中考数学第一轮复习精品讲解第四单元三角形(1)(共104张)

合集下载

人教版中考数学决胜一轮复习第4章三角形

人教版中考数学决胜一轮复习第4章三角形

人教版中考数学决胜一轮复习第4章三角形第四章三角形第1课时角、相交线与平行线1.如图是正方体的表面展开图,则与“前”字相对的字是( B)A.认B.真C.复D.习2.已知直线AB,CB,l在同一平面内,若AB⊥l,垂足为B,CB⊥l,垂足也为B,则符合题意的图形可以是( C)A B C D3.如图,将木条a,b与c钉在一起,∠1=70°,∠2=50°.要使木条a与b平行,木条a旋转的度数至少是( B)A.10° B.20°C.50° D.70°4.如图,下列说法错误的是( C)A.若a∥b,b∥c,则a∥cB.若∠1=∠2,则a∥cC.若∠3=∠2,则b∥cD.若∠3+∠5=180°,则a∥c5.如图,直线AC∥BD,AO,BO分别是∠BAC,∠ABD的平分线,那么下列结论错误的是( D )A .∠BAO 与∠CAO 相等B .∠BAC 与∠ABD 互补 C .∠BAO 与∠ABO 互余 D .∠ABO 与∠DBO 不等6.(原创题)若∠α=42°30′,则∠α的余角的度数是__47.5__°.7.(原创题)如图,直线AB ,CD 相交于点O ,射线OM 平分∠AOC ,过点O 作射线ON ⊥OM .若∠AOM =35°,则∠CON 的度数为__55或125__°.8.(原创题)如图,点D 是线段AB 的中点,点C 是线段AD 的中点,CD =1 cm ,若点P 是直线AB 上的一点,当BP =2 cm 时,AP 的长为__2或6__cm.9.如图,点E 是AD 延长线上一点,如果添加一个条件,使BC ∥AD ,则可添加的条件为__答案不唯一,如∠C =∠CDE 等__.(任意添加一个符合题意的条件即可)10.如图,将矩形ABCD 折叠,折痕为EF ,BC 的对应边B ′C ′与CD 交于点M ,若∠B ′MD =50°,则∠BEF 的度数为__70__°.11.一个角的余角是这个角的补角的13,求这个角的度数.解:设这个角为x°,则余角为(90-x )°,补角为(180-x )°,由题意得,(90-x )=13(180-x ),解得x =45,即这个角为45°. 12.如图,∠AOB =40°,OP 平分∠AOB ,点C 为射线OP 上一点,作CD ⊥OA 于点D ,在∠POB 的内部作CE ∥OB ,求∠DCE 的度数.解:∵∠AOB =40°,OP 平分∠AOB ,∴∠AOP =∠POB =20°.∵CD ⊥OA ,∴∠ODC =90°,∴∠DCP =∠ODC +∠AOP =110°.∵CE∥OB ,∠PCE =∠POB =20°.∴∠DCE =∠DCP +∠PCE =130°.13.取一张长方形的纸片,按如图的方法折叠,然后回答问题.AE 与EF 垂直吗?为什么?解:AE 与EF 垂直.理由如下:根据折叠的性质可知,∠1=∠AEB′,∠2=∠FEC′.∵∠1+∠AEB +∠2+∠FEC =180°,∴2(∠AEB′+∠FEC′)=180°,∴∠AEB′+∠FEC′=90°,即∠AEF =90°,故AE 与EF 垂直.14.(改编题)如图,从①∠1=∠2、 ②∠C =∠D 、 ③∠A =∠F 三个条件中选出两个作为已知条件,另一个作为结论所组成的命题中,写出一个正确的命题,并给出证明.你选的条件是:__________,结论是:__________.解:答案不唯一,如选条件:①②,结论:③.证明:如图所示,当∠1=∠2,则∠3=∠2,故DB∥EC ,∴∠D =∠4.∵∠C =∠D ,∴∠4=∠C ,∴DF∥AC ,∴∠A =∠F.15.如图,D 是△ABC 中BC 边上一点,∠C =∠DAC .(1)尺规作图:作∠ADB 的平分线,交AB 于点E (保留作图痕迹,不写作法); (2)在(1)的条件下,求证:DE ∥AC . 解:(1)如图:(2)证明:∵∠ADB =∠C +∠DAC ,∠C =∠DAC ,∴∠ADB =2∠C .∵DE 是∠ADB 的平分线,∴∠ADB=2∠BDE,∴∠BDE=∠C,∴DE∥AC.第2课时三角形及其性质1.下列图形中,∠1一定大于∠2的是( C)A B C D2.长度分别为2,7,x的三条线段能组成一个三角形,x的值可以是( C)A.4 B.5C.6 D.93.已知△ABC的三边长分别为4,4,6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画( B) A.3条B.4条C.5条D.6条4.如图,已知△ABC中,AB=10,AC=8,BC=6,DE是AC的垂直平分线,DE交AB于点D,连接CD,则CD的大小为( D)A.3 B.4C.4.8 D.55.如图,AD,CE分别是△ABC的中线和角平分线,若AB=AC,∠CAD=20°,则∠ACE 的度数是( B)A.20° B.35°C.40° D.70°6.△ABC中,AB=AC=5,BC=8,点P是BC边上的动点,过点P作PD⊥AB于点D,PE ⊥AC于点E,则PD+PE的长是( A)A.4.8 B.4.8或3.8C.3.8 D.57.为了比较5+1与10的大小,可以构造如图所示的图形进行推算,其中∠C =90°,BC =3,D 在BC 上且BD =AC =1.通过计算可得5+1__>__10.(选填“>”“<”或“=”)8.《九章算术》是我国古代最重要的数学著作之一,在“勾股“章中记载了一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去本三尺,问折者高几何?”翻译成数学问题是:如图所示,△ABC 中,∠ACB =90°,AC +AB =10,BC =3,求AC 的长.如果设AC =x ,则可列方程为__x 2+9=(10-x )2__.9.(改编题)如图,三角形纸片ABC ,AB =AC ,∠BAC =90°,点E 为AB 中点.沿过点E 的直线折叠,使点B 与点A 重合,折痕EF 交BC 于点F .已知EF =32,则BC 的长是__32__.10.(改编题)等腰三角形ABC 中,∠A =80°,求∠B 的度数.解:若∠A 为顶角,则∠B =(180°-∠A )÷2=50°;若∠A 为底角,∠B 为顶角,则∠B =180°-2×80°=20°;若∠A 为底角,∠B 为底角,则∠B =80°;故∠B =50°或20°或80°.11.(改编题)如图,△ABC 中,AB =AC ,AD ⊥BC 于D 点,DE ⊥AB 于点E ,BF ⊥AC 于点F ,求证:BF =2DE .证明:过D 作DG ⊥AC 于G.在△ABC 中,AB =AC ,AD ⊥BC ,∴AD 平分∠BAC ,CD =DB .又DE ⊥AB ,DG ⊥AC 于G ,∴DG =DE.∵BF ⊥AC ,DG ⊥AC ,∴DG∥BF.又CD =DB ,∴CG =GF ,∴BF=2DG =2DE.12.如图,已知AC ⊥BC ,垂足为C ,AC =4,BC =33,将线段AC 绕点A 按逆时针方向旋转60°,得到线段AD ,连接DC ,DB .求线段DB 的长度.解:∵AC =AD ,∠CAD =60°,∴△CAD 是等边三角形.∴CD =AC =4,∠ACD =60°,过点D 作DE ⊥BC 于E.∵AC ⊥BC ,∠ACD =60°,∴∠BCD =30°.在Rt△CDE 中,CD =4,∠BCD =30°,∴DE =12CD =2,CE =23,∴BE =3.在Rt △DEB 中,由勾股定理得DB =7.13.在△ABC 中,AB =15,BC =14,AC =13,求△ABC 的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答...............过程...解:在△ABC 中,AB =15,BC =14,AC =13,设BD =x ,∴CD =14-x.由勾股定理得:AD 2=AB 2-BD 2=152-x 2,AD 2=AC 2-CD 2=132-(14-x )2,∴152-x 2=132-(14-x )2,解得x=9,∴AD =12.∴S △ABC =12BC·AD =12×14×12=84.14.(2018·重庆)如图,直线AB ∥CD ,△EFG 的顶点F ,G 分别落在AB ,CD 上,GE 交AB 于点H ,GE 平分∠FGD .若∠EFG =90°,∠E =35°,求∠EFB 的度数.解:∵在△EFG 中,∠EFG =90°,∠E =35°,∴∠FGH =90°-35°=55°.∵GE 平分∠FGD ,∴∠FGH =∠HGD =55°.∵AB∥CD ,∴∠HGD =∠FHG =55°.∵∠FHG 是△EFH 的外角,∴∠FHG =∠EFB +∠E.∴∠EFB =∠FHG -∠E =55°-35°=20°.15.如图,在△ABC 中,AD ⊥BC 于D ,BD =AD ,DG =DC ,E ,F 分别是BG ,AC 的中点. (1)求证:DE =DF ,DE ⊥DF ; (2)连接EF ,若AC =10,求EF 的长.(1)证明:∵AD ⊥BC 于D ,∴∠BDG =∠ADC =90°,∵BD =AD ,DG =DC ,∴△BDG≌△ADC (SAS ),∴BG =AC .∵AD ⊥BC 于D ,E ,F 分别是BG ,AC 的中点,∴DE =12BG ,DF =12AC ,∴DE =DF.∵DE =DF ,BD =AD ,BE =AF ,∴△BDE≌ △ADF (SSS ),∴∠BDE =∠ADF ,∴∠EDF =∠EDG +∠ADF =∠EDG +∠BDE =∠BDG =90°,∴DE ⊥DF.(2)解:如图所示:∵AC =10,∴DE =DF =12AC =12×10=5.∵∠EDF =90°,∴EF =DE 2+DF 2=52+52=52.第3课时全等三角形1.根据下列已知条件,能画出唯一确定的△ABC的是( C)A.AB=3,BC=4,CA=8 B.AB=4,BC=3,∠A=30°C.∠A=60°,∠B=45°,AB=4 D.∠C=90°,AB=62.如图,OP是∠AOB的平分线,点C,D分别在角的两边OA,OB上,添加下列条件,不能..判定△POC≌△POD的选项是( D)A.PC⊥OA,PD⊥OB B.OC=ODC.∠OPC=∠OPD D.PC=PD3.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有( C)A.1个B.2个C.3个D.4个4.如图,在△ABC和△DEF中,点B,F,C,E在同一直线上,BF=CE,AB∥DE,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是__答案不唯一,如AB=ED__(只需写一个,不添加辅助线).5.