点与圆的位置关系习题

合集下载

人教版初中数学九年级上册教学课件 第二十四章 圆 点和圆、直线和圆的位置关系 习题

人教版初中数学九年级上册教学课件 第二十四章 圆 点和圆、直线和圆的位置关系 习题

14. 如图,Rt△ABC中,∠C = 90°,AB,BC,CA的 长分别为c,a,b. 求△ABC的内切圆半径 r .
• R·九年级上册
习题 24.2
1. ○·O的半径为10 cm,根据下列点 P 到圆心 O 的距离,
判断点 P 和○·O的位置关系:
(1)8cm;
(2)10cm;
(3)12cm.断
以点C为圆心,下列 r 为半径的○·C与AB的位置关系:
11.如图,AB,BC,CD分别与○·O相切于 E,F,G三点,
且AB // CD, BO = 6 cm,CO = 8 cm. 求,BC的长.
12. 如图,AB为○·O的直径,C为○·O上一点,AD和过点
C的切线互相垂直,垂足为D. 求证:AC平分∠DAB.
13. 如下页图,等圆 ○·O1 和 ○·O2 相交于A,B两点, ○·O1经过○·O2的圆心O2. 求∠O1AB的度数.
(1) r = 2 cm; (2) r = 2.4 cm; (3) r = 3 cm.
3.一根钢管放在V形架内,其横截面如图所示,钢管的 半径是 25 cm. (1) 如果UV = 28 cm,VT是多少? (2)如果∠UVW = 60°,VT是多少?
4. 如图,直线 AB 经过○·O上的点C,并且OA = OB, CA = CB. 求证:直线 AB 是 ○·O 的切线.
5.如图,以点 O 为圆心的两个同心圆中,大圆的弦AB 是小圆的切线,点 P 为切点. 求证:AP = BP.
6.如图,PA,PB是○·O的切线,A,B为切点,AC 是○·O的直径,∠BAC=25°. 求∠P的度数.
7.已知 AB = 6cm,画半径为4 cm的圆,使它经过A,B两点. 这样的圆能画出多少个?如果半径为 3cm,2cm 呢?

24.2点、直线、圆与圆的位置关系 知识点+例题+练习(精品)

24.2点、直线、圆与圆的位置关系 知识点+例题+练习(精品)

1.点和圆的位置关系(1)点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,则有:①点P在圆外⇔d>r②点P在圆上⇔d=r①点P在圆内⇔d<r(2)点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.(3)符号“⇔”读作“等价于”,它表示从符号“⇔”的左端可以得到右端,从右端也可以得到左端.2.确定圆的条件不在同一直线上的三点确定一个圆.注意:这里的“三个点”不是任意的三点,而是不在同一条直线上的三个点,而在同一直线上的三个点不能画一个圆.“确定”一词应理解为“有且只有”,即过不在同一条直线上的三个点有且只有一个圆,过一点可画无数个圆,过两点也能画无数个圆,过不在同一条直线上的三点能画且只能画一个圆.3.三角形的外接圆与外心(1)外接圆:经过三角形的三个顶点的圆,叫做三角形的外接圆.(2)外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.(3)概念说明:①“接”是说明三角形的顶点在圆上,或者经过三角形的三个顶点.②锐角三角形的外心在三角形的内部;直角三角形的外心为直角三角形斜边的中点;钝角三角形的外心在三角形的外部.③找一个三角形的外心,就是找一个三角形的两条边的垂直平分线的交点,三角形的外接圆只有一个,而一个圆的内接三角形却有无数个.4.反证法(了解)(1)对于一个命题,当使用直接证法比较困难时,可以采用间接证法,反证法就是一个间接证法.反证法主要适合的证明类型有:①命题的结论是否定型的.②命题的结论是无限型的.③命题的结论是“至多”或“至少”型的.(2)反证法的一般步骤是:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾判定假设不正确,从而肯定原命题的结论正确.5.直线和圆的位置关系(1)直线和圆的三种位置关系:①相离:一条直线和圆没有公共点.②相切:一条直线和圆只有一个公共点,叫做这条直线和圆相切,这条直线叫圆的切线,唯一的公共点叫切点.③相交:一条直线和圆有两个公共点,此时叫做这条直线和圆相交,这条直线叫圆的割线.(2)判断直线和圆的位置关系:设⊙O的半径为r,圆心O到直线l的距离为d.①直线l和⊙O相交⇔d<r②直线l和⊙O相切⇔d=r③直线l和⊙O相离⇔d>r.6.切线的性质(1)切线的性质①圆的切线垂直于经过切点的半径.②经过圆心且垂直于切线的直线必经过切点.③经过切点且垂直于切线的直线必经过圆心.(2)切线的性质可总结如下:如果一条直线符合下列三个条件中的任意两个,那么它一定满足第三个条件,这三个条件是:①直线过圆心;②直线过切点;③直线与圆的切线垂直.(3)切线性质的运用由定理可知,若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.7.切线的判定(1)切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.(2)在应用判定定理时注意:①切线必须满足两个条件:a、经过半径的外端;b、垂直于这条半径,否则就不是圆的切线.②切线的判定定理实际上是从”圆心到直线的距离等于半径时,直线和圆相切“这个结论直接得出来的.③在判定一条直线为圆的切线时,当已知条件中未明确指出直线和圆是否有公共点时,常过圆心作该直线的垂线段,证明该线段的长等于半径,可简单的说成“无交点,作垂线段,证半径”;当已知条件中明确指出直线与圆有公共点时,常连接过该公共点的半径,证明该半径垂直于这条直线,可简单地说成“有交点,作半径,证垂直”.8.切线的判定与性质(1)切线的性质①圆的切线垂直于经过切点的半径.②经过圆心且垂直于切线的直线必经过切点.③经过切点且垂直于切线的直线必经过圆心.(2)切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.(3)常见的辅助线的:①判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;②有切线时,常常“遇到切点连圆心得半径”.9.切线长定理(1)圆的切线定义:经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长.(2)切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角.(3)注意:切线和切线长是两个不同的概念,切线是直线,不能度量;切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量.(4)切线长定理包含着一些隐含结论:①垂直关系三处;②全等关系三对;③弧相等关系两对,在一些证明求解问题中经常用到.10.三角形的内切圆与内心(1)内切圆的有关概念:与三角形各边都相切的圆叫三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.三角形的内心就是三角形三个内角角平分线的交点.(2)任何一个三角形有且仅有一个内切圆,而任一个圆都有无数个外切三角形.(3)三角形内心的性质:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.11.圆与圆的五种位置关系(1)圆与圆的五种位置关系:①外离;②外切;③相交;④内切;⑤内含.如果两个圆没有公共点,叫两圆相离.当每个圆上的点在另一个圆的外部时,叫两个圆外离,当一个圆上的点都在另一圆的内部时,叫两个圆内含,两圆同心是内含的一个特例;如果两个圆有一个公共点,叫两个圆相切,相切分为内切、外切两种;如果两个圆有两个公共点叫两个圆相交.(2)圆和圆的位置与两圆的圆心距、半径的数量之间的关系:①两圆外离⇔d>R+r;②两圆外切⇔d=R+r;③两圆相交⇔R-r<d<R+r(R≥r);④两圆内切⇔d=R-r(R>r);⑤两圆内含⇔d<R-r(R>r).12.相切两圆的性质相切两圆的性质:如果两圆相切,那么连心线必经过切点.这说明两圆的圆心和切点三点共线,为证明带来了很大方便.13.相交两圆的性质(1)相交两圆的性质:相交两圆的连心线(经过两个圆心的直线),垂直平分两圆的公共弦.注意:在习题中常常通过公共弦在两圆之间建立联系.(2)两圆的公切线性质:两圆的两条外公切线的长相等;两圆的两条内公切线的长也相等.两个圆如果有两条(内)公切线,则它们的交点一定在连心线上.4. 判断圆的切线的方法及应用判断圆的切线的方法有三种:(1)与圆有惟一公共点的直线是圆的切线;(2)若圆心到一条直线的距离等于圆的半径,则该直线是圆的切线;(3)经过半径外端,并且垂直于这条半径的直线是圆的切线.【例4】如图,⊙O的直径AB=4,∠ABC=30°,BC=34,D是线段BC的中点.(1)试判断点D与⊙O的位置关系,并说明理由.(2)过点D作DE⊥AC,垂足为点E,求证:直线DE是⊙O的切线.【例5】如图,已知O为正方形ABCD对角线上一点,以O为圆心,OA的长为半径的⊙O与BC相切于M,与AB、AD分别相交于E、F,求证CD与⊙O相切.【例6】如图,半圆O为△ABC的外接半圆,AC为直径,D为劣弧上一动点,P在CB的延长线上,且有∠BAP=∠BDA.求证:AP是半圆O的切线.【知识梳理】1. 直线与圆的位置关系:2. 切线的定义和性质:3.三角形与圆的特殊位置关系:4. 圆与圆的位置关系:(两圆圆心距为d ,半径分别为21,r r )相交⇔2121r r d r r +<<-; 外切⇔21r r d +=;内切⇔21r r d -=; 外离⇔21r r d +>; 内含⇔210r r d -<<【注意点】与圆的切线长有关的计算.【例题精讲】例1.⊙O 的半径是6,点O 到直线a 的距离为5,则直线a 与⊙O 的位置关系为( )A .相离B .相切C .相交D .内含例 2. 如图1,⊙O 内切于ABC △,切点分别为D E F ,,.50B ∠=°,60C ∠=°,连结OE OF DE DF ,,,,则EDF ∠等于( )A .40°B .55°C .65°D .70°例3. 如图,已知直线L 和直线L 外两定点A 、B ,且A 、B 到直线L 的距离相等,则经过A 、B 两点且圆心在L 上的圆有( )A .0个B .1个C .无数个D .0个或1个或无数个例4.已知⊙O 1半径为3cm ,⊙O 2半径为4cm ,并且⊙O 1与⊙O 2相切,则这两个圆的圆心距为( ) A.1cm B.7cm C.10cm D. 1cm 或7cm例5.两圆内切,圆心距为3,一个圆的半径为5,另一个圆的半径为 例6.两圆半径R=5,r=3,则当两圆的圆心距d 满足___ ___•时,•两圆相交;•当d•满足___ ___时,两圆不外离.例7.⊙O 半径为6.5cm ,点P 为直线L 上一点,且OP=6.5cm ,则直线与⊙O•的位置关系是____例8.如图,PA 、PB 分别与⊙O 相切于点A 、B ,⊙O 的切线EF 分别交PA 、PB 于点E 、F ,切点C 在弧AB 上,若PA 长为2,则△PEF 的周长是 _.例9. 如图,⊙M 与x 轴相交于点(20)A ,,(80)B ,,与y 轴切于点C ,则圆心M 的坐标是例10. 如图,四边形ABCD 内接于⊙A ,AC 为⊙O 的直径,弦DB ⊥AC ,垂足O O2O1为M ,过点D 作⊙O 的切线交BA 的延长线于点E ,若AC=10,tan ∠DAE=43,求DB 的长.【当堂检测】1.如果两圆半径分别为3和4,圆心距为7,那么两圆位置关系是( )A .相离B .外切C .内切D .相交2.⊙A 和⊙B 相切,半径分别为8cm 和2cm ,则圆心距AB 为( )A .10cmB .6cmC .10cm 或6cmD .以上答案均不对3.如图,P 是⊙O 的直径CB 延长线上一点,PA 切⊙O 于点A ,如果PA =3,PB =1,那么∠APC 等于( )A. 15B. 30C. 45D. 604. 如图,⊙O 半径为5,PC 切⊙O 于点C ,PO 交⊙O 于点A ,PA =4,那么PC 的长等于( ) A )6 (B )25 (C )210 (D )2145.如图,在10×6的网格图中(每个小正方形的边长均为1个单位长).⊙A 半径为2,⊙B 半径为1,需使⊙A 与静止的⊙B 相切,那么⊙A 由图示的位置向左平移 个单位长.6. 如图,⊙O 为△ABC 的内切圆,∠C = 90,AO 的延长线交BC 于点D ,AC =4,DC =1,,则⊙O 的半径等于( )A. 45B. 54C. 43D. 657.⊙O 的半径为6,⊙O 的一条弦AB 长63,以3为半径⊙O 的同心圆与直线AB 的位置关系是( )A.相离B.相交C.相切D.不能确定8.如图,在ABC △中,12023AB AC A BC =∠==,°,,A ⊙与BC 相切于点D ,且交AB AC 、于M N 、两点,则图中阴影部分的面积是 (保留π).9.如图,B 是线段AC 上的一点,且AB :AC=2:5,分别以AB 、AC 为直径画圆,则小圆的面积与大圆的面积之比为_______.O D C B A第3题图 第4题图 第5题图 第6题图 第8题图 第9题图 第11题图 第10题图 第12题图10. 如图,从一块直径为a+b 的圆形纸板上挖去直径分别为a 和b 的两个圆,则剩下的纸板面积是___.11. 如图,两等圆外切,并且都与一个大圆内切.若此三个圆的圆心围成的三角形的周长为18cm .则大圆的半径是______cm .12.如图,直线AB 切⊙O 于C 点,D 是⊙O 上一点,∠EDC=30º,弦EF ∥AB ,连结OC 交EF 于H 点,连结CF ,且CF=2,则HE 的长为_________.13. 如图,PA 、PB 是⊙O 的两条切线,切点分别为A 、B ,若直径AC=12cm ,∠P=60°.求弦AB 的长.【中考连接】一、选择题1. 正三角形的内切圆半径为1,那么三角形的边长为( )A.2B.32C.3D.32.⊙O 是等边ABC △的外接圆,⊙O 的半径为2,则ABC △的边长为( )A .3B .5C .23D .253. 已知⊙O 的直径AB 与弦AC 的夹角为 30,过C 点的切线PC 与AB 延长线交于P 点.PC =5,则⊙O 的半径为 ( )A. 335B. 635 C. 10 D. 5 4. AB 是⊙O 的直径,点P 在BA 的延长线上,PC 是⊙O 的切线,C 为切点,PC =26,PA =4,则⊙O 的半径等于( )A. 1B. 2C. 23D. 26 5.某同学制做了三个半径分别为1、2、3的圆,在某一平面内,让它们两两外切,该同学把此时三个圆的圆心用线连接成三角形.你认为该三角形的形状为( )A.钝角三角形B.等边三角形C.直角三角形D.等腰三角形6.关于下列四种说法中,你认为正确的有( )①圆心距小于两圆半径之和的两圆必相交 ②两个同心圆的圆心距为零③没有公共点的两圆必外离 ④两圆连心线的长必大于两圆半径之差A.1个B.2个C.3个D.4个二、填空题6. 如图,AB 、AC 是⊙O 的两条切线,切点分别为B 、C ,D 是优弧BC 上的一点,已知∠BAC =80°,那么∠BDC =__________度.B P A OC 第3题图 第6题图 第7题图 第8题图7. 如图,AB 是⊙O 的直径,四边形ABCD 内接于⊙O ,,,的度数比为3∶2∶4,MN 是⊙O 的切线,C 是切点,则∠BCM 的度数为________. 8.如图,在△ABC 中,5cm AB AC ==,cos B 35=.如果⊙O 的半径为10cm ,且经过点B 、C ,那么线段AO = cm .9.两个等圆⊙O 与⊙O ′外切,过点O 作⊙O ′的两条切线OA 、OB ,A 、B 是切点,则∠AOB = .10.如图6,直线AB 与⊙O 相切于点B ,BC 是⊙O 的直径,AC 交⊙O 于点D ,连结BD ,则图中直角三角形有 个.11.如图,60ACB ∠=°,半径为1cm 的O ⊙切BC 于点C ,若将O ⊙在CB 上向右滚动,则当滚动到O ⊙与CA 也相切时,圆心O 移动的水平距离是__________cm .12.如图, AB 与⊙O 相切于点B ,线段OA 与弦BC 垂直于点D ,∠AOB =60°,B C=4cm ,则切线AB = cm.13.如图,⊙A 和⊙B 与x 轴和y 轴相切,圆心A 和圆心B 都在反比例函数1y x=图象上,则阴影部分面积等于 . 14. Rt △ABC 中,9068C AC BC ∠===°,,.则△ABC的内切圆半径r =______. 15.⊙O 的圆心到直线l 的距离为d ,⊙O 的半径为r ,当d 、r 是关于x 的方程x 2-4x+m=0的两根,且直线l 与⊙O 相切时,则m 的值为_____.16.已知:⊙A 、⊙B 、⊙C 的半径分别为2、3、5,且两两相切,则AB 、BC 、CA 分别为 .17.⊙O 的圆心到直线l 的距离为d ,⊙O 的半径为r ,当d 、r 是关于x 的方程x 2-4x+m=0的两根,且直线l 与⊙O 相切时,则m 的值为_____.三、解答题18. 如图,AB 是⊙O 的弦,OA OC ⊥交AB 于点C ,过B 的直线交OC 的延长线于点E ,当BE CE =时,直线BE 与⊙O 有怎样的位置关系?请说明理由.19.如图1,在⊙O 中,AB 为⊙O 的直径,AC 是弦,4OC =,60OAC ∠=.(1)求∠AOC 的度数;(2)在图1中,P 为直径BA 延长线上的一点,当CP 与⊙O 相切时,求PO 的第10题图 第11题图 第12题图 第13题图 第18题图长;(3)如图2,一动点M 从A 点出发,在⊙O 上按A 照逆时针的方向运动,当MAO CAO S S △△时,求动点M 所经过的弧长.。

九年级数学《点、直线、圆和圆的位置关系》复习题 人教新课标版

九年级数学《点、直线、圆和圆的位置关系》复习题 人教新课标版

《点、直线、圆和圆的位置关系》复习题一、填空题1.已知直线l 与⊙O 相切,若圆心O 到直线l 的距离是5,则⊙O 的半径是. 【答案】52.已知⊙O 的半径为3cm ,圆心O 到直线l 的距离是4cm ,则直线l 与⊙O 的位置关是. 【答案】相离3.P 为⊙O 外一点,PA 、PB 分别切⊙O 于点A 、B ,∠APB=50°,点C 为⊙O 上一点(不与A 、B )重合,则∠ACB 的度数为。

【答案】︒︒11565或4.若两圆相切,圆心距是7,其中一圆的半径为10,则另一个圆的半径为__________. 【答案】3或175.如图,以O 为圆心的两个同心圆中,大圆的弦AB 是小圆的切线,C 为切点,若两圆的半径分别为3cm 和5cm ,则AB 的长为cm 。

