DC的延长线于点M,连结MG.∴EF=CM,易证EFMC为矩形∴∠EFG=∠GDM.在直角三角形FMD中,∴DG=GF,∴FG=GM=GD.∴∠GMD=∠GDM. ∴∠EFG=∠GMD.∴△EFG≌△GCM.∴EG=CG. ……………………………………………………………4分(3)成立.取BF的中点H,连结EH,GH,取BD的中点O,连结OG,OC.∵CB=CD,∠DCB=90°,∴ .∵DG=GF,∴CO=GH.∵△BEF为等腰直角三角形.∴ . ∴EH=OG.∵四边形OBHG为平行四边形,∴∠BOG=∠BHG.∵∠BOC=∠BHE=90°.∴∠GOC=∠EHG. ∴△GOC≌△EHG.∴EG=GC. ……………………………………………………………7分(若学生使用其他方法,只要解法正确,皆给分.)。

2024年中考数学一轮复习章节测试及解析—第七章:图形的变化(提升卷)

2024年中考数学一轮复习章节测试及解析—第七章:图形的变化(提升卷)

2024年中考数学一轮复习章节测试及解析—第七章:图形的变化(提升卷)(时间:90分钟满分:120分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.下列垃圾分类标志分别是厨余垃圾、有害垃圾、其他垃圾和可回收物,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】B【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是轴对称图形,不是中心对称图形,故此选项不合题意;B、既是轴对称图形,也是中心对称图形,故此选项符合题意;C、是轴对称图形,不是中心对称图形,故此选项不合题意;D、既不是轴对称图形,也不是中心对称图形,故此选项不符合题意;故选:B.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .【答案】D【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A 、是轴对称图形,不是中心对称图形,故此选项不符合题意;B 、不是轴对称图形,是中心对称图形,故此选项不符合题意;C 、是轴对称图形,不是中心对称图形,故此选项不符合题意;D 、既是轴对称图形,又是中心对称图形,故此选项符合题意;故选:D .【点睛】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.如图,在ABC 中,120BAC ∠=︒,将ABC 绕点C 逆时针旋转得到DEC ,点A ,B 的对应点分别为D ,E ,连接AD .当点A ,D ,E 在同一条直线上时,下列结论一定正确的是()A .ABC ADC ∠=∠B .CB CD=C .DE DC BC +=D .AB CD∥【答案】D【分析】由旋转可知120EDC BAC ∠=∠=︒,即可求出60ADC ∠=︒,由于60ABC ∠<︒,则可判断ABC ADC ∠≠∠,即A 选项错误;由旋转可知CB CE =,由于CE CD >,即推出CB CD >,即B 选项错误;由三角形三边关系可知DE DC CE +>,即可推出DE DC CB +>,即C 选项错误;由旋转可知DC AC =,再由60ADC ∠=︒,即可证明ADC 为等边三角形,即推出60ACD ∠=︒.即可求出180ACD BAC ∠+∠=︒,即证明//AB CD ,即D 选项正确;【详解】由旋转可知120EDC BAC ∠=∠=︒,∵点A ,D ,E 在同一条直线上,∴18060ADC EDC ∠=︒-∠=︒,∵60ABC ∠<︒,∴ABC ADC ∠≠∠,故A 选项错误,不符合题意;由旋转可知CB CE =,∵120EDC ∠=︒为钝角,∴CE CD >,∴CB CD >,故B 选项错误,不符合题意;∵DE DC CE +>,∴DE DC CB +>,故C 选项错误,不符合题意;由旋转可知DC AC =,∵60ADC ∠=︒,∴ADC 为等边三角形,∴60ACD ∠=︒.∴180ACD BAC ∠+∠=︒,∴//AB CD ,故D 选项正确,符合题意;故选D .【点睛】本题考查旋转的性质,三角形三边关系,等边三角形的判定和性质以及平行线的判定.利用数形结合的思想是解答本题的关键.4.如图,在小正三角形组成的网格中,已有6个小正三角形涂黑,还需涂黑n 个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则n 的最小值为A .10B .6C .3D .2【答案】C 【解析】如图所示,n 的最小值为3,故选C .【名师点睛】本题主要考查利用轴对称设计图案,解题的关键是掌握常见图形的性质和轴对称图形的性质.5.四盏灯笼的位置如图.已知A,B,C,D的坐标分别是(−1,b),(1,b),(2,b),(3.5,b),平移y轴右侧的一盏灯笼,使得y轴两侧的灯笼对称,则平移的方法可以是()A.将B向左平移4.5个单位B.将C向左平移4个单位C.将D向左平移5.5个单位D.将C向左平移3.5个单位【答案】C【分析】直接利用利用关于y轴对称点的性质得出答案.【详解】解:∵点A(−1,b)关于y轴对称点为B(1,b),C(2,b)关于y轴对称点为(-2,b),需要将点D(3.5,b)向左平移3.5+2=5.5个单位,故选:C.【点睛】本题主要考查了关于y轴对称点的性质,正确记忆横纵坐标的关系是解题关键.6.在平面直角坐标系中,等边AOB ∆如图放置,点A 的坐标为()1,0,每一次将AOB ∆绕着点О逆时针方向旋转60︒,同时每边扩大为原来的2倍,第一次旋转后得到11AOB ∆,第二次旋转后得到22A OB ∆,…,依次类推,则点2021A 的坐标为()A .()202020202,2-B .()202120212,2C .()202020202,2D .