2020-2021昆明市云大附中九年级数学上期末第一次模拟试卷(带答案)
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【分析】
设⊙O半径为r,根据勾股定理列方程求出半径r,由勾股定理依次求BE和EC的长.
【详解】
连接BE,
设⊙O半径为r,则OA=OD=r,OC=r-2,
∵OD⊥AB,
∴∠ACO=90°,
AC=BC= AB=4,
在Rt△ACO中,由勾股定理得:r2=42+(r-2)2,
r=5,
∴AE=2r=10,
∵AE为⊙O的直径,
解析: ,且k≠0.
【解析】
【分析】
根据直线与圆相交确定k的取值,利用面积法求出相切时k的取值,再利用相切与相交之间的关系得到k的取值范围.
【详解】
∵ 交x轴于点A,交y轴于点B,
当 ,故B的坐标为(0,6k);
当 ,故A的坐标为(-6,0);
当直线y=kx+6k与⊙O相交时,设圆心到直线的距离为h,
2.C
解析:C
【解析】
试题解析:∵CC′∥AB,
∴∠ACC′=∠CAB=65°,
∵△ABC绕点A旋转得到△AB′C′,
∴AC=AC′,
∴∠CAC′=180°﹣2∠ACC′=180°﹣2×65°=50°,
∴∠CAC′=∠BAB′=50°.
故选C.
3.A
解析:A
【解析】
【分析】
根据配方法,先提取二次项的系数-3,得到 ,再将括号里的配成完全平方式即可得出结果.
∴∠A′CO=∠B′+∠BOB′=30°+52°=82°.
故选D.
【点睛】
本题主要考查了旋转的性质,熟知旋转的性质是解决问题的关键.
10.C
解析:C
【解析】
【分析】
根据对称轴的位置,分三种情况讨论求解即可.
【详解】
二次函数的对称轴为直线x=m,
①m<﹣2时,x=﹣2时二次函数有最大值,
此时﹣(﹣2﹣m)2+m2+1=4,
在△ABG和△DBH中,
,
∴△ABG≌△DBH(ASA),
∴四边形GBHD的面积等于△ABD的面积,
∴图中阴影部分的面积是:S扇形EBF-S△ABD=
= .
故选B.
6.A
解析:A
【解析】
【分析】
【详解】
解:连接OA,OC,过点O作OD⊥AC于点D,
∵∠AOC=2∠B,且∠AOD=∠COD= ∠AOC,
(2)若CE= ,CD=2,求直径BC的长.
22.如图,在⊙O中,点C为 的中点,∠ACB=120°,OC的延长线与AD交于点D,且∠D=∠B.
(1)求证:AD与⊙O相切;
(2)若CE=4,求弦AB的长.
23.如图,等腰Rt△ABC中,BA=BC,∠ABC=90°,点D在AC上,将△ABD绕点B沿顺时针方向旋转90°后,得到△CBE
【详解】
连接OC,
∵CD⊥AB,CD=8,
∴PC= CD= ×8=4,
在Rt△OCP中,设OC=x,则OA=x,
∵PC=4,OP=AP-OA=8-x,
∴OC2=PC2+OP2,
即x2=42+(8-x)2,
解得x=5,
∴⊙O的直径为10.
故选A.
【点睛】
本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
20.如图,Rt△OAB的顶点A(﹣2,4)在抛物线y=ax2上,将Rt△OAB绕点O顺时针旋转90°,得到△OCD,边CD与该抛物线交于点P,则点P的坐标为_____.
三、解答题
21.如图,BC是半圆O的直径,D是弧AC的中点,四边形ABCD的对角线AC、BD交于点E.
(1)求证:△DCE∽△DBC;
12.C
解析:C
【解析】
因为正八边形的每个内角为 ,不能整除360度,故选C.
二、填空题
13.【解析】【分析】设⊙O半径为r根据勾股定理列方程求出半径r由勾股定理依次求BE和EC的长【详解】连接BE设⊙O半径为r则OA=OD=rOC=r-2∵OD⊥AB∴∠ACO=90°AC=BC=AB=4在
解析:
【解析】
14.从五个数1,2,3,4,5中随机抽出1个数 ,则数3被抽中的概率为_________.
