不确定性推理原理

合集下载

不确定性推理原理

不确定性推理原理

4.2.4 不确定性的传递

包含两个子问题

在每一步推理中,如何把证据及知识的不 确定性传递给给结论 在多步推理中,如何把初始证据的不确定 性传递给最终结论

4.2.5 结论不确定性的合成

用不同知识进行推理得到相同的结论 同个结论的不确定性程度却不相同


需要用合适的算法对它们进行合成
4. 3 不确定性推理方法的分类
为给定条件E下,事件A发生的条件概率。
对于条件概率有如下联合概率公式:
P( A
n
E ) P( A | E ) P( E )
n 1
若A1, A2, ..., An为X中的n个事件,可得
P(
i 1
Ai ) P( A1 ) P( A2 | A1 ) P( A3 | A1
A2 )
P( An |

“To do what is right and just is more acceptable to the LORD than sacrifice.” From PROVERBS 21:3 NIV
4.2.3 证据不确定性的组合

单一证据 & 组合证据

单一证据:前提条件仅为一个简单条件 组合证据:一个复合条件对应于一组证据
在选择不确定性度量方法时应考虑的因素: 充分表达相应知识及证据不确定性的程度

度量范围便于领域专家及用户估计不确定性

便于计算过程中的不确定性传递,结论的不确 定性度量不超出规定的范围 度量的确定应直观,且有相应的理论依据

4.2.2 不确定性匹配

解决不确定性匹配的常用方法

设计一个匹配算法用以计算相似度 指定一个相似度的“限定”(即阈值)

确定性与不确定性推理主要方法-人工智能导论

确定性与不确定性推理主要方法-人工智能导论

确定性与不确定性推理主要方法1.确定性推理:推理时所用的知识与证据都是确定的,推出的结论也是确定的,其真值或者为真或者为假。

2.不确定性推理:从不确定性的初始证据出发,通过运用不确定性的知识,最终推出具有一定程度的不确定性但却是合理或者近乎合理的结论的思维过程。

3.演绎推理:如:人都是会死的(大前提)李四是人(小前提)所有李四会死(结论)4.归纳推理:从个别到一般:如:检测全部产品合格,因此该厂产品合格;检测个别产品合格,该厂产品合格。

5.默认推理:知识不完全的情况下假设某些条件已经具备所进行的推理;如:制作鱼缸,想到鱼要呼吸,鱼缸不能加盖。

6.不确定性推理中的基本问题:①不确定性的表示与量度:1)知识不确定性的表示2)证据不确定性的表示3)不确定性的量度②不确定性匹配算法及阈值的选择1)不确定性匹配算法:用来计算匹配双方相似程度的算法。