()201120212,2-【答案】C【分析】由题意,点A 每6次绕原点循环一周,利用每边扩大为原来的2倍即可解决问题.【详解】解:由题意,点A 每6次绕原点循环一周,20216371......5÷= ,2021A ∴点在第四象限,202120212OA =,202160xOA ∠=︒,∴点2020A 的横坐标为20212020122=2⨯,纵坐标为20212020=22-,()2020202020212,2A ∴,故选:C .【点睛】本题考查坐标与图形变化-旋转,规律型问题,解题的关键是理解题意,学会探究规律的方法,属于中考常考题型.7.如图,在菱形OABC 中,点B 在x 轴上,点A 的坐标为(2,),将菱形绕点O 旋转,当点A 落在x 轴上时,点C 的对应点的坐标为()A .(2--,或2)-B .(2,C .(2,-D .(2--,或(2,【答案】D【解析】【分析】如图所示,过点A 作AE ⊥x 轴于点E ,根据题意易得△AOB 为等边三角形,在旋转过程中,点A 有两次落在x 轴上,当点A 落在x 轴正半轴时,点C 落在点C′位置,利用旋转的性质和菱形的性质求解,当A 落在x 轴负半轴时,点C 落在点C′′位置,易证此时C′′与点A 重合,即可求解.【详解】解:如图所示,过点A 作AE ⊥x 轴于点E ,则23tan AOE=2∠,,∴∠AOE=60°,∵四边形ABCD 是菱形,∴△AOB 是等边三角形,当A 落在x 轴正半轴时,点C 落在点C′位置,此时旋转角为60°,∵∠BOC=60°,∠COF=30°,∴∠C′OF=60°-30°=30°,∵OC′=OA=4,∴OF=C'O cos ∠,C′F=C'Osin C'OF=2∠,∴C′(2,--),当A 落在x 轴负半轴时,点C 落在点C′′位置,∵∠AOC=∠AOC+∠BOC=120°,∴∠A′′OC=120°,∠GOC′=30°又∵OA=OC′′,∴此时C′′点A 重合,C C′′(2,,综上,点C 的对应点的坐标为(2--,或(2,,故答案为:D .【点睛】本题考查菱形的性质,解直角三角形和旋转的性质,解题的关键是根据题意,分析点A 的运动情况,分情况讨论.8.如图,ABC 中,90,8,6ACB AC BC ∠=︒==,将ADE 沿DE 翻折,使点A 与点B重合,则CE的长为()A.198B.2C.254D.74【答案】D【分析】先在RtABC中利用勾股定理计算出AB=10,再利用折叠的性质得到AE=BE,AD=BD=5,设AE=x,则CE=AC-AE=8-x,BE=x,在Rt△BCE中根据勾股定理可得到x2=62+(8-x)2,解得x,可得CE.【详解】解:∵∠ACB=90°,AC=8,BC=6,∴=10,∵△ADE沿DE翻折,使点A与点B重合,∴AE=BE,AD=BD=12AB=5,设AE=x,则CE=AC-AE=8-x,BE=x,在Rt△BCE中∵BE2=BC2+CE2,∴x2=62+(8-x)2,解得x=25 4,∴CE=2584-=74,故选:D .【点睛】本题考查了折叠的性质:折叠前后两图象全等,即对应角相等,对应边相等.也考查了勾股定理.9.在平面直角坐标系中,抛物线245y x x =-+与y 轴交于点C ,则该抛物线关于点C 成中心对称的抛物线的表达式为()A .245y x x =--+B .245y x x =++C .245y x x =-+-D .245y x x =---【答案】A【分析】先求出C 点坐标,再设新抛物线上的点的坐标为(x,y ),求出它关于点C 对称的点的坐标,代入到原抛物线解析式中去,即可得到新抛物线的解析式.【详解】解:当x=0时,y=5,∴C (0,5);设新抛物线上的点的坐标为(x,y ),∵原抛物线与新抛物线关于点C 成中心对称,由20x x ⨯-=-,2510y y ⨯-=-;∴对应的原抛物线上点的坐标为(),10x y --;代入原抛物线解析式可得:()()21045y x x -=--⋅-+,∴新抛物线的解析式为:245y x x =--+;故选:A .【点睛】本题综合考查了求抛物线上点的坐标、中心对称在平面直角坐标系中的运用以及求抛物线的解析式等内容,解决本题的关键是设出新抛物线上的点的坐标,求出其在原抛物线上的对应点坐标,再代入原抛物线解析式中求新抛物线解析式,本题属于中等难度题目,蕴含了数形结合的思想方法等.10.如图.将菱形ABCD 绕点A 逆时针旋转α∠得到菱形'''AB C D ,B β∠=∠.当AC 平分''B AC ∠时,α∠与β∠满足的数量关系是()A .2αβ∠=∠B .23αβ∠=∠C .4180αβ∠+∠=︒D .32180αβ∠+∠=︒【答案】C【分析】根据菱形的性质可得AB=AC ,根据等腰三角形的性质可得∠BAC=∠BCA=1(180)2B ︒-∠,根据旋转的性质可得∠CAC′=∠BAB′=α∠,根据AC 平分''B AC ∠可得∠B′AC=∠CAC=α∠,即可得出4180αβ∠+∠=︒,可得答案.【详解】∵四边形ABCD 是菱形,B β∠=∠,∴AB=AC ,∴∠BAC=∠BCA=1(180)2B ︒-∠=1(180)2β︒-∠,∵将菱形ABCD 绕点A 逆时针旋转α∠得到菱形'''AB C D ,∴∠CAC′=∠BAB′=α∠,∵AC 平分''B AC ∠,∴∠B′AC=∠CAC=α∠,∴∠BAC=∠B′AC+∠BAB′=2α∠=1(180)2β︒-∠,∴4180αβ∠+∠=︒,故选;C .【点睛】本题考查旋转的性质及菱形的性质,熟练掌握相关性质并正确找出旋转角是解题关键.二、填空题(本大题共10小题,每小题3分,共30分)11.如图,三角形纸片ABC 中,点D ,E ,F 分别在边AB ,AC ,BC 上,BF =4,CF =6,将这张纸片沿直线DE 翻折,点A 与点F 重合.若DE ∥BC ,AF =EF ,则四边形ADFE 的面积为__________.