15.直线y=kx+6k交x轴于点A,交y轴于点B,以原点O为圆心,3为半径的⊙O与l相交,则k的取值范围为_____________.
16.一个不透明的口袋中有5个完全相同的小球,分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号是偶数的概率为.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.A
解析:A
【解析】
分析:根据中心对称的定义,结合所给图形即可作出判断.
详解:A、是中心对称图形,故本选项正确;
B、不是中心对称图形,故本选项错误;
C、不是中心对称图形,故本选项错误;
D、不是中心对称图形,故本选项错误;
故选:A.
点睛:本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.
解析:
【解析】
试题分析:确定出偶数有2个,然后根据概率公式列式计算即可得解.∵标号为1,2,3,4,5的5个小球中偶数有2个,∴P= .
考点:概率公式
17.【解析】分析:先求出扇形对应的圆的半径再根据扇形的面积公式求出面积即可详解:设扇形的半径为Rcm∵扇形的圆心角为135°弧长为3πcm∴=3π解得:R=4所以此扇形的面积为=6π(cm2)故答案为6
3.二次函数 变形为 的形式,正确的是()
A. B.
C. D.
4.将抛物线y=2x2向右平移3个单位,再向下平移5个单位,得到的抛物线的表达式为()
A.y=2(x﹣3)2﹣5B.y=2(x+3)2+5
C.y=2(x﹣3)2+5D.y=2(x+3)2﹣5
5.如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半径为2,圆心角为60°,则图中阴影部分的面积是()
2020-2021昆明市云大附中九年级数学上期末第一次模拟试卷(带答案)
一、选择题
1.下列图形中,可以看作是中心对称图形的是()
A. B. C. D.
2.如图,在△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′的度数为( )
A.25°B.30°C.50°D.55°
9.D
解析:D
【解析】
【分析】
根据旋转的性质可得∠B′=∠B=30°,∠BOB′=52°,再由三角形外角的性质即可求得 的度数.
【详解】
∵△A′OB′是由△AOB绕点O顺时针旋转得到,∠B=30°,
∴∠B′=∠B=30°,
∵△AOB绕点O顺时针旋转52°,
∴∠BOB′=52°,
∵∠A′CO是△B′OC的外角,
根据面积关系可得: 解得 ;
∵直线与圆相交,即 ,即 解得
且直线中 ,
则k的取值范围为: ,且k≠0.
故答案为: ,且k≠0.
【点睛】
本题考查了直线与圆的位置关系,解题的关键在于根据相交确定圆的半径与圆心到直线距离的大小关系.
16.【解析】试题分析:确定出偶数有2个然后根据概率公式列式计算即可得解∵标号为12345的5个小球中偶数有2个∴P=考点:概率公式
11.如图,AB是⊙O的直径,弦CD⊥AB,垂足为点P,若CD=AP=8,则⊙O的直径为( )
A.10B.8C.5D.3
12.某人到瓷砖商店去购买一种多边形形状的瓷砖,用来铺设无缝地板,他购买的瓷砖形状不可以是( )
A.正三角形B.矩形C.正八边形D.正六边形
二、填空题
13.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为_______.
解得m= ,与m<﹣2矛盾,故m值不存在;
②当﹣2≤m≤1时,x=m时,二次函数有最大值,
此时,m2+1=4,
解得m=﹣ ,m= (舍去);
③当m>1时,x=1时二次函数有最大值,
此时,﹣(1﹣m)2+m2+1=4,
解得m=2,
综上所述,m的值为2或﹣ .
故选C.
11.A
解析:A
【解析】
【分析】
连接OC,先根据垂径定理求出PC的长,再根据勾股定理即可得出OC的长.
A.有两个不相等实数根B.有两个相等实数根
C.有且只有一个实数根D.没有实数根
9.如图, 中, .将 绕点 顺时针旋转 得到 ,边 与边 交于点 ( 不在 上),则 的度数为()
A. B. C. D.
10.当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为( )
A. B. 或 C.2或 D.2或 或
解析:
【解析】
分析:直接利用概率公式求解即可求出答案.
详解:从1,2,3,4,5中随机取出1个不同的数,共有5种不同方法,其中3被抽中的概率为 .故答案为 .
点睛:本题考查了概率公式的应用,用到的知识点为:概率=所求情况数与总情况数之比.