2)阈值:用来指出相似的“限度”。

③组合证据不确定性的算法最大最小方法、Hamacher方法、概率方法、有界方法、Einstein方法等。

④不确定性的传递算法1)在每一步推理中,如何把证据及知识的不确定性传递给结论。

2)在多步推理中,如何把初始证据的不确定性传递给最终结论。

⑤结论不确定性的合成6.可信度方法:在确定性理论的基础上,结合概率论等提出的一种不确定性推理方法。

其优点是:直观、简单,且效果好。

可信度:根据经验对一个事物或现象为真的相信程度。

可信度带有较大的主观性和经验性,其准确性难以把握。

C-F模型:基于可信度表示的不确定性推理的基本方法。

CF(H,E)的取值范围: [-1,1]。

若由于相应证据的出现增加结论 H 为真的可信度,则 CF(H,E)> 0,证据的出现越是支持 H 为真,就使CF(H,E) 的值越大。

反之,CF(H,E)< 0,证据的出现越是支持 H 为假,CF(H,E)的值就越小。

若证据的出现与否与 H 无关,则 CF(H,E)= 0。

人工智能第十二讲不确定性推理-可信度方法

人工智能第十二讲不确定性推理-可信度方法
当用不同的知识进行推理得到了 相同的结 论,但不确定性的程度却不同,这样就需要对 这些不确定性程度进行合成。(注意:如果推 出的结论不同就产生 冲突,无法进行合成)
基本概念 --不确定性推理方法的分类
? 沿着两条路线发展:一是 模型方法 ,与控制策略 无关;二是控制方法,没有统一模型,依赖于控 制策略。我们只讨论模型方法。
? 例如: IF 发热38 °以上 AND 四肢关节疼痛无力 AND 胸闷咳嗽 THEN 患SARS (0.7) 表示病人如有上述症状则有七成把握认为他患 SARS
可信度方法
--C-F模型
? 定义: CF(H,E) = MB(H,E) -MD(H,E), 其中CF(H,E) ∈[-1,1] MB(Measure Belief )--信任增长度 ,表示因 与E匹配的证据的出现,使 H为真的信任增长度。
不确定性推理
--可信度方法
内容简介
一. 不确定性推理的基本概念与原理 二. 可信度方法的基本模型和三个扩展方法
基本概念
--不确定性推理的定义
? 从不确定性的初始证据出发,通过运用不 确定性的知识,最终推出具有一定程度的 不确定性但却是合理或者近乎合理的结论 的思维过程。
? 事实和知识是构成推理的两个基本要素。 已知事实称为证据(E),用以指出推理 的出发点及推理时应该使用的知识;而知 识是推理得以向前推进,并逐步达到最终 目标(H)的依据。
基本概念
-- 一些基本问题
1. 不确定性的表示与量度
a. 知识不确定性的表示
? 制定表示方法时需要考虑:一是要能根据领域 问题的特征把其不确定性比较准确地描述出来, 满足问题求解的需要;另一是要便于推理过程 中对不确定性的推算。
? 一般由领域专家给出,称为知识的 静态强度 。 静态强度可以是相应知识在应用中成功的概率, 也可以是该条知识的可信程度或其他。

ai7不确定性推理_tmp

ai7不确定性推理_tmp

主观Bayes方法 提出:1976年 杜达(R.O.Duda) 应用:地矿勘探专家系统PROSPECTOR
知识不确定性的表示 在主观Bayes方法中,知识(规则)就是推理网络中 的一条弧,它的不确定性是以一个数值对 (LS,LN)来进行描述的。 若以产生式规则的形式表示,其形式为: IF E THEN (LS,LN) H (P(H)) 其中各项含义如下 ①E是该知识的前提条件,既可以是单个的条件, 也可以是由AND或OR把多个简单条件连接而成的 复合条件。 ②H是结法 当证据E是由多个单一证据的合取组合而成时,即 E=E1E2…En 如果已知P(E1/S),P(E2/S),…,P(En/S),则 P(E/S)=min{P(E1/S),P(E2/S),…,P(En/S)} 当证据E是由多个单一证据的析取组合而成时,即 E=E1E2…En 如果已知P(E1/S),P(E2/S),…,P(En/S),则 P(E/S)=max{P(E1/S),P(E2/S),…,P(En/S)}
不确定性的推理计算 回顾1:Bayes公式
例1:设H1,H2,H3分别是三个结论,E是支持这些 结论的证据,且已知: P(H1)=0.4 P(H2)=0.5 P(H3)=0.2 P(E/H1)=0.3 P(E/H2)=0.4 P(E/H3)=0.5 求P(H1/E),P(H2/E),P(H3/E)的值
③(LS,LN)表示该知识的规则强度,度量知识的不 确定性。 LS:表示规则成立的充分性,体现前提为真对结论 的影响程度。 LN:表示规则成立的必要性,体现前提为假对结论 的影响程度。
证据不确定性的表示 1.单个证据不确定性的表示方法 在主观Bayes方法中,证据的不确定性是用概率表 示的。例如对于初始证据E,其先验概率为P(E) ,也可由用户根据观察S给出它的后验P(E/S)。 证据的不确定性也可用几率来表示。 概率与几率的关系