如图,已知直线l1∥l2∥3∥l4,相邻两条平行直线间的距离都是1,如果正方形ABCD 的四个顶点分别在四条直线上,则正方形的边长为__5__.6.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点)和点A 1.画出一个格点△A 1B 1C 1,并使它与△ABC 全等且A 与A 1是对应点.略7.(2018·泰州)如图,∠A =∠D =90°,AC =DB ,AC ,DB 相交于点O .求证:OB =OC .证明:在Rt△ABC 和Rt△DCB中⎩⎪⎨⎪⎧BD =AC ,CB =BC ,∴Rt△ABC≌Rt△DCB (HL ),∴∠OBC =∠OCB ,∴BO =CO.8.(改编题)如图,五边形ABCDE 中有一正三角形ACD ,若AB =DE ,BC =AE ,∠E =115°,求∠BAE 的度数.解:∵正三角形ACD ,∴AC =AD ,∠ACD =∠ADC =∠CAD =60°,∵AB =DE ,BC =AE ,∴△ABC≌△AED ,∴∠B =∠E =115°,∠ACB =∠EAD ,∠BAC =∠ADE ,∴∠ACB +∠BAC =∠BAC +∠DAE =180°-115°=65°,∴∠BAE =∠BAC +∠DAE +∠CAD =65°+60°=125°.9.(改编题)如图,四边形ABCD 中,AB =AD ,∠BAD =∠BCD =90°,连接AC .已知AC =6,求四边形ABCD 的面积.解:过点A 作AE ⊥AC 交CD 的延长线于点E ,∵∠BAD =90°,∴∠EAD =∠CAB .在四边形ABCD 中,∠BAD =∠BCD =90°,∴∠ADC +∠B =180°.又∠ADC +∠ADE =180°,∴∠ADE =∠B .在△ADE 和△ABC 中,∵∠EAD =∠CAB ,AB =AD ,∠ADE =∠B ,∴△ADE ≌△ABC ,故四边形ABCD 的面积等于△ACE 的面积,即四边形ABCD 的面积=12AC ×AE =12×6×6=18.10.如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,E ,F 分别是OA ,OC 的中点,连接BE ,DF .(1)根据题意,补全原形; (2)求证:BE =DF . (1)解:如图所示;(2)证明:∵四边形ABCD 是平行四边形,对角线AC ,BD 交于点O ,∴OB =OD ,OA =OC .又∵E ,F 分别是OA ,OC 的中点,∴OE =12OA ,OF =12OC ,∴OE =OF.∵在△BEO 与△DFO 中,⎩⎪⎨⎪⎧OE =OF ,∠BOE =∠DOF ,OB =OD ,∴△BEO≌△DFO (SAS ),∴BE =DF.11.如图,正方形ABCD 的对角线交于点O ,点E ,F 分别在AB ,BC 上(AE <BE ),且∠EOF =90°,OE ,DA 的延长线交于点M ,OF ,AB 的延长线交于点N ,连接MN .(1)求证:OM =ON ;(2)若正方形ABCD 的边长为4,E 为OM 的中点,求MN 的长.解:(1)∵四边形ABCD 是正方形,∴OA =OB ,∠DAO =45°,∠OBA =45°,∴∠OAM =∠OBN =135°,∵∠EOF =90°,∠AOB =90°,∴∠AOM =∠BON ,∴△OAM≌△OBN (ASA ),∴OM =ON ;(2)如图,过点O 作OH ⊥AD 于点H ,∵正方形的边长为4,∴OH =HA =2,∵E 为OM 的中点,∴HM =4,则OM =22+42=25,∴MN =2OM =210.12.已知:如图①,AD 平分∠BAC ,∠B +∠C =180°,∠B =90°.易知:DB =DC .(1)探究:如图②,AD平分∠BAC,∠ABD+∠ACD=180°,∠ABD<90°.求证:DB=DC.(2)应用:如图③,四边形ABDC中,∠B=45°,∠C=135°,DB=DC=a,则AB-AC =__________.(用含a的代数式表示)(1)证明:在AB边上取点E,作∠AED=∠C.∵AD平分∠BAC,∴∠CAD=∠EAD.∵AD =AD,∠AED=∠C,∴△ACD≌△AED(AAS),∴DC=DE.∵∠C+∠B=180°,∠AED=∠C,∠AED+∠DEB=180°,∴∠DEB=∠B,∴DE=DB,∴DB=DC;(2)应用:2a.第4课时 解直角三角形1.在∠A ,∠B 都是锐角的△ABC 中,⎪⎪⎪⎪⎪⎪cos A -32+⎝ ⎛⎭⎪⎫sin B -222=0,则∠C 的度数是( C )A .75°B .90°C .105°D .120°2.△ABC 在网格中的位置如图所示(每个小正方体边长为1),AD ⊥BC 于D ,下列选项中,错误..的是( C )A .sin α=cos αB .tanC =2 C .sin β=cos βD .tan α=13.如图,边长为1的小正方形构成的网格中,半径为1的⊙O 的圆心O 在格点上,则∠BED 的正切值等于( D )A .255B .255C .2D .124.一座楼梯的示意图如图所示,BC 是铅垂线,CA 是水平线,BA 与CA 的夹角为θ.现要在楼梯上铺一条地毯,已知CA =4米,楼梯宽度1米,则地毯的面积至少需要( D )A .4sin θ 米2B .4cos θ 米2C .(4+4tan θ) 米2D .(4+4tan θ) 米25.在△ABC 中,AB =122,AC =13,cos ∠B =22,则BC 边长为( D ) A .7 B .8 C .8或17D .7或176.如图,A ,B ,C 是小正方形的顶点,且每个小正方形的边长为1,则tan ∠BAC 的值为__1__.7.一般地,当α,β为任意角时,sin(α+β)与sin(α-β)的值可以用下面的公式求得:sin(α+β)=sin αcos β+cos αsin β;sin(α-β)=sin αcos β-cosαsin β.例如sin 90°=sin(60°+30°)=sin 60°cos 30°+cos 60°sin 30°=32×32+12×12=1.类似地,可以求得sin 15°的值是__6-24__. 8.(原创题)计算:⎝ ⎛⎭⎪⎫12-2+|tan 60°-2|+2cos 30°.解:原式=4+2-3+2×32=6-3+3=6. 9.如图,AD 是△ABC 的中线,tan B =13,cos C =22,AC = 2.求:(1)BC 的长; (2)sin ∠ADC 的值.解:(1)过点A 作AE ⊥BC 于点E ,∵cos C =22,∴∠C =45°,在Rt△ACE 中,CE =AC·cos C =1,∴AE =CE =1,在Rt△ABE 中,tan B =13,即AE BE =13,∴BE =3AE =3,∴BC=BE +CE =4;(2)∵AD 是△ABC 的中线,∴CD =12BC =2,∴DE =CD -CE =1,∵AE ⊥BC ,DE =AE ,∴∠ADC=45°,∴sin ∠ADC =22. 10.如图,有一个三角形的钢架ABC ,∠A =30°,∠C =45°,AC =2(3+1)m.请计算说明,工人师傅搬运此钢架能否通过一个直径为2.1 m 的圆形门?解:过点B 作BD ⊥AC ,垂足为点D .在Rt△ABD 中,∠ABD =90°-∠A =60°,则AD =tan ∠ABD ×BD =3BD ;在Rt△BCD 中,∠C =45°,∴CD =BD .∴AC =AD +CD =3BD +BD =(3+1)BD =2(3+1),解得:BD =2<2.1.故工人师傅搬运此钢架能通过这个直径为2.1 m 的圆形门.11.如图,已知△ABC 中,AB =BC =5,tan ∠ABC =34.(1)求边AC 的长;(2)设边BC 的垂直平分线与边AB 的交点为D ,求AD DB的值.解:(1)过点A 作AE ⊥BC 于点E.在Rt△AEB 中,∠AEB =90°,tan ∠ABC =AE BE =34,设AE =3x ,BE =4x ,根据勾股定理,得AB =5x =5,则x =1,∴AE =3,BE =4,∴CE =BC -BE =5-4=1.在Rt△AEC 中,∠AEC =90°,∴AC =AE 2+CE 2=32+12=10;(2)如图BC 的垂直平分线交AB 于D ,交BC 于F ,则BF =CF =12BC =2.5,∴EF =FC -EC=2.5-1=1.5.∵∠AEC =∠DFC =90°,∴DF ∥AE ,∴AD DB =EF FB =1.52.5=35.12.小婷在放学路上,看到隧道上方有一块宣传“中国——南亚博览会”的竖直标语牌CD .她在A 点测得标语牌顶端D 处的仰角为42°,测得隧道底端B 处的俯角为30°(B ,C ,D 在同一条直线上),AB =10 m ,隧道高6.5 m(即BC =6.5 m),求标语牌CD 的长(结果保留小数点后一位).(参考数据:sin 42°≈0.67,cos 42°≈0.74,tan 42°≈0.90,3≈1.73)解:过点A 作AE ⊥BC 于点E ,依题意有∠DAE =42°,∠BAE =30°.在Rt△AEB 中,BE =12AB =12×10=5(m ),AE =AB ×cos ∠BAE =10×cos 30°=10×32=53(m ).在Rt△DAE中,∵tan ∠DAE =DE AE,∴DE =53×tan 42°≈5×1.73×0.90=7.785(m ).∴CD =DE +BE -BC =7.785+5-6.5≈6.3(m ).∴标语牌CD 的长约为6.3 m.13.如图是某路灯在铅垂面内的示意图,灯柱AC 的高为11 m ,灯杆AB 与灯柱AC 的夹角∠A =120°,路灯采用锥形灯罩,在地面上的照射区域DE 长为18 m ,从D ,E 两处测得路灯B 的仰角分别为α和β,且tan α=6,tan β=34,求灯杆AB 的长度.解:过点B 作BF ⊥CE ,交CE 于点F ,过点A 作AG ⊥AF ,交BF 于点G ,则FG =AC =11.由题意得∠BDE =α,tan ∠β=34.设BF =3x ,则EF =4x ,在Rt△BDF 中,∵tan ∠BDF =BFDF ,∴DF =BF tan ∠BDF=3x 6=12x ,∵DE =18(m ),∴12x +4x =18(m ).∴x =4(m ).∴BF =12(m ),∴BG =BF -GF =12-11=1(m ),∵∠BAC =120°,∴∠BAG =∠BAC -∠CAG =120°-90°=30°.∴AB =2BG =2(m ),∴灯杆AB 的长度为2 m.。