【答案】86.如图,AB 切⊙O 于点A ,BO 交⊙O 于点C ,点D 是A Cm 异于点C 、A 的一点,若∠ABO=032,则∠ADC 的度数是.【答案】29°7.如图,⊙O 的直径为20cm ,弦cm AB 16=,AB OD ⊥,垂足为D 。

则AB 沿射线OD 方向平移cm时可与⊙O相切.【答案】48⨯的网格图(每个小正方形的边长均为1个单位长度)中,⊙A的半径为2个8.如图在6单位长度,⊙B的半径为1个单位长度,要使运动的⊙B与静止的⊙A内切,应将⊙B 由图示位置向左平移个单位长度.【答案】4或69.如图,小圆的圆心在原点,半径为3,大圆的心坐标为(a,0)半径为5.如果两圆内含,那么a的取值X围是______________.【答案】-2<a<2 在数轴上数形结合的分析即可,注意原点左、右侧.10.如图, 已知△ABC,6∠90C.O是AB的中点,=AC,︒=BC=⊙O与AC,BC分别相切于点D与点E.点F是⊙O与AB的一个交点,连DF并延长交CB的延长线于点G. 则CG=.【答案】332二、选择题11.若两圆的半径分别为2和3,圆心距为5,则两圆的位置关系为【答案】B12.已知两圆的半径分别是4和6,圆心距为7,则这两圆的位置关系是()(A)相交(B)外切(C)外离(D)内含【答案】A13.如图,正三角形的内切圆半径为1,那么这个正三角形的边长为A.2 B.3 C.3 D.23【答案】D14.如图,在Rt△ABC中,∠C = 90°,∠B = 30°,BC = 4 cm,以点C为圆心,以2 cm 的长为半径作圆,则⊙C与AB的位置关系是().A.相离B.相切C.相交D.相切或相交【答案】B15.如图,在AABC 中,AB=BC=2,以AB 为直径的⊙0与BC 相切于点B ,则AC 等于( ) A .2 B .3 c .22 D .23OCBA【答案】C16.如图,PA 、PB 是O 的切线,切点分别是A 、B ,如果∠P =60°, 那么∠AOB 等于( )A.60°B.90°C.120°D.150°【答案】 D17.在平面直角坐标系中,以点(3,2)为圆心、3为半径的圆,一定( )x 轴相切,与yx 轴相切,与y 轴相 x 轴相交,与yx 轴相交,与y 轴相【答案】C18.已知⊙O 1与⊙O 2相切,⊙O 1的半径为3 cm ,⊙O 2的半径为2 cm ,则O 1O 2的长是( ) A .1 cm B .5 cmC .1 cm 或5 cmD .或BC A【答案】C19.已知⊙O 1、⊙O 2的半径分别是12r =、24r =,若两圆相交,则圆心距O 1O 2可能取的值是( ).A 、2B 、4C 、6D 、8 【答案】B .20.已知两圆的半径R 、r 分别为方程0652=+-x x 的两根,两圆的圆心距为1,两圆的位置关系是A .外离B .内切C .相交D .外切 【答案】B21.如图,已知⊙O 是以数轴的原点O 为圆心,半径为1的圆,45AOB ∠=︒,点P 在数轴上运动,若过点P 且与OA 平行的直线与⊙O 有公共点, 设x OP =,则x 的取值X 围是A .-1≤x ≤1B .2-≤x ≤2C .0≤x ≤2D .x >2 【答案】C22.如图,两圆相交于A ,B 两点,小圆经过大圆的圆心O ,点C ,D 分别在两圆上,若100ADB ∠=︒,则ACB ∠的度数为A .35︒B .40︒C .50︒D .80︒【答案】B23.如图,直线l 1∥l 2,⊙O 与l 1和l 2分别相切于点A 和点B .点M 和点N 分别是l 1和l 2上的动点,MN 沿l 1和l 2平移.⊙O 的半径为1,∠1=60°.下列结论错误..的是( ).(A)433 MN=(B)若MN与⊙O相切,则3AM=(C)若∠MON=90°,则MN与⊙O相切(D)l1和l2的距离为2【答案】B24.如图,已知A、B两点的坐标分别为(2,0)、(0,2),⊙C的圆心坐标为(-1,0),半径为1.若D是⊙C上的一个动点,线段DA与y轴交于点E,则△ABE面积的最小值是A.2 B.1 C.222- D.22-【答案】:C25.如图,点B是线段AC的中点,过点C的直线l与AC成60°的角,在直线l上取一点P,使∠APB=30°,则满足条件的点有几个 ( )PCBAl60°三、解答题 如图,以线段AB 为 三、解答题26.如图,AB 是半圆的直径,O 为圆心,AD 、BD 是半圆的弦,且PDA PBD ∠=∠.(1)判断直线PD 是否为O 的切线,并说明理由;(2)如果60BDE ∠=,3PD =,求PA 的长。

初中数学【与圆有关的位置关系】练习题

初中数学【与圆有关的位置关系】练习题

初中数学【与圆有关的位置关系】练习题一.选择题(共10小题)1.在平面直角坐标系中,圆心为坐标原点,⊙O的半径为10,则P(﹣10,1)与⊙O的位置关系为()A.点P在⊙O上B.点P在⊙O外C.点P在⊙O内D.无法确定2.如图,△ABC是⊙O的内接三角形,∠A=119°,过点C的圆的切线交BO于点P,则∠P的度数为()A.32°B.31°C.29°D.61°3.如图,已知P是⊙O外一点,Q是⊙O上的动点,线段PQ的中点为M,连接OP,OM.若⊙O的半径为2,OP=4,则线段OM的最小值是()A.0B.1C.2D.34.一个点到圆的最小距离为6cm,最大距离为9cm,则该圆的半径是()A.1.5cm B.7.5cmC.1.5cm或7.5cm D.3cm或15cm5.在公园的O处附近有E、F、G、H四棵树,位置如图所示(图中小正方形的边长均相等)现计划修建一座以O为圆心,OA为半径的圆形水池,要求池中不留树木,则E、F、G、H四棵树中需要被移除的为()A.E、F、G B.F、G、H C.G、H、E D.H、E、F6.直角△ABC,∠BAC=90°,AB=8,AC=6,以A为圆心,4.8长度为半径的圆与直线BC的公共点的个数为()A.0B.1C.2D.不能确定7.如图,两个同心圆,大圆的半径为5,小圆的半径为3,若大圆的弦AB与小圆有公共点,则弦AB的取值范围是()A.8≤AB≤10B.8<AB≤10C.4≤AB≤5D.4<AB≤58.如图,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(﹣3,0),将⊙P 沿x轴正方向平移,使⊙P与y轴相切,则平移的距离为()A.1B.1或5C.3D.59.如图,在Rt△ABC中,∠C=90°,AC=4,BC=7,点D在边BC上,CD=3,⊙A的半径长为3,⊙D与⊙A相交,且点B在⊙D外,那么⊙D的半径长r的取值范围是()A.1<r<4B.2<r<4C.1<r<8D.2<r<810.如图,⊙M的半径为2,圆心M的坐标为(3,4),点P是⊙M上的任意一点,P A⊥PB,且P A、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为()A.3B.4C.6D.8二.填空题(共4小题)11.如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为r的圆,若要求另外三个顶点A、B、C中至少有一个点在圆内,且至少有一个点在圆外,则r的取值范围是3<r<5.12.如图,在平面直角坐标系中,A(0,4)、B(4,4)、C(6,2),则经过A、B、C三点的圆弧所在圆的圆心M的坐标为;点D坐标为(8,﹣2),连接CD,直线CD 与⊙M的位置关系是.13.如图,直线l:y=﹣x+1与坐标轴交于A,B两点,点M(m,0)是x轴上一动点,以点M为圆心,2个单位长度为半径作⊙M,当⊙M与直线l相切时,则m的值为.14.⊙O的半径为R,点O到直线l的距离为d,R,d是方程x2﹣4x+m=0的两根,当直线l与⊙O相切时,m的值为.三.解答题(共3小题)15.如图,在△ABC中,∠C=90°,点O在AC上,以OA为半径的⊙O交AB于点D,BD的垂直平分线交BC于点E,交BD于点F,连接DE.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)若AC=6,BC=8,OA=2,求线段DE的长.16.已知AB是半圆O的直径,点C是半圆O上的动点,点D是线段AB延长线上的动点,在运动过程中,保持CD=OA.(1)当直线CD与半圆O相切时(如图①),求∠ODC的度数;(2)当直线CD与半圆O相交时(如图②),设另一交点为E,连接AE,若AE∥OC,①AE与OD的大小有什么关系?为什么?②求∠ODC的度数.答案一.选择题(共10小题)1.在平面直角坐标系中,圆心为坐标原点,⊙O的半径为10,则P(﹣10,1)与⊙O的位置关系为()A.点P在⊙O上B.点P在⊙O外C.点P在⊙O内D.无法确定【解答】解:∵圆心P的坐标为(﹣10,1),∴OP==.∵⊙O的半径为10,∴>10,∴点P在⊙O外.故选:B.2.如图,△ABC是⊙O的内接三角形,∠A=119°,过点C的圆的切线交BO于点P,则∠P的度数为()A.32°B.31°C.29°D.61°【解答】解:如图所示:连接OC、CD,∵PC是⊙O的切线,∴PC⊥OC,∴∠OCP=90°,∵∠A=119°,∴∠ODC=180°﹣∠A=61°,∵OC=OD,∴∠OCD=∠ODC=61°,∴∠DOC=180°﹣2×61°=58°,∴∠P=90°﹣∠DOC=32°;故选:A.3.如图,已知P是⊙O外一点,Q是⊙O上的动点,线段PQ的中点为M,连接OP,OM.若⊙O的半径为2,OP=4,则线段OM的最小值是()A.0B.1C.2D.3【解答】解:设OP与⊙O交于点N,连结MN,OQ,如图,∵OP=4,ON=2,∴N是OP的中点,∵M为PQ的中点,∴MN为△POQ的中位线,∴MN=OQ=×2=1,∴点M在以N为圆心,1为半径的圆上,当点M在ON上时,OM最小,最小值为1,∴线段OM的最小值为1.故选:B.4.一个点到圆的最小距离为6cm,最大距离为9cm,则该圆的半径是()A.1.5cm B.7.5cmC.1.5cm或7.5cm D.3cm或15cm【解答】解:分为两种情况:①当点P在圆内时,最近点的距离为6cm,最远点的距离为9cm,则直径是15cm,因而半径是7.5cm;②当点P在圆外时,最近点的距离为6cm,最远点的距离为9cm,则直径是3cm,因而半径是1.5cm.故选:C.5.在公园的O处附近有E、F、G、H四棵树,位置如图所示(图中小正方形的边长均相等)现计划修建一座以O为圆心,OA为半径的圆形水池,要求池中不留树木,则E、F、G、H四棵树中需要被移除的为()A.E、F、G B.F、G、H C.G、H、E D.H、E、F【解答】解:∵OA==,∴OE=2<OA,所以点E在⊙O内,OF=2<OA,所以点F在⊙O内,OG=1<OA,所以点G在⊙O内,OH==2>OA,所以点H在⊙O外,故选:A.6.直角△ABC,∠BAC=90°,AB=8,AC=6,以A为圆心,4.8长度为半径的圆与直线BC的公共点的个数为()A.0B.1C.2D.不能确定【解答】解:∵∠BAC=90°,AB=8,AC=6,∴BC=10,∴斜边上的高为:=4.8,∴d=4.8cm=r=4.8cm,∴圆与该直线AB的位置关系是相切,交点个数为1,故选:B.7.如图,两个同心圆,大圆的半径为5,小圆的半径为3,若大圆的弦AB与小圆有公共点,则弦AB的取值范围是()A.8≤AB≤10B.8<AB≤10C.4≤AB≤5D.4<AB≤5【解答】解:当AB与小圆相切,∵大圆半径为5,小圆的半径为3,∴AB=2=8.∵大圆的弦AB与小圆有公共点,即相切或相交,∴8≤AB≤10.故选:A.8.如图,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(﹣3,0),将⊙P 沿x轴正方向平移,使⊙P与y轴相切,则平移的距离为()A.1B.1或5C.3D.5【解答】解:当⊙P位于y轴的左侧且与y轴相切时,平移的距离为1;当⊙P位于y轴的右侧且与y轴相切时,平移的距离为5.故选:B.19.如图,在Rt△ABC中,∠C=90°,AC=4,BC=7,点D在边BC上,CD=3,⊙A 的半径长为3,⊙D与⊙A相交,且点B在⊙D外,那么⊙D的半径长r的取值范围是()A.1<r<4B.2<r<4C.1<r<8D.2<r<8【解答】解:连接AD,∵AC=4,CD=3,∠C=90°,∴AD=5,∵⊙A的半径长为3,⊙D与⊙A相交,∴r>5﹣3=2,∵BC=7,∴BD=4,∵点B在⊙D外,∴r<4,∴⊙D的半径长r的取值范围是2<r<4,故选:B.10.如图,⊙M的半径为2,圆心M的坐标为(3,4),点P是⊙M上的任意一点,P A⊥PB,且P A、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为()A.3B.4C.6D.8【解答】解:∵P A⊥PB,∴∠APB=90°,∵AO=BO,∴AB=2PO,若要使AB取得最小值,则PO需取得最小值,连接OM,交⊙M于点P′,当点P位于P′位置时,OP′取得最小值,过点M作MQ⊥x轴于点Q,则OQ=3、MQ=4,∴OM=5,又∵MP′=2,∴OP′=3,∴AB=2OP′=6,故选:C.二.填空题(共4小题)11.如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为r的圆,若要求另外三个顶点A、B、C中至少有一个点在圆内,且至少有一个点在圆外,则r的取值范围是3<r<5.【解答】解:在直角△ABD中,CD=AB=4,AD=3,则BD==5.由图可知3<r<5.故答案为:3<r<5.12.如图,在平面直角坐标系中,A(0,4)、B(4,4)、C(6,2),则经过A、B、C三点的圆弧所在圆的圆心M的坐标为(2,0);点D坐标为(8,﹣2),连接CD,直线CD与⊙M的位置关系是相切.【解答】解:(1)如图,经过A、B、C三点的圆弧所在圆的圆心M的坐标为(2,0).故答案为(2,0);(2)连接MC,MD,MC2=42+22=20,CD2=42+22=20,MD2=62+22=40,MD2=MC2+CD2,∴∠MCD=90°,又∵MC为半径,∴直线CD是⊙M的切线;故答案为:相切.13.如图,直线l:y=﹣x+1与坐标轴交于A,B两点,点M(m,0)是x轴上一动点,以点M为圆心,2个单位长度为半径作⊙M,当⊙M与直线l相切时,则m的值为2﹣2或2+2..【解答】解:在y=﹣x+1中,令x=0,则y=1,令y=0,则x=2,∴A(0,1),B(2,0),∴AB=;如图,设⊙M与AB相切与C,连接MC,则MC=2,MC⊥AB,∵∠MCB=∠AOB=90°,∠B=∠B,∴△BMC~△ABO,∴,即,∴BM=2,∴OM=2﹣2,或OM=2+2.∴m=2﹣2或m=2+2.故答案为:2﹣2,2+2.14.⊙O的半径为R,点O到直线l的距离为d,R,d是方程x2﹣4x+m=0的两根,当直线l与⊙O相切时,m的值为4.【解答】解:∵d、R是方程x2﹣4x+m=0的两个根,且直线L与⊙O相切,∴d=R,∴方程有两个相等的实根,∴△=16﹣4m=0,解得,m=4,故答案为:4.三.解答题(共3小题)15.如图,在△ABC中,∠C=90°,点O在AC上,以OA为半径的⊙O交AB于点D,BD的垂直平分线交BC于点E,交BD于点F,连接DE.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)若AC=6,BC=8,OA=2,求线段DE的长.【解答】解:(1)直线DE与⊙O相切,理由如下:连接OD,∵OD=OA,∴∠A=∠ODA,∵EF是BD的垂直平分线,∴EB=ED,∴∠B=∠EDB,∵∠C=90°,∴∠A+∠B=90°,∴∠ODA+∠EDB=90°,∴∠ODE=180°﹣90°=90°,∴直线DE与⊙O相切;(2)连接OE,设DE=x,则EB=ED=x,CE=8﹣x,∵∠C=∠ODE=90°,∴OC2+CE2=OE2=OD2+DE2,∴42+(8﹣x)2=22+x2,解得:x=4.75,则DE=4.75.16.已知AB是半圆O的直径,点C是半圆O上的动点,点D是线段AB延长线上的动点,在运动过程中,保持CD=OA.(1)当直线CD与半圆O相切时(如图①),求∠ODC的度数;(2)当直线CD与半圆O相交时(如图②),设另一交点为E,连接AE,若AE∥OC,①AE与OD的大小有什么关系?为什么?②求∠ODC的度数.【解答】解:(1)如图①,连接OC,∵OC=OA,CD=OA,∴OC=CD,∴∠ODC=∠COD,∵CD是⊙O的切线,∴∠OCD=90°,∴∠ODC=45°;(2)如图②,连接OE.∵CD=OA,∴CD=OC=OE=OA,∴∠1=∠2,∠3=∠4.∵AE∥OC,∴∠2=∠3.设∠ODC=∠1=x,则∠2=∠3=∠4=x.∴∠AOE=∠OCD=180°﹣2x.①AE=OD.理由如下:在△AOE与△OCD中,∴△AOE≌△OCD(SAS),∴AE=OD.②∠6=∠1+∠2=2x.∵OE=OC,∴∠5=∠6=2x.∵AE∥OC,∴∠4+∠5+∠6=180°,即:x+2x+2x=180°,∴x=36°.∴∠ODC=36°.。

直线与圆的位置关系练习题及参考答案

直线与圆的位置关系练习题及参考答案

直线与圆的位置关系练习题及参考答案一、选择题1. 在平面上,已知点A(4,-2),圆心O(1,3),半径R=5. 则点A与圆的位置关系是:A. A在圆内B. A在圆上C. A在圆外答案: A. A在圆内2. 已知直线L的方程为2x - 3y = 6,圆C的方程为x^2 + y^2 = 25.则直线L与圆C的位置关系是:A. 直线L与圆C相切B. 直线L与圆C相交于两点C. 直线L与圆C不相交答案: B. 直线L与圆C相交于两点3. 在平面上,已知两个圆C1与C2,圆C1的半径为3,圆心坐标为(1,1),圆C2的半径为2,圆心坐标为(-2,-3). 则两个圆的位置关系是:A. 两个圆相交于两点B. 两个圆内切C. 两个圆相离答案: C. 两个圆相离二、填空题1. 已知圆C的半径为2,圆心坐标为(3,5). 则圆心到原点的距离是______.答案: sqrt(3^2 + 5^2) = sqrt(34)2. 在平面上,已知直线L的方程为y = 2x + 1,圆C的半径为4,圆心坐标为(-1,2). 则直线L与圆C的位置关系可以表示为______.答案: (x+1)^2 + (y-2)^2 = 16三、解答题1. 如图所示,在平面上有一个圆C,其圆心坐标为(2,3),半径为4. 请写出圆C的方程,并确定点A(-3,4)与圆C的位置关系。

