北师大版数学九年级上 相似三角形的性质及判定知识点总结 习题型总结(学生版)
北师大版九年级数学上册 相似三角形的判定与性质 讲义(Word版,无答案)
相似三角形的判定与性质知识点一:相似三角形的判定【方法点拨】1、定义法:三个对应角相等,三条对应边成比例的两个三角形相似.2、平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似.3、判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.简述为:两角对应相等,两三角形相似.4、判定定理2:如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似.5、判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似.简述为:三边对应成比例,两三角形相似.【例1】已知,如图所示,AF⊥BC,CE⊥AB,垂足分别是F、E,试证明:(1)△BAF∽△BCE.(2)△BEF∽△BCA.【变式训练3】如图,四边形ABCD 中,AC 平分∠DAB,∠ADC=∠ACB=90°,E 为AB 的中点,(1)求证:AC2=AB•AD;(2)求证:△AFD∽△CFE.【变式训练4】如图,D 为△ABC 内一点,E 为△ABC 外一点,且∠ABC=∠DBE,∠3 =∠4.求证:(1)△ABD∽△CBE;(2)△ABC∽△DBE.知识点二:相似三角形的性质相似三角形的性质:(1)相似三角形对应角相等,对应边成比例.(2)相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比.(3)相似三角形周长的比等于相似比.(4)相似三角形面积的比等于相似比的平方.【例1】如图,在△ABC 中,若点D、E 分别是AB、AC 的中点,S△ABC=4,则S△ADE=()A.1B.2C.3D.4【变式训练1】如图,在△ABC 和△DBE 中,53AB BCDB BE==,且∠DBA=∠CBE.(1)若△ABC 与△DBE 的周长之差为10cm,求△ABC 的周长;(2)若△ABC 与△DBE 的面积之和为170cm2,求△DBE 的面积.【变式训练2】如图,D、E 分别是△ABC 的边AB、BC 上的点,DE∥AC,若S△BDE:S△CDE =1:3,求S△DOE:S△AOC 的值.相似与投影的应用1. 相似三角形的应用【例1】如图,身高1.6 米的学生小李想测量学校的旗杆的高度,当他站在C 处时,他头顶端的影子正好与旗杆顶端的影子重合,并测得AC=2 米,BC=8 米,则旗杆的高度是米.【变式训练1】如图,小明用自制的直角三角形纸板DEF 测量树的高度AB.他调整自己的位置,设法使斜边DF 保持水平,并且边DE 与点B 在同一直线上,已知纸板的两条直角边DE=40cm.EF=30cm,测得边DF 离地面的高度AC=1.5m,CD=10m,求树高AB.【变式训练2】随着人们对生活环境的要求逐渐提高,环境保护问题受到越来越多人的关注,环保宣传也随处可见.如图,小云想要测量窗外的环保宣传牌AB 的高度,她发现早上阳光恰好从窗户的最高点C 处射进房间的地板F 处,中午阳光恰好从窗户的最低点处射进房间的地板E 处,小云测得窗户距地面的高度OD=1m,窗高CD=1.5m,并测得OE=1m,OF =3m.请根据以上测量数据,求环保宣传牌AB 的高度.2. 图形的位似画位似图形的一般步骤:(1)确定位似中心(位似中心可以是平面中任意一点)(2)分别连接原图形中的关键点和位似中心,并延长(或截取).(3)根据已知的位似比,确定所画位似图形中关键点的位置.(4)顺次连结上述得到的关键点,即可得到一个放大或缩小的图形. ①②③④⑤注:①位似中心可以是平面内任意一点,该点可在图形内,或在图形外,或在图形上(图形边上或顶点上)。
相似三角形的性质及判定知识点总结+经典题型总结(学生版)学习资料
中考要求板块考试要求A级要求B级要求C级要求相似三角形了解相似三角形掌握相似三角形的概念,判定及性质,以及掌握相关的模型会运用相似三角形相关的知识解决有关问题知识点睛、相似的有关概念1 •相似形具有相同形状的图形叫做相似形•相似形仅是形状相同,大小不一定相同•相似图形之间的互相变换称为相似变换.2 •相似图形的特性两个相似图形的对应边成比例,对应角相等.3. 相似比两个相似图形的对应角相等,对应边成比例.、相似三角形的概念1. 相似三角形的定义对应角相等,对应边成比例的三角形叫做相似三角形.如图,△ ABC与厶ABC相似,记作△ ABCABC,符号s读作相似于”2•相似比相似三角形对应边的比叫做相似比.全等三角形的相似比是1.全等三角形”一定是相似形” 相似形”不一定是全等形”、相似三角形的性质1.相似三角形的对应角相等如图,△ ABC与厶ABC相似,则有A A , B B , C C .2 •相似三角形的对应边成比例△ ABC与厶ABC相似,则有-AB BC AC k(k为相似比)AB BC AC3•相似三角形的对应边上的中线,高线和对应角的平分线成比例,都等于相似比.