专题4.2三角形中考数学第一轮总复习课件

专题4.2三角形中考数学第一轮总复习课件

EF=c,则AD的长为( D ) A.a+c B.a-b+c C.b+c D.a+b-c
11.如图,∠AOE=∠BOE=15º,EF∥OB,EC⊥OB于C,若EC=1,则OF=__2_.
A
C
HE
B
B
D
CA
E FD
H
强化训练
三角形及其性质
提升能力
84º
B
D
E
A
C
B
A
DE
B
CP
A
H
强化训练
三角形及其性质
提升能力
1.将一副直角三角板按如图所示的位置放置,点C在FD的延长线上,点B在ED
上,AB∥CF,∠F=∠ACB=90º,∠E=45º,∠A=60º,AC=10,则CD=__15___5__3_.
2.如图,线段AB,BC的垂直平分线l1,l2相交于点O,若∠1=39º,则∠AOC=_7_8_º.
3.如图,在四边形ABCD中,AB∥DC,过点C作CE⊥BC,交AD于的E,连接
中位 作△ABC的边AB,AC的中点D,E,连接三角形两边中点D,E,得到的线段DE
线 即为△ABC的中位线.
特征 三角形三条高(中线、角平分线)所在的直线相交于一点;
典例精讲
三角形的重要线段
知识点一
【例1】如图,在△ABC中,AD⊥BC,AE平分∠BAC.若∠B=72º,∠C=30º,
求∠DAE的度数;
为DE.如果∠A=α,∠CEA´=β,∠BDA´=γ,那么下列式子中正确的是( A )
A.γ=2α+β B.γ=α+2β C.γ=α+β A
D.γ=180º-α-β

中考数学第一部分第四章第2讲第1课时三角形课件

中考数学第一部分第四章第2讲第1课时三角形课件

能用它们摆成三角形的是( )
A.3 cm,4 cm,8 cm C.5 cm,5 cm,11 cm
B.8 cm,7 cm,15 cm D.13 cm,12 cm,20 cm
答案:D
2.一个三角形的两边长分别是 2 和 3,若它的第三边长为奇
数,则这个三角形的周长为________.
答案:8
三角形有关角的计算 例 2:(202X 年四川眉山改编)如图 4-2-4,在△ABC 中, ∠A=66°,点 I 是∠ABC 和∠ACB 的角平分线的交点,则 ∠BIC的大小为( )
答案:D
[易错陷阱]判定两个三角形全等时,必须找准对应边、对 应角,然后根据已知条件选择合适的判定方法,注意 SSA 不能 判定两个三角形全等,判定两个三角形全等时,必须有边的参 与.若有两边一角对应相等时,角必须是两边的夹角.
例 4:(202X 年湖北武汉)如图 4-2-7,点 C,F,E,B 在一 条直线上,∠CFD=∠BEA,CE=BF,DF=AE.写出 CD 与 AB 之间的关系,并证明你的结论.
5.掌握两边及其夹角分别相等的两个三角形全等、两角及 其夹边分别相等的两个三角形全等、三边分别相等的两个三角 形全等等基本事实,并能证明定理:两角分别相等且其中一组 等角的对边相等的两个三角形全等.
6.探索并掌握判定直角三角形全等的“斜边、直角边”定 理.
1.(202X 年湖南长沙)一个三角形三个内角的度数之比为 1∶
又∵∠GCE=45°,∴∠GCF=90°-45°=45°. ∵CE=CF,∠GCE=∠GCF,GC=GC, ∴△ECG≌△FCG(SAS).∴GE=GF. ∴GE=GF=DF+GD=BE+GD.
[名师点评]证明有关线段或角相等,通常证三角形全等.证 明三角形全等的方法有 SAS,ASA,AAS,SSS,直角三角形 还有另外一种判定方法为 HL.