2不确定性推理1基本概念2不确定性推理中的基本问题不确定

2不确定性推理1基本概念2不确定性推理中的基本问题不确定
1 2
2 不确定性推理中的基本问题
1. 不确定性的表示与度量
不确定性推理中的“ 不确定性推理中的“不确定性” 不确定性”一般分为两类: 一般分为两类:一是知 识的不确定性, ,一是证据的不确定性。 识的不确定性 一是证据的不确定性。 知识不确定性的表示: 知识不确定性的表示:目前在专家系统中知识的不确定 性一般是由领域专家给出的, 性一般是由领域专家给出的,通常用一个数值表示, 通常用一个数值表示,它 表示相应知识的不确定性程度, 表示相应知识的不确定性程度,称为知识的静态强度。 称为知识的静态强度。 证据不确定性的表示: 证据不确定性的表示:证据不确定性的表示方法与知识 不确定性的表示方法一致, 不确定性的表示方法一致,通常也用一个数值表示, 通常也用一个数值表示,代 表相应证据的不确定性程度, 表相应证据的不确定性程度,称之为动态强度。 称之为动态强度。
第四章2
基本概念 概率方法 可信度方法
不确定性推理
1 基本概念
什么是不确定性推理 不确定性推理是建立在非经典逻辑基础 上的一种推理, 上的一种推理,它是对不确定性知识的 运用与处理。 运用与处理。 具体地说, 具体地说,所谓不确定性推理就是从不 确定性的初始证据( 确定性的初始证据(即事实) 即事实)出发, 出发,通 过运用不确定性的知识, 过运用不确定性的知识,最终推出具有 一定程度不确定性的结论。 一定程度不确定性的结论。
8
7
概率推理方法 概率推理方法
经典概率方法要求给出条件概率P(H/E),在实际 中通常比较困难。 中通常比较困难。例如E代表咳嗽, 代表咳嗽,H代表支气管 炎,则P(H/E)表示在咳嗽的人群中患支气管炎的 概率, 概率,这个比较困难, 这个比较困难,因为样本空间太大。 因为样本空间太大。而逆 概率P(E/H)表示在得支气管炎的人群中咳嗽的概 率,这个就比较容易获得。 这个就比较容易获得。 我们可以根据Bayes定理从P(E/H)推出P(H/E)

不确定性推理概述

不确定性推理概述

不确定性推理概述4.1.1 不确定推理的概念所谓推理就是从已知事实出发,运⽤相关知识(或规则)逐步推出结论或证明某个假设成⽴或不成⽴的思维过程。

其中已知事实和知识(规则)是构成推理的两个基本要素。

已知事实是推理过程的出发点,把它称为证据。

4.1.2 不确定性推理⽅法的分类可信度⽅法、主观Bayes⽅法、证据理论都是在概率论的基础上发展起来的不确定性推理⽅法。

4.1.3 不确定性推理知识库是⼈⼯智能的核⼼,⽽知识库中的知识既有规律性的⼀般原理,⼜有⼤量的不完全的专家知识,即知识带有模糊性、随机性、不可靠或不知道不确定因素。

世界上⼏乎没有什么事情是完全确定的。

不确定性推理即是通过某种推理得到问题的精确判断。

(1)不确定性问题的代数模型⼀个问题的代数模型由论域、运算和公理组成。

建⽴不确定性问题模型必须说明不确定知识的表⽰、计算、与语义解释。

不确定性的表⽰问题:指⽤什么⽅法描述不确定性,通常有数值和⾮数值的语义表⽰⽅法。

数值表⽰便于计算,⽐较,再考虑到定性的⾮数值描述才能较好的解决不确定性问题。

例如对规则A->B(即A真能推导B真)和命题(或称证据、事实)A,分别⽤f(B,A)来表⽰不确定性度量。

推理计算问题:指不确定性的传播和更新,也即获得新的信息的过程。

包括:①已知C(A),A->B,f(B,A),如何计算C(B)②证据A的原度量值为C1(A),⼜得C2(A),如何确定C(A)③如何由C(A1)和C(A2)来计算C(A1∧A2),C(A1∨A2)等。