【答案】【分析】根据折叠的性质得到DE 为ABC 的中位线,利用中位线定理求出DE 的长度,再解t R ACE △求出AF 的长度,即可求解.【详解】解:∵将这张纸片沿直线DE 翻折,点A 与点F 重合,∴DE 垂直平分AF ,AD DF =,AE EF =,ADE EDF ∠=∠,∵DE ∥BC ,∴ADE B ∠=∠,EDF BFD ∠=∠,90AFC ∠=︒,∴B BFD ∠=∠,∴BD DF =,∴BD AD =,即D 为AB 的中点,∴DE 为ABC 的中位线,∴152DE BC ==,∵AF =EF ,∴AEF 是等边三角形,在t R ACE △中,60CAF ∠=︒,6CF =,∴tan 60CF AF ==︒∴AG =∴四边形ADFE 的面积为122DE AG ⋅⨯=,故答案为:.【点睛】本题考查解直角三角形、中位线定理、折叠的性质等内容,掌握上述基本性质定理是解题的关键.12.如图,将边长为1的正方形ABCD 绕点A 顺时针旋转30°到111AB C D 的位置,则阴影部分的面积是______________;【答案】2323-【分析】CD 交11B C 于点E ,连接AE ;根据全等三角形性质,通过证明1AB E ADE △≌△,得1EAB EAD ∠=∠;结合旋转的性质,得130EAB EAD ∠=∠=︒;根据三角函数的性质计算,得1EB ,结合正方形和三角形面积关系计算,即可得到答案.【详解】解:如图,CD 交11B C 于点E ,连接AE根据题意,得:190AB E ADE ∠=∠=︒,11AB AD ==∵AE AE=∴1AB E ADE△≌△∴1EAB EAD∠=∠∵正方形ABCD 绕点A 顺时针旋转30°到111AB C D ∴130BAB ∠=︒,90BAD ∠=︒∴119060B AD BAB ∠=︒-∠=︒∴130EAB EAD ∠=∠=︒∴111tan 3EB EAB AB =∠=∴13EB =∴111112236AB E ADE S S AB EB ==⨯=⨯=△△∴阴影部分的面积()()122AB E ADE AB BC S S =⨯-+△△23=-故答案为:23-.【点睛】本题考查了正方形、全等三角形、旋转、三角函数的知识;解题的关键是熟练掌握正方形、全等三角形、旋转、三角函数的性质,从而完成求解.13.如图,在Rt △ABC 中,∠B =90°,∠A =30°,AC =8,点D 在AB 上,且BD点E 在BC 上运动.将△BDE 沿DE 折叠,点B 落在点B′处,则点B′到AC 的最短距离是_____.【答案】2【解析】【分析】如图,过点D作DH⊥AC于H,过点B′作B′J⊥AC于J.在Rt△ACB中,根据三角函数知识可得DB′+B′J≥DH,DB′=DB=,当D,B′,J共线时,B′J的值最小,此时求出DH,DB′,即可解决问题.【详解】解:如图,过点D作DH⊥AC于H,过点B′作B′J⊥AC于J.在Rt△ACB中,∵∠ABC=90°,AC=8,∠A=30°,∴AB=AC•cos30°=,∵BD,∴AD=AB﹣BD=,∵∠AHD=90°,∴DH=12AD=332,∵B′D+B′J≥DH,DB′=DB ∴B′J≥DH﹣DB′,∴B′J≥3 2,∴当D,B′,J共线时,B′J的值最小,最小值为3 2;故答案为2.【点睛】本题主要考查了图形的折叠,特殊锐角三角函数的知识.14.如图,射线OM 、ON 互相垂直,8OA =,点B 位于射线OM 的上方,且在线段OA 的垂直平分线l 上,连接AB ,5AB =.将线段AB 绕点O 按逆时针方向旋转得到对应线段A B '',若点B '恰好落在射线ON 上,则点A '到射线ON 的距离d ≈______.【答案】245【分析】添加辅助线,连接'OA OB 、,过'A 点作'A P ON ⊥交ON 与点P .根据旋转的性质,得到''A B O ABO ≅ ,在'Rt A PO ∆和中,'B OA BOA ∠=∠,根据三角函数和已知线段的长度求出点A '到射线ON 的距离=A'P d .【详解】如图所示,连接'OA OB 、,过'A 点作'A P ON ⊥交ON 与点P .∵线段AB 绕点O 按逆时针方向旋转得到对应线段A B ''∴'8OA OA ==,''B OB A OA∠=∠∴''''B OB BOA A OA BOA ∠-∠=∠-∠即''B OA BOA∠=∠∵点B 在线段OA 的垂直平分线l 上∴118422OC OA ==⨯=,5OB AB ==2222543BC OB OC =--∵''B OA BOA∠=∠∴'sin ''sin 'A P BC B OA BOA A O OB∠==∠=∴'385A P =∴24'5d A P ==【点睛】本题主要考查旋转的性质和三角函数.对应点到旋转中心的距离相等,对应点与旋转中心所连的线段的夹角等于旋转角,旋转前、后的图形全等.15.如图,将Rt △ABC 的斜边AB 绕点A 顺时针旋转α(0°<α<90°)得到AE ,直角边AC 绕点A 逆时针旋转β(0°<β<90°)得到AF ,连接EF .若AB=3,AC=2,且α+β=∠B ,则EF=__________.【答案】13【解析】由旋转的性质可得AE=AB=3,AC=AF=2,∵∠B+∠BAC=90°,且α+β=∠B ,∴∠BAC+α+β=90°,∴∠EAF=90°,∴22AE AF +1313【名师点睛】本题考查了旋转的性质,勾股定理,灵活运用旋转的性质是本题的关键.16.如图,将ABCD 绕点A 逆时针旋转到AB C D ''' 的位置,使点B '落在BC 上,B C ''与CD 交于点E ,若3,4,1AB BC BB '===,则CE 的长为________.【答案】98【分析】过点C 作CM//C D ''交B C ''于点M ,证明ABB ADD ''∆∆∽求得53C D '=,根据AAS 证明ABB B CM ''∆≅∆可求出CM=1,再由CM//C D ''证明△CME DC E '∆∽,由相似三角形的性质查得结论.