2024年福建省中考+专用数学一轮知识点梳理复习4.2 三角形课件

2024年福建省中考+专用数学一轮知识点梳理复习4.2 三角形课件
α,请猜想∠BOC= (用α表示),并说明理由.
120°-α
拓展研究:
类比研究:(3)BO,CO分别是△ABC的外角∠DBC、∠ECB的n等分线,
它们交于点O,∠CBO=∠DBC,∠BCO=∠ECB,∠A=α,
请猜想∠BOC= ⁠.
所在直线的
交点.
图形
特征
性质
备注



线
AD是△ABC的一条角平分线,三角形的
三条角平分线
均在三角形内部.
内心:三角形
三条角平分线
的交点.它到三
角形三边的距
离相等.
图形
特征
性质
备注
中位
线
EF是△ABC的
一条中位线,
点E,F分别
D.证法2只要测量够一百个三角形进行验证,就能证明该定理
B
10.游戏中有数学智慧,找起点游戏规定:从起点走五段相等直
路之后回到起点,要求每走完一段直路后向右边偏行,成功
的招数不止一招,可助我们成功的一招是( A )
A.每走完一段直路后沿向右偏72°方向行走
B.每段直路要短
C.每走完一段直路后沿向右偏108°方向行走
相邻的两个内角的和;②三角形的一个外角 任意一个和它不相邻的内角.
180°
360°
等于
大于
3.三角形的边与角之间的关系:
在同一个三角形中:(1)等边对等角;(2)等角对等边;
(3)大边对大角;(4)大角对大边.
4.三角形的稳定性:三角形具有 ⁠.
证法2:如图,∵∠A=76°,∠B=59°,且∠ACD=135°(量角器测量所得)又∵135°=76°+59°(计算所得)∴∠ACD=∠A+∠B(等量代换).

中考数学-第1部分教材同步复习第四章三角形4.5解直角三角形课件

中考数学-第1部分教材同步复习第四章三角形4.5解直角三角形课件

中考金题·精析
解直角三角形解决相关图形问题
【例 1】 (2015·哈尔滨)如图,点 D 在△ABC 的边 BC 上, ∠C+∠BAD=∠DAC,tan∠BAD=47,AD= 65,CD=13, 则线段 AC 的长为__4__1_3__.
【解答】 作∠DAE=∠BAD 交 BC 于 E,作 DF⊥AE 交 AE 于 F,作 AG⊥BC 交 BC 于 G.
方位角:从标准方向的北端起,顺时针方向到直线的水平 角称为该直线的方位角,方位角的范围为0°~360°.如图③, A点位于O点的东偏北30°方向,而B点位于O点的东南方向.
【注意】 东北方向指北偏东45°方向,东南方向指南偏 东45°方向,西北方向指北偏西45°方向,西南方向指南偏西 45°方向,我们一般画图的方位为上北下南,左西右东.
大家好
1
第四章 三角形 4.5 解直角三角形
知识要点·归纳
知识点一 锐角三角函数
1.锐角三角函数的定义 在 Rt△ABC 中,∠C=90°,如图所示: 正弦:sinA=∠A斜的边对边=___ac___; 余弦:cosA=∠A斜的边邻边=___bc___; 正切:tanA=∠∠AA的的邻对边边=___ab___.
∵∠C+∠BAD=∠DAC, ∴∠CAE=∠ACB,∴AE=EC, ∴tan∠BAD=74,∴设 DF=4x,则 AF=7x, 在 Rt△ADF 中,AD2=DF2+AF2,即( 65)2=(4x)2+(7x)2, 解得 x1=-1(不合题意舍去),x2=1, ∴DF=4,AF=7,
利用锐角三角形函数求边长或角度是初中阶段常用的方 法,通常是在一个直角三角形中,知道其中的两个量就可以求 出另外的三个量.初中阶段的锐角三角函数有三种:正弦sin, 余弦cos,正切tan,都是在直角三角形中研究结论.

2024中考数学一轮复习核心知识点精讲—直角三角形

2024中考数学一轮复习核心知识点精讲—直角三角形

2024中考数学一轮复习核心知识点精讲—直角三角形1.了解直角三角形的概念;2.证明并掌握直角三角形的性质定理:直角三角形的两个锐角互余(无需证明);直角三角形斜边上的中线等于斜边的一半;3.掌握直角三角形的判定定理:有两个角互余的三角形是直角三角形;4.掌握勾股定理;会运用勾股定理解决简单问题;会用勾股定理的逆定理判定直角三角形;5.掌握直角三角形全等的判定定理:斜边和一组直角边对应相等的两个直角三角形全等;考点1:直角三角形的性质与判定直角三角形性质1.两锐角之和等于90°2.斜边上的中线等于斜边的一半3.30°角所对的直角边等于斜边的一半1.若有一条直角边等于斜边的一半,则这条直角边所对的锐角等于30°(应用时需先证明)2.勾股定理:若直角三角形的两直角边分别为a,b,斜边为c,则cba222=+判定1.有一个角为90°的三角形时直角三角形2.有两个角的和时90°的三角形是直角三角形1.一边上的中线等于这条边的一半的三角形是直角三角形考点2:勾股定理及逆定理(1)勾股定理:直角三角形两直角边的平方和等于斜边的平方如图:直角三角形ABC 的两直角边长分别为a b ,,斜边长为c ,那么222a b c +=.(2)勾股定理的逆定理:如果三角形的三条边长a b c ,,,满足222a b c +=,那么这个三角形是直角三角形.(3)勾股数:像15,8,17这样,能够成为直角三角形三条边长的三个正整数,称为勾股数。

勾股数满足两个条件:①满足勾股定理②三个正整数【题型1:直角三角形的性质与判定】【典例1】(2022•绍兴)如图,把一块三角板ABC 的直角顶点B 放在直线EF 上,∠C =30°,AC ∥EF ,则∠1=() 2.勾股定理的逆定理:如果三角形的三边长分别为a,b,c 若满足,那么这个三角形为直角三角形。