解答:圆C的方程为:(x-2)^2 + (y-3)^2 = 16点A(-3,4)与圆C的位置关系可以通过计算点A到圆心的距离来判断。

点A到圆心的距离为:distance = sqrt((-3-2)^2 + (4-3)^2) = sqrt(25) = 5比较点A到圆C的距离与圆的半径的关系:若 distance < 4,则点A在圆内;若 distance = 4,则点A在圆上;若 distance > 4,则点A在圆外。

因为 distance = 5 > 4,所以点A在圆外。

点与圆的位置关系习题课(2)

点与圆的位置关系习题课(2)

第13课时:点与圆的位置关系习题课(2)班级学号1.如图,在⊙O中,直径MN⊥AB,垂足为C AN=BN③AM=BM;④CM=5CN其中正确的结论有()A.1个B.2个C.3个D.4个2.过⊙O内一点M的最长弦长为10cm,最短弦长为8cm,那么OM长为()A.3cm B.6cm C.41cm D.9 cm3.如图, ⊙O的直径为12 cm,弦AB垂直平分半径OC,则弦AB的长为()A.33cm B.6cm C.36cm D.312cm4.在直径为8cm的⊙O中,弦AB的中点到O的距离为32,则△AOB为三角形.5.在⊙O中,弦AB的长恰好等于半径,则弦AB所对的圆心角为.6.如图, 在⊙O中,E是弦AB延长线上的一点,已知OB=10 cm,OE=12cm,∠E=30°,则弦AB的长为.7.如图,点A、B、C、D都在⊙O上,BC是直径,AD=DC,∠1=20°,∠2= ,∠3= .8.如图, ⊙O的直径AB和弦CD相交于点E,AE=1 cm,BE=5cm,∠DEB=60°,求CD的长.9.如图,已知在直角三角形△ABC中,∠C=90°,AC=5cm,BC=12cm,以C为圆心,CA为半径的圆交斜边于D.求AD的长.10.已知△ABC内接于⊙O,点O到AB的距离等于21AB,求∠C的度数.11.如图,在钝角三角形ABC中,AD⊥BC,垂足为D,且AD与DC的长度分别为方程1272=+-xx的两个根,⊙O是ABC∆的外接圆.如果BD长为a(a>0),求:ABC∆的外接圆的面积.12.已知,如图, AB为⊙O的直径,CD为弦,且AB⊥CD于点E,F为DC的延长线上的一点,连接AF交⊙O于点M,说明:∠AMD=∠FMC.13.如图, 已知P、O2是⊙O1上两点,⊙O1与⊙O2都经过A、B两点,PA的延长线和PB分别交⊙O2于点C、D.试说明:(1)PO2平分∠APB,(2)AC=BD.第五章中心对称图形第1题第3题B第7题第6题1。

中考数学复习之与圆有关的位置关系,考点过关与基础练习题

中考数学复习之与圆有关的位置关系,考点过关与基础练习题

34.与圆有关的位置关系➢知识过关1.点和圆的位置关系2.直线与圆的位置关系3.切线的判定与性质切线的定义:直线与圆有_____公共点时,这条直线是圆的切线.切线的性质:圆的切线垂直于过切点的______切线的判定:经过半径的外端并且______这条半径的直线是圆的切线.到圆心距离等于______的直线是圆的切线.➢考点分类考点1直线与圆的位置关系的判定例1如图所示,在Rt△ABC中,△C=90°,AC=3cm,BC=3cm,若OA=x cm,△O的半径为1cm,请问当x在什么范围内取值时,AC与△O相交、相切、相离?D考点2切线的判定例2 如图所示,AB是△O的直径,C是O上一点,直线MN经过点C,过点A作直线MN 的垂线,垂足为点D,且△BAC=△CAD.(1)求证:直线MN是△O的切线;(2)若CD=3,△CAD=30°,求△O的半径.考点3 切线的性质 例3 如图所示,在△O 中,点C 是直径AB 延长线上一点,过点C 作△O 的切线,切点为D ,连接BD.(1)求证:△A=△BDC(2)若CM 平分△ACD ,且分别交AD 、BD 于点M 、N ,当DM=1时,求MN 的长.➢ 真题演练1.如图,A 、P 、B 、C 是⊙O 上的四点,∠APC =∠BPC =60°,P A =2,PC =4,则△ABC 的面积为( )A .43√3B .32√3C .2√3D .3√32.如图,四边形ABCD 是⊙O 的内接四边形,∠B =90°,∠BCD =120°,AB =4,BC =2,则AD 的长为( )A .2√3B .4−√3C .√3+1D .2+√33.如图,P A 、PB 、CE 分别与⊙O 相切于点A 、B 、D 点,若圆O 的半径为6,OP =10,则△PCE 的周长为( )A .10B .12C .16D .204.如图所示,点P 是⊙O 的半径OC 延长线上的一点,过点P 作⊙O 的切线,切点为A ,AB 是⊙O 的弦,连接AC ,BC ,若∠P AB =70°,则∠ACB 的大小为( )A .70°B .110°C .120°D .140°5.如图,在△ABC 中,∠A =60°,BC =12,若⊙O 与△ABC 的三边分别相切于点D ,E ,F ,且△ABC 的周长为32,则DF 的长为( )A .2B .3C .4D .66.如图,已知DC 是⊙O 的直径,点B 为CD 延长线上一点,AB 是⊙O 的切线,点A 为切点,且∠BAD =35°,则∠ADC =( )A .75°B .65°C .55°D .50°7.如图,PC 、PB 是⊙O 的切线,AB 是⊙O 的直径,延长PC ,与BA 的延长线交于点E ,过C 点作弦CD ,且CD ∥AB ,连接DO 并延长与圆交于点F ,连接CF ,若AE =2,CE =4,则CD 的长度为( )A .3B .4C .185D .2458.如图,四边形ABCD 内接于⊙O ,AE ⊥CB ,交CB 的延长线于点E .若BA 平分∠DBE ,AD =7,CE =√13,则AE 的长度为 .9.如图,四边形ABCD 内接于⊙O ,AB 为直径,AD =CD ,过点D 作DE ⊥AB 于点E ,连接AC 交DE 于点F .若sin ∠CAB =35,DF =5,则AB 的长为 .10.如图,P A、PB分别与⊙O相切于A、B两点,C为⊙O上一点连接AC、BC,若∠C=55°,则∠P的度数是°.11.如图,AB为圆O直径,∠DAB=∠ABC=90°,CD与圆O相切于点E,EF⊥AB于点F,EF交BD于点G,若AD=2,BC=6.(1)求CD的长度.(2)求EG的长度.(3)求FB的长度.12.如图,P A、PB、CD是⊙O的切线,点A、B、E为切点.(1)如果△PCD的周长为10,求P A的长;(2)如果∠P=40°,①求∠COD;②连AE,BE,求∠AEB.13.如图,P A、PB分别与⊙O相切于点A、B,PO的延长线交⊙O于点C,连接BC,OA.(1)求证:∠POA=2∠PCB;(2)若OA=3,P A=4,求tan∠PCB的值.➢ 课后练习1.如图,P A ,PB 是⊙O 的两条切线,A ,B 是切点,过半径OB 的中点C 作CD ⊥OB 交P A 于点D ,若PD =3,AD =5,则⊙O 的半径长为( )A .2√7B .4√2C .3√3D .2√52.如图,等边三角形ABC 的边长为4,⊙C 的半径为√3,P 为AB 边上一动点,过点P 作⊙C 的切线PQ ,切点为Q ,则PQ 的最小值为( )A .12B .√3C .2√3D .33.如图,点O 是矩形ABCD 对角线BD 上的一点,⊙O 经过点C ,且与AB 边相切于点E ,若AB =4,BC =5,则⊙O 的半径长为( )A .165B .258C .5√419D .44.如图,在△ABC 中,∠ACB =90°,AC =BC =√2,点D 是AB 边上一个动点,以点D 为圆心r 为半径作⊙D ,直线BC 与⊙D 切于点E ,若点E 关于CD 的对称点F 恰好落在AB 边上,则r 的值是( )A .√2−1B .1C .√2D .√2+15.如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,如果∠D=30°,AB=4,那么线段CD的长是.6.如图,△ABD内接于⊙O,AD为直径,CD为⊙O的切线,连接BC,若CD=AD,AB =2,BC=2√13,则BD=.7.已知菱形ABCD的边长为4,∠BAD=60°,M是线段AD的中点,点P是对角线AC 上的动点,连接PM,以P为圆心,PM长为半径作⊙P,当⊙P与菱形ABCD的边相切时,AP的长为.8.如图,已知△ABC,以AB为直径的⊙O交AC于点E,交BC于点D,且BD=CD,DF ⊥AC于点F.给出以下四个结论:̂=DÊ;④∠A=2∠FDC.①DF是⊙O的切线;②CF=EF;③AE其中正确结论的序号是.9.如图,在Rt△ABC中,AC=BC=6,点O为边BC上一动点,连接OA.以O为圆心,OB为半径作圆,交OA于D,过D作⊙O的切线,交AC于点E.当⊙O与边AC相切时,CE的长为.10.如图,在Rt△ABC中,∠C=90°,以AC为直径的⊙O交AB于点D,点Q为CA延长线上一点,延长QD交BC于点P,连接OD,∠ADQ=12∠DOQ.若AQ=AC,AD=4时,写出BP的长为.11.如图,点E是△ABC的内心,AE的延长线和△ABC的外接圆交于点D.(1)如图1,连接DB,求证:DB=DE;(2)如图2,若∠BAC=60°,求证:AB+AC=√3AD.12.如图,△ABC的内切圆⊙O与BC、CA、AB分别相切于点D、E、F.(1)若∠ABC=50°,∠ACB=75°,求∠BOC的度数;(2)若AB=13,BC=11,AC=10,求AF的长.➢冲击A+。

由圆的一般方程判断点与圆的位置关系专项训练(含每步提示及答案——原创材料)

由圆的一般方程判断点与圆的位置关系专项训练(含每步提示及答案——原创材料)

由圆的一般方程判断点与圆的位置关系习题:点()1,2-a a 在圆03222=--+y y x 的内部,则a 的取值范围是( )A 、11<<-aB 、10<<aC 、540<<a D 、054<<-a 提示点:提示点1:设圆的半径是r ,点P 到圆心O 的距离为d ,则有:r d < ⇔ 点P 在圆内;r d = ⇔ 点P 在圆上;r d > ⇔ 点P 在圆外;提示点2:圆的一般方程022=++++F Ey Dx y x 的圆心为(2,2ED --),半径为2422FE D -+提示点3:两点间距离公式为()()221221y y x x d -+-=;结合提示2,3可知,圆心为()1,0,半径为2,点到圆心的距离为()()221102--+-=a a d则根据提示1知,r d <,则有540<<a ,故选C 。

习题:点()1,2-a a 在圆04222=--+y y x 的外部,则a 的取值范围为 。

提示点:点()00,y x P 与圆的一般方程022=++++F Ey Dx y x 的位置关系:0002020>++++F Ey Dx y x ⇔ 点P 在圆外;0002020=++++F Ey Dx y x ⇔ 点P 在圆上;0002020<++++F Ey Dx y x ⇔ 点P 在圆内;故将点()1,2-a a 代入圆的一般方程有()()()04121222>----+a a a ,故1>a 或51-<a 。

习题:若1>a ,则点()1,2-a a 与圆03222=--+y y x 的位置关系 。

提示点:点()00,y x P 与圆的一般方程022=++++F Ey Dx y x 的位置关系:0002020>++++F Ey Dx y x ⇔ 点P 在圆外;0002020=++++F Ey Dx y x ⇔ 点P 在圆上;0002020<++++F Ey Dx y x ⇔ 点P 在圆内;将点()1,2-a a 代入圆的一般方程有()()()a a a a a 4531212222-=----+()45-=a a ,因1>a ,故()045>-a a ,故应填在圆外。

点与圆的位置关系习题课

点与圆的位置关系习题课

第12课时:点与圆的位置关系习题课班级学号姓名一、知识点:1、基本概念(1)圆的定义.(2)弦、弧、等弧、圆心角、圆周角、同心圆、等圆.(3)三角形的外接圆、圆的内接三角形、三角形的外心.2、点与圆的位置关系设圆的半径为r,点到圆心的距离为d,那么①点在圆外⇔d>r;②点在圆上⇔d=r;③点在圆内⇔d<r.3、圆的基本性质(1)同圆或等圆的半径相等;直径是最大的弦.(2)圆既是轴对称图形又是中心对称图形,圆具有旋转不变性.经过圆心的任一条直线都是它的对称轴,圆心是它的对称中心.(3)在同圆或等圆中,两个圆心角和它所对的两条弧、两条弦这三组量中,如果其中任何一组量对应相等,那么其他两组量也相等.(4)圆心角的度数等于它所对弧的度数;一条弧所对的圆周角等于它所对的圆心角的一半;同弧或等弧所对的圆周角相等;直径所对的圆周角是直角,900的圆周角所对的弦是直径. (5)垂径定理:垂直于弦的垂直平分弦,并且平分这条弦所对的两条弧.(6)过不在同一直线上的三点确定一个圆,三角形的外心的性质,三角形的外心与三角形的位置关系.二、随堂练习:1、已知一个点到圆上的点的最长距离为5cm,最小距离为1cm,则此圆的半径为.2、已知⊙O的直径CD为12cm,弦AB垂直平分OC,那么弦AB的长为 .3、在△ABC中,∠C=90°,∠B=60°,AC=3,以C为圆心,r为半径作⊙C,如果点B 在圆内,而点A在圆外,那么r的取值范围是.4、已知下列命题:①在两个圆中,长度相等的两条弧所对的圆心角相等;②等弧所对的弦相等;③相等的弦所对的弧相等;④三点确定一个圆.其中真命题的个数有个.5、⊙O中半径为5cm,弦AB∥CD,AB=6cm,CD=8cm,则梯形ABCD的面积为.6、半径为7的圆,其圆心在坐标原点,则下列各点在圆外的是()A、(3,4)B、(4,4)C、(4,5)D、(4,6)7、在Rt△ABC中,已知两直角边长为6和8,则△ABC外接圆的面积是.8、已知在⊙O中,弦AB=1.8cm,圆周角∠ACB=300,则⊙O的直径等于.9、A、B是⊙O上的两点,已知∠AOB=1000,C是⊙O上的一点,则∠ACB=0.10、如图,∠α=50°,∠β=20°,则弧AB的度数是,弧EF的度数是.11、在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,则它的外心与顶点C的距离为()A、5cmB、6cmC、7cmD、8cm12、如图,AB是⊙O的直径,AB=8,MN=6,则A、B两点到MN的距离之和()A、2cmB、cm7C、5cmD、2cm713、如图,已知,AB⊥BC,AD⊥CD.试说明A、B、C、D四点共圆.14、如图,两弦BA与DC的延长线相交于点P,PA=PC.试说明15、如图,破残的圆形轮片上,弦AB的垂直平分线交AB于C,交弦AB于D.(1)求作此残片所在的圆(不写作法,保留作图痕迹);(2)若AB=24cm,CD=8cm,求(1)中所作圆的半径.16、如图,E是等腰△ABC外接圆上一点,且AE和EC相等,AB=AC,延长底边BC交AE的延长线于D. 试说明:(1)ED=EB (2)CD2=AE·AD.第五章中心对称图形第10题BO·AMN第12题ABCED第13题17、一辆卡车装满货物后,高4m ,宽2.8m ,这辆卡车能通过横 截面如图所示(上方是一个半圆)的隧道吗?请说明你的理由; (2)若将此隧道的上部(从边AB 、CD 的中点起)装上彩灯, 请计算彩灯线的总长度L (结果保留整数) .18、如图1,AD 是Rt △ABC 的斜边BC 上的高,AB=AC ,⊙O 过A 、D 两点并分别交AB 、AC 于E 、F ,连结EF 交AD 于G ,分别连结ED 、DF.(1)填空,直接写出图中至少三对相似而不全等的三角形,它们是。

初三点与圆的位置关系练习题

初三点与圆的位置关系练习题

初三点与圆的位置关系练习题一、选择题1. 在平面直角坐标系中,圆心坐标为(2, -3),半径为5。

若一点坐标为(6, 2),它与该圆的位置关系是:A. 在圆内B. 在圆上C. 在圆外2. 已知半径为r的圆C的圆心坐标为(3, 4),圆上有一点A。

如果点A和点C的距离等于圆的半径r,那么点A的坐标可能是:A. (3, 3)B. (6, 8)C. (3, 7)3. 在平面直角坐标系中,圆心为(-1, 2),半径为3。

若一点坐标为(1,5),它与该圆的位置关系是:A. 在圆内B. 在圆上C. 在圆外4. 设圆C的半径为r,圆心坐标为(-2, 3)。

若一点A的坐标为(2, 2),点A到圆心的距离小于半径r,则点A与圆C的位置关系为:A. 在圆内B. 在圆上C. 在圆外二、填空题1. 平面直角坐标系中,圆心坐标为(4, -1),半径为6。

满足条件的一点的坐标是(2, )。

2. 如果圆C的半径为5,圆心坐标为(2, 3),那么圆C上坐标为(8, )的一点的纵坐标为。

3. 设圆C的半径为r,圆心坐标为(3, -4)。

若一点A的坐标为(0, -2),点A与圆C的位置关系是(填:在圆内/在圆上/在圆外)。

4. 在平面直角坐标系中,圆心坐标为(-3, 0),半径为6。

如果一点的纵坐标为-6,则该点的横坐标可以取(填:)。

三、计算题1. 在平面直角坐标系中,圆C的半径为5,圆心坐标为(2, -1)。

如果一点A的坐标为(7, 3),求点A与圆C的距离。

2. 已知圆C的半径为6,圆心坐标为(-3, 2)。

若一点B的坐标为(-4, 1),求点B到圆C的距离。

3. 设圆C的半径为r,圆心坐标为(4, 1)。

若一点的横坐标为5,纵坐标为2,且点与圆心的距离等于半径r,则求半径r的值。

4. 平面直角坐标系中,已知半径为r的圆C的圆心坐标为(-1, 4)。

如果一点D的坐标为(3, 6),求点D与圆C的距离的平方。

四、解答题1. 在平面直角坐标系中,圆C的圆心坐标为(1, -2),半径为4。

中考数学复习题点和圆、直线和圆的位置关系试题(共12页)