15.且k≠0【解析】【分析】根据直线与圆相交确定k的取值利用面积法求出相切时k的取值再利用相切与相交之间的关系得到k的取值范围【详解】∵交x轴于点A交y轴于点B当故B的坐标为(06k);当故A的坐标为(
17.一个扇形的圆心角为135°,弧长为3πcm,则此扇形的面积是_____cm2.
18.某市为了扎实落实脱贫攻坚中“两不愁、三保障”的住房保障工作,去年已投入5亿元资金,并计划投入资金逐年增长,明年将投入7.2亿元资金用于保障性住房建设,则这两年投入资金的年平均增长率为________.
19.若实数a、b满足a+b2=2,则a2+5b2的最小值为_____.
8.A
解析:A
【解析】
【分析】根据方程的系数结合根的判别式,即可得出△=13>0,进而即可得出方程x2+x﹣3=0有两个不相等的实数根.
【详解】∵a=1,b=1,c=﹣3,
∴△=b2﹣4ac=12﹣4×(1)×(﹣3)=13>0,
∴方程x2+x﹣3=0有两个不相等的实数根,
故选A.
【点睛】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.
(1)求∠DCE的度数;
(2)若AB=4,CD=3AD,求DE的长.
24.解下列方程3(x-2)2=x(x-2).
25.如图,Rt△ABC中,∠ABC=90°,以AB为直径作⊙O,点D为⊙O上一点,且CD=CB、连接DO并延长交CB的延长线于点E
(1)判断直线CD与⊙O的位置关系,并说明理由;
(2)若BE=4,DE=8,求AC的长.
【详解】
连接BD,
∵四边形ABCD是菱形,∠A=60°,
∴∠ADC=120°,
∴∠1=∠2=60°,
∴△DAB是等边三角形,
∵AB=2,
∴△ABD的高为 ,
∵扇形BEF的半径为2,圆心角为60°,
∴∠4+∠5=60°,∠3+∠5=60°,
∴∠3=∠4,
设AD、BE相交于点G,设BF、DC相交于点H,
【详解】
解: ,
故选:A.
【点ቤተ መጻሕፍቲ ባይዱ】
本题主要考查的是配方法,正确的掌握配方的步骤是解题的关键.
4.A
解析:A
【解析】
把 向右平移3个单位长度变为: ,再向下平移5个单位长度变为: .故选A.
5.B
解析:B
【解析】
【分析】
根据菱形的性质得出△DAB是等边三角形,进而利用全等三角形的判定得出△ABG≌△DBH,得出四边形GBHD的面积等于△ABD的面积,进而求出即可.
A. B. C. D.
6.如图,⊙O是△ABC的外接圆,∠B=60°,⊙O的半径为4,则AC的长等于( )
A.4 B.6 C.2 D.8
7.“射击运动员射击一次,命中靶心”这个事件是()
A.确定事件B.必然事件C.不可能事件D.不确定事件
8.下列对一元二次方程x2+x﹣3=0根的情况的判断,正确的是( )
解析:
【解析】
分析:先求出扇形对应的圆的半径,再根据扇形的面积公式求出面积即可.
详解:设扇形的半径为Rcm,
∵扇形的圆心角为135°,弧长为3πcm,
∴ =3π,
解得:R=4,
所以此扇形的面积为 =6π(cm2),
故答案为6π.
点睛:本题考查了扇形的面积计算和弧长的面积计算,能熟记扇形的面积公式和弧长公式是解此题的关键.
∴∠ABE=90°,
由勾股定理得:BE=6,
在Rt△ECB中,EC= .
故答案是: .
【点睛】
考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.
14.【解析】分析:直接利用概率公式求解即可求出答案详解:从12345中随机取出1个不同的数共有5种不同方法其中3被抽中的概率为故答案为点睛:本题考查了概率公式的应用用到的知识点为:概率=所求情况数与总情
∴∠COD=∠B=60°;
在Rt△COD中,OC=4,∠COD=60°,
∴CD= OC=2 ,
∴AC=2CD=4 .
故选A.
【点睛】
本题考查三角形的外接圆;勾股定理;圆周角定理;垂径定理.
7.D
解析:D
【解析】
试题分析:“射击运动员射击一次,命中靶心”这个事件是随机事件,属于不确定事件,
故选D.