⼀般初始命题/规则的不确定性度量常常由有关领域的专家主观确定。

语义问题:是指上述表⽰和计算的含义是什么?即对它们进⾏解释,概率⽅法可以较好地回答这个问题,例如f(B,A)可理解为前提A为真时对结论B为真的⼀种影响程度,C(A)可理解为A为真的程度。

特别关⼼的是f(B,A)的值是:①A真则B真,这时f(B,A)=?②A真则B假,这时f(B,A)=?③A对B没有影响时,这时f(B,A)=?对C(A)关⼼的值是①A真时,C(A)=?②A假时,C(A)=?③对A⼀⽆所知时,C(A)=?(2)不确定推理⽅法的分类不确定推理⽅法在⼈⼯智能系统中通常是不够严谨的,但尚能解决某些实际问题,符合⼈类专家的直觉,在概率上也可给出某种解释。

(完整版)不确定性推理推理方法

(完整版)不确定性推理推理方法
H:是结论,它可以是一个单一结论,也可以是多 个结论。
CF(H,E):是该条知识的可信度,称为可信度因子或 规则强度,静态强度。
CH(H,E) 在[-1,1]上取值,它指出当前提条件 E 所 对应的证据为真时,它对结论为真的支持程度。
例如: if 头痛 and 流涕 then 感冒(0.7)
表示当病人确有“头痛”及“流涕”症状时,则有7 成的把握认为 他患了感冒。
MD:称为不信任增长度,它表示因与前提条件E匹 配的证据的出现,使结论H为真的不信任增长度。
在 C-F 模型中,把CF(H,E)定义为:
CF(H,E)=MB(H,E) – MD(H,E)
MB:称为信任增长度,它表示因与前提条件 E 匹 配的证据的出现,使结论H为真的信任增长度。
MB定义为:
MB(H,E)=
1 Max{P(H/E), P(H)} – P(H)
1 – P(H)
若P(H)=1 否则
性。
3. 可信度方法
(1) 可信度 根据经验对一个事物或现象为真的相信程度。
(2) C-F模型 C-F 模型是基于可信度表示的不确定性推理的基本方法。
Ⅰ. 知识不确定性的表示
在C-F模型中,知识是用产生式规则表示的,其一般 形式是:
if E then H (CF(H, E)) 其中,
E:是知识的前提条件,它既可以是一个单个条件, 也可以是用 and 及 or 连接起来的复合条件;
* 证据的不确定性表示方法应与知识的不确定性表 示方法保持一致,以便于推理过程中对不确定性进行统 一处理。
• 不确定性的量度
对于不同的知识和不同的证据,其不确定性的程度 一般是不相同的,需要用不同的数据表示其不确定性的 程度,同时还要事先规定它的取值范围。

不确定性推理

不确定性推理
若CF(H,E) < 0,则P(H|E) < P(H)。这说明由于证据E的出现减少了H为真的概率,即增加了H为假的可信度,CF(H,E)的值越小,增加H为假的可信度就越大。
知识的不确定性通常是用一个数值来描述的,该数值表示相应知识的确定性程度,也称为知识的静态强度。知识的静态强度可以是该知识在应用中成功的概率,也可以是该知识的可信程度等。如果用概率来表示静态强度,则其取值范围为[0,1],该值越接近于1,说明该知识越接近于“真”;其值越接近于0,说明该知识越接近于“假”。如果用可信度来表示静态强度,则其取值范围一般为[−1,1]。当该值大于0时,值越大,说明知识越接近于“真”;当其值小于0时,值越小,说明知识越接近于“假”。在实际应用中,知识的不确定性是由领域专家给出的。
6.1.2 不确定性推理的基本问题
在不确定性推理中,除了需要解决在确定性推理中所提到的推理方向、推理方法、控制策略等基本问题外,一般还需要解决不确定性的表示与度量、不确定性的匹配、不确定性的合成和不确定性的更新等问题。
1.不确定性的表示
不确定性的表示包括知识的不确定性表示和证据的不确定性表示。
1.知识不确定性的表示
在CF模型中,知识是用产生式规则表示的,其一般形式为
IF E THEN H (CF(H,E))
其中,E是知识的前提证据;H是知识的结论;CF(H,E)是知识的可信度。对它们简单说明如下。
(1)前提证据E可以是一个简单条件,也可以是由合取和析取构成的复合条件。例如
(3)多种原因导致同一结论。所谓多种原因导致同一结论是指知识的前提条件不同而结论相同。在现实世界中,可由多种不同原因导出同一结论的情况有很多。例如,引起人体低烧的原因至少有几十种,如果每种原因都作为一条知识,那就可以形成几十条前提条件不同而结论相同的知识。当然,在不确定性推理中,这些知识的静态强度可能是不同的。