中考数学复习题点和圆、直线和圆的位置关系试题(共12页)

点和圆、直线(zhíxiàn)和圆的位置关系一、选择题1.如图,P为圆O外一点,OP交圆O于A点,且OA=2AP.甲、乙两人想作一条通过P 点且与圆O相切的直线,其作法如下:〔甲〕以P为圆心,OP长为半径画弧,交圆O于B点,那么直线PB即为所求;〔乙〕作OP的中垂线,交圆O于B点,那么直线PB即为所求.对于甲、乙两人的作法,以下判断何者正确?〔〕A.两人皆正确B.两人皆错误C.甲正确,乙错误 D.甲错误,乙正确二、解答题2.如图,⊙O是△ACD的外接圆,AB是直径,过点D作直线DE∥AB,过点B作直线BE ∥AD,两直线交于点E,假如∠ACD=45°,⊙O的半径是4cm〔1〕请判断DE与⊙O的位置关系,并说明理由;〔2〕求图中阴影局部的面积〔结果用π表示〕.3.如图,四边形ABCD是平行四边形,以对角线BD为直径(zhíjìng)作⊙O,分别与BC,AD相交于点E,F.〔1〕求证:四边形BEDF为矩形;〔2〕BD2=BE•BC,试判断直线CD与⊙O的位置关系,并说明理由.4.如图,点D是⊙O的直径CA延长线上的一点,点B在⊙O上,且AB=AD=AO.〔1〕求证:BD是⊙O的切线;〔2〕假设点E是劣弧BC上一点,AE与BC相交于点F,且∠ABE=105°,S△=8〔BEF﹣1〕,求△ACF的面积和CF的长.5.如图,在△ABC中,∠C=90°,∠ABC的平分线交AC于点E,过点E作BE的垂线交AB于点F,⊙O是△BEF的外接圆.〔1〕求证:AC是⊙O的切线.〔2〕过点E作EH⊥AB于点H,求证:CD=HF.6.如图,AB是⊙O的直径(zhíjìng),C是⊙O上的一点,过点A作AD⊥CD于点D,交⊙O于点E,且=.〔1〕求证:CD是⊙O的切线;〔2〕假设tan∠CAB=,BC=3,求DE的长.7.如图,在△ABC中,∠ABC=90°,以AB的中点O为圆心,OA为半径的圆交AC于点D,E是BC的中点,连接DE,OE.〔1〕判断DE与⊙O的位置关系,并说明理由;〔2〕求证:BC2=2CD•OE;〔3〕假设cos∠BAD=,BE=,求OE的长.8.如图,BC是以AB为直径的⊙的切线,且BC=AB,连接OC交⊙O于点D,延长AD交BC于点E,F为BE上一点,且DF=FB.〔1〕求证:DF是⊙O的切线;〔2〕假设BE=2,求⊙O的半径.9.如图,在△ABO中,OA=OB,C是边AB的中点(zhōnɡ diǎn),以O为圆心的圆过点C.〔1〕求证:AB与⊙O相切;〔2〕假设∠AOB=120°,AB=4,求⊙O的面积.10.如图,⊙O中,点C为的中点,∠ACB=120°,OC的延长线与AD交于点D,且∠D=∠B.〔1〕求证:AD与⊙O相切;〔2〕假设点C到弦AB的间隔为2,求弦AB的长.11.如图,⊙O的直径AB为10cm,弦BC为6cm,D、E分别是∠ACB的平分线与⊙O,AB的交点,P为AB延长线上一点,且PC=PE.〔1〕求AC、AD的长;〔2〕试判断直线PC与⊙O的位置关系,并说明理由.12.如图,在⊙O中,直径AB平分(píngfēn)弦CD,AB与CD相交于点E,连接AC、BC,点F是BA延长线上的一点,且∠FCA=∠B.〔1〕求证:CF是⊙O的切线.〔2〕假设AC=4,tan∠ACD=,求⊙O的半径.13.如图,在△ABC中,以BC为直径的⊙O与边AB交于点D,E为的中点,连接CE 交AB于点F,AF=AC.〔1〕求证:直线AC是⊙O的切线;〔2〕假设AB=10,BC=8,求CE的长.14.如图,在△ABC中,以AB为直径的⊙O交AC于点M,弦MN∥BC交AB于点E,且ME=1,AM=2,AE=.〔1〕求证:BC是⊙O的切线;〔2〕求⊙O的半径(bànjìng).15.如图,在Rt△ABC中,∠ACB=90°,以AC为直径作⊙O交AB于点D点,连接CD.〔1〕求证:∠A=∠BCD;〔2〕假设M为线段BC上一点,试问当点M在什么位置时,直线DM与⊙O相切?并说明理由.16.如图,在△ABC中,∠ABC=90°,D是边AC上的一点,连接BD,使∠A=2∠1,E 是BC上的一点,以BE为直径的⊙O经过点D.〔1〕求证:AC是⊙O的切线;〔2〕假设∠A=60°,⊙O的半径为2,求阴影局部的面积.〔结果保存根号和π〕17.如图,⊙O中,FG、AC是直径(zhíjìng),AB是弦,FG⊥AB,垂足为点P,过点C 的直线交AB的延长线于点D,交GF的延长线于点E,AB=4,⊙O的半径为.〔1〕分别求出线段AP、CB的长;〔2〕假如OE=5,求证:DE是⊙O的切线;〔3〕假如tan∠E=,求DE的长.18.如图,点B、C、D都在半径为6的⊙O上,过点C作AC∥BD交OB的延长线于点A,连接CD,∠CDB=∠OBD=30°.〔1〕求证:AC是⊙O的切线;〔2〕求弦BD的长;〔3〕求图中阴影局部的面积.19.如图,点B、C、D都在⊙O上,过C点作CA∥BD交OD的延长线于点A,连接BC,∠B=∠A=30°,BD=2.〔1〕求证:AC是⊙O的切线;〔2〕求由线段AC、AD与弧CD所围成的阴影局部的面积.〔结果保存π〕20.如图,在△ABC中,以AC为直径(zhíjìng)作⊙O交BC于点D,交AB于点G,且D 是BC中点,DE⊥AB,垂足为E,交AC的延长线于点F.〔1〕求证:直线EF是⊙O的切线;〔2〕假设CF=5,cos∠A=,求BE的长.21.如图,⊙O的直径CD垂直于弦AB,垂足为E,F为DC延长线上一点,且∠CBF=∠CDB.〔1〕求证:FB为⊙O的切线;〔2〕假设AB=8,CE=2,求sin∠F.22.如图,在△ABC中,∠ABC=90°,以AB为直径的⊙O与AC边交于点D,过点D的直线交BC边于点E,∠BDE=∠A.〔1〕判断直线DE与⊙O的位置关系,并说明理由.〔2〕假设⊙O的半径R=5,tanA=,求线段CD的长.23.如图,在△ABC中,AD是BC边上的中线(zhōngxiàn),以AB为直径的⊙O交BC于点D,过D作MN⊥AC于点M,交AB的延长线于点N,过点B作BG⊥MN于G.〔1〕求证:△BGD∽△DMA;〔2〕求证:直线MN是⊙O的切线.24.如图,⊙O的直径AC与弦BD相交于点F,点E是DB延长线上的一点,∠EAB=∠ADB.〔1〕求证:EA是⊙O的切线;〔2〕点B是EF的中点,求证:以A、B、C为顶点的三角形与△AEF相似;〔3〕AF=4,CF=2.在〔2〕条件下,求AE的长.25.如图,点A是⊙O上一点,OA⊥AB,且OA=1,AB=,OB交⊙O于点D,作AC⊥OB,垂足为M,并交⊙O于点C,连接BC.〔1〕求证(qiúzhèng):BC是⊙O的切线;〔2〕过点B作BP⊥OB,交OA的延长线于点P,连接PD,求sin∠BPD的值.26.如下图,△ABC内接于⊙O,AB是⊙O的直径,D是AB延长线上一点,连接DC,且AC=DC,BC=BD.〔1〕求证:DC是⊙O的切线;〔2〕作CD的平行线AE交⊙O于点E,DC=10,求圆心O到AE的间隔.27.如图,BD为⊙O的直径,AB=AC,AD交BC于点E,AE=1,ED=2.〔1〕求证:∠ABC=∠D;〔2〕求AB的长;〔3〕延长DB到F,使得BF=BO,连接FA,试判断直线FA与⊙O的位置关系,并说明理由.28.如图,在Rt△ABC中,∠B=30°,∠ACB=90°,延长(yáncháng)CA到O,使AO=AC,以O为圆心,OA长为半径作⊙O交BA延长线于点D,连接CD.〔1〕求证:CD是⊙O的切线;〔2〕假设AB=4,求图中阴影局部的面积.29.如图,△ABC中,∠C=90°,点G是线段AC上的一动点〔点G不与A、C重合〕,以AG为直径的⊙O交AB于点D,直线EF垂直平分BD,垂足为F,EF交BC于点E,连结DE.〔1〕求证:DE是⊙O的切线;〔2〕假设cosA=,AB=8,AG=2,求BE的长;〔3〕假设cosA=,AB=8,直接写出线段BE的取值范围.30.如图,⊙O是△ABC外接圆,AB是⊙O的直径,弦DE⊥AB于点H,DE与AC相交于点G,DE、BC的延长线交于点F,P是GF的中点,连接PC.〔1〕求证:PC是⊙O的切线;〔2〕假设⊙O的半径是1, =,∠ABC=45°,求OH的长.内容总结(1)点和圆、直线和圆的位置关系一、选择题1.如图,P为圆O外一点,OP交圆O于A点,且OA=2AP.甲、乙两人想作一条通过P点且与圆O相切的直线,其作法如下:〔甲〕以P为圆心,OP长为半径画弧,交圆O于B点,那么直线PB即为所求(2)〔2〕点B是EF的中点,求证:以A、B、C为顶点的三角形与△AEF相似(3)〔2〕求AB的长。

高中数学必修二第四章 章末复习题圆的相关试题(含答案)

高中数学必修二第四章 章末复习题圆的相关试题(含答案)

章末复习一、知识导图二、要点归纳1.圆的方程(1)圆的标准方程:(x-a)2+(y-b)2=r2.(2)圆的一般方程:x2+y2+Dx+Ey+F=0(D2+E2-4F>0).2.点和圆的位置关系设点P(x0,y0)及圆的方程(x-a)2+(y-b)2=r2.(1)(x0-a)2+(y0-b)2>r2⇔点P在圆外.(2)(x0-a)2+(y0-b)2<r2⇔点P在圆内.(3)(x0-a)2+(y0-b)2=r2⇔点P在圆上.3.直线与圆的位置关系设直线l与圆C的圆心之间的距离为d,圆的半径为r,则d>r⇒相离;d=r⇒相切;d<r⇒相交.4.圆与圆的位置关系设C1与C2的圆心距为d,半径分别为r1与r2,则位置关系外离外切相交内切内含图示d与r1,r2的d>r1+r2d=r1+r2|r1-r2|<d<r1+r2d=|r1-r2| d<|r1-r2|关系(1)求相交两圆的弦长时,可先求出两圆公共弦所在直线的方程,再利用相交两圆的几何性质和勾股定理来求弦长.(2)过圆C1:x2+y2+D1x+E1y+F1=0与圆C2:x2+y2+D2x+E2y+F2=0的交点的直线方程为(D1-D2)x+(E1-E2)y+F1-F2=0.5.空间直角坐标系(1)建立的空间直角坐标系要遵循右手法则,空间上的任意一点都与有序实数组(x,y,z)一一对应.(2)空间中P1(x1,y1,z1),P2(x2,y2,z2)之间的距离|P1P2|=(x1-x2)2+(y1-y2)2+(z1-z2)2.(3)可利用“关于谁对称,谁保持不变,其余坐标相反”的方法来求空间直角坐标系下的对称点.题型一圆的方程例1一个圆和已知圆x2+y2-2x=0相外切,并与直线l:x+3y=0相切于M(3,-3)点,求该圆的方程.考点题点解∵圆C与圆x2+y2-2x=0相外切,故两个圆心之间的距离等于半径的和,又∵圆C与直线l:x+3y=0相切于M(3,-3)点,可得圆心与点M(3,-3)的连线与直线x+3y=0垂直,其斜率为 3.设圆C的圆心为(a,b),则⎩⎪⎨⎪⎧ b +3a -3=3,(a -1)2+b 2=1+|a +3b |2.解得a =4,b =0,r =2或a =0,b =-43,r =6,∴圆C 的方程为(x -4)2+y 2=4或x 2+(y +43)2=36.反思感悟 求圆的方程主要是根据圆的标准方程和一般方程,利用待定系数法求解,采用待定系数法求圆的方程的一般步骤:第一步:选择圆的方程的某一形式.第二步:由题意得a ,b ,r (或D ,E ,F )的方程(组).第三步:解出a ,b ,r (或D ,E ,F ).第四步:代入圆的方程.注:解题时充分利用圆的几何性质可获得解题途径,减少运算量,例如:圆的切线垂直于经过切点的半径;圆心与弦的中点连线垂直于弦;当两圆相交时,连心线垂直平分两圆的公共弦;当两圆相切时,连心线过切点等.跟踪训练1 (1)如图所示,圆C 与x 轴相切于点T (1,0),与y 轴正半轴交于两点A ,B (B 在A 的上方),且|AB |=2,则圆C 的标准方程为____________________.答案 (x -1)2+(y -2)2=2解析 取AB 的中点D ,连接CD ,AC ,则CD ⊥AB .由题意知,|AD |=|CD |=1,故|AC |=|CD |2+|AD |2=2,即圆C 的半径为 2.又因为圆C 与x 轴相切于点T (1,0),所以圆心C (1,2),故圆的标准方程为(x -1)2+(y -2)2=2.(2)求半径为10,圆心在直线y =2x 上,被直线x -y =0截得的弦长为42的圆的方程. 解 设圆的方程为(x -a )2+(y -b )2=r 2,则圆心坐标为(a ,b ),半径r =10,圆心(a ,b )到直线x -y =0的距离d =|a -b |2, 由半弦长,弦心距,半径组成的直角三角形得,d 2+⎝⎛⎭⎫4222=r 2, 即(a -b )22+8=10, ∴(a -b )2=4,又∵b =2a ,∴a =2,b =4或a =-2,b =-4,故所求圆的方程是(x -2)2+(y -4)2=10或(x +2)2+(y +4)2=10.题型二 直线与圆、圆与圆的位置关系例2 (1)已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( )A.内切B.相交C.外切D.相离考点题点答案 B解析 由垂径定理得⎝⎛⎭⎫a 22+(2)2=a 2,解得a 2=4, ∴圆M :x 2+(y -2)2=4, ∴圆M 与圆N 的圆心距d =(0-1)2+(2-1)2= 2.∵2-1<2<2+1,∴两圆相交.(2)已知直线l :x -3y +6=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别作l 的垂线与x 轴交于C ,D 两点,则|CD |=________.考点题点答案 4解析 联立⎩⎨⎧ x -3y +6=0,x 2+y 2=12,消去x 得y 2-33y +6=0, 解得⎩⎨⎧ x =-3,y =3或⎩⎨⎧x =0,y =2 3. 不妨设A (-3,3),B (0,23),则过点A 且与直线l 垂直的直线方程为3x +y +23=0,令y =0得x C =-2.同理得过点B 且与l 垂直的直线与x 轴交点的横坐标x D =2,∴|CD |=4.反思感悟 直线与圆、圆与圆的主要题型为:①位置关系的判断,②弦长问题,③求圆的方程.解决问题的方法主要有两种,一种代数法,一种几何法.跟踪训练2 (1)圆(x +1)2+y 2=2的圆心到直线y =x +3的距离为( )A.1B.2C. 2D.2 2考点题点答案 C(2)设直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若|AB |=23,则圆C 的面积为________.考点题点答案 4π解析 x 2+y 2-2ay -2=0,即x 2+(y -a )2=a 2+2,则圆心为C (0,a ).又|AB |=23,C 到直线y =x +2a 的距离为|0-a +2a |2, 所以⎝⎛⎭⎫2322+⎝ ⎛⎭⎪⎫|0-a +2a |22=a 2+2, 得a 2=2,所以圆C 的面积为π(a 2+2)=4π.题型三 对称问题例3 从点B (-2,1)发出的光线经x 轴上的点A 反射,反射光线所在的直线与圆x 2+y 2=12相切,求点A 的坐标.考点题点解 点B (-2,1)关于x 轴对称的点为B ′(-2,-1),易知反射光线所在直线的斜率存在,设反射光线所在的直线方程为y +1=k (x +2),即kx -y +2k -1=0.由题意,得|0-0+2k -1|k 2+1=12, 化简得7k 2-8k +1=0,解得k =1或k =17, 故所求切线方程为x -y +1=0或x -7y -5=0.令y =0,则x =-1或x =5.所以A 点的坐标为(-1,0)或(5,0).反思感悟 (1)对称的两种类型即轴对称与中心对称.(2)准确把握对称的几何性质.(3)圆的对称图形关键是圆心的对称,其半径不变.跟踪训练3 若圆C 的半径为1,其圆心与点(1,0)关于直线y =x 对称,则圆C 的标准方程为________________________________________________________________________. 答案 x 2+(y -1)2=1解析 由题意知圆C 的圆心为(0,1),半径为1,所以圆C 的标准方程为x 2+(y -1)2=1.题型四 圆中的最值问题例4 圆x 2+y 2+2ax +2ay +2a 2-1=0与x 2+y 2+2bx +2by +2b 2-2=0的公共弦长的最大值为( )A.2 2B.2C. 2D.1考点 与圆有关的最值问题题点 与圆的几何性质有关的最值答案 B解析 由题意得,两圆的标准方程分别为(x +a )2+(y +a )2=1和(x +b )2+(y +b )2=2,两圆的圆心坐标分别为(-a ,-a ),(-b ,-b ),半径分别为1,2,则当公共弦为圆(x +a )2+(y +a )2=1的直径时,公共弦长最大,最大值为2.反思感悟 与圆有关的最值问题包括(1)求圆O 上一点到圆外一点P 的最大距离、最小距离:d max =|OP |+r ,d min =||OP |-r |.(2)求圆上的点到某条直线的最大、最小距离:设圆心到直线的距离为m ,则d max =m +r ,d min=|m -r |.(3)已知点的运动轨迹是(x -a )2+(y -b )2=r 2,求①y x ;②y -m x -n;③x 2+y 2等式子的最值,一般是运用几何法求解.跟踪训练4 已知P 是直线3x +4y +8=0上的动点,P A ,PB 是圆x 2+y 2-2x -2y +1=0的两条切线,A ,B 是切点,C 是圆心,那么四边形P ACB 的面积的最小值为________. 考点 与圆有关的最值问题题点 与面积有关的最值答案 2 2解析 圆x 2+y 2-2x -2y +1=0的圆心为C (1,1),半径为1,由题意知,当圆心C 到点P 的距离最小时(即为圆心到直线的距离),四边形的面积最小,又圆心到直线的距离d =|3+4+8|32+42=3, ∴|P A |=|PB |=d 2-r 2=22,∴S 四边形P ACB =2×12|P A |r =2 2.1.以点(-3,4)为圆心,且与x 轴相切的圆的方程是( )A.(x -3)2+(y +4)2=16B.(x +3)2+(y -4)2=16C.(x -3)2+(y +4)2=9D.(x +3)2+(y -4)2=9考点 圆的标准方程题点 求与某直线相切的圆的标准方程答案 B2.已知圆C 与直线x -y =0和x -y -4=0都相切,圆心在直线x +y =0上,则圆C 的方程为( )A.(x +1)2+(y -1)2=2B.(x -1)2+(y +1)2=2C.(x -1)2+(y -1)2=2D.(x +1)2+(y +1)2=2题点 求圆的标准方程答案 B3.两圆x 2+y 2-6x +16y -48=0与x 2+y 2+4x -8y -44=0的公切线的条数为( )A.4B.3C.2D.1考点 圆与圆的位置关系题点 两圆的位置关系与其公切线答案 C解析 两圆的标准方程分别为(x -3)2+(y +8)2=121;(x +2)2+(y -4)2=64,则两圆的圆心与半径分别为C 1(3,-8),r 1=11;C 2(-2,4),r 2=8.圆心距为|C 1C 2|=(3+2)2+(-8-4)2=13.∵r 1-r 2<|C 1C 2|<r 1+r 2,∴两圆相交,则公切线共2条.4.经过两个定点A (a,0),A 1(a ,a ),且圆心在直线y =13x 上的圆的方程为________________________.答案 ⎝⎛⎭⎫x -32a 2+⎝⎛⎭⎫y -a 22=a 22 解析 圆过点A (a,0),A 1(a ,a ),则圆心在直线y =a 2上. 又圆心在直线y =13x 上, 所以圆心坐标为⎝⎛⎭⎫32a ,a 2,则半径r =⎝⎛⎭⎫a -32a 2+⎝⎛⎭⎫-a 22=22|a |, 故圆的方程为⎝⎛⎭⎫x -32a 2+⎝⎛⎭⎫y -a 22=a 22. 5.已知直线x -my +3=0和圆x 2+y 2-6x +5=0.(1)当直线与圆相切时,求实数m 的值;(2)当直线与圆相交,且所得弦长为2105时,求实数m 的值. 考点 直线和圆的位置关系解 (1)因为圆x 2+y 2-6x +5=0可化为(x -3)2+y 2=4,所以圆心坐标为(3,0),r =2. 因为直线x -my +3=0与圆相切, 所以|3+3|1+(-m )2=2, 解得m =±2 2.(2)圆心(3,0)到直线x -my +3=0的距离为d =|3+3|1+(-m )2.由24-⎝ ⎛⎭⎪⎫|3+3|1+(-m )22=2105, 得2+2m 2=20m 2-160,即m 2=9.故m =±3.。