考点:随机事件.
设⊙O半径为r,根据勾股定理列方程求出半径r,由勾股定理依次求BE和EC的长.
【详解】
连接BE,
设⊙O半径为r,则OA=OD=r,OC=r-2,
∵OD⊥AB,
∴∠ACO=90°,
AC=BC= AB=4,
在Rt△ACO中,由勾股定理得:r2=42+(r-2)2,
r=5,
∴AE=2r=10,
∵AE为⊙O的直径,
解析: ,且k≠0.
【解析】
【分析】
根据直线与圆相交确定k的取值,利用面积法求出相切时k的取值,再利用相切与相交之间的关系得到k的取值范围.
【详解】
∵ 交x轴于点A,交y轴于点B,
当 ,故B的坐标为(0,6k);
当 ,故A的坐标为(-6,0);
当直线y=kx+6k与⊙O相交时,设圆心到直线的距离为h,
2.C
解析:C
【解析】
试题解析:∵CC′∥AB,
∴∠ACC′=∠CAB=65°,
∵△ABC绕点A旋转得到△AB′C′,
∴AC=AC′,
∴∠CAC′=180°﹣2∠ACC′=180°﹣2×65°=50°,
∴∠CAC′=∠BAB′=50°.
故选C.
3.A
解析:A
【解析】
【分析】
根据配方法,先提取二次项的系数-3,得到 ,再将括号里的配成完全平方式即可得出结果.
∴∠A′CO=∠B′+∠BOB′=30°+52°=82°.
故选D.
【点睛】
本题主要考查了旋转的性质,熟知旋转的性质是解决问题的关键.
10.C
解析:C
【解析】
【分析】
根据对称轴的位置,分三种情况讨论求解即可.
【详解】
二次函数的对称轴为直线x=m,
①m<﹣2时,x=﹣2时二次函数有最大值,
此时﹣(﹣2﹣m)2+m2+1=4,
在△ABG和△DBH中,
,
∴△ABG≌△DBH(ASA),
∴四边形GBHD的面积等于△ABD的面积,
∴图中阴影部分的面积是:S扇形EBF-S△ABD=
= .
故选B.
6.A
解析:A
【解析】
【分析】
【详解】
解:连接OA,OC,过点O作OD⊥AC于点D,
∵∠AOC=2∠B,且∠AOD=∠COD= ∠AOC,
(2)若CE= ,CD=2,求直径BC的长.
22.如图,在⊙O中,点C为 的中点,∠ACB=120°,OC的延长线与AD交于点D,且∠D=∠B.
(1)求证:AD与⊙O相切;
(2)若CE=4,求弦AB的长.
23.如图,等腰Rt△ABC中,BA=BC,∠ABC=90°,点D在AC上,将△ABD绕点B沿顺时针方向旋转90°后,得到△CBE
【详解】
连接OC,
∵CD⊥AB,CD=8,
∴PC= CD= ×8=4,
在Rt△OCP中,设OC=x,则OA=x,
∵PC=4,OP=AP-OA=8-x,
∴OC2=PC2+OP2,
即x2=42+(8-x)2,
解得x=5,
∴⊙O的直径为10.
故选A.
【点睛】
本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
20.如图,Rt△OAB的顶点A(﹣2,4)在抛物线y=ax2上,将Rt△OAB绕点O顺时针旋转90°,得到△OCD,边CD与该抛物线交于点P,则点P的坐标为_____.
三、解答题
21.如图,BC是半圆O的直径,D是弧AC的中点,四边形ABCD的对角线AC、BD交于点E.
(1)求证:△DCE∽△DBC;
12.C
解析:C
【解析】
因为正八边形的每个内角为 ,不能整除360度,故选C.
二、填空题
13.【解析】【分析】设⊙O半径为r根据勾股定理列方程求出半径r由勾股定理依次求BE和EC的长【详解】连接BE设⊙O半径为r则OA=OD=rOC=r-2∵OD⊥AB∴∠ACO=90°AC=BC=AB=4在
解析:
【解析】
14.从五个数1,2,3,4,5中随机抽出1个数 ,则数3被抽中的概率为_________.
15.直线y=kx+6k交x轴于点A,交y轴于点B,以原点O为圆心,3为半径的⊙O与l相交,则k的取值范围为_____________.