【详解】解:过点C 作CM//C D ''交B C ''于点M ,∵平行四边形ABCD 绕点A 逆时针旋转得到平行四边形AB C D '''∴AB AB '=,,AD AD '=B AB C D D '''∠=∠=∠=∠,BAD B AD ''∠=∠∴BAB DAD ''∠=∠,B D '∠=∠∴ABB ADD ''∆∆∽∴3,4BB AB AB DD AD BC ''===∵1BB '=∴43DD '=∴C D C D DD ''''=-CD DD '=-AB DD '=-433=-53=AB C AB C CB M ABC BAB '''''∠=∠+∠=∠+∠ ∴∠CB M BAB ''=∠∵413B C BC BB ''=-=-=∴B C AB'=∵AB AB '=∴∠AB B AB C ABB ''''=∠=∠∵//AB C D ''',//C D CM''∴//AB CM'∴∠AB C B MC'''=∠∴∠AB B B MC''=∠在ABB '∆和B MC '∆中,BAB CB M AB B B MC AB B C ∠=∠⎧⎪∠='''∠''⎨⎪=⎩∴ABB B CM''∆≅∆∴1BB CM '==∵//CM C D'∴△CME DC E'∆∽∴13553CM CE DC DE '===∴38CE CD =∴333938888CE CD AB ====故答案为:98.【点睛】此题主要考查了旋转的性质,平行四边形的性质,全等三角形的判定与性质以及相似三角形的判定与性质,正确作出辅助线构造全等三角形和相似三角形是解答本题的关键.17.如图,点P 是正方形ABCD 内一点,且点P 到点A 、B 、C的距离分别为4则正方形ABCD 的面积为________【答案】314【解析】【分析】如图,将△ABP绕点B顺时针旋转90°得到△CBM,连接PM,过点B作BH⊥PM于H.首先证明∠PMC=90°,推出∠CMB=∠APB=135°,推出A,P,M共线,利用勾股定理求出AB2即可.【详解】解:如图,将△ABP绕点B顺时针旋转90°得到△CBM,连接PM,过点B作BH⊥PM于H.∵2,∠PBM=90°,∴2PB=2,∵PC=4,3,∴PC2=CM2+PM2,∴∠PMC=90°,∵∠BPM=∠BMP=45°,∴∠CMB=∠APB=135°,∴∠APB+∠BPM=180°,∴A ,P ,M 共线,∵BH ⊥PM ,∴PH=HM ,∴BH=PH=HM=1,∴AH=2+1,∴AB 2=AH 2+BH 2=()2+12,∴正方形ABCD 的面积为14+4.故答案为.【点睛】本题考查旋转的性质,全等三角形的判定和性质,正方形的性质,解直角三角形等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形解决问题.18.如图,已知正方形ABCD 边长为1,E 为AB 边上一点,以点D 为中心,将DAE △按逆时针方向旋转得DCF ,连接EF ,分別交BD ,CD 于点M ,N .若25AE DN =,则sin EDM ∠=__________.【答案】5【分析】过点E 作EP ⊥BD 于P ,将∠EDM 构造在直角三角形DEP 中,设法求出EP 和DE 的长,然后用三角函数的定义即可解决.【详解】解:∵四边形ABCD 是正方形,∴AB ∥DC ,∠A=∠BCD=∠ADC=90°,AB=BC=CD=DA=1,BD =.∵△DAE 绕点D 逆时针旋转得到△DCF ,∴CF=AE ,DF=DE ,∠EDF=∠ADC=90°.设AE=CF=2x ,DN=5x ,则BE=1-2x ,CN=1-5x ,BF=1+2x .∵AB ∥DC ,∴~FNC FEB .∴NC FC EB FB =.∴1521212x x x x -=-+.整理得,26510x x +-=.解得,116x =,21x =-(不合题意,舍去).∴1221233AE x EB x ===-=.∴103DE ===.过点E 作EP ⊥BD 于点P ,如图所示,设DP=y ,则2BP y =.∵22222EB BP EP DE DP -==-,∴)2222210233y y ⎛⎫⎛⎫-=- ⎪ ⎪ ⎪⎝⎭⎝⎭.解得,223y =.∴222210222333EP E D DP ⎛⎫⎛⎫=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭.∴在Rt △DEP 中,253sin 5103EP EDP ED ∠==.即5sin 5EDM ∠=.故答案为:55【点睛】本题考查了正方形的性质、旋转的性质、相似三角形的判定与性质、勾股定理、锐角三角函数、方程的数学思想等知识点,熟知各类图形的性质与判定是解题的基础,构造直角三角形,利用锐角三角函数的定义是解题的关键.20.如图,在平面直角坐标系中,AB y ⊥轴,垂足为B ,将ABO 绕点A 逆时针旋转到11AB O V 的位置,使点B 的对应点1B 落在直线34y x =-上,再将11AB O V 绕点1B 逆时针旋转到112A B O 的位置,使点1O 的对应点2O 也落在直线34y x =-上,以此进行下去……若点B 的坐标为()0,3,则点21B 的纵坐标...为______.【答案】3875【分析】计算出△AOB 的各边,根据旋转的性质,求出OB 1,B 1B 3,,得出规律,求出OB 21,再根据一次函数图像上的点求出点B 21的纵坐标即可.【详解】解:∵AB ⊥y 轴,点B (0,3),∴OB=3,则点A 的纵坐标为3,代入34y x =-,得:334x =-,得:x=-4,即A (-4,3),∴OB=3,AB=4,,由旋转可知:OB=O 1B 1=O 2B 1=O 2B 2=…=3,OA=O 1A=O 2A 1=…=5,AB=AB 1=A 1B 1=A 2B 2=…=4,∴OB 1=OA+AB 1=4+5=9,B 1B 3=3+4+5=12,∴OB 21=OB 1+B 1B 21=9+(21-1)÷2×12=129,设B 21(a ,34a -),则OB 21129=,解得:5165a =-或5165(舍),则335163874455a ⎛⎫-=-⨯-= ⎪⎝⎭,即点B 21的纵坐标为3875,故答案为:387 5.