(完整版)1.2.2独立性检验的基本思想及其初步应用习题及答案
独立性检验习题及答案

1.2 独立性检验的基本思想及其初步应用例题:1.三维柱形图中柱的高度表示的是( )A .各分类变量的频数B .分类变量的百分比C .分类变量的样本数D .分类变量的具体值解析: 三维柱形图中柱的高度表示图中各个频数的相对大小.选A2. 统计推断,当______时,有95 %的把握说事件A 与B 有关;当______时,认为没有充分的证据显示事件A 与B 是有关的.解析:当841.3>k 时,就有95 %的把握说事件A 与B 有关,当076.2≤k 时认为没有充分的证据显示事件A 与B 是有关的.3.为了探究患慢性气管炎与吸烟有无关系,调查了却339名50岁以上的人,结果如下表所示,据此数据请问:50岁以上的人患慢性气管炎与吸烟习惯有关系吗?分析:有表中所给的数据来计算2K 的观测值k,再确定其中的具体关系.解:设患慢性气管炎与吸烟无关.a=43,b=162,c=13,d=121,a+b=205,c+d=134, a+c=56,b+d=283,n=339所以2K 的观测值为469.7))()()(()(2==+++-=d b c a d c b a bc ad n k .因此635.6>k ,故有99%的把握认为患慢性气管炎与吸烟有关.课后练习:1. 在三维柱形图中,主对角线上两个柱形高度的乘积与副对角线上的两个柱形的高度的乘积相差越大两个变量有关系的可能性就( )A.越大B.越小C.无法判断D.以上都不对2.下列关于三维柱形图和二维条形图的叙述正确的是: ( ) A .从三维柱形图可以精确地看出两个分类变量是否有关系B .从二维条形图中可以看出两个变量频数的相对大小,从三维柱形图中无法看出相对频数的大小C .从三维柱形图和二维条形图可以粗略地看出两个分类变量是否有关系D .以上说法都不对3.对分类变量X 与Y 的随机变量2K 的观测值K ,说法正确的是() A . k 越大," X 与Y 有关系”可信程度越小; B . k 越小," X 与Y 有关系”可信程度越小; C . k 越接近于0," X 与Y 无关”程度越小 D . k 越大," X 与Y 无关”程度越大4. 在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是( )A.若K 2的观测值为k=6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;B.从独立性检验可知有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有99%的可能患有肺病;C.若从统计量中求出有95% 的把握认为吸烟与患肺病有关系,是指有5% 的可能性使得推判出现错误;D.以上三种说法都不正确.5.若由一个2*2列联表中的数据计算得k 2=4.013,那么有 把握认为两个变量有关系6.某高校“统计初步”课程的教师随机调查了选该课的一些学生情况,具体数据如下表:250(1320107) 4.84423272030k ⨯⨯-⨯=≈⨯⨯⨯因为23.841K ≥,所以判定主修统计专业与性别有关系,那么这种判断出错的可能性为 ____;7.在对人们的休闲方式的一次调查中,共调查了124人,其中女性70人,男性54人。
高二人教a2学案1.2独立性检验的基本思想及其初步应用word含答案

1.2独立性检验的基本思想及其初步应用[导入新知]1.分类变量变量的不同“值”表示个体所属的不同类别,像这样的变量称为分类变量.随机变量K2=利用随机变量K2来确定是否能以给定把握认为“两个分类变量有关系”的方法,称为两个分类变量独立性检验.[化解疑难]反证法原理与独立性检验原理的比较反证法原理——在假设H0下,如果推出一个矛盾,就证明了H0不成立.独立性检验原理——在假设H0下,如果出现一个与H0相矛盾的小概率事件,就推断H0不成立,且该推断犯错误的概率不超过小概率.[导入新知]独立性检验的具体做法(1)根据实际问题的需要确定容许推断“两个分类变量有关系”犯错误概率的上界α,然后查下表确定临界值k0.(2)利用公式K2k.