16.一个不透明的口袋中有5个完全相同的小球,分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号是偶数的概率为.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.A
解析:A
【解析】
分析:根据中心对称的定义,结合所给图形即可作出判断.
详解:A、是中心对称图形,故本选项正确;
B、不是中心对称图形,故本选项错误;
C、不是中心对称图形,故本选项错误;
D、不是中心对称图形,故本选项错误;
故选:A.
点睛:本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.
解析:
【解析】
试题分析:确定出偶数有2个,然后根据概率公式列式计算即可得解.∵标号为1,2,3,4,5的5个小球中偶数有2个,∴P= .
考点:概率公式
17.【解析】分析:先求出扇形对应的圆的半径再根据扇形的面积公式求出面积即可详解:设扇形的半径为Rcm∵扇形的圆心角为135°弧长为3πcm∴=3π解得:R=4所以此扇形的面积为=6π(cm2)故答案为6
3.二次函数 变形为 的形式,正确的是()
A. B.
C. D.
4.将抛物线y=2x2向右平移3个单位,再向下平移5个单位,得到的抛物线的表达式为()
A.y=2(x﹣3)2﹣5B.y=2(x+3)2+5
C.y=2(x﹣3)2+5D.y=2(x+3)2﹣5
5.如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半径为2,圆心角为60°,则图中阴影部分的面积是()
2020-2021昆明市云大附中九年级数学上期末第一次模拟试卷(带答案)
一、选择题
1.下列图形中,可以看作是中心对称图形的是()
A. B. C. D.
2.如图,在△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′的度数为( )
A.25°B.30°C.50°D.55°
9.D
解析:D
【解析】
【分析】
根据旋转的性质可得∠B′=∠B=30°,∠BOB′=52°,再由三角形外角的性质即可求得 的度数.
【详解】
∵△A′OB′是由△AOB绕点O顺时针旋转得到,∠B=30°,
∴∠B′=∠B=30°,
∵△AOB绕点O顺时针旋转52°,
∴∠BOB′=52°,
∵∠A′CO是△B′OC的外角,
根据面积关系可得: 解得 ;
∵直线与圆相交,即 ,即 解得
且直线中 ,
则k的取值范围为: ,且k≠0.
故答案为: ,且k≠0.
【点睛】
本题考查了直线与圆的位置关系,解题的关键在于根据相交确定圆的半径与圆心到直线距离的大小关系.
16.【解析】试题分析:确定出偶数有2个然后根据概率公式列式计算即可得解∵标号为12345的5个小球中偶数有2个∴P=考点:概率公式
11.如图,AB是⊙O的直径,弦CD⊥AB,垂足为点P,若CD=AP=8,则⊙O的直径为( )
A.10B.8C.5D.3
12.某人到瓷砖商店去购买一种多边形形状的瓷砖,用来铺设无缝地板,他购买的瓷砖形状不可以是( )
A.正三角形B.矩形C.正八边形D.正六边形
二、填空题
13.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为_______.
解得m= ,与m<﹣2矛盾,故m值不存在;
②当﹣2≤m≤1时,x=m时,二次函数有最大值,
此时,m2+1=4,
解得m=﹣ ,m= (舍去);
③当m>1时,x=1时二次函数有最大值,
此时,﹣(1﹣m)2+m2+1=4,
解得m=2,
综上所述,m的值为2或﹣ .
故选C.
11.A
解析:A
【解析】
【分析】
连接OC,先根据垂径定理求出PC的长,再根据勾股定理即可得出OC的长.
A.有两个不相等实数根B.有两个相等实数根
C.有且只有一个实数根D.没有实数根
9.如图, 中, .将 绕点 顺时针旋转 得到 ,边 与边 交于点 ( 不在 上),则 的度数为()
A. B. C. D.
10.当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为( )
A. B. 或 C.2或 D.2或 或
解析:
【解析】
分析:直接利用概率公式求解即可求出答案.
详解:从1,2,3,4,5中随机取出1个不同的数,共有5种不同方法,其中3被抽中的概率为 .故答案为 .
点睛:本题考查了概率公式的应用,用到的知识点为:概率=所求情况数与总情况数之比.