人教版九年级数学上册《24.2 点和圆、直线和圆的位置关系》练习题(附带参考答案)

人教版九年级数学上册《24.2 点和圆、直线和圆的位置关系》练习题(附带参考答案)

人教版九年级数学上册《24.2 点和圆、直线和圆的位置关系》练习题(附带参考答案)学校:___________班级:___________姓名:___________考号:___________一、选择题1.点I是△ABC的外心,则点I是△ABC的()A.三条垂直平分线交点B.三条角平分线交点C.三条中线交点D.三条高的交点2.用反证法证明命题“在△ABC中,若AB≠BC,则∠A≠∠C”时,首先应假设()A.∠A=∠B B.AB=BC C.∠B=∠C D.∠A=∠C3.如图,点A,B,C,D均在直线l上,点P在直线l外,则经过其中任意三个点,最多可画出圆的个数为()A.3个B.4个C.5个D.6个4.⊙O的半径为5,圆心O到直线l的距离为3,则直线l与⊙O的位置关系是()A.相交B.相切C.相离D.无法确定5.如图,为的直径,与相切于点,交的延长线于点,且.若,则半径长为()A.2 B.3 C.D.6.在△ABC中∠C=90°,AC=4,AB=5,以点C为圆心,R为半径作圆.若⊙C与边AB只有一个公共点,则R的取值范围是()A.R=12B.3⩽R⩽45C.0<R<3或R>4D.3<R⩽4或R=1257.如图,AB切于⊙O点B,延长AO交⊙O于点C,连接BC,若∠A=40°,则∠C=()A.20°B.25°C.40°D.50°8.如图,已知等腰△ABC,AB=BC,以AB为直径的圆交AC于点D,过点D的⊙O的切线交BC于点E,若CD=4√5,CE=8,则⊙O的半径是()A.92B.5 C.6 D.152二、填空题9.已知A为⊙O外一点,若点A到⊙O上的点的最短距离为2,最长距离为4,则⊙O的半径为.10.⊙O的半径为4,圆心O到直线l的距离为2,则直线l与⊙O的位置关系是.11.已知Rt△ABC中∠C=90°,AC=5,BC=12,则△ABC的外接圆半径是.12.如图,PA,PB分别与⊙O相切于A,B两点,C是优弧AB上的一个动点,若∠P = 50°,则∠ACB =°13.如图,在Rt△ABC中,∠ACB=90°,⊙O是△ABC的内切圆,三个切点分别为D、E、F,若BF=2,AF =3,则△ABC的面积是.三、解答题14.如图,AD,BD是⊙O的弦AD⊥BD,且BD=2AD=8,点C是BD的延长线上的一点CD=2,求证:AC是⊙O的切线.15.如图,已知PA,PB分别与⊙O相切于点A,B,C为⊙O上一点.若∠P=70°,求∠C的大小.16.如图,BE是⊙O的直径,点A和点D是⊙O上的两点,过点A作⊙O的切线交BE延长线于点C.(1)若∠ADE=28°,求∠C的度数;(2)若AC=2√3,CE=2,求⊙O半径的长.17.如图,已知内接于的延长线交于点,交于点,交的切线于点,且.(1)求证:;(2)求证:平分.参考答案1.A2.D3.D4.A5.B6.D7.B8.B9.110.相交11.13212.6513.614.证明:连接AB∵AD⊥BD,且BD=2AD=8∴AB为直径,AB2=82+42=80∵CD=2,AD=4∴AC2=22+42=20∵CD=2,BD=8∴BC2=102=100∴AC2+AB2=CB2∴∠BAC=90°∴AC是⊙O的切线.15.解:连接OA、OB∵PA,PB分别与⊙O相切于点A,B∴∠OAP=∠OBP=90°∵∠P=70°∴∠AOB=360°-∠OAP-∠OBP-∠P=110°∠AOB=55°.∴∠C= 1216.(1)解:如图,连接OA∵∠ADE=28°∴∠AOC=2∠ADE=56°∵AC切⊙O于点A∴∠OAC=90°∴在△AOC中(2)解:设OA=OE=r在Rt△OAC中,由勾股定理得:OA2+AC2=OC2即r2+(2√3)2=(r+2)2解得:r=2答:⊙O半径的长是2.17.(1)证明:是的切线即.是的直径..即.(2)证明:与都是所对的圆周角..由(1)知平分.。

点和圆、直线和圆的位置关系练习题(超经典含答案)

点和圆、直线和圆的位置关系练习题(超经典含答案)

1.在中,,,.若以点为圆心,画一个半径为的圆,则点与的位置关系为A.点在内B.点在外C.点在上 D.无法判断2.如图,PA切⊙O于点A,PB切⊙O于点B,OP交⊙O于点C,下列结论中,错误的是A.∠1=∠2 B.PA=PB C.AB⊥OP D.OE CE3.如图,从⊙O外一点P引⊙O的两条切线PA,PB,切点分别为A,B.如果∠P=60°,PA=8,那么弦AB的长是A.4 B.8 C.6 D.104.如图,四边形ABCD的边AB,BC,CD,DA和⊙O分别相切于点L,M,N,P.若四边形ABCD的周长为20,则AB+CD等于A.5 B.8 C.10 D.125.如图,△ABC是⊙O的内接三角形,下列选项中,能使过点A的直线EF与⊙O相切于点A的条件是A.∠EAB=∠C B.∠B=90°C.EF⊥AC D.AC是⊙O直径6.如图,将ABC△放在每个小正方形边长为1的网格中,点A、B、C均落在格点上,用一个圆面去覆盖△,能够完全覆盖这个三角形的最小圆面半径是A.B.C.2 D.7.等边三角形外接圆的半径等于边长的____倍.A.12B.32C.33D.38.在Rt△ABC中,,,,如果以点C为圆心作圆,使点A在圆C内,点B在圆C外,那么圆C半径r的取值范围为__________.9.已知Rt△ABC的斜边AB=6 cm,直角边AC=3 cm.(1)以C为圆心,2 cm长为半径的圆和直线AB的位置关系是_________;(2)以C为圆心,4 cm长为半径的圆和直线AB的位置关系是_________;(3)如果以C为圆心的圆和直线AB相切,则半径长为_________.10.如图,AC是⊙O的切线,切点为C,BC是⊙O的直径,AB交⊙O于点D,连接OD,若∠A=50°,则∠COD的度数为_____.11.如图,在⊙O中,M是弦AB的中点,过点B作⊙O的切线,与OM延长线交于点C.求证:∠A=∠C;12.如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,DE交AC于点E,且∠A=∠ADE.(1)求证:DE是⊙O的切线;(2)若AD=16,DE=10,求BC的长.13.如图:已知点,以点P为圆心,r为半径的圆P与坐标轴有四个交点,则r的取值范围是A.r>4 B.r>4且r≠5 C.r>3 D.r>4且r≠514.如图,AB是⊙O的弦,AO的延长线交过点B的⊙O的切线于点C,如果∠ABO=28°,则∠C的度数是A.72° B.62° C.34° D.22°15.如图,⊙O为△ABC的内切圆,AC=10,AB=8,BC=9,点D,E分别为BC,AC上的点,且DE为⊙O的切线,则△CDE的周长为A.9 B.7 C.11 D.816.如图,PA、PB分别是⊙O的切线,A、B为切点,AC是⊙O的直径,已知∠BAC=35°,则∠P的度数为A.35° B.45° C.60° D.70°17.在△ABC中,∠A=90°,AB=3 cm,AC=4 cm,若以A为圆心,3 cm为半径作⊙O,则直线BC与⊙O的位置关系是A.相交B.相离C.相切D.不能确定18.在中,.,,是斜边中线,以为圆心以长为半径画圆,则、、三点在圆外的是__________,在圆上的是__________.19.如图,PA、PB分别切圆O于A、B,并与圆O的切线分别相交于C、D两点,已知△PCD的周长等于10 cm,则PA= __________ cm.20.如图,⊙O的半径OC=5 cm,直线l⊥OC,垂足为H,且l交⊙O于A、B两点,AB=8 cm,则l沿OC所在直线向下平移cm时与⊙O相切.21.如图,EB,EC是⊙O的两条切线,B,C是切点,A,D是⊙O上两点,如果∠E=46°,∠DCF=32°,那么∠A=________.22.城市的正北方向的处,有一无线电信号发射塔.已知,该发射塔发射的无线电信号的有效半径为,是一条直达城的公路,从城发往城的班车速度为.(1)当班车从城出发开往城时,某人立即打开无线电收音机,班车行驶了的时候接收信号最强.此时,班车到发射塔的距离是多少千米?(离发射塔越近,信号越强)(2)班车从城到城共行驶了,请你判断到城后还能接收到信号吗?请说明理由.23.如图,在Rt△ABC中,∠ACB=90°,AD平分∠BAC,过A,C,D三点的圆与斜边AB 交于点E,连接DE.(1)求证:AC=AE;(2)若AC=6,CB=8,求△ACD外接圆的直径.24.(2018湖北省宜昌市)如图,直线AB是⊙O的切线,C为切点,OD∥AB交⊙O于点D,点E在⊙O上,连接OC,EC,ED,则∠CED的度数为A.30° B.35° C.40° D.45°25.(2018广东省深圳市)如图,一把直尺,的直角三角板和光盘如图摆放,为角与直尺交点,,则光盘的直径是A.3 B.C.D.26.(2018年浙江省舟山市)用反证法证明时,假设结论“点在圆外”不成立,那么点与圆的位置关系只能是A.点在圆内B.点在圆上C.点在圆心上D.点在圆上或圆内27.(2018山东省泰安市)如图,与相切于点,若,则的度数为A.B.C.D.28.(2018湖南省益阳市)如图,在圆O中,AB为直径,AD为弦,过点B的切线与AD的延长线交于点C,AD=DC,则∠C=________度.29.(2018湖南省长沙市)如图,点A,B,D在⊙O上,∠A=20°,BC是⊙O的切线,B为切点,OD的延长线交BC于点C,则∠OCB=_____度.30.(2018四川省内江市)已知△ABC的三边a,b,c,满足a+b2+|c﹣6|+28=4+10b,则△ABC的外接圆半径=__________.31.(2018江苏省连云港市)如图,AB是⊙O的弦,点C在过点B的切线上,且OC⊥OA,OC交AB于点P,已知∠OAB=22°,则∠OCB=__________.32.(2018江苏省扬州市)如图,已知的半径为2,内接于,,则__________.33.(2018湖南省娄底市)如图,是的内心,连接,的面积分别为,则___________.(填“<”或“=”或“>”)34.(2018辽宁省葫芦岛市)如图,AB是⊙O的直径,弧AC=弧BC,E是OB的中点,连接CE并延长到点F,使EF=CE.连接AF交⊙O于点D,连接BD,BF.(1)求证:直线BF是⊙O的切线;(2)若OB=2,求BD的长.35.(2018湖北省黄石市)如图,已知A、B、C、D、E是⊙O上的五点,⊙O的直径BE=2,∠BCD=120°,A为弧BE的中点,延长BA到点P,使BA=AP,连接PE.(1)求线段BD的长;(2)求证:直线PE是⊙O的切线.36.(2017江苏南通)如图,Rt△ABC中,∠C=90°,BC=3,点O在AB上,OB=2,以OB 为半径的⊙O与AC相切于点D,交BC于点E,求弦BE的长.1.【答案】B【解析】如图所示:2.【答案】D【解析】∵PA、PB是⊙O的切线,切点是A、B,∴PA=PB,∠1=∠2,∴选项A、B 正确;,故选∵PA=PB,∠1=∠2,∴OP⊥AB,∴选项C正确;根据已知不能得出OE CE项D符合题意;故选D.3.【答案】B【解析】∵PA和PB为⊙O的切线,∴PA=PB,∵∠P=60°,∴△PAB为等边三角形,∴AB=PA=8,故选B.4.【答案】C【解析】根据圆外切四边形的两组对边和相等得AB+CD=20÷2=10.故选C.5.【答案】A【解析】如图作直径AM,连接BM.∵AM是直径,EF是切线,6.【答案】A【解析】如图所示:△外接圆圆心,则AO为外接圆半径,点O为ABC故能够完全覆盖这个三角形的最小圆面的半径是:.故选:A.7.【答案】C【解析】如图,∵△ABC是等边三角形,∴设AB=BC=2x,∵AD⊥BC,∴∠ADB =90°,BD =12BC =x , ∴AD =22=3AB BD x ,∵点E 是△ABC 的外接圆的圆心, ∴∠EBD =30°, ∴AE =BE =2ED , ∴AE =233x , ∴等边三角形外接圆的半径BE 等于边长AB 的33倍. 故选C. 8.【答案】9.【答案】相离 相交cm【解析】由已知可得,BC =,所以,斜边上的高CD =,(1)因为2<,所以,以C 为圆心,2 cm 长为半径的圆和AB 的位置关系是相离; (2)因为4>,所以,以C 为圆心,4 cm 长为半径的圆和AB 的位置关系是相交;(3)如果以C 为圆心的圆和AB 相切,则半径长为 cm.故答案为:(1)相离;(2)相交;(3)cm.10.【答案】80°11.【解析】连接OB,∵BC是⊙O的切线,∴∠OBC=90°,∴∠OBM+∠CBM=90°,∵OA=OB,∴∠A=∠OBM,∵M是AB的中点,∴OM⊥AB.∴∠C+∠CBM=90°,∴∠C=∠OBM,∴∠A=∠C.12.【解析】(1)连接OD,∵∠ACB=90°,∴∠A+∠B=90°,又∵OD=OB,∴∠B=∠BDO,∵∠ADE=∠A,∴∠ADE+∠BDO=90°,∴∠ODE=90°.∴DE是⊙O的切线;(2)连接CD,∵∠ADE=∠A,∴AE=DE.13.【答案】B【解析】如图所示,作PA⊥x轴,垂足为A,连接OP,14.【答案】C【解析】∵OA=OB,∴∠A=∠ABO=28°,∴∠COB=∠A+∠ABO=56°,又∵BC是⊙O的切线,∴OB⊥BC,则∠OBC=90°,∴∠C=90°-∠COB=90°-56°=34°.故选C.15.【答案】C【解析】如图:设AB,AC,BC和圆的切点分别是P,N,M,CM=x,根据切线长定理,得CN=CM=x,BM=BP=9-x,AN=AP=10-x.则有9-x+10-x=8,解得:x=5.5.所以△CDE的周长=CD+CE+QE+DQ=2x=11.故选C.16.【答案】D【解析】根据切线的性质定理得∠PAC=90°,∴∠PAB=90°-∠BAC=90°-35°=55°.根据切线长定理得PA=PB,所以∠PBA=∠PAB=55°,所以∠P=70°.故选D.17.【答案】A18.【答案】B,M【解析】∵∠ACB=90,AC=2 cm,BC=4 cm,∴AB=cm,∵CM是中线,∴CM=AB=cm,∵2<<4,∴在圆外的是点B,在圆上的是点M.故答案为:B;M.19.【答案】5【解析】设DC与⊙O的切点为E.∵PA、PB分别是⊙O的切线,且切点为A、B,∴PA=PB.同理,可得:DE=DA,CE=CB;则△PCD的周长=PD+DE+CE+PC=PD+DA+PC+CB=PA+PB=10(cm);∴PA=PB=5 cm,故答案为5.20.【答案】221.【答案】99°【解析】如图,连接OB,OC,AC,∵EB、EC是⊙O的两条切线,∠E=46°,∠DCF=32°,∴∠DAC=∠DCF=32°,∠BAC=12(360°-90°-90°-46°)=67°,∴∠BAD=32°+67°=99°.故答案为99°.22.【解析】(1)过点作于点,设班车行驶了的时候到达点.根据此时接受信号最强,则,又,23.【解析】(1)∵Rt △ABC 中,∠ACB =90°,∴AD 为圆的直径, ∴∠AED =90°,∵AD 是△BAC 的∠CAB 的角平分线, ∴∠CAD =∠EAD , Rt △ACD 与Rt △ADE 中,∠CAD =∠BAD ,∠ACB =∠AED ,AD =AD , ∴Rt △ACD ≌Rt △ADE (AAS ), ∴AC =AE .(2)∵在Rt △ABC 中,∠ACB =90°,AC =6,CB =8,∴10AB ==,∵由(1)知,AC =AE ,CD =DE ,∠ACD =∠AED =90°, ∴设CD =x ,则BD =8-x ,BE =AB -AE =10-6=4,在Rt △BDE 中, 222BE DE BD +=,即()22248x x +=-,解得x =3.在Rt △ACD 中222AC CD AD +=,即22263AD +=,解得AD =.24.【答案】D【解析】∵直线AB是⊙O的切线,C为切点,∴∠OCB=90°,∵OD∥AB,∴∠COD=90°,∴∠CED=∠COD=45°,故选:D.25.【答案】D26.【答案】D【解析】用反证法证明时,假设结论“点在圆外”不成立,那么点应该在圆内或者圆上.故选D.27.【答案】A【解析】如图,连接OA、OB.∵BM是⊙O的切线,∴∠OBM=90°.∵∠MBA=140°,∴∠ABO=50°.∵OA=OB,∴∠ABO=∠BAO=50°,∴∠AOB=80°,∴∠ACB=∠AOB=40°.故选A.28.【答案】4529.【答案】50【解析】∵∠A=20°,∴∠BOC=40°,∵BC是⊙O的切线,B为切点,∴∠OBC=90°,∴∠OCB=90°-40°=50°,故答案为:50.30.【答案】31.【答案】44°【解析】连接OB,∵BC是⊙O的切线,∴OB⊥BC,∴∠OBA+∠CBP=90°,∵OC⊥OA,∴∠A+∠APO=90°,∵OA=OB,∠OAB=22°,∴∠OAB=∠OBA=22°,∴∠APO=∠CBP=68°,∵∠APO=∠CPB,∴∠CPB=∠ABP=68°,∴∠OCB=180°-68°-68°=44°,故答案为:44°32.【答案】33.【答案】<【解析】∵点P是△ABC的内心,∴点P到△ABC三边的距离相等,设这个距离为h,∴S1=AB•h,S2+S3=BC•h+AC•h,∵AB<BC+AC,∴S1<S2+S3,故答案为<.34.【解析】(1)连接OC,35.【解析】(1)连接DE,如图,∵∠BCD+∠DEB=180°,36.【解析】连接OD,作OF⊥BE于点F.∴BF=12 BE,∵AC是圆的切线,∴OD⊥AC,∴∠ODC=∠C=∠OFC=90°,∴四边形ODCF是矩形,∵OD=OB=FC=2,BC=3,∴BF=BC-FC=BC-OD=3-2=1,∴BE=2BF=2.。