(3)如果k≥k0α;否则,就[化解疑难](1)通过列联表或观察等高条形图判断两个分类变量之间有关系,属于直观判断,不足之处是不能给出推断“两个分类变量有关系”犯错误的概率,而独立性检验可以弥补这个不足.(2)列联表中的数据是样本数据,它只是总体的代表,具有随机性,因此,需要用独立性检验的方法确认所得结论在多大程度上适用于总体.[例1]某学校对高三学生作了一项调查,发现:在平时的模拟考试中,性格内向的学生426人中有332人在考前心情紧张,性格外向的学生594人中有213人在考前心情紧张.作出等高条形图,利用图形判断考前心情紧张与性格类别是否有关系.[解]作列联表如下:相应的等高条形图如图所示:图中阴影部分表示考前心情紧张与考前心情不紧张中性格内向的比例.从图中可以看出考前紧张的样本中性格内向占的比例比考前心情不紧张样本中性格内向占的比例高,可以认为考前紧张与性格类型有关.[类题通法]细解等高条形图(1)绘制等高条形图时,列联表的行对应的是高度,两行的数据不相等,但对应的条形图的高度是相同的;两列的数据对应不同的颜色.(2)等高条形图中有两个高度相同的矩形,每一个矩形中都有两种颜色,观察下方颜色区域的高度,如果两个高度相差比较明显⎝⎛⎭⎫即a a +b 和cc +d 相差很大,就判断两个分类变量之间有关系.[活学活用]为了研究子女吸烟与父母吸烟的关系,调查了一千多名青少年及其家长,数据如下:解:等高条形图如下:由图形观察可以看出子女吸烟者中父母吸烟的比例要比子女不吸烟者中父母吸烟的比例高,因此可以在某种程度上认为“子女吸烟与父母吸烟有关系”.[例2]数据:的前提下,认为每晚都打鼾与患心脏病有关系.2×2列联表确定a,b,c,d,n的值,然后代入随机变量K2的计算公式求出观测值k,将k与临界值k0进行对比,确定有多大的把握认为“两个分类变量有关系”.[活学活用]某生产线上,质量监督员甲在生产现场时,990件产品中有合格品982件,次品8件;不在生产现场时,510件产品中有合格品493件,次品17件.能否在犯错误的概率不超过0.001的前提下认为质量监督员甲在不在生产现场与产品质量好坏有关系?解:根据题目所给数据得如下2×2列联表:由列联表中的数据,得K 2的观测值为k =1 500×(982×17-8×493)2990×510×1 475×25≈13.097>10.828.因此,在犯错误的概率不超过0.001的前提下,认为质量监督员甲在不在生产现场与产品质量好坏有关系.1.独立性检验与统计的综合应用表2:B 类工人生产能力的频数分布表(1)确定x ,y 的值;(2)完成下面2×2列联表,并回答能否在犯错误的概率不超过0.001的前提下认为工人的生产能力与工人的类别有关系?附:K2[(2)根据所给的数据可以完成列联表,如下表所示:(6分)由列联表中的数据,得K2的观测值为[活学活用]电视传媒公司为了解某地区观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”,已知“体育迷”中有10名女性.根据已知条件完成下面的2×2列联表,并据此资料你是否认为“体育迷”与性别有关?附:解:由频率分布直方图可知,在抽取的100名观众中,“体育迷”有25名,“非体育迷”有75名,又已知100名观众中女性有55名,女“体育迷”有10名,所以男性有45名,男“体育迷”有15名,从而可完成2×2列联表,如下表:由k[随堂即时演练]1.观察下列各图,其中两个分类变量x,y之间关系最强的是()解析:选D在四幅图中,D图中两个深色条的高相差最明显,说明两个分类变量之间关系最强,故选D.2.下面是一个2×2列联表:则表中a ,b 处的值分别为( ) A .94,96 B .52,50 C .52,54D .54,52解析:选C 由⎩⎪⎨⎪⎧ a +21=73,a +2=b ,得⎩⎪⎨⎪⎧a =52,b =54.3.独立性检验所采用的思路是:要研究A ,B 两类型变量彼此相关,首先假设这两类变量彼此________.在此假设下构造随机变量K 2,如果K 2的观测值较大,那么在一定程度上说明假设________.答案:无关 不成立4.