c b a 222=+面积公式,其中a 是底边常,hs 是底边上的高ch S 21ab 21==A.30°B.45°C.60°D.75°【答案】C【解答】解:∵AC∥EF,∠C=30°,∴∠C=∠CBF=30°,∵∠ABC=90°,∴∠1=180°﹣∠ABC﹣∠CBF=180°﹣90°﹣30°=60°,故选:C.1.(2022•岳阳)如图,已知l∥AB,CD⊥l于点D,若∠C=40°,则∠1的度数是()A.30°B.40°C.50°D.60°【答案】C【解答】解:在Rt△CDE中,∠CDE=90°,∠DCE=40°,则∠CED=90°﹣40°=50°,∵l∥AB,∴∠1=∠CED=50°,故选:C.2.(2023•贵州)5月26日,“2023中国国际大数据产业博览会”在贵阳开幕,在“自动化立体库”中有许多几何元素,其中有一个等腰三角形模型(示意图如图所示),它的顶角为120°,腰长为12m,则底边上的高是()A.4m B.6m C.10m D.12m【答案】B【解答】解:如图,作AD⊥BC于点D,在△ABC中,∠BAC=120°,AB=AC,∴∠B=∠C=(180°﹣∠BAC)=30°,又∵AD⊥BC,∴AD=AB=12=6(m),故选:B【题型2:勾股定理及逆定理】【典例2】(2023•恩施州)《九章算术》被称为人类科学史上应用数学的“算经之首”.书中记载:“今有户不知高、广,竿不知长短.横之不出四尺,从之不出二尺,邪之适出.问户高、广、邪各几何?”译文:今有门,不知其高宽;有竿,不知其长短,横放,竿比门宽长出4尺;竖放,竿比门高长出2尺;斜放,竿与门对角线恰好相等.问门高、宽和对角线的长各是多少(如图)?答:门高、宽和对角线的长分别是8,6,10尺.【答案】8,6,10.【解答】解:设门对角线的长为x尺,则门高为(x﹣2)尺,门宽为(x﹣4)尺,根据勾股定理可得:x2=(x﹣4)2+(x﹣2)2,即x2=x2﹣8x+16+x2﹣4x+4,解得:x1=2(不合题意舍去),x2=10,10﹣2=8(尺),10﹣4=6(尺).答:门高8尺,门宽6尺,对角线长10尺.故答案为:8,6,10.1.(2023•天津)如图,在△ABC中,分别以点A和点C为圆心,大于的长为半径作弧(弧所在圆的半径都相等),两弧相交于M,N两点,直线MN分别与边BC,AC相交于点D,E,连接AD.若BD=DC,AE=4,AD=5,则AB的长为()A.9B.8C.7D.6【答案】D【解答】解:由题意得:MN是AC的垂直平分线,∴AC=2AE=8,DA=DC,∴∠DAC=∠C,∵BD=CD,∴BD=AD,∴∠B=∠BAD,∵∠B+∠BAD+∠C+∠DAC=180°,∴2∠BAD+2∠DAC=180°,∴∠BAD+∠DAC=90°,∴∠BAC=90°,在Rt△ABC中,BC=BD+CD=2AD=10,∴AB===6,故选:D.2.(2023•东营)一艘船由A港沿北偏东60°方向航行30km至B港,然后再沿北偏西30°方向航行40km至C港,则A,C两港之间的距离为50km.【答案】50.【解答】解:如图:由题意得:∠DAB=60°,∠FBC=30°,AD∥EF,∴∠DAB=∠ABE=60°,∴∠ABC=180°﹣∠ABE﹣∠FBC=90°,在Rt△ABC中,AB=30km,BC=40km,AC===50(km),∴A,C两港之间的距离为50km,故答案为:503.(2023•安徽)清初数学家梅文鼎在著作《平三角举要》中,对南宋数学家秦九韶提出的计算三角形面积的“三斜求积术”给出了一个完整的证明,证明过程中创造性地设计直角三角形,得出了一个结论:如图,AD是锐角△ABC的高,则BD=(BC+).当AB=7,BC=6,AC=5时,CD=1.【答案】1.【解答】解:∵BD=(BC+),AB=7,BC=6,AC=5,∴BD=(6+)=5,∴CD=BC﹣BD=6﹣5=1,故答案为:1.4.(2023•广安)如图,圆柱形玻璃杯的杯高为9cm,底面周长为16cm,在杯内壁离杯底4cm的点A处有一滴蜂蜜,此时,一只蚂蚁正好在杯外壁上,它在离杯上沿1cm,且与蜂蜜相对的点B处,则蚂蚁从外壁B处到内壁A处所走的最短路程为10cm.(杯壁厚度不计)【答案】10.【解答】解:如图:将杯子侧面展开,作B关于EF的对称点B′,连接B′A,则B′A即为最短距离,B′A===10(cm).故答案为:10.【题型3:勾股定理与弦图、拼图】【典例3】(2020•随州)勾股定理是人类最伟大的十个科学发现之一,西方国家称之为毕达哥拉斯定理.在我国古书《周髀算经》中就有“若勾三,股四,则弦五”的记载,我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”(如图1),后人称之为“赵爽弦图”,流传至今.(1)①请叙述勾股定理;②勾股定理的证明,人们已经找到了400多种方法,请从下列几种常见的证明方法中任选一种来证明该定理;(以下图形均满足证明勾股定理所需的条件)(2)①如图4、5、6,以直角三角形的三边为边或直径,分别向外部作正方形、半圆、等边三角形,这三个图形中面积关系满足S1+S2=S3的有3个;②如图7所示,分别以直角三角形三边为直径作半圆,设图中两个月形图案(图中阴影部分)的面积分别为S1,S2,直角三角形面积为S3,请判断S1,S2,S3的关系并证明;(3)如果以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程就可以得到如图8所示的“勾股树”.在如图9所示的“勾股树”的某部分图形中,设大正方形M的边长为定值m,四个小正方形A,B,C,D的边长分别为a,b,c,d,已知∠1=∠2=∠3=∠α,则当∠α变化时,回答下列问题:(结果可用含m的式子表示)①a2+b2+c2+d2=m2;②b与c的关系为b=c,a与d的关系为a+d=m.【答案】见试题解答内容【解答】解:(1)①如果直角三角形的两条直角边分别为a,b,斜边为c,那么a2+b2=c2.(或者:在直角三角形中,两条直角边的平方和等于斜边的平方.)②证明:在图1中,大正方形的面积等于四个全等的直角三角形的面积与中间小正方形面积的和.即c2=ab×4+(b﹣a)2,化简得:a2+b2=c2.在图2中,大正方形的面积等于四个全等的直角三角形的面积与中间小正方形面积的和.即(a+b)2=c2+ab×4,化简得:a2+b2=c2.在图3中,梯形的面积等于三个直角三角形的面积的和.即(a+b)(a+b)=ab×2+c2,化简得:a2+b2=c2.(2)①三个图形中面积关系满足S1+S2=S3的有3个;故答案为3;②结论:S1+S2=S3.∵S1+S2=()2+()2+S3﹣()2,∴S1+S2=π(a2+b2﹣c2)+S3,∴a2+b2=c2.∴S1+S2=S3.(3)①a2+b2+c2+d2=m2;②b与c的关系为b=c,a与d的关系为a+d=m.故答案为:m2;b=c,a+d=m.1.(2022•湘潭)中国古代数学家赵爽在为《周髀算经》作注解时,用4个全等的直角三角形拼成正方形(如图),并用它证明了勾股定理,这个图被称为“弦图”.若“弦图”中小正方形面积与每个直角三角形面积均为1,α为直角三角形中的一个锐角,则tanα=()A.2B.C.D.【答案】A【解答】解:由已知可得,大正方形的面积为1×4+1=5,设直角三角形的长直角边为a,短直角边为b,则a2+b2=5,a﹣b=1,解得a=2,b=1或a=1,b=﹣2(不合题意,舍去),∴tanα===2,故选:A.2.(2022•永州)我国古代数学家赵爽创制了一幅“赵爽弦图”,极富创新意识地给出了勾股定理的证明.如图所示,“赵爽弦图”是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.若大正方形的面积是25,小正方形的面积是1,则AE=3.【答案】3.【解答】解:∵大正方形的面积是25,小正方形的面积是1,∴AB=BC=CD=DA=5,EF=FG=GH=HE=1,根据题意,设AF=DE=CH=BG=x,则AE=x﹣1,在Rt△AED中,AE2+ED2=AD2,∴(x﹣1)2+x2=52,解得:x1=4,x2=﹣3(舍去),∴x﹣1=3,故答案为:3.一.选择题(共7小题)1.在Rt△ABC中,若一个锐角等于40°,则另一个锐角的度数为()A.40°B.45°C.50°D.60°【答案】C【解答】解:∵直角三角形中,一个锐角等于40°,∴另一个锐角的度数=90°﹣40°=50°.故选:C.2.如图,在△ABC中,∠ACB=90°,点D在AB上,沿CD折叠,使A点落在BC边上的E点,若∠B=2 6°,则∠CDE的度数为()A.52°B.71°C.72°D.81°【答案】B【解答】解:∵∠ACB=90°,∠B=26°,∴∠A=90°﹣26°=64°,根据折叠,∠CDE=∠ADC,∠ACD=∠BCD=45°,∴∠ADC=180°﹣45°﹣64°=71°,∴∠CDE=∠ADC=71°,故选:B.3.如图,在△ABC中,∠C=90°,∠A=15°,点D是AC上一点,连接BD,∠DBC=60°,BC=2,则A D长是()A.4B.5C.6D.8【答案】A【解答】解:∵∠C=90°,∠DBC=60°,∴∠BDC=90°﹣∠DBC=30°,∴BD=2BC=4,∵∠A=15°,∴∠ABD=∠BDC﹣∠A=15°,∴∠A=∠ABD=15°,∴AD=BD=4,故选:A.4.以2,3为直角边的直角三角形斜边长为()A.B.C.4D.5【答案】B【解答】解:以2,3为直角边的直角三角形斜边长==,故选:B.5.下列各组数据是勾股数的是()A.,,B.4,5,6C.0.3,0.4,0.5D.9,40,41【答案】D【解答】解:A、()2+()2≠()2,不能构成直角三角形,故不符合题意;B、42+52≠62,不能构成直角三角形,故不符合题意;C、0.32+0.42=0.52,能构成直角三角形,但不是整数,故不符合题意;D、92+402=412,能构成直角三角形,且9,40,41是正整数,故符合题意.故选:D.6.