如图1,△ ABC与厶ABC相似,AM是厶ABC中BC边上的中线,AM 是厶ABC中BC边上的中线, 则有上邑匹竺k上也(k 为相似比).AB BC AC AM如图则有2, △ ABC与厶ABC相似,AB BC AC kAB BC AC AHAH3, △ ABC 与厶ABC分线,则有2AB -BCAB BC AC如图相似,AC k1AH是△ ABC中BC边上的高线,AH是厶ABC中BC边上的高线,(k为相似比).AD是厶ABC中BAC的角平分线,AD是厶ABC 竺(k为相似比).AD图2中BAC的角平4. 相似三角形周长的比等于相似比.如图4, △ ABC与厶ABC相似, 则有AB BC ACkAB B C AC(k为相似比).应用比例的等比性质有AB BC AC AB BC ACAB BC AC AB BC A C5•相似三角形面积的比等于相似比的平方.四、相似三角形的判定1 •平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似.2 •如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似•可简单说成:两 角对应相等,两个三角形相似.3 •如果一个三角形的两边和另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似.4. 如果一个三角形的三条边与另一个三角形的你对应成比例,那么这两个三角形相似.可简单地说成:三 边对应成比例,两个三角形相似.5. 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这 两个直角三角形相似. 6 •直角三角形被斜边上的高分成的两个直角三角形相似(常用但要证明)7 •如果一个等腰三角形和另一个等腰三角形的顶角相等或一对底角相等,那么这两个等腰三角形相似;如 果它们的腰和底对应成比例,那么这两个等腰三角形也相似.五、相似证明中的比例式或等积式、比例中项式、倒数式、复合式证明比例式或等积式的主要方法有三点定形法”.1 .横向定型法AB BC欲证一一 —一,横向观察,比例式中的分子的两条线段是AB 和BC ,三个字母A , B , C 恰为△ ABC 的顶BE BF点;分母的两条线段是 BE 和BF ,三个字母B , E , F 恰为△ BEF 的三个顶点.因此只需证 △ ABCEBF •2. 纵向定型法欲证一一 匹,纵向观察,比例式左边的比 AB 和BC 中的三个字母 A , B , C 恰为△ ABC 的顶点;右边的 BC EF 比两条线段是 DE 和EF 中的三个字母 D , E , F 恰为A DEF 的三个顶点.因此只需证 △ ABC DEF .AH 是厶ABC 中BC 边上的高线,则有ABBC AC k AH ( k 为相似比) .进而可得比ABCABBCACAHABC-BC AH BC 2BC 空k 2•AH如图5, △ ABC 与厶ABC 相似,AH 是厶ABC 中BC 边上的高线,如图:S A ABCACD 1BC AH21CD AH2BCCD如图:SA ABC12BC AHAHSA BCD1BC DG DG2S A ABD S A ABD S A AED AB AD AB AD SA ACESA AEDSA ACEAE AC AE AC3. 中间比法由于运用三点定形法时常会碰到三点共线或四点中没有相同点的情况,此时可考虑运用等线,等比或等积进行变换后,再考虑运用三点定形法寻找相似三角形•这种方法就是等量代换法•在证明比例式时,常用到中间比.比例中项式的证明,通常涉及到与公共边有关的相似问题。
九年级相似三角形知识点总结
九年级相似三角形知识点总结相似三角形作为九年级数学中的重要内容,涉及到比例、角度、边长等概念。
在本文中,我们将对九年级相似三角形的相关知识点进行总结。
以下是该知识点的详细内容:一、相似三角形的定义与性质相似三角形是指具有相同形状但大小可能不同的三角形。
在两个相似三角形中,对应角度相等,对应边长成比例。
1. 对应角相等性质:若两个三角形的内角分别对应相等,那么这两个三角形是相似的。
2. 对应边成比例性质:若两个三角形的三条边之间成比例,那么这两个三角形是相似的。
3. 相似三角形的比例关系:设两个相似三角形A和B,它们的对应边长分别为a、b和c、d。
则有以下比例关系成立:a/b = c/d = k (k为比例系数)二、相似三角形的判定方法判定两个三角形是否相似,常用以下方法:1. AA相似判定法:若两个三角形的两个角分别对应相等,那么这两个三角形一定相似。
2. AAA相似判定法:若两个三角形的三个角分别对应相等,那么这两个三角形一定相似。
3. SSS相似判定法:若两个三角形的三边分别成比例,那么这两个三角形一定相似。
三、相似三角形的性质应用相似三角形的性质在解决实际问题中有广泛的应用。
以下是相似三角形的性质在实际问题中的应用:1. 测量不可达长度:在实际测量中,有时由于某些原因,无法直接测量出几何图形中的某些边长。
利用相似三角形的比例关系,可以间接计算出这些不可达长度。
2. 高度与距离计算:利用相似三角形的性质,可以求解建筑物高度、山上塔楼高度等实际问题中需要计算的高度和距离。