在吸烟与患肺病是否相关的判断中,有下面的说法:①若K 2的观测值k >6.635,则在犯错误的概率不超过0.01的前提下,认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;②从独立性检验可知,在犯错误的概率不超过0.01的前提下,认为吸烟与患肺病有关系时,若某人吸烟,则他有99%的可能患有肺病;③从独立性检验可知,在犯错误的概率不超过0.05的前提下,认为吸烟与患肺病有关系时,是指有5%的可能性使得推断错误.其中说法正确的是________.解析:K 2是检验吸烟与患肺病相关程度的量,是相关关系,而不是确定关系,是反映有关和无关的概率,故说法①不正确;说法②中对“确定容许推断犯错误概率的上界”理解错误;说法③正确.答案:③5.在一次天气恶劣的飞机航程中,调查了男女乘客在飞机上晕机的情况:男乘客晕机的有24人,不晕机的有31人;女乘客晕机的有8人,不晕机的有26人.能否在犯错误的概率不超过0.10的前提下推断:在天气恶劣的飞机航程中,男乘客比女乘客更容易晕机?解:由已知条件得出下列2×2列联表:由公式可得K2的观测值k=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)=89(24×26-31×8)255×34×32×57≈3.689>2.706.故在犯错误的概率不超过0.10的前提下,认为“在天气恶劣的飞机航程中,男乘客比女乘客更容易晕机”.。
人教A版高中数学选修1-21.2独立性检验的基本思想及其初步应用课后训练含答案

1.2独立性检验的基本思想及其初步应用课后训练案巩固提升一、A组1.在4个独立性检验中,根据试验数据得到K2统计量的值分别为:①6.98;②4.75;③2.93;④9.24.其中在犯错误的概率不超过0.01的前提下认为两个事件有关的独立性检验有()(参考临界值:P(K2≥6.635)≈0.01)A.1个B.2个C.3个D.4个解析:只有①和④,我们可以在犯错误的概率不超过0.01的前提下认为两个事件有关.答案:B2.在一次调查后,根据所得数据绘制成如图所示的等高条形图,则()A.两个分类变量关系较弱B.两个分类变量没有关系C.两个分类变量关系较强D.无法判断解析:从条形图中可以看出,在x1中y1的比重明显大于x2中y1的比重,所以两个分类变量的关系较强.答案:C3.在研究打鼾与患心脏病之间的关系中,通过收集数据、整理分析数据得到“打鼾与患心脏病有关系”的结论,并且在犯错误的概率不超过0.01的前提下认为这个结论是成立的.下列说法正确的是()A.100个心脏病患者中至少有99人打鼾B.1个人患心脏病,则这个人有99%的概率打鼾C.100个心脏病患者中一定有打鼾的人D.100个心脏病患者中可能一个打鼾的人都没有答案:D4.为了解高中生作文成绩与课外阅读量之间的关系,某研究机构随机抽取了60名高中生,通过问卷调查,得到以下数据:作文成绩优秀作文成绩一般总计课外阅读量较大221032课外阅读量一般82028总计303060由以上数据,计算得到K2的观测值k≈9.643,根据临界值表,以下说法正确的是()附:P(K2≥k0)0.250.150.100.0250.0100.005k0 1.323 2.072 2.706 5.024 6.6357.879。
高二数学独立性检验的基本思想及其初步应用试题答案及解析

高二数学独立性检验的基本思想及其初步应用试题答案及解析1.为了解某班学生喜爱打篮球是否与性别有关,对该班50名学生进行了问卷调查,得到了如下列联表喜爱打篮球不喜爱打篮球合计则至少有的把握认为喜爱打篮球与性别有关(请用百分数表示).附【答案】99.5%【解析】解:根据所给的列联表,得到k2=50(20×15-10×5)2(30×20×25×25) =8.333>7.879,∴至少有99.5%的把握说明喜爱打篮球与性别有关.故答案为:99.5%2.下面是一个22列联表,则表中a、b处的值分别为( )y y总计A. 94、96B. 52、54C. 52、50D. 54、52【答案】B【解析】解:因为根据表格中的数据可知,2+a=b,b+46=100,b=54,a=52,选B3.(本小题满分12分)为考察某种药物预防疾病的效果,进行动物试验,调查了105个样本,统计结果为:服用药的共有55个样本,服用药但患病的仍有10个样本,没有服用药且未患病的有30个样本.(1)根据所给样本数据画出2×2列联表;(2)请问能有多大把握认为药物有效?【答案】 (1)(2)这种判断出错的可能性不超过5%【解析】根据题意,列出服用药的共有55个样本,则未服药的50个样本,服用药但未患病的有20个样本,没有服用药且未患病的有30个样本,列出2×2列联表;求出,记忆卡方范围,得出判断。