如图,已知AB⊥BD,CD⊥BD,若用“HL”判定Rt△ABD和Rt△CDB全等,则需要添加的条件是()A.AD=CB B.∠A=∠C C.BD=DB D.AB=CD【答案】A【解答】解:∵AB⊥BD,CD⊥BD,∴∠ABD=∠CDB=90°,A.AD=CB,BD=DB,符合两直角三角形全等的判定定理HL,能推出Rt△ABD和Rt△CDB全等,故本选项符合题意;B.∠A=∠C,∠ABD=∠CDB,BD=DB,符合两直角三角形全等的判定定理AAS,不是两直角三角形全等的判定定理HL,故本选项不符合题意;C.∠ABD=∠CDB,BD=DB,不符合两直角三角形全等的判定定理,不能推出Rt△ABD和Rt△CDB 全等,故本选项不符合题意;D.AB=CD,∠ABD=∠CDB,BD=DB,符合两直角三角形全等的判定定理SAS,不是两直角三角形全等的判定定理HL,故本选项不符合题意;故选:A.7.如图所示,已知在△ABC中,∠C=90°,AD=AC,DE⊥AB交BC于点E,若∠B=28°,则∠AEC=()A.28°B.59°C.60°D.62°【答案】B【解答】解:在△ABC中,∠C=90°,AD=AC,DE⊥AB交BC于点E,且AE=AE,∴△CAE≌△DAE(HL),∴∠CAE=∠DAE=∠CAB,∵∠B+∠CAB=90°,∠B=28°,∴∠CAB=90°﹣28°=62°,∴∠AEC=90°﹣∠CAB=90°﹣31°=59°.故选:B.二.填空题(共6小题)8.如图,在△ABC中,∠ACB=90°,∠A=40°,D为线段AB的中点,则∠BCD=50°.【答案】50.【解答】解:∵在△ABC中,∠ACB=90°,∠A=40°,∴∠B=50°.∵D为线段AB的中点,∴CD=BD,∴∠BCD=∠B=50°.故答案为:50.9.我国古代数学著作《九章算术》记载了这样一个有趣的问题:“有一个水池,水面是边长为10尺的正方形,在水池中央有一根新生的芦苇,它高出水面1尺,如果将这根芦苇垂直拉向岸边,它的顶端刚好达到岸边的水面”,则水池的深度为12尺.【答案】见试题解答内容【解答】解:设水池的深度为x尺,由题意得:x2+(10÷2)2=(x+1)2,解得:x=12,答:水的深度是12尺.故答案为:12.10.如图△ABC中,∠A:∠B=1:2,DE⊥AB于E,且∠FCD=75°,则∠D=40°.【答案】见试题解答内容【解答】解:∵∠FCD=75°,∴∠A+∠B=75°,∵∠A:∠B=1:2,∴∠A=×75°=25°,∵DE⊥AB于E,∴∠AFE=90°﹣∠A=90°﹣25°=65°,∴∠CFD=∠AFE=65°,∵∠FCD=75°,∴∠D=180°﹣∠CFD﹣∠FCD=180°﹣65°﹣75°=40°.故答案为:40°11.如图,在一个三角形的纸片(△ABC)中,∠C=90°,则图中∠1+∠2的度数为270°.【答案】270.【解答】解:∵∠C=90°,∴∠A+∠B=90°,∵∠1+∠2+∠A+∠B=360°,∴∠1+∠2=360°﹣90°=270°,故答案为:270.12.如图,在Rt△ACB中,∠ACB=90°,以AC为边向外作正方形ADEC,若图中阴影部分的面积为9cm2,BC=4cm,则AB=5cm.【答案】5.【解答】解:∵正方形ADEC的面积为9,∴AC2=9,在Rt△ABC中,由勾股定理得,AB===5(cm),故答案为:5.13.如图,D为△ABC内一点,CD平分∠ACB,BD⊥CD,∠A=∠ABD,若BD=1,BC=3,则AC的长为5.【答案】5.【解答】解:延长BD与AC交于点E,∵∠A=∠ABD,∴BE=AE,∵BD⊥CD,∴BE⊥CD,∵CD平分∠ACB,∴∠BCD=∠ECD,∴∠EBC=∠BEC,∴BC=CE,∵BE⊥CD,∴2BD=BE,∵BD=1,BC=3,∴CE=3,∴AE=BE=2,∴AC=AE+EC=2+3=5.故答案为:5.三.解答题(共4小题)14.如图,在△ABC中,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别是E,F,且DE=DF.求证:Rt △BDE≌Rt△CDF.【答案】见解析.【解答】证明:∵DE⊥AB,DF⊥AC,∴∠DEB=∠DFC=90°,∵D是BC的中点,∴BD=CD,在Rt△BDE与Rt△CDF中,,∴Rt△BDE≌Rt△CDF(HL).15.如图,已知∠ADC=90°,AD=8,CD=6,AB=26,BC=24.(1)证明:△ABC 是直角三角形.(2)请求图中阴影部分的面积.【答案】见试题解答内容【解答】(1)证明:∵在Rt △ADC 中,∠ADC =90°,AD =8,CD =6,∴AC 2=AD 2+CD 2=82+62=100,∴AC =10(取正值).在△ABC 中,∵AC 2+BC 2=102+242=676,AB 2=262=676,∴AC 2+BC 2=AB 2,∴△ABC 为直角三角形;(2)解:S 阴影=S Rt △ABC ﹣S Rt △ACD =×10×24﹣×8×6=96.16.如图1,荡秋千是中国古代北方少数民族创造的一种运动.有一天,小明在公园里游玩,如图2,他发现秋千静止时,踏板离地的垂直高度DE =1m ,将它往前推送6m (水平距离BC =6m )时,秋千的踏板离地的垂直高度BF =CE =3m ,秋千的绳索始终拉得很直,求绳索AD 的长度?【答案】10m .【解答】解:由题意得:∠ACB=90°,在Rt△ACB中,由勾股定理得:AC2+BC2=AB2,设绳索AD的长度为x m,则AC=(x﹣2)m,∴x2=62+(x﹣2)2,解得:x=10,答:绳索AD的长度是10m.17.一架方梯长25米,如图,斜靠在一面墙上,梯子底端离墙7米,(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米,那么梯子的底端在水平方向滑动了几米?【答案】见试题解答内容【解答】解:(1)根据勾股定理:梯子距离地面的高度为:=24(米);(2)梯子下滑了4米,即梯子距离地面的高度为A'B=AB﹣AA′=24﹣4=20(米),根据勾股定理得:25=,解得CC′=8.即梯子的底端在水平方向滑动了8米.一.选择题(共5小题)1.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,点D是AC上一点,将△ABD沿线段BD翻折,使得点A落在A'处,若∠A'BC=20°,则∠CBD=()A.5°B.10°C.15°D.20°【答案】D【解答】解:由折叠得∠ABD=∠A'BD,∵在Rt△ABC中,∠ACB=90°,∠A=30°,∴∠ABC=60°,∵∠A'BC=20°,∴∠ABA'=80°,∴∠ABD=∠A'BD=40°,∴∠CBD=∠A'BD﹣∠A'BC=20°,故选:D.2.如图,Rt△ABC中,∠C=90°,∠ABC=60°,以顶点B为圆心、适当长为半径作弧,在边BC、BA上截取BE、BD;然后分别以点D、E为圆心、以大于DE的长为半径作弧,两弧在∠CBA内交于点F;作射线BF交AC于点G.若AC=6,P为边AB上一动点,则GP的最小值为()A.3B.2C.1D.无法确定【答案】B【解答】解:由尺规作图步骤可得,BG平分∠ABC,∵∠C=90°,∠ABC=60°,∴∠CBG=∠ABG=30°,∠A=30°,∴AB=2BC,而AC=6,∴(2BC)2﹣BC2=62,解得:BC2=12,同理可得:BG=2GC,∴(2GC)2﹣GC2=BC2=12,∴GC=2,当GP⊥AB时,GP最短,此时根据角平分线的性质可得GP=GC=2,故选:B.3.如图,△ABC中,∠ACB=90°,∠CAB=60°,动点P在斜边AB所在的直线m上运动,连接PC,那点P在直线m上运动时,能使图中出现等腰三角形的点P的位置有()A.6个B.5个C.4个D.3个【答案】C【解答】解:如图所示:以B为圆心,BC长为半径画弧,交直线m于点P4,P2,以A为圆心,AC长为半径画弧,交直线m于点P1,P3,边AC和BC的垂直平分线都交于点P3位置,因此出现等腰三角形的点P的位置有4个,故选:C.4.如图,线段OP=1,过点P作PP1⊥OP且PP1=1,连结OP1;过点P1作P1P2⊥OP1且P1P2=1,连结OP2;过点P2作P2P3⊥OP2且P2P3=1,连结OP3,则OP3的长为()A.1B.C.D.2【答案】D【解答】解:由勾股定理得:=OP2+=2,=+=3,OP3==2.故选:D.5.如图,以Rt△ABC的三条边作三个正三角形,则S1、S2、S3、S4的关系为()A.S1+S2+S3=S4B.S1+S2=S3+S4C.S1+S3=S2+S4D.不能确定【答案】C【解答】解:如图,设Rt△ABC的三条边AB=c,AC=b,BC=a,∵△ACG,△BCH,△ABF是等边三角形,∴S1=S△ACG﹣S5=b2﹣S5,S3=S△BCH﹣S6=a2﹣S6,∴S1+S3=(a2+b2)﹣S5﹣S6,∵S2+S4=S△ABF﹣S5﹣S6=c2﹣S5﹣S6,∵c2=a2+b2,∴S1+S3=S2+S4,故选:C.二.填空题(共3小题)6.如图,在△ABC,∠ACB=90°,分别以三边为直径向上作三个半圆.若AB=5,AC=4,则阴影部分图形的面积为6.【答案】6.【解答】解:∵∠ACB=90°,AB=5,AC=4,∴BC2+AC2=AB2,BC===3,=BC•AC=×3×4=6,∴S△ABC设以BC为直径的半圆的面积为S1,以AB为直径的半圆的面积为S3,以AC为直径的半圆的面积为S2,∵S1=π•(BC)2=BC2,S2=π•(AC)2=AC2,S3=π•(AB)2=AB2,=S2+S1+S△ABC﹣S3=(BC2+AC2﹣AB2)+S△ABC=S△ABC=6,∴S阴影故答案为:6.7.如图,在一个长方形草坪ABCD上,放着一根长方体的木块.已知AD=12米,AB=8米,该木块的较长边与AD平行,横截面是边长为1米的正方形,一只蚂蚁从点A爬过木块到达C处需要走的最短路程是2米.【答案】见试题解答内容【解答】解:把立体图形展开为平面图形得:展开后AB方向上线段长度变长,长度为AB+1+1=8+2=1 0米,BC=AD=12米,AB⊥BC,∴AC==2(米),故答案为:2.8.