高中数学必修2__第四章《圆与方程》知识点总结与练习

高中数学必修2__第四章《圆与方程》知识点总结与练习

第三节圆_的_方_程[知识能否忆起]1.圆的定义及方程 定义 平面内与定点的距离等于定长的点的集合(轨迹) 标准 方程 (x -a )2+(y -b )2=r 2(r >0)圆心:(a ,b ),半径:r一般 方程 x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0)圆心:⎝⎛⎭⎫-D 2,-E 2, 半径:12D 2+E 2-4F2.点与圆的位置关系点M (x 0,y 0)与圆(x -a )2+(y -b )2=r 2的位置关系: (1)若M (x 0,y 0)在圆外,则(x 0-a )2+(y 0-b )2>r 2. (2)若M (x 0,y 0)在圆上,则(x 0-a )2+(y 0-b )2=r 2. (3)若M (x 0,y 0)在圆内,则(x 0-a )2+(y 0-b )2<r 2.[小题能否全取]1.(教材习题改编)方程x 2+y 2+4mx -2y +5m =0表示圆的充要条件是( ) A.14<m <1 B .m <14或m >1C .m <14D .m >1解析:选B 由(4m )2+4-4×5m >0得m <14或m >1.2.(教材习题改编)点(1,1)在圆(x -a )2+(y +a )2=4内,则实数a 的取值范围是( ) A .(-1,1)B .(0,1)C .(-∞,-1)∪(1,+∞)D .(1,+∞)解析:选A ∵点(1,1)在圆的内部, ∴(1-a )2+(1+a )2<4, ∴-1<a <1.3.圆心在y 轴上,半径为1,且过点(1,2)的圆的方程为( ) A .x 2+(y -2)2=1B .x 2+(y +2)2=1C .(x -1)2+(y -3)2=1D .x 2+(y -3)2=1解析:选A 设圆心坐标为(0,b ),则由题意知(0-1)2+(b -2)2=1,解得b =2,故圆的方程为x 2+(y -2)2=1.4.(2012·潍坊调研)圆x 2-2x +y 2-3=0的圆心到直线x +3y -3=0的距离为________.解析:圆心(1,0),d =|1-3|1+3=1.答案:15.(教材习题改编)圆心在原点且与直线x +y -2=0相切的圆的方程为 ____________________.解析:设圆的方程为x 2+y 2=a 2(a >0) ∴|2|1+1=a ,∴a =2,∴x 2+y 2=2. 答案:x 2+y 2=21.方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆的充要条件是: (1)B =0;(2)A =C ≠0;(3)D 2+E 2-4AF >0.2.求圆的方程时,要注意应用圆的几何性质简化运算. (1)圆心在过切点且与切线垂直的直线上. (2)圆心在任一弦的中垂线上.(3)两圆内切或外切时,切点与两圆圆心三点共线.圆的方程的求法典题导入[例1] (1)(2012·顺义模拟)已知圆C 关于y 轴对称,经过点(1,0)且被x 轴分成两段弧长之比为1∶2,则圆C 的方程为( )A.⎝⎛⎭⎫x ±332+y 2=43B.⎝⎛⎭⎫x ±332+y 2=13C .x 2+⎝⎛⎭⎫y ±332=43D .x 2+⎝⎛⎭⎫y ±332=13(2)已知圆C 经过A (5,1),B (1,3)两点,圆心在x 轴上,则圆C 的方程为________________. [自主解答] (1)由已知知圆心在y 轴上,且被x 轴所分劣弧所对圆心角为2π3,设圆心(0,b ),半径为r ,则r sin π3=1,r cos π3=|b |,解得r =23,|b |=33,即b =±33.故圆的方程为x 2+⎝⎛⎭⎫y ±332=43.(2)圆C 的方程为x 2+y 2+Dx +F =0,则⎩⎪⎨⎪⎧26+5D +F =0,10+D +F =0, 解得⎩⎪⎨⎪⎧D =-4,F =-6.圆C 的方程为x 2+y 2-4x -6=0. [答案] (1)C (2)x 2+y 2-4x -6=0由题悟法1.利用待定系数法求圆的方程关键是建立关于a ,b ,r 或D ,E ,F 的方程组. 2.利用圆的几何性质求方程可直接求出圆心坐标和半径,进而写出方程,体现了数形结合思想的运用.以题试法1.(2012·浙江五校联考)过圆x 2+y 2=4外一点P (4,2)作圆的两条切线,切点分别为A ,B ,则△ABP 的外接圆的方程是( )A .(x -4)2+(y -2)2=1B .x 2+(y -2)2=4C .(x +2)2+(y +1)2=5D .(x -2)2+(y -1)2=5解析:选D 易知圆心为坐标原点O ,根据圆的切线的性质可知OA ⊥P A ,OB ⊥PB ,因此P ,A ,O ,B 四点共圆,△P AB 的外接圆就是以线段OP 为直径的圆,这个圆的方程是(x -2)2+(y -1)2=5.与圆有关的最值问题典题导入[例2] (1)(2012·湖北高考)过点P (1,1)的直线,将圆形区域{(x ,y )|x 2+y 2≤4}分为两部分,使得这两部分的面积之差最大,则该直线的方程为( )A .x +y -2=0B .y -1=0C .x -y =0D .x +3y -4=0(2)P (x ,y )在圆C :(x -1)2+(y -1)2=1上移动,则x 2+y 2的最小值为________. [自主解答] (1)当圆心与P 的连线和过点P 的直线垂直时,符合条件.圆心O 与P 点连线的斜率k =1,∴直线OP 垂直于x +y -2=0.(2)由C (1,1)得|OC |=2,则|OP |min =2-1,即(x 2+y 2)min =2-1.所以x 2+y 2的最小值为(2-1)2=3-2 2.[答案] (1)A (2)3-2 2由题悟法解决与圆有关的最值问题的常用方法 (1)形如u =y -bx -a的最值问题,可转化为定点(a ,b )与圆上的动点(x ,y )的斜率的最值问题(如A 级T 9);9.(2012·南京模拟)已知x ,y 满足x 2+y 2=1,则y -2x -1的最小值为________.解析:y -2x -1表示圆上的点P (x ,y )与点Q (1,2)连线的斜率,所以y -2x -1的最小值是直线PQ与圆相切时的斜率.设直线PQ 的方程为y -2=k (x -1)即kx -y +2-k =0.由|2-k |k 2+1=1得k =34,结合图形可知,y -2x -1≥34,故最小值为34. 答案:34(2)形如t =ax +by 的最值问题,可转化为动直线的截距的最值问题(如以题试法2(2)); (3)形如(x -a )2+(y -b )2的最值问题,可转化为动点到定点的距离的最值问题(如例(2)).以题试法2.(1)(2012·东北三校联考)与曲线C :x 2+y 2+2x +2y =0相内切,同时又与直线l :y =2-x 相切的半径最小的圆的半径是________.(2)已知实数x ,y 满足(x -2)2+(y +1)2=1则2x -y 的最大值为________,最小值为________.解析:(1)依题意,曲线C 表示的是以点C (-1,-1)为圆心,2为半径的圆,圆心C (-1,-1)到直线y =2-x 即x +y -2=0的距离等于|-1-1-2|2=22,易知所求圆的半径等于22+22=322.(2)令b =2x -y ,则b 为直线2x -y =b 在y 轴上的截距的相反数,当直线2x -y =b 与圆相切时,b 取得最值.由|2×2+1-b |5=1.解得b =5±5,所以2x -y 的最大值为5+5,最小值为5- 5.答案:(1)322 (2)5+5 5-5与圆有关的轨迹问题典题导入[例3] (2012·正定模拟)如图,已知点A (-1,0)与点B (1,0),C 是圆x 2+y 2=1上的动点,连接BC 并延长至D ,使得|CD |=|BC |,求AC 与OD 的交点P 的轨迹方程.[自主解答] 设动点P (x ,y ),由题意可知P 是△ABD 的重心. 由A (-1,0),B (1,0),令动点C (x 0,y 0), 则D (2x 0-1,2y 0),由重心坐标公式得 ⎩⎪⎨⎪⎧x =-1+1+2x 0-13,y =2y 03,则⎩⎪⎨⎪⎧x 0=3x +12,y 0=3y 2(y 0≠0),代入x 2+y 2=1,整理得⎝⎛⎭⎫x +132+y 2=49(y ≠0), 故所求轨迹方程为⎝⎛⎭⎫x +132+y 2=49(y ≠0).由题悟法求与圆有关的轨迹问题时,根据题设条件的不同常采用以下方法: (1)直接法:直接根据题目提供的条件列出方程. (2)定义法:根据直线、圆、圆锥曲线等定义列方程. (3)几何法:利用圆与圆的几何性质列方程.(4)代入法:找到要求点与已知点的关系,代入已知点满足的关系式等.以题试法3.(2012·郑州模拟)动点P 到点A (8,0)的距离是到点B (2,0)的距离的2倍,则动点P 的轨迹方程为( )A .x 2+y 2=32B .x 2+y 2=16C .(x -1)2+y 2=16D .x 2+(y -1)2=16解析:选B 设P (x ,y ),则由题意可得2(x -2)2+y 2=(x -8)2+y 2,化简整理得x 2+y 2=16.与圆有关的交汇问题是近几年高考命题的热点,这类问题,要特别注意圆的定义及其性质的运用. 同时,要根据条件,合理选择代数方法或几何方法, 凡是涉及参数的问题,一定要注意参数的变化对问 题的影响,以便确定是否分类讨论.同时要有丰富 的相关知识储备,解题时只有做到平心静气地认真 研究,不断寻求解决问题的方法和技巧,才能真正 把握好问题.[典例] (2011·江苏高考)设集合A =⎩⎨⎧⎭⎬⎫(x ,y )⎪⎪m2≤(x -2)2+y 2≤m 2,x ,y ∈R ,B ={(x ,y )|2m ≤x +y ≤2m +1,x ,y ∈R }.若A ∩B ≠∅,则实数m 的取值范围是________.[解析] 由题意知A ≠∅,则m 2≤m 2,即m ≤0或m ≥12.因为A ∩B ≠∅,则有:(1)当2m +1<2,即m <12时,圆心(2,0)到直线x +y =2m +1的距离为d 1=|2-2m -1|2≤|m |,化简得2m 2-4m +1≤0,解得1-22≤m ≤1+22,所以1-22≤m ≤12; (2)当2m ≤2≤2m +1,即12≤m ≤1时,A ∩B ≠∅恒成立;(3)当2m >2,即m >1时,圆心(2,0)到直线x +y =2m 的距离为d 2=|2-2m |2≤|m |,化简得m 2-4m +2≤0, 解得2-2≤m ≤2+2, 所以1<m ≤2+ 2.综上可知:满足题意的m 的取值范围为⎣⎡⎦⎤12,2+2. [答案] ⎣⎡⎦⎤12,2+2 [题后悟道] 该题是圆与集合,不等式交汇问题,解决本题的关键点有: ①弄清集合代表的几何意义;②结合直线与圆的位置关系求得m 的取值范围. 针对训练若直线l :ax +by +4=0(a >0,b >0)始终平分圆C :x 2+y 2+8x +2y +1=0,则ab 的最大值为( )A .4B .2C .1D.14解析:选C 圆C 的圆心坐标为(-4,-1), 则有-4a -b +4=0,即4a +b =4. 所以ab =14(4a ·b )≤14⎝ ⎛⎭⎪⎫4a +b 22=14×⎝⎛⎭⎫422=1.当且仅当a =12,b =2取得等号.1.圆(x +2)2+y 2=5关于原点P (0,0)对称的圆的方程为( ) A .(x -2)2+y 2=5 B .x 2+(y -2)2=5 C .(x +2)2+(y +2)2=5D .x 2+(y +2)2=5解析:选A 圆上任一点(x ,y )关于原点对称点为(-x ,-y )在圆(x +2)2+y 2=5上,即(-x +2)2+(-y )2=5.即(x -2)2+y 2=5.2.(2012·辽宁高考)将圆x 2+y 2-2x -4y +1=0平分的直线是( )A .x +y -1=0B .x +y +3=0C .x -y +1=0D .x -y +3=0解析:选C 要使直线平分圆,只要直线经过圆的圆心即可,圆心坐标为(1,2).A ,B ,C ,D 四个选项中,只有C 选项中的直线经过圆心.3.(2012·青岛二中期末)若圆C 的半径为1,圆心在第一象限,且与直线4x -3y =0和x 轴都相切,则该圆的标准方程是( )A .(x -3)2+⎝⎛⎭⎫y -732=1 B .(x -2)2+(y -1)2=1 C .(x -1)2+(y -3)2=1D.⎝⎛⎭⎫x -322+(y -1)2=1 解析:选B 依题意设圆心C (a,1)(a >0),由圆C 与直线4x -3y =0相切,得|4a -3|5=1,解得a =2,则圆C 的标准方程是(x -2)2+(y -1)2=1.4.(2012·海淀检测)点P (4,-2)与圆x 2+y 2=4上任一点连线的中点的轨迹方程是( ) A .(x -2)2+(y +1)2=1 B .(x -2)2+(y +1)2=4 C .(x +4)2+(y -2)2=4D .(x +2)2+(y -1)2=1解析:选A设圆上任一点为Q (x 0,y 0),PQ 的中点为M (x ,y ),则⎩⎨⎧x =4+x 02,y =-2+y2,解得⎩⎪⎨⎪⎧x 0=2x -4,y 0=2y +2.因为点Q 在圆x 2+y 2=4上,所以(2x -4)2+(2y +2)2=4,即(x -2)2+(y +1)2=1.5.(2013·杭州模拟)若圆x 2+y 2-2x +6y +5a =0,关于直线y =x +2b 成轴对称图形,则a -b 的取值范围是( )A .(-∞,4)B .(-∞,0)C .(-4,+∞)D .(4,+∞)解析:选A 将圆的方程变形为(x -1)2+(y +3)2=10-5a ,可知,圆心为(1,-3),且10-5a >0,即a <2.∵圆关于直线y =x +2b 对称,∴圆心在直线y =x +2b 上,即-3=1+2b ,解得b =-2,∴a -b <4.6.已知点M 是直线3x +4y -2=0上的动点,点N 为圆(x +1)2+(y +1)2=1上的动点,则|MN |的最小值是( )A.95B .1C.45D.135解析:选C 圆心(-1,-1)到点M 的距离的最小值为点(-1,-1)到直线的距离d =|-3-4-2|5=95,故点N 到点M 的距离的最小值为d -1=45. 7.如果三角形三个顶点分别是O (0,0),A (0,15),B (-8,0),则它的内切圆方程为________________.解析:因为△AOB 是直角三角形,所以内切圆半径为r =|OA |+|OB |-|AB |2=15+8-172=3,圆心坐标为(-3,3),故内切圆方程为(x +3)2+(y -3)2=9.答案:(x +3)2+(y -3)2=98.(2013·河南三市调研)已知圆C 的圆心与抛物线y 2=4x 的焦点关于直线y =x 对称,直线4x -3y -2=0与圆C 相交于A ,B 两点,且|AB |=6,则圆C 的方程为__________.解析:设所求圆的半径是R ,依题意得,抛物线y 2=4x 的焦点坐标是(1,0),则圆C 的圆心坐标是(0,1),圆心到直线4x -3y -2=0的距离d =|4×0-3×1-2|42+(-3)2=1,则R 2=d 2+⎝⎛⎭⎫|AB |22=10,因此圆C 的方程是x 2+(y -1)2=10.答案:x 2+(y -1)2=109.(2012·南京模拟)已知x ,y 满足x 2+y 2=1,则y -2x -1的最小值为________.解析:y -2x -1表示圆上的点P (x ,y )与点Q (1,2)连线的斜率,所以y -2x -1的最小值是直线PQ与圆相切时的斜率.设直线PQ 的方程为y -2=k (x -1)即kx -y +2-k =0.由|2-k |k 2+1=1得k =34,结合图形可知,y -2x -1≥34,故最小值为34. 答案:3410.过点C (3,4)且与x 轴,y 轴都相切的两个圆的半径分别为r 1,r 2,求r 1r 2. 解:由题意知,这两个圆的圆心都在第一象限, 且在直线y =x 上,故可设两圆方程为 (x -a )2+(y -a )2=a 2,(x -b )2+(y -b )2=b 2,且r 1=a ,r 2=b .由于两圆都过点C , 则(3-a )2+(4-a )2=a 2,(3-b )2+(4-b )2=b 2 即a 2-14a +25=0,b 2-14b +25=0. 则a 、b 是方程x 2-14x +25=0的两个根. 故r 1r 2=ab =25.11.已知以点P 为圆心的圆经过点A (-1,0)和B (3,4),线段AB 的垂直平分线交圆P 于点C 和D ,且|CD |=410.(1)求直线CD 的方程; (2)求圆P 的方程.解:(1)直线AB 的斜率k =1,AB 的中点坐标为(1,2). 则直线CD 的方程为y -2=-(x -1), 即x +y -3=0.(2)设圆心P (a ,b ),则由P 在CD 上得a +b -3=0.① 又∵直径|CD |=410,∴|P A |=210, ∴(a +1)2+b 2=40.②由①②解得⎩⎪⎨⎪⎧ a =-3,b =6或⎩⎪⎨⎪⎧a =5,b =-2.∴圆心P (-3,6)或P (5,-2). ∴圆P 的方程为(x +3)2+(y -6)2=40 或(x -5)2+(y +2)2=40.12.(2012·吉林摸底)已知关于x ,y 的方程C :x 2+y 2-2x -4y +m =0. (1)当m 为何值时,方程C 表示圆;(2)在(1)的条件下,若圆C 与直线l :x +2y -4=0相交于M 、N 两点,且|MN |=455,求m 的值.解:(1)方程C 可化为(x -1)2+(y -2)2=5-m ,显然只要5-m >0,即m <5时方程C 表示圆.(2)因为圆C 的方程为(x -1)2+(y -2)2=5-m ,其中m <5,所以圆心C (1,2),半径r =5-m ,则圆心C (1,2)到直线l :x +2y -4=0的距离为d =|1+2×2-4|12+22=15,因为|MN |=455,所以12|MN |=255, 所以5-m =⎝⎛⎭⎫152+⎝⎛⎭⎫2552, 解得m =4.1.(2012·常州模拟)以双曲线x 26-y 23=1的右焦点为圆心且与双曲线的渐近线相切的圆的方程是( )A .(x -3)2+y 2=1B .(x -3)2+y 2=3C .(x -3)2+y 2=3D .(x -3)2+y 2=9解析:选B 双曲线的渐近线方程为x ±2y =0,其右焦点为(3,0),所求圆半径r =|3|12+(±2)2=3,所求圆方程为(x -3)2+y 2=3.2.由直线y =x +2上的点P 向圆C :(x -4)2+(y +2)2=1引切线PT (T 为切点),当|PT |最小时,点P 的坐标是( )A .(-1,1)B .(0,2)C .(-2,0)D .(1,3)解析:选B 根据切线长、圆的半径和圆心到点P 的距离的关系,可知|PT |=|PC |2-1,故|PT |最小时,即|PC |最小,此时PC 垂直于直线y =x +2,则直线PC 的方程为y +2=-(x-4),即y =-x +2,联立方程⎩⎪⎨⎪⎧y =x +2,y =-x +2,解得点P 的坐标为(0,2).3.已知圆M 过两点C (1,-1),D (-1,1),且圆心M 在x +y -2=0上. (1)求圆M 的方程;(2)设P 是直线3x +4y +8=0上的动点,P A 、PB 是圆M 的两条切线,A ,B 为切点,求四边形P AMB 面积的最小值.解:(1)设圆M 的方程为(x -a )2+(y -b )2=r 2(r >0).根据题意,得⎩⎪⎨⎪⎧(1-a )2+(-1-b )2=r 2,(-1-a )2+(1-b )2=r 2,a +b -2=0.解得a =b =1,r =2,故所求圆M 的方程为(x -1)2+(y -1)2=4. (2)因为四边形P AMB 的面积S =S △P AM +S △PBM =12|AM |·|P A |+12|BM |·|PB |, 又|AM |=|BM |=2,|P A |=|PB |,所以S =2|P A |, 而|P A |=|PM |2-|AM |2=|PM |2-4,即S =2|PM |2-4.因此要求S 的最小值,只需求|PM |的最小值即可, 即在直线3x +4y +8=0上找一点P ,使得|PM |的值最小, 所以|PM |min =|3×1+4×1+8|32+42=3,所以四边形P AMB 面积的最小值为S =2|PM |2min -4=232-4=2 5.1.在圆x 2+y 2-2x -6y =0内,过点E (0,1)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为( )A .5 2B .10 2C .15 2D .20 2解析:选B 由题意可知,圆的圆心坐标是(1,3),半径是10,且点E (0,1)位于该圆内,故过点E (0,1)的最短弦长|BD |=210-(12+22)=25(注:过圆内一定点的最短弦是以该点为中点的弦),过点E (0,1)的最长弦长等于该圆的直径,即|AC |=210,且AC ⊥BD ,因此四边形ABCD 的面积等于12|AC |×|BD |=12×210×25=10 2.2.已知两点A (-2,0),B (0,2),点C 是圆x 2+y 2-2x =0上任意一点,则△ABC 面积的最小值是________.解析:l AB :x -y +2=0,圆心(1,0)到l 的距离d =32,则AB 边上的高的最小值为32-1. 故△ABC 面积的最小值是12×22×⎝⎛⎭⎫32-1=3- 2.答案:3- 23.(2012·抚顺调研)已知圆x 2+y 2=4上一定点A (2,0),B (1,1)为圆内一点,P ,Q 为圆上的动点.