解:(1)根据所给样本数据可画出2×2列联表如下:服药未服药合计.。
6分(2)将表中数据代入公式,得到。
10分因为,所以有95%以上的把握认为药物有效,即这种判断出错的可能性不超过5%.。
12分4.统计中有一个非常有用的统计量,用它的大小可以确定在多大程度上可以认为“两个分类变量有关系”,下表是反映甲、乙两个平行班(甲班A老师教, 乙班B老师教)进行某次数学考试,按学生考试及格与不及格统计成绩后的2×2列联表.根据的值,你认为不及格人数的多少与不同老师执教有关系的把握大约为A.99.5% B.99.9% C.95% D.无充分依据.【答案】A【解析】解:k2= =80(4×24-16×36) 2/ 20×60×40×40 =9.6>7.879 ∴不及格人数的多少与不同老师执教有关系的把握大约为99.5%故选A.5.统计中有一个非常有用的统计量,用它的大小可以确定在多大程度上可以认为“两个分类变量有关系”,下表是反映甲、乙两个平行班(甲班A老师教, 乙班B老师教)进行某学科测试,按学生考试及格与不及格统计成绩后的2×2列联表.不及格及格总计甲班(A教)43640乙班(B教)162440总计206080经计算=9.6,你认为不及格人数的多少与不同老师执教有关系的把握大约为( )下面的临界值表供参考:A.99.5% B.99.9% C.95% D.无充分依据.【答案】A【解析】因为=9.6 大于7.879,所以选A.6.随着生活水平的提高,越来越多的人参与了潜水这项活动。
高中数学321_独立性检验的基本思想及其初步应用(一)(有答案)

3.2.1 独立性检验的基本思想及其初步应用(一)一、选择题。
1. 下面是2×2列联表:则表中a,b的值分别为()A.21,46B.52,50C.52,54D.54,522. 在等高条形图形中,下列哪两个比值相差越大,“两个分类变量有关系”成立的可能性越大()A.a a+b 与dc+dB.ca+b与ac+dC.aa+b与cc+dD.aa+b与cb+c3. 在研究两个分类变量之间是否有关系时,可以粗略地判断两个分类变量是否有关的是()A.散点图B.等高条形图C.2×2列联表D.以上均不对4. 下面是一个2×2列联表:则表中a、b的值分别是()A.94、96B.25、21C.25、27D.27、255. 某工厂为了调查工人文化程度与月收入的关系,随机抽取了部分工人,得到如下列联表:文化程度与月收入列联表(单位:人)由上表中数据计算得K2的观测值k=6.109,请估计认为“文化程度与月收入有关系”的把握是()A.1%B.99%C.2.5%D.97.5%6. 下面是调查中国东部地区男女中学生喜欢理科的等高条形图,阴影部分表示喜欢理科的百分比,从图中可以看出()A.性别与喜欢理科无关B.女生中喜欢理科的比为80%C.男生比女生喜欢理科的可能性大些D.男生不喜欢理科的比为60%二、填空题。
中国医药学院周医师从事原住民痛风流行率的研究,周医师发现原住民342人中,患有痛风的有40人,其中17位TG(三酸甘油酯)超出正常值160,而非痛风组302人中有66位TG超出正常值.通过计算犯错误的概率认为“TG超出正常值与痛风________关.(填“有”或“无”)为了判断高中三年级学生是否选修文科与性别的关系,现随机抽取50名学生,得到如下2×2列联表:根据表中数据,得k=________.某卫生机构对366人进行健康体检,有阳性家族史者糖尿病发病的有16例,不发病的有93例,有阴性家族史者糖尿病发病的有17例,不发病的有240例,认为糖尿病患者与遗传有关系的概率为________.三、解答题。
高中数学 专题1.2 独立性检验的基本思想及初步应用练习(含解析)新人教A版选修1-2(2021年