【点睛】本题考查了一次函数图象上点的坐标特征,旋转以及直角三角形的性质,求出△OAB的各边,计算出OB21的长度是解题的关键.三、解答题(本大题共6小题,共66分.解答应写出文字说明、证明过程或演算步骤)21.如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,△OAB的三个顶点O(0,0)、A(4,1)、B(4,4)均在格点上.(1)画出△OAB关于y轴对称的△OA1B1,并写出点A1的坐标;(2)画出△OAB绕原点O顺时针旋转90°后得到的△OA2B2,并写出点A2的坐标;(3)在(2)的条件下,求线段OA在旋转过程中扫过的面积(结果保留π).【解析】(1)如下图所示,点A1的坐标是(–4,1);(2)如下图所示,点A2的坐标是(1,–4);(3)∵点A(4,1),∴=∴线段OA在旋转过程中扫过的面积是:290(17)360⨯π⨯=174π.【名师点睛】本题考查简单作图、扇形面积的计算、轴对称、旋转变换,解答本题的关键是明确题意,利用数形结合的思想解答.22.在Rt ABC 中,90,5,3ACB AB BC ∠=︒==,将ABC 绕点B 顺时针旋转得到A BC ''△,其中点A ,C 的对应点分别为点A ',C '.(1)如图1,当点A '落在AC 的延长线上时,求AA '的长;(2)如图2,当点C '落在AB 的延长线上时,连接CC ',交A B '于点M ,求BM 的长;(3)如图3,连接,AA CC '',直线CC '交AA '于点D ,点E 为AC 的中点,连接DE .在旋转过程中,DE 是否存在最小值?若存在,求出DE 的最小值;若不存在,请说明理由.【答案】(1)8AA '=;(2)1511BM =;(3)存在,最小值为1【分析】(1)根据题意利用勾股定理可求出AC 长为4.再根据旋转的性质可知AB A B '=,最后由等腰三角形的性质即可求出AA '的长.(2)作CD AC '⊥交AC '于点D ,作//CE A B '交AC '于点E .由旋转可得A BC ABC ''∠=∠,3BC BC '==.再由平行线的性质可知CEB A BC ''∠=∠,即可推出CEB ABC ∠=∠,从而间接求出3CE BC BC '===,DE DB =.由三角形面积公式可求出125CD =.再利用勾股定理即可求出185BE =,进而求出335C E '=.最后利用平行线分线段成比例即可求出BM 的长.(3)作//AP A C ''且交C D '延长线于点P ,连接A C '.由题意易证明BCC BC C ''∠=∠,90ACP BCC '∠=︒-∠,90A C D BC C '''∠=︒-∠,即得出ACP A C D ''∠=∠.再由平行线性质可知APC A C D ''∠=∠,即得出ACP APC ∠=∠,即可证明AP AC A C ''==,由此即易证()APD A C D AAS ''≅ ,得出AD A D '=,即点D 为AA '中点.从而证明DE 为ACA ' 的中位线,即12DE A C '=.即要使DE 最小,A C '最小即可.根据三角形三边关系可得当点A C B '、、三点共线时A C '最小,且最小值即为=A C A B BC ''-,由此即可求出DE 的最小值.【详解】(1)在Rt ABC 中,4AC ==.根据旋转性质可知AB A B '=,即ABA '△为等腰三角形.∵90ACB ∠=︒,即BC AA '⊥,∴4A C AC '==,∴8AA '=.(2)如图,作CD AC '⊥交AC '于点D ,作//CE A B '交AC '于点E .由旋转可得A BC ABC ''∠=∠,3BC BC '==.∵//CE A B ',∴CEB A BC ''∠=∠,∴CEB ABC ∠=∠,∴3CE BC BC '===,DE DB =.∵1122ABC S AB CD AC BC == ,即543CD ⨯=⨯,∴125CD =.在Rt BCD 中,2295DB BC CD =-=,∴185BE =.∴335C E BE BC ''=+=.∵//CE A B ',∴BM BC CE C E '=',即33335BM =,∴1511BM =.(3)如图,作//AP A C ''且交C D '延长线于点P ,连接A C '.∵BC BC '=,∴BCC BC C ''∠=∠,∵180ACP ACB BCC '∠=︒-∠-∠,即90ACP BCC '∠=︒-∠,又∵90A C D BC C '''∠=︒-∠,∴ACP A C D ''∠=∠.∵//AP A C '',∴APC A C D ''∠=∠,∴ACP APC ∠=∠,∴AP AC =,∴AP A C ''=.∴在APD △和AC D '' 中ADP A DC APD A C D AP A C '''∠=∠⎧⎪∠=∠'''⎨⎪=⎩,∴()APD A C D AAS ''≅ ,∴AD A D '=,即点D 为AA '中点.∵点E 为AC 中点,∴DE 为ACA ' 的中位线,∴12DE A C '=,即要使DE 最小,A C '最小即可.根据图可知A C A B BC ''≤-,即当点A C B '、、三点共线时A C '最小,且最小值为==53=2A C A B BC ''--.∴此时1=12DE A C '=,即DE 最小值为1.【点睛】本题为旋转综合题.考查旋转的性质,勾股定理,等腰三角形的判定和性质,平行线的性质,平行线分线段成比例,全等三角形的判定和性质,中位线的判定和性质以及三角形三边关系,综合性强,为困难题.正确的作出辅助线为难点也是解题关键.23.