第四章不确定性推理

第四章不确定性推理
– 在推理一级上扩展确定性推理。其特点是把不确定的 证据和不确定的知识分别与某种度量标准对应起来, 并且给出更新结论不确定的算法。这类方法与控制策 略一般无关,即无论用何种控制策略,推理的结果都 是唯一的。模型方法分为:
– 数值方法 • 按其所依据的理论又可分为:基于概率的方 法和基于模糊理论的模糊推理。 – 非数值方法
19
若A1,A2,…,An是彼此独立的事件, P( Ai ) P( B | Ai ) P( Ai | B) n , i 1, 2,..., n P( Aj ) P( B | Aj )
j 1
其中,P(Ai)是事件Ai的先验概率;P(B|Ai)是在事件Ai发生条 件下事件B的条件概率。 如果用产生式规则 IF E THEN Hi 中的前提条件E代替Bayes公式中的B,用Hi代替公式中的Ai , 就可得到 P( H i ) P( E | H i ) P( H i | E ) n , i 1, 2,..., n 20 P( H j ) P( E | H j )
• P(¬ A)=1-P(A) • P(A∪B)=P(A)+P(B)-P(AB) • 如果 A B ,则P(A-B)=P(A)-P(B)
13
• 如果在事件B发生的条件下考虑事件A发生的概率, 就称它为事件A的条件概率,记为P(A|B)。 • 定义4.3 设A,B是两个事件,P(B)>0,则称
P( A | B) P( A B) P( B)
j 1
P ( H i | E1 E2 Em ) P ( H i ) P ( E1 | H i ) P ( E2 | H i ) P ( Em | H i )
P( H
j 1
n

第4讲 不确定性推理

第4讲 不确定性推理

第4章 不确定性推理4.1 不确定性及其类型 4.2 主观Bayes方法 4.3 可信度理论 4.4 证据理论4.1 不确定性及其类型推理的分类: 精确推理 不精确推理(即不确定推理)4.1 不确定性及其类型一、 不确定性的原因:A 证据的不确定性 歧义性: 不完全性: 不精确性: 模糊性: 可信性: 随机性:其它因素引起的不确定性。

4.1 不确定性及其类型B 规则的不确定性前提条件的不确定性:例如“如发高烧则可能感冒”, 发高烧是个模糊的概念。

观察证据的不确定性:如人的体温早晚是不同的。

组合证据的不确定性。

规则自身的不确定性。

在规则的使用过程中含有两种典型的不确定性4.1 不确定性及其类型C 推理的不确定性 推理的不确定性反映了知识不确定性的 动态积累和转播过程。

二、 不确定推理网络中的三种基本模式证据逻辑组合模式已知证据E1、E2、……、En的不确定测度分别为MU1、 MU2、 …… 、MUn,则证据组合后的不确定测度为MU(1) 证据的合取:MU(E1^E2^……^En)=f(MU1,MU2,……,MUn)f是一个函数的名称。

(2) 证据的析取:MU(E1 V E2 V …… V En)=g(MU1,MU2,……,MUn)g是一个函数的名称。

(3) 证据的否定: MU(~Ei)=h(MUi) h是一个函数的名称。

2. 证据的并行规则模式已知每一单条规则 if Ei then h with Mui(i=1,2,……,n),则所有规则都满足 时,h的不确定测度 MU=p(MU1,MU2, … ,MUn) p是一个函数的名称。