(1)求线段AP 中点的轨迹方程;(2)若∠PBQ =90°,求线段PQ 中点的轨迹方程.解:(1)设AP 的中点为M (x ,y ),由中点坐标公式可知,P 点坐标为(2x -2,2y ). 因为P 点在圆x 2+y 2=4上,所以(2x -2)2+(2y )2=4. 故线段AP 中点的轨迹方程为(x -1)2+y 2=1.(2)设PQ 的中点为N (x ,y ),在Rt △PBQ 中,|PN |=|BN |,设O 为坐标原点,连接ON ,则ON ⊥PQ ,所以|OP |2=|ON |2+|PN |2=|ON |2+|BN |2,所以x 2+y 2+(x -1)2+(y -1)2=4.故线段PQ 中点的轨迹方程为x 2+y 2-x -y -1=0.第四节直线与圆、圆与圆的位置关系[知识能否忆起]一、直线与圆的位置关系(圆心到直线的距离为d ,圆的半径为r )相离相切相交图形量化 方程观点 Δ<0 Δ=0 Δ>0 几何观点d >rd =rd <r二、圆与圆的位置关系(⊙O 1、⊙O 2半径r 1、r 2,d =|O 1O 2|) 相离外切相交内切内含图形量化 d >r 1+r 2d =r 1+r 2|r 1-r 2|<d <r 1+r 2d =|r 1-r 2|d <|r 1-r 2|[小题能否全取]1.(教材习题改编)圆(x -1)2+(y +2)2=6与直线2x +y -5=0的位置关系是( ) A .相切 B .相交但直线不过圆心 C .相交过圆心D .相离解析:选B 由题意知圆心(1,-2)到直线2x +y -5=0的距离d =5,0<d <6,故该直线与圆相交但不过圆心.2.(2012·银川质检)由直线y =x +1上的一点向圆x 2+y 2-6x +8=0引切线,则切线长的最小值为( )A.7B .2 2C .3D. 2解析:选A 由题意知,圆心到直线上的点的距离最小时,切线长最小.圆x 2+y 2-6x +8=0可化为(x -3)2+y 2=1,则圆心(3,0)到直线y =x +1的距离为42=22,切线长的最小值为(22)2-1=7.3.直线x -y +1=0与圆x 2+y 2=r 2相交于A ,B 两点,且AB 的长为2,则圆的半径为( )A.322B.62C .1D .2解析:选B 圆心(0,0)到直线x -y +1=0的距离d =12.则r 2=⎝⎛⎭⎫12|AB |2+d 2=32,r =62. 4.(教材习题改编)若圆x 2+y 2=1与直线y =kx +2没有公共点,则实数k 的取值范围是________.解析:由题意知21+k 2>1,解得-3<k < 3.答案:(-3, 3)5.已知两圆C 1:x 2+y 2-2x +10y -24=0,C 2:x 2+y 2+2x +2y -8=0,则两圆公共弦所在的直线方程是____________.解析:两圆相减即得x-2y+4=0.答案:x-2y+4=01.求圆的弦长问题,注意应用圆的几何性质解题,即用圆心与弦中点连线与弦垂直的性质,可用勾股定理或斜率之积为-1列方程来简化运算.2.对于圆的切线问题,要注意切线斜率不存在的情况.直线与圆的位置关系的判断典题导入[例1](2012·陕西高考)已知圆C:x2+y2-4x=0,l是过点P(3,0)的直线,则() A.l与C相交B.l与C相切C.l与C相离D.以上三个选项均有可能[自主解答]将点P(3,0)的坐标代入圆的方程,得32+02-4×3=9-12=-3<0,所以点P(3,0)在圆内.故过点P的直线l定与圆C相交.[答案] A本例中若直线l为“x-y+4=0”问题不变.解:∵圆的方程为(x-2)2+y2=4,∴圆心(2,0),r=2.=32>2.又圆心到直线的距离为d=62∴l与C相离.由题悟法判断直线与圆的位置关系常见的方法(1)几何法:利用圆心到直线的距离d和圆半径r的大小关系.(2)代数法:联立直线与圆的方程消元后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内可判断直线与圆相交.以题试法1.(2012·哈师大附中月考)已知直线l 过点(-2,0),当直线l 与圆x 2+y 2=2x 有两个交点时,其斜率k 的取值范围是( )A .(-22,22)B .(-2,2) C.⎝⎛⎭⎫-24,24D.⎝⎛⎭⎫-18,18 解析:选C 易知圆心坐标是(1,0),圆的半径是1,直线l 的方程是y =k (x +2),即kx -y +2k =0,根据点到直线的距离公式得|k +2k |k 2+1<1,即k 2<18,解得-24<k <24.直线与圆的位置关系的综合典题导入[例2] (1)(2012·广东高考)在平面直角坐标系xOy 中,直线3x +4y -5=0与圆x 2+y 2=4相交于A 、B 两点,则弦AB 的长等于( )A .33B .2 3 C. 3D .1(2)(2012·天津高考)设m ,n ∈R ,若直线(m +1)x +(n +1)y -2=0与圆(x -1)2+(y -1)2=1相切,则m +n 的取值范围是( )A .[1-3,1+ 3 ]B .(-∞,1- 3 ]∪[1+3,+∞)C .[2-22,2+2 2 ]D .(-∞,2-2 2 ]∪[2+22,+∞)[自主解答] (1)圆x 2+y 2=4的圆心(0,0),半径为2,则圆心到直线3x +4y -5=0的距离d =532+42=1.故|AB |=2r 2-d 2=24-1=2 3.(2)圆心(1,1)到直线(m +1)x +(n +1)y -2=0的距离为|m +n |(m +1)2+(n +1)2=1,所以m +n+1=mn ≤14(m +n )2,整理得[(m +n )-2]2-8≥0,解得m +n ≥2+22或m +n ≤2-2 2.[答案] (1)B (2)D由题悟法1.圆的弦长的常用求法:(1)几何法:设圆的半径为r ,弦心距为d ,弦长为l ,则⎝⎛⎭⎫l 22=r 2-d 2. (2)代数方法:运用韦达定理及弦长公式: |AB |=1+k 2|x 1-x 2|=(1+k 2)[(x 1+x 2)2-4x 1x 2]. [注意] 常用几何法研究圆的弦的有关问题.2.求过一点的圆的切线方程时,首先要判断此点与圆的位置关系,若点在圆内,无解;若点在圆上,有一解;若点在圆外,有两解.以题试法2.(2012·杭州模拟)直线y =kx +3与圆(x -2)2+(y -3)2=4相交于M ,N 两点,若|MN |≥23,则k 的取值范围是( )A.⎣⎡⎦⎤-34,0B.⎣⎡⎦⎤-33,33 C .[-3, 3]D.⎣⎡⎦⎤-23,0 解析:选B 如图,设圆心C (2,3)到直线y =kx +3的距离为d ,若|MN |≥23,则d 2=r 2-⎝⎛⎭⎫12|MN |2≤4-3=1,即|2k |21+k 2≤1,解得-33≤k ≤ 33.圆与圆的位置关系典题导入[例3] (1)(2012·山东高考)圆(x +2)2+y 2=4与圆(x -2)2+(y -1)2=9的位置关系为( )A .内切B .相交C .外切D .相离(2)设两圆C 1、C 2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C 1C 2|=________. [自主解答] (1)两圆圆心分别为(-2,0),(2,1),半径分别为2和3,圆心距d =42+1=17.∵3-2<d <3+2,∴两圆相交.(2)由题意可设两圆的方程为(x -r i )2+(y -r i )2=r 2i ,r i >0,i =1,2.由两圆都过点(4,1)得(4-r i )2+(1-r i )2=r 2i ,整理得r 2i -10r i +17=0,此方程的两根即为两圆的半径r 1,r 2,所以r 1r 2=17,r 1+r 2=10,则|C 1C 2|=(r 1-r 2)2+(r 1-r 2)2=2×(r 1+r 2)2-4r 1r 2=2×100-68=8. [答案] (1)B (2)8由题悟法两圆位置关系的判断常用几何法,即利用两圆圆心之间的距离与两圆半径之间的关系,一般不采用代数法.若两圆相交,则两圆公共弦所在直线的方程可由两圆的方程作差得到.以题试法3.(2012·青岛二中月考)若⊙O :x 2+y 2=5与⊙O 1:(x -m )2+y 2=20(m ∈R )相交于A 、B 两点,且两圆在点A 处的切线互相垂直,则线段AB 的长是________.解析:依题意得|OO 1|=5+20=5,且△OO 1A 是直角三角形,S △O O 1A =12·|AB |2·|OO 1|=12·|OA |·|AO 1|,因此|AB |=2·|OA |·|AO 1||OO 1|=2×5×255=4. 答案:4[典例](2012·东城模拟)直线l过点(-4,0)且与圆(x+1)2+(y-2)2=25交于A,B两点,如果|AB|=8,那么直线l的方程为()A.5x+12y+20=0B.5x-12y+20=0或x+4=0C.5x-12y+20=0D.5x+12y+20=0或x+4=0[尝试解题]过点(-4,0)的直线若垂直于x轴,经验证符合条件,即方程为x+4=0满足题意;若存在斜率,设其直线方程为y=k(x+4),由被圆截得的弦长为8,可得圆心(-1,2)到直线y=k(x+4)的距离为3,即|3k-2|1+k2=3,解得k=-512,此时直线方程为5x+12y+20=0,综上直线方程为5x+12y+20=0或x+4=0.[答案] D——————[易错提醒]—————————————————————————1.解答本题易误认为斜率k一定存在从而错选A.2.对于过定点的动直线设方程时,可结合题意或作出符合题意的图形分析斜率k是否存在,以避免漏解.——————————————————————————————————————针对训练1.过点A(2,4)向圆x2+y2=4所引切线的方程为__________________.解析:显然x=2为所求切线之一.当切线斜率存在时,设切线方程为y-4=k(x-2),即kx -y +4-2k =0,那么|4-2k |k 2+1=2,k =34,即3x -4y +10=0.答案:x =2或3x -4y +10=02.已知直线l 过(2,1),(m,3)两点,则直线l 的方程为________________. 解析:当m =2时,直线l 的方程为x =2; 当m ≠2时,直线l 的方程为y -13-1=x -2m -2,即2x -(m -2)y +m -6=0.因为m =2时,方程2x -(m -2)y +m -6=0, 即为x =2,所以直线l 的方程为2x -(m -2)y +m -6=0. 答案:2x -(m -2)y +m -6=0一、选择题1.(2012·人大附中月考)设m >0,则直线2(x +y )+1+m =0与圆x 2+y 2=m 的位置关系为( )A .相切B .相交C .相切或相离D .相交或相切解析:选C 圆心到直线l 的距离为d =1+m 2,圆半径为m .因为d -r =1+m 2-m =12(m -2m +1)=12(m -1)2≥0,所以直线与圆的位置关系是相切或相离.2.(2012·福建高考)直线x +3y -2=0与圆x 2+y 2=4相交于A ,B 两点,则弦AB 的长度等于( )A .2 5B .2 3 C. 3D .1解析:选B 因为圆心(0,0)到直线x +3y -2=0的距离为1,所以AB =24-1=2 3.3.(2012·安徽高考)若直线x -y +1=0与圆(x -a )2+y 2=2有公共点,则实数a 的取值范围是( )A .[-3,-1]B .[-1,3]C .[-3,1]D .(-∞,-3]∪[1,+∞)解析:选C 欲使直线x -y +1=0与圆(x -a )2+y 2=2有公共点,只需使圆心到直线的距离小于等于圆的半径2即可,即|a -0+1|12+(-1)2≤2,化简得|a +1|≤2,解得-3≤a ≤1.4.过圆x 2+y 2=1上一点作圆的切线与x 轴,y 轴的正半轴交于A ,B 两点,则|AB |的最小值为( )A. 2B. 3 C .2 D .3解析:选C 设圆上的点为(x 0,y 0),其中x 0>0,y 0>0,则切线方程为x 0x +y 0y =1.分别令x =0,y =0得A ⎝⎛⎭⎫1x 0,0,B ⎝⎛⎭⎫0,1y 0,则|AB |= ⎝⎛⎭⎫1x 02+⎝⎛⎭⎫1y 02=1x 0y 0≥1x 20+y 202=2.当且仅当x 0=y 0时,等号成立.5.(2013·兰州模拟)若圆x 2+y 2=r 2(r >0)上仅有4个点到直线x -y -2=0的距离为1,则实数r 的取值范围为( )A .(2+1,+∞)B .(2-1, 2+1)C .(0, 2-1)D .(0, 2+1)解析:选A 计算得圆心到直线l 的距离为22= 2>1,如图.直线l :x -y -2=0与圆相交,l 1,l 2与l 平行,且与直线l 的距离为1,故可以看出,圆的半径应该大于圆心到直线l 2的距离 2+1.6.(2013·临沂模拟)已知点P (x ,y )是直线kx +y +4=0(k >0)上一动点,P A ,PB 是圆C :x 2+y 2-2y =0的两条切线,A ,B 是切点,若四边形P ACB 的最小面积是2,则k 的值为( )A. 2B.212 C .2 2 D .2解析:选D 圆心C (0,1)到l 的距离d =5k 2+1, 所以四边形面积的最小值为2×⎝⎛⎭⎫12×1×d 2-1=2, 解得k 2=4,即k =±2.又k >0,即k =2.7.(2012·朝阳高三期末)设直线x -my -1=0与圆(x -1)2+(y -2)2=4相交于A 、B 两点,且弦AB 的长为23,则实数m 的值是________.解析:由题意得,圆心(1,2)到直线x -my -1=0的距离d =4-3=1,即|1-2m -1|1+m 2=1,解得m =±33. 答案:±338.(2012·东北三校联考)若a ,b ,c 是直角三角形ABC 三边的长(c 为斜边),则圆C :x 2+y 2=4被直线l :ax +by +c =0所截得的弦长为________.解析:由题意可知圆C :x 2+y 2=4被直线l :ax +by +c =0所截得的弦长为2 4-⎝ ⎛⎭⎪⎫c a 2+b 22,由于a 2+b 2=c 2,所以所求弦长为2 3. 答案:2 39.(2012·江西高考)过直线x +y -22=0上点P 作圆x 2+y 2=1的两条切线,若两条切线的夹角是60°,则点P 的坐标是________.解析:∵点P 在直线x +y -22=0上,∴可设点P (x 0,-x 0+22),且其中一个切点为M .∵两条切线的夹角为60°,∴∠OPM =30°.故在Rt △OPM 中,有OP =2OM =2.由两点间的距离公式得OP = x 20+(-x 0+22)2=2,解得x 0= 2.故点P 的坐标是( 2, 2).答案:( 2, 2)10.(2012·福州调研)已知⊙M :x 2+(y -2)2=1,Q 是x 轴上的动点,QA ,QB 分别切⊙M 于A ,B 两点.(1)若|AB |=423,求|MQ |及直线MQ 的方程; (2)求证:直线AB 恒过定点.解:(1)设直线MQ 交AB 于点P ,则|AP |=223,又|AM |=1,AP ⊥MQ ,AM ⊥AQ ,得|MP |= 12-89=13, 又∵|MQ |=|MA |2|MP |,∴|MQ |=3. 设Q (x,0),而点M (0,2),由x 2+22=3,得x =±5, 则Q 点的坐标为(5,0)或(-5,0).从而直线MQ 的方程为2x +5y -25=0或2x -5y +25=0.(2)证明:设点Q (q,0),由几何性质,可知A ,B 两点在以QM 为直径的圆上,此圆的方程为x (x -q )+y (y -2)=0,而线段AB 是此圆与已知圆的公共弦,相减可得AB 的方程为qx-2y +3=0,所以直线AB 恒过定点⎝⎛⎭⎫0,32. 11.已知以点C ⎝⎛⎭⎫t ,2t (t ∈R ,t ≠0)为圆心的圆与x 轴交于点O 、A ,与y 轴交于点O 、B ,其中O 为原点.(1)求证:△AOB 的面积为定值;(2)设直线2x +y -4=0与圆C 交于点M 、N ,若|OM |=|ON |,求圆C 的方程.解:(1)证明:由题设知,圆C 的方程为(x -t )2+⎝⎛⎭⎫y -2t 2=t 2+4t 2, 化简得x 2-2tx +y 2-4ty =0, 当y =0时,x =0或2t ,则A (2t,0);当x =0时,y =0或4t,则B ⎝⎛⎭⎫0,4t , 所以S △AOB =12|OA |·|OB | =12|2t |·⎪⎪⎪⎪4t =4为定值. (2)∵|OM |=|ON |,则原点O 在MN 的中垂线上,设MN 的中点为H ,则CH ⊥MN , ∴C 、H 、O 三点共线,则直线OC 的斜率k =2t t =2t 2=12,∴t =2或t =-2. ∴圆心为C (2,1)或C (-2,-1),∴圆C 的方程为(x -2)2+(y -1)2=5或(x +2)2+(y +1)2=5,由于当圆方程为(x +2)2+(y +1)2=5时,直线2x +y -4=0到圆心的距离d >r ,此时不满足直线与圆相交,故舍去,∴圆C 的方程为(x -2)2+(y -1)2=5.12.在平面直角坐标系xOy 中,已知圆x 2+y 2-12x +32=0的圆心为Q ,过点P (0,2),且斜率为k 的直线与圆Q 相交于不同的两点A 、B .(1)求k 的取值范围;(2)是否存在常数k ,使得向量OA +OB 与PQ 共线?如果存在,求k 值;如果不存在,请说明理由.解:(1)圆的方程可写成(x -6)2+y 2=4,所以圆心为Q (6,0).过P (0,2)且斜率为k 的直线方程为y =kx +2,代入圆的方程得x 2+(kx +2)2-12x +32=0,整理得(1+k 2)x 2+4(k -3)x +36=0.①直线与圆交于两个不同的点A 、B 等价于Δ=[4(k -3)]2-4×36(1+k 2)=42(-8k 2-6k )>0,解得-34<k <0,即k 的取值范围为⎝⎛⎭⎫-34,0. (2)设A (x 1,y 1)、B (x 2,y 2)则OA +OB =(x 1+x 2,y 1+y 2),由方程①得x 1+x 2=-4(k -3)1+k 2.② 又y 1+y 2=k (x 1+x 2)+4.③ 因P (0,2)、Q (6,0),PQ =(6,-2), 所以OA +OB 与PQ 共线等价于-2(x 1+x 2)=6(y 1+y 2),将②③代入上式,解得k =-34. 而由(1)知k ∈⎝⎛⎭⎫-34,0,故没有符合题意的常数k .1.已知两圆x 2+y 2-10x -10y =0,x 2+y 2+6x -2y -40=0,则它们的公共弦所在直线的方程为________________;公共弦长为________.解析:由两圆的方程x 2+y 2-10x -10y =0,x 2+y 2+6x -2y -40=0,相减并整理得公共弦所在直线的方程为2x +y -5=0.圆心(5,5)到直线2x +y -5=0的距离为105=25,弦长的一半为50-20=30,得公共弦长为230. 答案:2x +y -5=0 2302.(2012·上海模拟)已知圆的方程为x 2+y 2-6x -8y =0,a 1,a 2,…,a 11是该圆过点(3,5)的11条弦的长,若数列a 1,a 2,…,a 11成等差数列,则该等差数列公差的最大值是________.解析:容易判断,点(3,5)在圆内部,过圆内一点最长的弦是直径,过该点与直径垂直的弦最短,因此,过(3,5)的弦中,最长为10,最短为46,故公差最大为10-4610=5-265. 答案:5-2653.(2012·江西六校联考)已知抛物线C :y 2=2px (p >0)的准线为l ,焦点为F ,圆M 的圆心在x 轴的正半轴上,圆M 与y 轴相切,过原点O 作倾斜角为π3的直线n ,交直线l 于点A ,交圆M 于不同的两点O 、B ,且|AO |=|BO |=2.(1)求圆M 和抛物线C 的方程;(2)若P 为抛物线C 上的动点,求PM ,·PF ,的最小值;(3)过直线l 上的动点Q 向圆M 作切线,切点分别为S 、T ,求证:直线ST 恒过一个定点,并求该定点的坐标.解:(1)易得B (1,3),A (-1,-3),设圆M 的方程为(x -a )2+y 2=a 2(a >0), 将点B (1,3)代入圆M 的方程得a =2,所以圆M 的方程为(x -2)2+y 2=4,因为点A (-1,-3)在准线l 上,所以p 2=1,p =2,所以抛物线C 的方程为y 2=4x . (2)由(1)得,M (2,0),F (1,0),设点P (x ,y ),则PM ,=(2-x ,-y ),PF ,=(1-x ,-y ),又点P 在抛物线y 2=4x 上,所以PM ,·PF ,=(2-x )(1-x )+y 2=x 2-3x +2+4x =x 2+x +2,因为x ≥0,所以PM ,·PF ,≥2,即PM ,·PF ,的最小值为2.(3)证明:设点Q (-1,m ),则|QS |=|QT |=m 2+5,以Q 为圆心,m 2+5为半径的圆的方程为(x +1)2+(y -m )2=m 2+5,即x 2+y 2+2x -2my -4=0,①又圆M 的方程为(x -2)2+y 2=4,即x 2+y 2-4x =0,②由①②两式相减即得直线ST 的方程3x -my -2=0,显然直线ST 恒过定点⎝⎛⎭⎫23,0.1.两个圆:C 1:x 2+y 2+2x +2y -2=0与C 2:x 2+y 2-4x -2y +1=0的公切线有且仅有( )A .1条B .2条C .3条D .4条解析:选B 由题知C 1:(x +1)2+(y +1)2=4,则圆心C 1(-1,-1),C 2:(x -2)2+(y。