2016-2017学年高中数学专题1.2 独立性检验的基本思想及初步应用练习(含解析)新人教A版选修1-2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2016-2017学年高中数学专题1.2 独立性检验的基本思想及初步应用练习(含解析)新人教A版选修1-2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2016-2017学年高中数学专题1.2 独立性检验的基本思想及初步应用练习(含解析)新人教A版选修1-2的全部内容。
独立性检验的基本思想及初步班级:姓名:_____________1。
与表格相比,能更直观地反映出相关数据总体状况的是()A。
列联表 B.散点图C。
残差图D。
等高条形图2.分类变量X和Y的列联表如下:Y1Y2总计X1a b a+bX2c d c+d总计a+c b+d a+b+c+d则下列说法中正确的是()A。
ad—bc越小,说明X与Y关系越弱B。
ad—bc越大,说明X与Y关系越强C。
(ad-bc)2越大,说明X与Y关系越强D。
(ad—bc)2越接近于0,说明X与Y关系越强【解析】选C.因为K2=,所以(ad—bc)2越大,则K2越大,X与Y关系越强,故选C.3。
下面是2×2列联表。
y1y2总计x1332154x2a1346总计b34则表中a,b处的值应为( )A.33,66B.25,50 C。
32,67 D.43,56【解析】选A。
由2×2列联表知a+13=46,所以a=33,又b=a+33,所以b=33+33=66。
4。
研究生毕业的一个随机样本给出了关于所获取学位类别与学生性别的分类数据如表所示:硕士博士总计男16227189女1438151总计30535340根据以上数据,则( )A.性别与获取学位类别有关B.性别与获取学位类别无关C。
1.2独立性检验的基本思想及其初步应用

试用图形判断服用药和患病之间是否有关系?
解析:相应的等高条形图如下:
从图形可以看出,服用药的样本中患病的比例明显低于 没有服用药的样本中患病的比例,因此可以认为:服用药和 患病之间有关系.
独立性检验方法——K2公式
在调查的480名男士中有38名患有色盲,520名女 士中有6名患有色盲,能否在犯错误的概率不超过0.001的前 提下认为性别与患色盲有关系? 分析:
4.下面是一个2×2列联表: x1 x2 总计 y1 a 2 b y2 21 25 46 总计 73 27 100
则表中a、b的值分别为( C ) A.94、96 C.52、54 B.52、50 D.54、52
5.性别与身高列联表如下: 男 女 总计 高(165 cm以上) 37 6 43 矮(165 cm以下) 4 13 17 总计 41 19 60
作出2×2列联表 → 计算随机变量K2的值 → 对照临界值作出结论 解析:根据题目所给的数据作出如下的列联表:
色盲 不色盲 总计
男
女 总计
38
6 44
442
514 956
480
520 1 000
根据列联表中所给的数据可以得: a=38,b=442,c=6,d=514,a+b=480,c+d= 520,a+c=44,b+d=956,n=1 000.
3.独立性检验. 利用随机变量K2来判断“两个分类变量有关系”的方法 定义 称为独立性检验.
nad-bc2 公式 K2=_____________________ a+bc+da+cb+d ,其中n=______________. a+b+c+d
①根据实际问题的需要确定容许推断“两个分类变量有 临界值 k0 .② 关系”犯错误概率的上界α,然后查表确定 ________ k________ ≥k0 利用公式计算随机变量K2的 ________ , 观测值 k .③如果 具体 就推断“X与Y有关系”,这种推断犯错误的概率不超过 步骤 α;否则,就认为在犯错误的概率不超过α的前提下不能 推断“X与Y有关系”,或者在样本数据中没有发现足够 证据支持结论“X与Y有关系”.
高中数学选修1-2《1.2 独立性检验的基本思想及其初步应用》课后作业本(人教A版,pdf版,含答案)

认为性 别 与 喜 欢 饮 酒 有 关 的 正 确 性 的 概 率 为
若两个分类变量 # 与 $ 的列联表为 ( !