3. 证据的顺序规则模式已知规则 if E’ then E with MU0 if E then h with MU1则规则 if E’ then h with MU 中的MU的计算 MU=s(MU0,MU1) s是一个函数的名称4.2 主观Bayes方法1. 主观Bayes公式:a. p(E):证据E的不确定性,为E发生的概率。

不确定性推理PPT课件

不确定性推理PPT课件
1.不确定性推理概论
不确定性及其类型 不确定性推理概念
2.不确定性推理中的基本问题
表示问题 计算问题
3.不确定性推理方法分类 4.经典的不确定性推理模型
可信度方法
主观贝叶斯方法
2024/5/6
1
不确定性:由于客观世界的复杂、多变性和人类 自身认识的局限、主观性,致使我们所获得、所 处理的信息和知识中,往往含有不肯定、不准确、 不完全甚至不一致的成分。
5
一、知识的不确定性表示 知识不确定性的表示方式是与不确定性推理方
法密切相关的一个问题。在选择知识的不确定性表 示时,通常需要考虑以下两个方面的因素:
▪ 要能够比较准确地描述问题本身的不确定性 ▪ 便于推理过程中不确定性的计算
2024/5/6
6
(1)狭义不确定性知识的表示
我们只讨论随机性产生式规则的表示。对于狭义不确定 性,一般采用信度(或称可信度)来刻划。一个命题的信
2024/5/6
20
-1 ≤ CF(H, E) ≤ 1 CF(B, A)的特殊值:
CF(B, A) = 1,前提真,结论必真 CF(B, A) = -1,前提真,结论必假 CF(B, A) = 0 , 前提真假与结论无关
实际应用中CF(B, A)的值由专家确定,并不是由P(B|A), P(B)计算得到的。
2024/5/6
3
不确定性推理泛指除精确推理以外的其它各 种推理问题。包括不完备、不精确知识的推理, 模糊知识的推理,非单调性推理等。
不确定性推理过程实际上是一种从不确定的 初始证据出发,通过运用不确定性知识,最终推 出具有一定不确定性但却又是合理或基本合理的 结论的思维过程。
2024/5/6
CF(H)1+CF(H)2-CF(H)1·CF(H)2 , 当CF(H)1≥0,且CF(H)2≥0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[4] 史忠植. 知识发现. 清华大学出版社, 2002. pp24-26, pp141-202. (偏重Rough set和贝叶斯网络)
本章的主要参考文献(续)
[5] Mitchell, T. M.著, 曾华军等译. 机器学习. 机械工业出版 社, 2003. pp112-143. (偏重贝叶斯学习)
4.1.2 不确定性推理的定义及意义
1. 定义 也称“不精确性推理”
从不确定性的初始证据(即已知事实)出发 运用不确定性的知识(或规则) 推出具有一定程度的不确定性但却是合理或近乎
合理的结论
2. 意义 使计算机对人类思维的模拟更接近于人类的
真实思维过程
4. 2 不确定性推理中的基本问题
不确定性的表示与度量 不确定性匹配 不确定性的传递算法 不确定性的合成
4.2.1 不确定性的表示与度量
1. 不确定性的表示 选择不确定性表示方法时应考虑的因素
充分考虑领域问题的特征 恰当地描述具体问题的不确定性 满足问题求解的实际需求 便于推理过程中对不确定性的推算
4.1 基本概念
4.1.1 精确推理的局限性
推理
依据已知事实(证据)、相关知识(规则) 证明某个假设成立 or 不成立
精确推理及其不足
将原本为不确定性的关系“硬性”转化为精确关系 将原本不存在明确界限的事物“人为”划定界限 歪曲了现实情况的本来面目 舍弃了事物的某些重要属性 失去了真实性
前提条件用AND(与)或OR(或)把多个简单 条件连接起来构成复合条件
常用的组合证据不确定性计算方法
(1)最大最小法 T(E1 AND E2) = min {T(E1), T(E2)} T(E1 OR E2) = max {T(E1), T(E2)