人教版九年级数学上册圆的练习题

人教版九年级数学上册圆的练习题

人教版九年级数学上册圆的练习题练一一、选择题1.若⊙O的半径为5㎝,点A到圆心O的距离为4㎝,那么点A与圆心O的位置关系是()A。

点A在圆外B。

点A在圆上C。

点A在圆内D。

不能确定2.在⊙O中,已知弦AB的长为8㎝,AB的弦心距为3㎝,则⊙O的半径为()A。

7㎝B。

5㎝C。

7㎝D。

3㎝3.如图,半径为10的⊙O中,弦AB的长为16,则这条弦的弦心距为()A。

6B。

8C。

10D。

124.下列命题中,①圆是轴对称图形;②圆是中心对称图形;③圆既是轴对称图形,又是中心对称图形;④圆是轴对称图形,对称轴是直径;⑤圆是中心对称图形,对称中心是圆心。

其中正确的命题是()A。

①②③B。

①②⑤C。

①②③⑤D。

②③④⑤5.如图所示,正方形ABCD内接于⊙O,P是劣弧AD上任意一点,则∠ABP+∠DCP=()A。

90°B。

60°C。

45°D。

30°6.以已知点O为圆心作圆,可以作()圆A。

1个B。

2个C。

3个D。

无数个7.若圆心角∠PCB=60°,则弧PCB所对的圆周角等于()A。

30°B。

40°C。

60°D。

80°8.如图,A、B、C是⊙O上的三点,∠AOC=100°则∠ABC的度数是()A。

30°B。

45°C。

50°D。

60°9.如图,AB为⊙O的直径,点C在⊙O上,若∠A=40°,则∠B等于()A。

80°B。

60°C。

50°D。

40°二、填空题11.已知⊙O的半径为4cm,A为线段OP的中点,当OP=5 cm时,点A在⊙O 上;当OP=8cm时,点A在⊙O 上;当OP=10 cm时,点A在⊙O 外。

12.如图,弓形的弦长AB为23cm,高CD为1cm,则弓形所在圆的半径为12cm。

13.一条弦把圆心分成1:3两部分,则劣弧所对的圆心角为120°。

点与圆的位置关系练习题

点与圆的位置关系练习题

点与圆的位置关系练习题点与圆的位置关系练习题在几何学中,点与圆的位置关系一直是一个重要的研究方向。

通过解答练习题,我们可以更好地理解和应用这些关系。

本文将为大家提供一些点与圆的位置关系练习题,帮助读者巩固和拓展相关知识。

1. 已知一个圆的圆心坐标为(2,3),半径为5。

现有一个点P(4,5),请判断点P与该圆的位置关系。

解析:首先,我们可以计算点P到圆心的距离。

根据勾股定理,点P到圆心的距离为√[(4-2)²+(5-3)²] = √8。

由于√8小于半径5,所以点P位于圆内。

2. 给定一个圆的方程为x²+y²=9,现有一个点A(3,4),请判断点A与该圆的位置关系。

解析:我们可以将点A的坐标代入圆的方程中,计算两边的值是否相等。

代入后,得到3²+4²=9+16=25,即左右两边相等。

所以点A位于圆上。

3. 已知一个圆的方程为(x-2)²+(y+1)²=25,现有一个点B(0,0),请判断点B与该圆的位置关系。

解析:同样地,我们将点B的坐标代入圆的方程中,计算两边的值是否相等。

代入后,得到(0-2)²+(0+1)²=4+1=5。

由于5小于25,所以点B位于圆内。

4. 给定一个圆的方程为(x+3)²+(y-4)²=16,现有一个点C(6,4),请判断点C与该圆的位置关系。

解析:将点C的坐标代入圆的方程中,计算两边的值是否相等。

代入后,得到(6+3)²+(4-4)²=81+0=81。

由于81大于16,所以点C位于圆外。

5. 已知一个圆的方程为(x-1)²+(y+2)²=36,现有一个点D(5,0),请判断点D与该圆的位置关系。

解析:将点D的坐标代入圆的方程中,计算两边的值是否相等。

代入后,得到(5-1)²+(0+2)²=16+4=20。

点与圆位置关系练习题

点与圆位置关系练习题

点与圆位置关系练习题在几何学中,点与圆的位置关系是一个基本而重要的概念。

了解和掌握这种关系,不仅可以帮助我们更好地理解几何学的基本原理,还可以应用于日常生活中的各种问题。

在这篇文章中,我们将通过一些练习题来深入探讨点与圆的位置关系。

练习题一:已知一个圆的圆心坐标为(2, 3),半径为4。

现有一个点P,坐标为(5, 6),请问点P是否在圆内?要解决这个问题,我们可以计算点P与圆心之间的距离。

根据勾股定理,点P 与圆心之间的距离为√[(5-2)²+(6-3)²] = √(9+9) = √18 ≈ 4.24。

由于点P与圆心的距离小于圆的半径,即4.24 < 4,所以可以得出结论,点P在圆内。

练习题二:现有一个圆的圆心坐标为(-1, -2),半径为3。

点A的坐标为(2, 1),点B的坐标为(4, -3),请问点A和点B分别在圆的内部、外部还是圆上?同样地,我们可以计算点A和点B与圆心之间的距离。

对于点A,距离为√[(2-(-1))²+(1-(-2))²] = √(9+9) = √18 ≈ 4.24。

对于点B,距离为√[(4-(-1))²+(-3-(-2))²] = √(25+1) = √26 ≈ 5.1。

由于点A与圆心的距离小于圆的半径,即4.24 < 3,所以可以得出结论,点A 在圆内。

而点B与圆心的距离大于圆的半径,即5.1 > 3,所以可以得出结论,点B在圆外。

练习题三:现有一个圆的圆心坐标为(0, 0),半径为5。

点C的坐标为(3, 4),请问点C在圆的内部、外部还是圆上?同样地,我们计算点C与圆心之间的距离。

距离为√[(3-0)²+(4-0)²] = √(9+16) = √25 = 5。

由于点C与圆心的距离等于圆的半径,即5 = 5,所以可以得出结论,点C在圆上。

通过以上练习题,我们可以看到点与圆的位置关系可以通过计算点与圆心之间的距离来判断。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

24.2.1点与圆的位置关系➢自主学习、课前诊断
一、温故知新
1.圆心确定圆的_____,半径确定圆的
______,圆心为O、半径为r的圆可以看
成是___________________的点的集合.
2.若PA=PB则点P在_____________.
3..用尺规作出线段AB
的垂直平分线.
二、设问导读
阅读课本P92-95完成下列问题:
1.点和圆的位置关系。

完成下表:
图形点和圆的
位置关系
点到圆心
的距离d与
r的关系点在圆外
d =r
点在圆内 d <r
2.“”读作,它的意义是什么?
3.动手操作:
(1)作圆,使它经过已知点A,你能作出几个这样的圆?
(2)作圆,使它经过已知点A、B.你是如何作的?你能作出几个这样的圆?其圆心的分布有什么特点?与线段AB有什么关系?为什么?
(3)作圆,使它经过已知点A、B、C(A、B、C三点不在同一条直线上).你是如何作的?你能作出几个这样的圆?得出的结论是什么?
3. 叫三角形外接圆,_________________叫做三角形的外心.
4.认真阅读课本P94归纳反证法证明问题的三个步骤.
三、自学检测
1.如果⊙O的半径为r,点P到圆心O的距离为6,那么:
①点P在⊙O外,则r ;
②点P在,则r=6;
③点P在,则r>6.
2. 经过平面上的两点可以作个圆,这些圆的圆心在
__________________;经过平面内的三个点可以作圆。

O
H
G
F
E
D
C
B
A
➢ 互动学习、问题解决
一、导入新课 二、交流展示
➢ 学用结合、提高能力
一、巩固训练
1.⊙O 的半径为6,圆心O 的坐标(0,0 ),点P (3,4)与⊙O 的位置关系是________.
2.用反证法证明命题“三角形中必须有一个内角小于或等于 60°”时,首先应假设这个三角形中_________________.
3.已知a,b,c 是△ABC 的三边长,外接圆的圆心在△ABC 一条边上的是( ) A.a=15,b=12,c=4 B.a=5,b=12,c=12 C.a=5,b=12,c=13 D.a=5,b=12,c=14
4. 小明家的房前有一块矩形的空地,空地上有三棵树A,B,C,小明想建一个圆形花坛,使三棵树都在花坛的边上. (1)请你帮小明把花坛的位置画出来 (尺规作图,不写作法,保留作图痕迹). (2)若在△ABC 中,AB=8m,AC=6m,∠BAC =90°,试求小明家圆形花坛的面积.
二、当堂检测
如图,菱形ABCD 的对角线AC ,BD 相交于点O ,四条边AB ,BC ,CD ,DA 的中点分别为E ,F ,G ,H.这四个点共圆吗?圆心在哪儿?
三、拓展延伸
如图,已知直角坐标系中,A(0,4), B(4,4),C(6,2). (1)写出经过A,B,C 三点的圆弧所在圆的圆心M 的坐标. (2)判断点D(5,-2)和⊙M 的位置关系.
➢ 课堂小结、形成网络
________________________________________________________________________________________________________________________________________。

相关文档
最新文档