独立性检验的基本思想及其初步应用 第一章 统计案例 下表 是 某 地 区 的 一 种 传 染 病 与 饮 用 水 的 调 0 查表
已知 ' !
)
/ 0 +" * * * "% '! 0
)
" 根 据 表 中 的 数 据 计 算% 得到 # * / ) / * * #% *
&% - / ! # (% )) 0 * .
)
!
) " ) + *3 ! # * #3) *5# ) !3! " 则 # + "% # ) ) "3. "3# ! .3# ! !
独立性检验的基本思想及其初步应用 第一章 统计案例
第三课时
班级 姓名 时间 ! " 分钟 某班主任对全班" # *名学生进行了作业量的 数据如下表 ( 调查 %
认为作业多 男生 女生 总计 # / / ) . 认为作业不多 + # " ) ! 总计 ) 0 ) " *
试作统计分析推 断 得 病 是 否 与 饮 用 不 干 净 水 有关
#
)
总计 ) " " . / #
# )
总计
# * ! * " *
# " # . #
则* 这个结论出错的可能 # 与$ 之间有关系 + 性为 列表 ( "
'! ) ! * " * *" ! *
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学·选修1-2(人教A版)1.2 独立性检验的基本思想及其初步应用►达标训练1.在研究两个分类变量之间是否有关时,可以粗略地判断两个分类变量是否有关的是( )A.散点图B.等高条形图C.2×2列联表 D.以上均不对答案:B2.在等高条形图形图中,下列哪两个比值相差越大,要推断的论述成立的可能性就越大( )A.aa+b与dc+dB.ca+b与ac+dC.aa+b与cc+dD.aa+b与cb+c答案:C3.对分类变量X与Y的随机变量K2的观测值k,说法正确的是( )A.k越大,“ X与Y有关系”可信程度越小B.k越小,“ X与Y有关系”可信程度越小C.k越接近于0,“X与Y无关”程度越小D.k越大,“X与Y无关”程度越大答案:B4.下面是一个2×2列联表:则表中a、b的值分别为( )A.94、96 B.52、50C.52、54 D.54、52答案:C5.性别与身高列联表如下:那么,检验随机变量K2的值约等于 ( )A.0.043 B.0.367C.22 D.26.87答案:C6.给出列联表如下:根据表格提供的数据,估计“成绩与班级有关系”犯错误的概率约是( )A.0.4 B.0.5 C.0.75 D.0.85答案:B►素能提高1.在调查中发现480名男人中有38名患有色盲,520名女人中有6名患有色盲,下列说法中正确的是( )A .男人、女人中患有色盲的频率分别为0.038、0.006B .男人、女人患色盲的概率分别为19240、3260C .男人中患色盲的比例比女人中患色盲的比例大,患色盲是与性别有关的D .调查人数太少,不能说明色盲与性别有关解析:男人患色盲的比例为38480,比女人中患色盲的比例6520大,其差值为⎪⎪⎪⎪⎪⎪38480-6520≈0.067 6,差值较大. 答案:C2.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:男 女 总计 爱好 40 20 60 不爱好 20 30 50 总计 60 50 110由K 2=算得, K 2=≈7.8.附表:P (K 2≥k 0)0.050 0.010 0.001 k 03.841 6.635 10.828参照附表,得到的正确结论是( )A .有99%以上的把握认为“爱好该项运动与性别有关”B.有99%以上的把握认为“爱好该项运动与性别无关”C.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”D.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”答案:A3.若由一个2×2列联表中的数据计算得K2=4.013,那么在犯错误的概率不超过0.05的前提下认为两个变量______(填“有”或“没有”)关系.答案:有4.(2013·韶关二模)以下四个命题:①在一次试卷分析中,从每个试室中抽取第5号考生的成绩进行统计,是简单随机抽样;②样本数据:3,4,5,6,7的方差为2;③对于相关系数r,|r|越接近1,则线性相关程度越强;④通过随机询问110名性别不同的行人,对过马路是愿意走斑马线还是愿意走人行天桥进行抽样调查,得到如下列联表:男女总计走天桥402060走斑马线203050总计6050110由K2=可得,K2==7.8,则有99%以上的把握认为“选择过马路方式与性别有关”,其中正确的命题序号是________.答案:②③④附表P (K2≥k0)0.050.0100.001k03.8416.63510.8285.