(2)概率方法 (要求事件之间完全独立) T(E1 AND E2) = T(E1) × T(E2)
[1] 王永庆. 人工智能原理与方法. 西安交通大学出版社, 1998. pp156-252. (偏重基本概念)
[2] 张文修, 梁怡. 不确定性推理原理. 西安交通大学出版社, 1996. (偏重数学原理)
[3] 陆汝钤. 人工智能(下册). 科学出版社, 2000. pp1133-1170. (偏重Bayes概率推理、可信度、模糊推理)
T(E1 OR E2) = T(E1) + T(E2) - T(E1) × T(E2) (3)有界方法
T(E1 AND E2) = max {0, T(E1) + T(E2) -1} T(E1 OR E2) = min {1, T(E1) + T(E2)}
【注】:上述T(E)表示证据E为真的程度,如可信度、概率等。每组公 式都有相应的适用范围和使用条件。
不确定性的表示与度量(续1)
2. 不确定性的度量 针对不同的领域问题采用不同的度量方法
用不同的数值刻画不同的不确定性程度 事先规定不确定性程度的取值范围
3. 常用的度量方法
测度理论(基于概率统计的度量方法) Shannon信息熵 其它度量方法 ……
不确定性的表示与度量(续2)
第四讲 不确定性推理概述
(Chapter4 Uncertainty Reasoning )
Outline
本章的主要参考文献 基本概念 基本问题 不确定性推理方法的分类 不确定性度量的测度理论 不确定性的其它度量方法 Shannon信息熵及在决策树中的应用 模糊推理
本章的主要参考文献
“To do what is right and just is more acceptable to the LORD than sacrifice.” From PROVERBS 21:3 NIV
4.2.3 证据不确定性的组合
单一证据 & 组合证据
单一证据:前提条件仅为一个简单条件
组合证据:一个复合条件对应于一组证据
4.2.4 不确定性的传递
包含两个子问题
在每一步推理中,如何把证据及知识的不 确定性传递给给结论
在多步推理中,如何把初结论不确定性的合成
用不同知识进行推理得到相同的结论 同个结论的不确定性程度却不相同 需要用合适的算法对它们进行合成
[6] Russell, S., Norvig, P. Artificial Intelligence: A Modern Approach. 人民邮电出版社, 2002. pp413-522. (偏重贝叶 斯网络及其应用)
“Blessed is the nation whose God is the LORD, the people he chose for his inheritance.” From PSALMS 33:12 NIV
4. 3 不确定性推理方法的分类
4.3.1 不确定性推理的两条研究路线 模型方法
在推理一级上扩展确定性推理 不确定证据和知识与某种度量标准对应 给出更新结论不确定性的算法 构成相应的不确定性推理模型
控制方法
在控制策略一级上处理不确定性 无统一的不确定性处理模型,其效果依赖于控制策略
4.3.2 不确定性推理方法的分类
不确 定性 推理
模型 方法
数值 方法
非数值 方法
概率统 计方法 模糊推 理方法 粗糙集
方法
发生率 计算
绝对概 率方法
贝叶斯 方法
证据理 论方法
HMM 方法
可信度 方法
控制 方法
相关性制导回溯、机缘控制、启 发式搜索等
4.3.3 关于不确定性推理方法的说明
数值方法
在选择不确定性度量方法时应考虑的因素: 充分表达相应知识及证据不确定性的程度
度量范围便于领域专家及用户估计不确定性
便于计算过程中的不确定性传递,结论的不确 定性度量不超出规定的范围
度量的确定应直观,且有相应的理论依据
4.2.2 不确定性匹配
解决不确定性匹配的常用方法 设计一个匹配算法用以计算相似度 指定一个相似度的“限定”(即阈值)
对不确定性的一种定量表示和处理方法 其研究及应用较多,已形成多种应用模型
相关文档
最新文档