已知在 ABC 中,O 为BC 边的中点,连接AO ,将 AOC 绕点O 顺时针方向旋转(旋转角为钝角),得到 EOF ,连接AE ,CF .(1)如图1,当∠BAC =90°且AB =AC 时,则AE 与CF 满足的数量关系是;(2)如图2,当∠BAC =90°且AB≠AC 时,(1)中的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)如图3,延长AO 到点D ,使OD =OA ,连接DE ,当AO =CF =5,BC =6时,求DE 的长.【答案】(1)AE CF =;(2)成立,证明见解析;(3)5113【分析】(1)结论AE CF =.证明()AOE COF SAS ∆≅∆,可得结论.(2)结论成立.证明方法类似(1).(3)首先证明90AED ∠=︒,再利用相似三角形的性质求出AE ,利用勾股定理求出DE 即可.【详解】解:(1)结论:AE CF =.理由:如图1中,∠=︒,OC OB=,BAC,90=AB AC⊥,∴==,AO BCOA OC OB∠=∠=︒,90AOC EOF∴∠=∠,AOE COF,OE OFOA OC==,∴∆≅∆,AOE COF SAS()∴=.AE CF(2)结论成立.理由:如图2中,,OC OB=,BAC∠=︒90∴==,OA OC OB,AOC EOF∠=∠∴∠=∠,AOE COFOA OC=,OE OF=,()AOE COF SAS∴∆≅∆,AE CF∴=.(3)如图3中,由旋转的性质可知OE OA=,OA OD=,5OE OA OD∴===,90AED∴∠=︒,OA OE=,OC OF=,AOE COF∠=∠,∴OA OE OC OF=,AOE COF∴∆∆∽,∴AE OA CF OC=,5CF OA== ,∴5 53 AE=,253 AE∴=,5113 DE∴=.【点睛】本题属于几何变换综合题,考查了旋转变换,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,属于中考压轴题.24.已知:如图①,将一块45°角的直角三角板DEF 与正方形ABCD 的一角重合,连接,AF CE ,点M 是CE 的中点,连接DM .(1)请你猜想AF 与DM 的数量关系是__________.(2)如图②,把正方形ABCD 绕着点D 顺时针旋转α角(090a ︒<<︒).①AF 与DM 的数量关系是否仍成立,若成立,请证明;若不成立,请说明理由;(温馨提示:延长DM 到点N ,使MN DM =,连接CN )②求证:AF DM ⊥;③若旋转角45α=︒,且2EDM MDC ∠=∠,求AD ED的值.(可不写过程,直接写出结果)【答案】(1)AF=2DM (2)①成立,理由见解析②见解析③622+【解析】【分析】(1)根据题意合理猜想即可;=,连接CN,先证明△MNC≌△MDE,再证明(2)①延长DM到点N,使MN DM△ADF≌△DCN,得到AF=DN,故可得到AF=2DM;②根据全等三角形的性质和直角的换算即可求解;③依题意可得∠AFD=∠EDM=30°,可设AG=k,得到DG,AD,FG,ED的长,故可求解.【详解】(1)猜想AF与DM的数量关系是AF=2DM,故答案为:AF=2DM;(2)①AF=2DM仍然成立,=,连接CN,理由如下:延长DM到点N,使MN DM∵M是CE中点,∴CM=EM又∠CMN=∠EMD,∴△MNC≌△MDE∴CN=DE=DF,∠MNC=∠MDE∴CN∥DE,又AD∥BC∴∠NCB=∠EDA∴△ADF≌△DCN∴AF=DN∴AF=2DM②∵△ADF≌△DCN∴∠NDC=∠FAD,∵∠CDA=90°,∴∠NDC+∠NDA=90°∴∠FAD+∠NDA=90°∴AF ⊥DM③∵45α=︒,∴∠EDC=90°-45°=45°∵2EDM MDC ∠=∠,∴∠EDM=23∠EDC=30°,∴∠AFD=30°过A 点作AG ⊥FD 的延长线于G 点,∴∠ADG=90°-45°=45°∴△ADG 是等腰直角三角形,设AG=k,则DG=k ,k ,k ,∴故ADED 622+=.【点睛】此题主要考查四边形综合,解题的关键是熟知正方形的性质、旋转的特点、全等三角形的判定与性质及三角函数的运用.25.如图1,点B 在线段CE 上,Rt △ABC ≌Rt △CEF ,90ABC CEF ∠=∠=︒,30BAC ∠=︒,1BC =.(1)点F 到直线CA 的距离是_________;(2)固定△ABC ,将△CEF 绕点C 按顺时针方向旋转30°,使得CF 与CA 重合,并停止旋转.①请你在图1中用直尺和圆规画出线段EF 经旋转运动所形成的平面图形(用阴影表示,保留画图痕迹,不要求写画法)该图形的面积为_________;②如图2,在旋转过程中,线段CF 与AB 交于点O ,当OE OB =时,求OF 的长.【答案】(1)1;(2)12π;(3)23OF =【解析】【分析】(1)根据直角三角形的性质和全等三角形的性质可得∠ACF=∠ECF=30°,即CF 是∠ACB 的平分线,然后根据角平分线的性质可得点F 到直线CA 的距离即为EF 的长,于是可得答案;(2)①易知E 点和F 点的运动轨迹是分别以CF 和CE 为半径、圆心角为30°的圆弧,据此即可画出旋转后的平面图形;在图3中,先解Rt △CEF 求出CF 和CE 的长,然后根据S 阴影=(S △CEF +S 扇形ACF )-(S △ACG +S 扇形CEG )即可求出阴影面积;②作EH ⊥CF 于点H ,如图4,先解Rt △EFH 求出FH 和EH 的长,进而可得CH 的长,设OH=x ,则CO 和OE 2都可以用含x 的代数式表示,然后在Rt △BOC 中根据勾股定理即可得出关于x 的方程,解方程即可求出x 的值,进一步即可求出结果.