某学校为了调查喜欢语文学科与性别的关系,随机调查了一些学生情况,具体数据如下表:类别性别不喜欢语文喜欢语文男1310女720为了判断喜欢语文学科是否与性别有关系,根据表中的数据,得到K2的观测值k=≈4.844,因为k≥3.841,根据下表中的参考数据:P(K2≥k0)0.500.400.250.150.100.050.0250.010.0050.001k00.4550.7081.3232.0722.7063.8415.0246.6357.87910.828 判定喜欢语文学科与性别有关系,那么这种判断出错的可能性为________.答案:5%6.某学校课题组为了研究学生的数学成绩与物理成绩之间的关系,随机抽取高二年级20名学生某次考试成绩(满分100分)如下表序号12345678910 数学成绩95758094926567849871物理成绩90637287917158829381序号11121314151617181920 数学成绩67936478779057837283物理成绩77824885699161847886若单科成绩85以上(含85分),则该科成绩优秀.数学成绩优秀数学成绩不优秀合计物理成绩优秀物理成绩不优秀合计解析:(1)2×2列联表为(单位:人):数学成绩优秀数学成绩不优秀合计物理成绩优秀 527物理成绩不优秀 1 1213 合计 6 1420(2)根据题(1)中表格的数据计算,能否在犯错误的概率不超过0.005的前提下认为学生的数学成绩与物理成绩之间有关系?参数数据:①假设有两个分类变量X和Y,它们的值域分别为(x1,x2)和(y1,y2),其样本频数列联表(称为2×2列联表)为:y1y2合计x1 a b a+bx2 c d c+d合计a+c b+d a+b+c+d则随机变量K2=,其中n=a+b+c+d为样本容量;②独立检验随机变量K2的临界值参考表如下:P(K2≥k0)0.500.400.250.150.10k00.4550.708 1.323 2.072 2.706P(K2≥k0)0.050.0250.0100.0050.001 k0 3.841 5.024 6.6357.87910.828解析:根据列联表可以求得K2的观测值k=≈8.802>7.879.在犯错误的概率不超过0.005的前提下认为:学生的数学成绩与物理成绩之间有关系.7. 2013年3月14日,CCTV财经频道报道了某地建筑市场存在违规使用未经淡化海砂的现象.为了研究使用淡化海砂与混凝土耐久性是否达标有关,某大学实验室随机抽取了60个样本,得到了相关混凝土耐久性达标混凝土耐久性不达标总计使用淡化海砂25530 使用未经淡化海砂151530 总计402060的概率不超过1%的前提下,认为使用淡化海砂与混凝土耐久性是否达标有关?解析:提出假设H0:使用淡化海砂与混凝土耐久性是否达标无关.根据表中数据,求得K2的观测值k==7.5>6.635.查表得P(K2≥6.635)=0.010.∴能在犯错误的概率不超过1%的前提下,认为使用淡化海砂与混凝土耐久性是否达标有关.(2)若用分层抽样的方法在使用淡化海砂的样本中抽取了6个,现从这6个样本中任取2个,则取出的2个样本混凝土耐久性都达标的概率是多少?P(K2≥k)0.100.0500.0250.0100.001 k 2.706 3.841 5.024 6.63510.828解析:用分层抽样的方法在使用淡化海砂的样本中抽取6个,其中应抽取“混凝土耐久性达标”的为2530×6=5,“混凝土耐久性不达标”的为6-5=1,“混凝土耐久性达标记”为A1,A2,A3,A4,A5”;“混凝土耐久性不达标”的记为B.在这6个样本中任取2个,有以下几种可能:(A1,A2),(A1,A3),(A1,A4),(A1,A5),(A1,B),(A2,A3),(A2,A4),(A2,A5),(A2,B),(A3,A4),(A3,A5),(A3,B),(A4,A5),(A4,B)(A5,B),共15种.设“取出的2个样本混凝土耐久性都达标”为事件A,它的对立事件A为“取出的2个样本至少有1个混凝土耐久性不达标”,包含(A1,B),(A2,B),(A3,B),(A4,B),(A5,B),共5种可能.∴P(A)=1-P(A)=1-515=23.即取出的2个样本混凝土耐久性都达标的概率是2 3 .8.某食品厂为了检查甲、乙两条自动包装流水线的生产情况,随机在这两条流水线上各抽取40件产品作为样本称出它们的重量(单位:克),重量值落在(495,510]的产品为合格品,否则为不合格品.左下表是甲流水线样本频数分布表,右下图是乙流水线样本的频率分布直方图.