如图①,四个全等的直角三角形与一个小正方形,恰好拼成一个大正方形,这个图形是由我国汉代数学家赵爽在为《周髀算经》作注时给出的,人们称它为“赵爽弦图”.如果图①中的直角三角形的长直角边为7cm,短直角边为3cm,连结图②中四条线段得到如图③的新图案,则图③中阴影部分的周长为32cm.【答案】32.【解答】解:由题意得:BD=7cm,AB=CD=3cm,∴BC=7﹣3=4(cm),由勾股定理得:AC==5(cm),∴阴影的周长=4(AB+AC)=4×(3+5)=32(cm).故答案为:32.三.解答题(共4小题)9.如图,在△ABC中,∠C=90°,∠A=30°,AB=4cm,动点P、Q同时从A、B两点出发,分别在AB、BC边上匀速移动,它们的速度分别为V P=2cm/s,V Q=1cm/s,当点P到达点B时,P、Q两点同时停止运动,设点P的运动时间为t s.(1)当t为何值时,△PBQ为等边三角形?(2)当t为何值时,△PBQ为直角三角形?【答案】(1);(2)或t=1.【解答】解:在△ABC中,∵∠C=90°,∠A=30°,∴∠B=60°.∵4÷2=2,∴0≤t≤2,BP=4﹣2t,BQ=t.(1)当BP=BQ时,△PBQ为等边三角形.即4﹣2t=t.∴.当时,△PBQ为等边三角形;(2)若△PBQ为直角三角形,①当∠BQP=90°时,BP=2BQ,即4﹣2t=2t,∴t=1.②当∠BPQ=90°时,BQ=2BP,即t=2(4﹣2t),∴.即当或t=1时,△PBQ为直角三角形.10.如图,等腰直角三角板如图放置.直角顶点B在直线CD上,分别过点A、E作AC⊥直线CD于点C,ED⊥直线CD于点D.(1)求证:CD=AC+ED.(2)若设△ABC三边长分别为a、b、c,利用此图证明勾股定理.【答案】(1)见解析;(2)见解析.【解答】证明:(1)∵∠ABC+∠EBD=90°,∠ABC+∠BAC=90°,∴∠BAC=∠EBD,∵△ABE是等腰直角三角形,∴AB=BE,在△ABC与△BED中,,∴△ABC≌△BED(AAS),∴BC=DE,BD=AC,∴CD=BC+BD=AC+ED;(2)由(1)知,DE=BC=a,BD=AC=b,=,∴S梯形ACDE=S△ABC+S△ABE+S△BDE又∵S梯形ACDE=ab++=ab+,∴,∴a2+b2=c2.11.如图,铁路上A,B两点相距25km,C,D为两庄,DA⊥AB于A,CB⊥AB于B,已知DA=15km,C B=10km,现在要在铁路AB上建一个土特产品收购站E,使得C,D两村到E站的距离相等.问:(1)在离A站多少km处?(2)判定三角形DEC的形状.【答案】见试题解答内容【解答】解:(1)∵使得C,D两村到E站的距离相等.∴DE=CE,∵DA⊥AB于A,CB⊥AB于B,∴∠A=∠B=90°,∴AE2+AD2=DE2,BE2+BC2=EC2,∴AE2+AD2=BE2+BC2,设AE=x,则BE=AB﹣AE=(25﹣x),∵DA=15km,CB=10km,∴x2+152=(25﹣x)2+102,解得:x=10,∴AE=10km;(2)△DEC是直角三角形,理由如下:∵△DAE≌△EBC,∴∠DEA=∠ECB,∠ADE=∠CEB,∠DEA+∠D=90°,∴∠DEA+∠CEB=90°,∴∠DEC=90°,即△DEC是直角三角形.12.今年第6号台风“烟花”登陆我国沿海地区,风力强,累计降雨量大,影响范围大,有极强的破坏力.如图,台风“烟花”中心沿东西方向AB由A向B移动,已知点C为一海港,且点C与直线AB上的两点A、B的距离分别为AC=300km,BC=400km,又AB=500km,经测量,距离台风中心260km及以内的地区会受到影响.(1)海港C受台风影响吗?为什么?(2)若台风中心的移动速度为28千米/时,则台风影响该海港持续的时间有多长?【答案】(1)海港C受台风影响,理由见解答过程;(2)台风影响该海港持续的时间为小时.【解答】解:(1)海港C受台风影响,理由:∵AC=300km,BC=400km,AB=500km,∴AC2+BC2=AB2,∴△ABC是直角三角形,∠ACB=90°;过点C作CD⊥AB于D,∵△ABC是直角三角形,∴AC×BC=CD×AB,∴300×400=500×CD,∴CD=240(km),∵以台风中心为圆心周围260km以内为受影响区域,∴海港C受台风影响;(2)当EC=260km,FC=260km时,正好影响C港口,∵ED=(km),∴EF=2ED=200km,∵台风的速度为28千米/小时,∴200÷28=(小时).答:台风影响该海港持续的时间为小时.1.(2023•株洲)一技术人员用刻度尺(单位:cm)测量某三角形部件的尺寸.如图所示,已知∠ACB=90°,点D为边AB的中点,点A、B对应的刻度为1、7,则CD=()A.3.5cm B.3cm C.4.5cm D.6cm【答案】B【解答】解:由图可得,∠ACB=90°,AB=7﹣1=6(cm),点D为线段AB的中点,∴CD=AB=3cm,故选:B.2.(2022•永州)如图,在Rt△ABC中,∠ABC=90°,∠C=60°,点D为边AC的中点,BD=2,则BC的长为()A.B.2C.2D.4【答案】C【解答】解:在Rt△ABC中,∠ABC=90°,点D为边AC的中点,BD=2,∴AC=2BD=4,∵∠C=60°,∴∠A=30°,∴BC=AC=2,故选:C.3.(2020•河北)如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按如图的方式组成图案,使所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是()A.1,4,5B.2,3,5C.3,4,5D.2,2,4【答案】B【解答】解:当选取的三块纸片的面积分别是1,4,5时,围成的直角三角形的面积是=,当选取的三块纸片的面积分别是2,3,5时,围成的直角三角形的面积是=;当选取的三块纸片的面积分别是3,4,5时,围成的三角形不是直角三角形;当选取的三块纸片的面积分别是2,2,4时,围成的直角三角形的面积是=,∵,∴所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是2,3,5,故选:B.4.(2022•陕西)如图,是一个棱长为1的正方体纸盒.若一只蚂蚁要沿着正方体纸盒的表面,从顶点A爬到顶点B去觅食,则需要爬行的最短路程是()A.B.2C.D.3【答案】C【解答】解:需要爬行的最短路程即为线段AB的长,如图:∵正方体棱长为1,∴BC=1,AC=2,∴AB===,∴需要爬行的最短路程为;故选:C.5.(2023•攀枝花)如图,在△ABC中,∠A=40°,∠C=90°,线段AB的垂直平分线交AB于点D,交AC 于点E,则∠EBC=10°.【答案】10°.【解答】解:∵∠C=90°,∠A=40°,∴∠ABC=90°﹣∠A=50°,∵DE是线段AB的垂直平分线,∴AE=BE,∴∠EBA=∠A=40°,∴∠EBC=∠ABC﹣∠EBA=50°﹣40°=10°,故答案为:10°.6.(2023•郴州)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点M是AB的中点,求CM=5.【答案】5.【解答】解:连接CM,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,∴AB=,∵点M是AB的中点,∴CM=AB=5.故答案为:5.7.(2023•大连)如图,在平面直角坐标系中,点A,B的坐标分别为(1,0)和(0,2),连接AB,以点A 为圆心、AB的长为半径画弧,与x轴正半轴相交于点C,则点C的横坐标是+1.【答案】+1.【解答】解:∵点A,B的坐标分别为(1,0)和(0,2),∴OA=1,OB=2,∵∠AOB=90°,∴AB===,∵以点A为圆心,以AB长为半径画弧,∴AC=AB=,∴OC=AC+OA=+1,∵交x轴正半轴于点C,∴点C的坐标为(+1,0).故答案为:+1.8.(2023•随州)如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,D为AC上一点,若BD是∠ABC的角平分线,则AD=5.【答案】5.【解答】解:如图,过点D作DE⊥AB于点E,∵∠C=90°,∴CD⊥BC,∵BD是∠ABC的角平分线,CD⊥BC,DE⊥AB,∴CD=DE,在Rt△BCD和Rt△BED中,,∴Rt△BCD≌Rt△BED(HL),∴BC=BE=6,在Rt△ABC中,==10,∴AE=AB﹣BE=10﹣6=4,设CD=DE=x,则AD=AC﹣CD=8﹣x,在Rt△ADE中,AE2+DE2=AD2,∴42+x2=(8﹣x)2,解得:x=3,∴AD=8﹣x=5.故答案为:5.9.(2023•扬州)我国汉代数学家赵爽证明勾股定理时创制了一幅“勾股圆方图”,后人称之为“赵爽弦图”,它是由4个全等的直角三角形和一个小正方形组成.如图,直角三角形的直角边长为a、b,斜边长为c,若b﹣a=4,c=20,则每个直角三角形的面积为96.【答案】96.【解答】解:由图可得,a2+b2=c2,∴且a、b均大于0,解得,∴每个直角三角形的面积为ab=×12×16=96,故答案为:96.10.(2021•杭州)如图,在△ABC中,∠ABC的平分线BD交AC边于点D,AE⊥BC于点E.已知∠ABC =60°,∠C=45°.(1)求证:AB=BD;(2)若AE=3,求△ABC的面积.【答案】(1)证明见解答过程;(2).【解答】(1)证明:∵BD平分∠ABC,∠ABC=60°,∴∠DBC=∠ABC=30°,∵∠C=45°,∴∠ADB=∠DBC+∠C=75°,∠BAC=180°﹣∠ABC﹣∠C=75°,∴∠BAC=∠ADB,∴AB=BD;(2)解:在Rt△ABE中,∠ABC=60°,AE=3,∴BE==,在Rt△AEC中,∠C=45°,AE=3,∴EC==3,∴BC=3+,=BC×AE=.∴S△ABC。