【详解】解:(1)∵30BAC ∠=︒,90ABC ∠=︒,∴∠ACB=60°,∵Rt △ABC ≌Rt △CEF ,∴∠ECF=∠BAC=30°,EF=BC=1,∴∠ACF=30°,∴∠ACF=∠ECF=30°,∴CF 是∠ACB 的平分线,∴点F 到直线CA 的距离=EF=1;故答案为:1;(2)①线段EF 经旋转运动所形成的平面图形如图3中的阴影所示:在Rt △CEF 中,∵∠ECF=30°,EF=1,∴CF=2,CE=3,由旋转的性质可得:CF=CA=2,CE=CG=3,∠ACG=∠ECF=30°,∴S 阴影=(S △CEF +S 扇形ACF )-(S △ACG +S 扇形CEG )=S 扇形ACF -S 扇形CEG =()2230330236036012πππ⨯⨯-=;故答案为:12π;②作EH ⊥CF 于点H ,如图4,在Rt △EFH 中,∵∠F=60°,EF=1,∴13,22FH EH ==,∴CH=13222-=,设OH=x ,则32OC x =-,2222223324OE EH OH x x⎛⎫=+=+=+ ⎪ ⎪⎝⎭,∵OB=OE ,∴2234OB x =+,在Rt △BOC 中,∵222OB BC OC +=,∴2233142x x ⎛⎫++=- ⎪⎝⎭,解得:16x =,∴112263OF =+=.【点睛】本题考查了旋转的性质和旋转作图、全等三角形的性质、角平分线的性质、扇形面积公式、勾股定理和解直角三角形等知识,涉及的知识点多,综合性较强,熟练掌握上述知识、灵活应用整体思想和方程思想是解题的关键.26.如图,在矩形ABCD 中,E 是边AB 上一点,BE BC =,EF CD ⊥,垂足为F .将四边形CBEF 绕点C 顺时针旋转()090αα︒<<︒,得到四边形CB E F '''.B E ''所在的直线分别交直线BC 于点G ,交直线AD 于点P ,交CD 于点K .E F ''所在的直线分别交直线BC 于点H ,交直线AD 于点Q ,连接B F ''交CD 于点O .(1)如图1,求证:四边形BEFC 是正方形;(2)如图2,当点Q 和点D 重合时.①求证:GC DC =;②若1OK =,2CO =,求线段GP 的长;(3)如图3,若//BM F B ''交GP 于点M ,1tan 2G ∠=,求'GMB CF H S S △△的值.【答案】(1)见解析;(2)①见解析;②3)125-【分析】(1)先利用三个角是直角的四边形是矩形证明,再根据BE BC =证得结论;(2)①证明''CGB CDF ≅ 即可得到结论;②方法一:设正方形边长为a ,根据'~'B KO F CO ,求出11''22B K BC a ==,利用勾股定理得到222''B K B C CK +=,求出a,得到5B C '=,5B K '=,根据B KC ' ∽△CKG ,求出KG ,再根据PKD GKC ≅ ,求出答案;方法二:过点P 作PM GH ⊥于点M ,根据CG CD =,2CD CK =求出6CG =,由26PM CK ==,12GM =,再利用勾股定理求得结果;(3)方法一:延长''B F 与BH 的延长线交于点R ,证明~'GBM CRF ,求出'1'2F H CF =,设'F H x =,'2CF x =,则CH =,证明'~'RB C RF H ,求得2'''22CF R CF H S S x == ,由'~'GB C GE H,求出)21GB x =-,利用~'GBM CRF ,求出'6255GMB CF R S S -= ,即可得到答案;方法二,过点B 作BN PG ⊥,垂足为点N .设FH x =,则'''''2CF B E E F BC x ====,'4GB x =,求得(2'465GBN CHF S GB S CH -⎛⎫== ⎪⎝⎭ ,证明~'GBN GCB,求出55GB GC =,再证明~''MBN B F C ,求出答案;方法三:设AB 与PQ 交于N 点,设FH x =,则'''''2CF CB B E E F BC x =====,'4GB x =,证明~'MBN F OC,得到(2'9620MBN F OC S BN S CO -⎛⎫==⎪⎝⎭ ,根据12GBN S BG BN =⨯⨯ ,求出答案.【详解】(1)在矩形ABCD 中,90B BCD ∠=∠=︒,∵EF AB ⊥,则90EFB ∠=︒,∴四边形BEFC 是矩形.∵BE BC =,∴矩形BEFC 是正方形.(2)①如图1,∵90GCK DCH ∠=∠=︒,∴'90CDF H ∠+∠=︒,90KGC H ∠+∠=︒,∴'KGC CDF ∠=∠,又∵''B C CF =,''GB C CF D ∠=∠,∴''CGB CDF ≅ ,∴CG CD =.②方法一:设正方形边长为a ,∵PG ∥CF ',∴'~'B KO F CO ,∴'1'2B K OK CF CO ==,∴11''22B K BC a ==,∴在'Rt B KC 中,222''B K B C CK +=,∴222132a a ⎛⎫+= ⎪⎝⎭,∴5a =.∴5B C '=,5B K '=,∵90,CB K GCK B KC GKC ''∠=∠=︒∠=∠,∴B KC ' ∽△CKG ,∴2CK B K KG '=⋅,∴KG =∵1,,2B K a KE DKE B KC DE K KB C ''''''==∠=∠∠=∠,∴△B’CK ≌△E’KD ,∴DK=KC ,又∵∠DKP=∠GKC ,∠P=∠G ,∴PKD GKC ≅ ,∴PG=KG ,∴PG =;方法二:如图2,过点P 作PM GH ⊥于点M ,由''CGB CDF ≅ ,可得:CG CD =,由方法一,可知2CD CK =,∴6CG =,由方法一,可知K 为GP 中点,从而26PM CK ==,12GM =,从而由勾股定理得PG =.