产品重量/克频数(490,495] 6(495,500]8(500,505]14(505,510]8(510,515] 4(1)根据上表数据作出甲流水线样本的频率分布直方图;解析:甲流水线样本的频率分布直方图如下:(2)若以频率作为概率,试估计从两条流水线分别任取1件产品,该产品恰好是合格品的概率;解析:由题表知甲样本中合格品数为8+14+8=30,由题图知乙样本中合格品数为(0.06+0.09+0.03)×5×40=36,故甲样本合格品的频率为3040=0.75,乙样本合格品的频率为3640=0.9.据此可估计从甲流水线任取1件产品,该产品恰好是合格品的概率为0.75.从乙流水线任取1件产品,该产品恰好是合格品的概率为0.9.(3)由以上统计数据完成下面2×2列联表,能否在犯错误的概率不超过0.1的前提下认为产品的包装质量与两条自动包装流水线的选择有关?甲流水线乙流水线合计合格品a=b=不合格品c=d=合计n=附表:P(K2≥k0)0.150.100.050.0250.010.0050.001k02.0722.7063.8415.0246.6357.87910.828(参考公式:K2=,其中n=a+b+c+d)解析:2×2列联表如下:∵K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)=80×(120-360)266×14×40×40≈3.117>2.706.∴在犯错误的概率不超过0.1的前提下认为产品的包装质量与两条自动包装流水线的选择有关.►品味高考1.为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老人,结果如下:解析:调查的500位老年人中有70位需要志愿者提供帮助,因此该地区老年人中需要帮助的老年人的比例的估计值为70500=14%.(2)能否在犯错误的概率不超过0.01的前提下认为该地区的老年人是否需要志愿者提供帮助与性别有关?解析:K2的观测值k=500×(40×270-30×160)2200×300×70×430≈9.967,由于9.967>6.635所以在犯错误的概率不超过0.01的前提下认为该地区的老年人是否需要帮助与性别有关.(3)根据(2)的结论,能否提出更好的调查办法来估计该地区的老年人中需要志愿者提供帮助的老年人的比例?说明理由.解析:由于(2)的结论知,该地区的老年人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好.附:K2=P(K2≥k0)0.0500.0100.001k0 3.841 6.63510.8282.某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为研究工人的日平均生产量是否与年龄有关,现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,再将两组工人的日平均生产件数分为5组:[50,60),[60,70),[70,80),[80,90),[90,100)分别加以统计,得到如图所示的频率分布直方图.(1)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的概率;解析:由已知得,样本中有25周岁以上组工人60名,25周岁以下组工人40名.所以,样本中日平均生产件数不足60件的工人中,25周岁以上组工人有60×0.05=3(人),记为A1,A2,A3;25周岁以下组工人有40×0.05=2(人),记为B1,B2.从中随机抽取2名工人,所有的可能结果共有10种,它们是:(A1,A2),(A1,A3),(A2,A3),(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(B1,B2).其中至少有1名“25岁以下组”工人的可能结果共有7种,它们是:(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(B1,B2).故所求的概率P=7 10 .(2)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成列联表,并判断是否有90%的把握认为“生产能手与工人所在的年龄组有关”?附:K2=P(K2≥k0)0.1000.0500.0100.001k0 2.706 3.841 6.63510.828解析:由频率分布直方图可知,在抽取的100名工人中,“25周岁以上组”中的生产能手60×0.25=15(人),“25周岁以下组”中的生产能手40×0.375=15(人),据此可得2×2列联表如下:生产能手非生产能手合计25周岁以上组15456025周岁以下组152540合计3070100因为1.79<2.706,所以没有90%的把握认为“生产能手与工人所在年龄组有关”.。