中考数学 第一部分 教材梳理 第四章 图形的认识 第2节 三角形与全等三角形复习 新人教版

中考数学 第一部分 教材梳理 第四章 图形的认识 第2节 三角形与全等三角形复习 新人教版

7. 如图4-2-5,AE,AD分别是△ABC的高和角平分线,且 ∠B=40°,∠C=60°,求∠BAD和∠DAE的度数.
考题再现
1. (2014广东)一个等腰三角形的两边长分别是3和7,
则它的周长为
(A)
A. 17
B. 15
C. 13
D. 13或17
2. (2014深圳)如图4-2-2,在Rt△ABC中,∠C=90°,
AD平分∠CAB,AC=6,BC=8,CD= 3 .
3. (2014梅州)如图4-2-3,在Rt△ABC中,∠B=90°,分 别以A,C为圆心,大于 AC长为半径画弧,两弧相交于点M,N, 连接MN,与AC,BC分别交于点D,E,连接AE,则:
第一部分 教材梳理
第四章 图形的认识(一) 第2节 三角形与全等三角形
知识要点梳理
概念定理
1. 与三角形有关的概念 (1)三角形:不在同一条直线上的三条线段首尾顺次相接 组成的图形叫做三角形.相邻两边的公共端点叫做三角形的顶 点;相邻两边所组成的角叫做三角形的内角,简称三角形的 角. (2)等边三角形:三边都相等的三角形. (3)等腰三角形:有两条边相等的三角形. (4)不等边三角形:三边都不相等的三角形. (5)在等腰三角形中,相等的两边都叫做腰,另一边叫做 底,两腰的夹角叫做顶角,腰和底边的夹角叫做底角.
它们相交于点O,∠CAB=50°,∠C=60°,求∠DAE和∠BOA的
度数.
解:∵∠CAB=50°, ∠C=60°, ∴∠ABC=180°-50°-60°=70°. 又∵AD是高, ∴∠ADC=90°. ∴∠DAC=90°-∠C=30°. ∵AE,BF是角平分线, ∴∠CBF=∠ABF=35°,∠EAF=25°. ∴∠DAE=∠DAC-∠EAF=5°. ∠AFB=∠C+∠CBF=60°+35°=95°. ∴∠BOA=∠EAF+∠AFB=25°+95°=120°.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档