(3)方法一:如图3,延长''B F 与BH 的延长线交于点R ,由题意可知,'//CF GP ,'//RB BM ,∴~'GBM CRF ,'G F CR ∠=∠,∴'1tan tan ''2F HG F CH CF ∠=∠==,设'F H x =,'2CF x =,则CH =,∴''''''2CB CF E F B E BC x =====,∵'//'CB HE ,∴'~'RB C RF H ,∴''1''2F H RH RF B C RC RB ===,∴CH RH =,'''B F RF =,∴2CR CH ==,2'''22CF R CF H S S x == ,∵'//'CB HE ,∴'~'GB C GE H ,∴'22'33GC B C x GH E H x ===,'2'3B C E H ==,∴)21GB x =,∵~'GBM CRF ,∴22'216255GMBCF Rx S GB S CR ⎡⎤-⎛⎫=== ⎪⎝⎭.∵'''2CF R CF H S S =,∴'125GMB CF HS S -= .方法二,如图4,过点B 作BN PG ⊥,垂足为点N .由题意可知,'//CF GP ,'//HE BN ,∴~'GBN CHF ,∴2'GBN CHF S GB S CH ⎛⎫= ⎪⎝⎭,∵'//CF GP ,∴'NGB F CH ∠=∠,∴'1tan tan ''2CB FH G F CH GB CF ∠=∠===,设FH x =,则'''''2CF B E E F BC x ====,'4GB x =,∴CH =,CG =,则)21GB x =,∴(22'21465GBN CHF x S GB S CH ⎛⎫--⎛⎫=== ⎪⎝⎭,∵2'1'2CF H S CF FH x =⋅= ,∴(2465GBNSx -=,∵'//HE BN ,∴~'GBN GCB,∴55'5GB GC CB BN -===,∵'//CB BN ,//''BM B F ,'//'CF GB ,∴~''MBN B F C ,∴22''55625'55MBN B F C S BN S CB ⎛⎫-⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭,∴(2''26655MBNB FC SS x --==,∴(((222462626555MBGNBG MBN SS S xxx ---=-=-=,∴'12455GMB CF H S S -= .方法三:如图5,设AB 与PQ 交于N 点,设FH x =,则'''''2CF CB B E E F BC x =====,'4GB x =,由题意可知,'//CF GP ,//''BM B F ,//BN CO ,∴~'MBN F OC ,∴2'MBN F OC S BN S CO ⎛⎫= ⎪⎝⎭,由方法(2)可知,)251GB x =,所以)51BN x =-,又∵22533CO CK x ==,∴(2'96520MBN F OC S BN S CO -⎛⎫==⎪⎝⎭ ,∴((229625362542035BMNSxx --=⨯=,∵)(222151652GBN S BG BN x x =⨯⨯==- ,∴(((2223625262562555GBMGBN NBM SS S x xx --=-=--=,∴2'1''2CF H S CF F H x =⨯⨯= ,∴'12455GMB CF H S S -= .【点睛】此题考查正方形的判定定理及性质定理,旋转的性质,全等三角形的判定及性质,相似三角形的判定及性质,锐角三角函数,综合掌握各知识点并熟练应用解决问题是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

如图,在平面直角坐标系中,已知三角形AOB 是等边三角形,点A 的坐标(0,4),点B 在第一象限,点P 是x 轴上的一个动点,连接AP ,并把三角形AOP 绕着点A 按逆时针方向旋转,使边AO 与AB 重合,得到三角形ABD (1)求直线AB 的解析式
(2)当点P 运动到点(根号3,0),求此时DP 的长及点D 的坐标
(3)是否存在点P ,使三角形OPD 的面积等于(根号3)/4,若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由
解:
(1)如图,过点B 作BE ⊥y 轴于点E ,作BF ⊥x 轴于点F.由已知得
BF=OE=2, OF=
∴点B 的坐标是
(,2)
设直线AB 的解析式是y=kx+b
,则有42b
b
=⎧⎪⎨=+⎪⎩
解得
34k b ⎧=-⎪⎨⎪=⎩
∴直线AB 的解析式是
y= +4 (2) 如图,∵△ABD 由△AOP 旋转得到,
∴△ABD ≌△AOP , ∴AP=AD , ∠DAB=∠PAO ,∴∠DAP=∠BAO=600, ∴△ADP 是等边三角形, ∴
=.
如图,过点D 作DH ⊥x 轴于点H ,延长EB 交DH 于点G , 则BG ⊥DH.
在Rt △BDG 中,∠BGD=900, ∠DBG=600.
∴BG=BD •cos600
×1
2
.
DG=BD •sin600
2=3
2
.

7
2
∴点D 的坐标为
, 7
2
)
(3)假设存在点P, 在它的运动过程中,使△OPD
的面积等于4
. 设点P 为(t ,0),下面分三种情况讨论:
①当t >0时,如图,
BD=OP=t, DG=2
t,

∵△OPD
, ∴
1(2)2t +=,
解得13t =
, 23t = ( 舍去) .
∴点P 1的坐标为 , 0 )
②当<t ≤0时,如图,BD=OP=-t, BG=
∴DH=GF=2-(-2t )=2+2t. ∵△OPD ,
∴ 1(2)224
t -+=,
解得 1t =, 2t =
∴点P 2的坐标为(,点P 3的坐标为(③当t ≤3- 时,如图,BD=OP=-t, DG=-2t,
∴DH=-2. ∵△OPD ,
∴1(2)224t t += , 解得1t =(舍去), 2t =
∴点P 4的坐标为(3, 0)
综上所述,点P 的坐标分别为P 1、P 2 (, 0)、P 3 (, 0) 、
P4, 0)。

相关文档
最新文档