15.且k≠0【解析】【分析】根据直线与圆相交确定k的取值利用面积法求出相切时k的取值再利用相切与相交之间的关系得到k的取值范围【详解】∵交x轴于点A交y轴于点B当故B的坐标为(06k);当故A的坐标为(
17.一个扇形的圆心角为135°,弧长为3πcm,则此扇形的面积是_____cm2.
18.某市为了扎实落实脱贫攻坚中“两不愁、三保障”的住房保障工作,去年已投入5亿元资金,并计划投入资金逐年增长,明年将投入7.2亿元资金用于保障性住房建设,则这两年投入资金的年平均增长率为________.
19.若实数a、b满足a+b2=2,则a2+5b2的最小值为_____.
8.A
解析:A
【解析】
【分析】根据方程的系数结合根的判别式,即可得出△=13>0,进而即可得出方程x2+x﹣3=0有两个不相等的实数根.
【详解】∵a=1,b=1,c=﹣3,
∴△=b2﹣4ac=12﹣4×(1)×(﹣3)=13>0,
∴方程x2+x﹣3=0有两个不相等的实数根,
故选A.
【点睛】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.
(1)求∠DCE的度数;
(2)若AB=4,CD=3AD,求DE的长.
24.解下列方程3(x-2)2=x(x-2).
25.如图,Rt△ABC中,∠ABC=90°,以AB为直径作⊙O,点D为⊙O上一点,且CD=CB、连接DO并延长交CB的延长线于点E
(1)判断直线CD与⊙O的位置关系,并说明理由;
(2)若BE=4,DE=8,求AC的长.
【详解】
连接BD,
∵四边形ABCD是菱形,∠A=60°,
∴∠ADC=120°,
∴∠1=∠2=60°,
∴△DAB是等边三角形,
∵AB=2,
∴△ABD的高为 ,
∵扇形BEF的半径为2,圆心角为60°,
∴∠4+∠5=60°,∠3+∠5=60°,
∴∠3=∠4,
设AD、BE相交于点G,设BF、DC相交于点H,
【详解】
解: ,
故选:A.
【点ቤተ መጻሕፍቲ ባይዱ】
本题主要考查的是配方法,正确的掌握配方的步骤是解题的关键.
4.A
解析:A
【解析】
把 向右平移3个单位长度变为: ,再向下平移5个单位长度变为: .故选A.
5.B
解析:B
【解析】
【分析】
根据菱形的性质得出△DAB是等边三角形,进而利用全等三角形的判定得出△ABG≌△DBH,得出四边形GBHD的面积等于△ABD的面积,进而求出即可.
A. B. C. D.
6.如图,⊙O是△ABC的外接圆,∠B=60°,⊙O的半径为4,则AC的长等于( )
A.4 B.6 C.2 D.8
7.“射击运动员射击一次,命中靶心”这个事件是()
A.确定事件B.必然事件C.不可能事件D.不确定事件
8.下列对一元二次方程x2+x﹣3=0根的情况的判断,正确的是( )
解析:
【解析】
分析:先求出扇形对应的圆的半径,再根据扇形的面积公式求出面积即可.
详解:设扇形的半径为Rcm,
∵扇形的圆心角为135°,弧长为3πcm,
∴ =3π,
解得:R=4,
所以此扇形的面积为 =6π(cm2),
故答案为6π.
点睛:本题考查了扇形的面积计算和弧长的面积计算,能熟记扇形的面积公式和弧长公式是解此题的关键.
∴∠ABE=90°,
由勾股定理得:BE=6,
在Rt△ECB中,EC= .
故答案是: .
【点睛】
考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.
14.【解析】分析:直接利用概率公式求解即可求出答案详解:从12345中随机取出1个不同的数共有5种不同方法其中3被抽中的概率为故答案为点睛:本题考查了概率公式的应用用到的知识点为:概率=所求情况数与总情
∴∠COD=∠B=60°;
在Rt△COD中,OC=4,∠COD=60°,
∴CD= OC=2 ,
∴AC=2CD=4 .
故选A.
【点睛】
本题考查三角形的外接圆;勾股定理;圆周角定理;垂径定理.
7.D
解析:D
【解析】
试题分析:“射击运动员射击一次,命中靶心”这个事件是随机事件,属于不确定事件,
故选D.
考点:随机事件.