3. 相似三角形的构造:利用相似三角形的特点,可以进行各种构造问题的求解,如分割线段、求解垂足等问题。
四、相似三角形与比例运算相似三角形的性质与比例运算密切相关。
以下是相似三角形与比例运算的相关内容:1. 比例关系的运用:相似三角形的性质中涉及到边长的比例关系,通过运用比例关系,可以计算出未知边长的具体值。
2. 比例运算的应用:在解决相似三角形实际问题中,我们可以借助比例运算的方法,确定未知量的数值。
初三《相似三角形》知识点总结
相似三角形知识点总结知识点1、三角对应相等,三边对应成比例的三角形叫相似三角形。
如△ABC 与△A /B /C /相似,记作: △ABC ∽△A /B /C /。
相似三角形的比叫相似比相似三角形的定义既是相似三角形的性质,也是三角形相似的判定方法。
注意:(1)相似比是有顺序的。
(2)对应性,两个三角形相似时,通常把对应顶点写在对应位置,这样写比较容易找到相似三角形的对应角和对应边。
(3)顺序性:相似三角形的相似比是有顺序的,若△ABC ∽△A /B /C /,相似比为k ,则△A /B /C /与△ABC 的相似比是1k知识点2、相似三角形与全等三角形的关系(1)两个全等的三角形是相似比为1的相似三角形。
(2)两个等边三角形一定相似,两个等腰三角形不一定相似。
(3)二者的区别在于全等要对应边相等,而相似要求对应边成比例。
知识点3、平行线分线段成比例定理1. 比例线段的有关概念:在比例式::中,、叫外项,、叫内项,、叫前项,a bc da b c d a d b c a c ()b 、d 叫后项,d 叫第四比例项,如果b=c ,那么b 叫做a 、d 的比例中项。
把线段AB 分成两条线段AC 和BC ,使AC 2=AB ·BC ,叫做把线段AB 黄金分割,C 叫做线段AB 的黄金分割点。
2. 比例性质:①基本性质:a bc dadbc ②合比性质:±±a b c d a b b c d d③等比性质:……≠……a bc dm nb dn a c m bdna b()03. 平行线分线段成比例定理(1)平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.已知l1∥l2∥l3,A D l1B E l2CF l3可得EF BC DEAB DFEF ACBC DFEF ABBC DFDE ACAB EFDE BCAB或或或或等.(2)推论:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例. AD EBC由DE ∥BC 可得:AC AEABAD EAEC ADBD ECAE DBAD 或或.此推论较原定理应用更加广泛,条件是平行.(3)推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例.那么这条直线平行于三角形的第三边.此定理给出了一种证明两直线平行方法,即:利用比例式证平行线.(4)定理:平行于三角形的一边,并且和其它两边相交的直线,所截的三角形的三边与原三角形三边对应成比例. 知识点4:相似三角形的性质①相似三角形的对应角相等②相似三角形的对应边成比例③相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比④相似三角形周长的比等于相似比⑤相似三角形面积的比等于相似比的平方知识点5:相似三角形的判定:①两角对应相等,两个三角形相似②两边对应成比例且夹角相等,两三角形相似③三边对应成比例,两三角形相似④如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角形相似⑤平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似⑥直角三角形被斜边上的高分成的两个直角三角形和原三角形相似如果两个三角形的两角分别于另一个三角形的两角对应相等,那么这两个三角形相似。
相似三角形的性质和判定知识点
相似三角形的性质和判定知识点相似三角形是初中数学中的重要概念,它在几何学中具有广泛的应用。
相似三角形的性质和判定是学习和解题的基础,本文将详细介绍相似三角形的性质和判定的知识点。
一、相似三角形的定义相似三角形是指具有相同形状但不同大小的三角形。
两个三角形相似的条件是它们对应角相等,即对应边的比例相等。
二、相似三角形的性质相似三角形有一些重要的性质,如下:1. 对应角相等性质:如果两个三角形相似,它们的对应角相等。
2. 对应边成比例性质:如果两个三角形相似,它们的对应边成比例,即对于第一个三角形的一条边与第二个三角形的相应边的比等于第一个三角形的另一条边与第二个三角形的相应边的比。
3. 半角性质:如果两个三角形相似,它们的角的一半也相等。
4. 高线成比例性质:如果两个三角形相似,它们的高线与底边之比等于相应边之比。
5. 中线成比例性质:如果两个三角形相似,它们的中线与底边之比等于相应边之比。
这些性质对于判断和解决相似三角形的问题非常有用。
三、相似三角形的判定判定两个三角形是否相似有几个常用的方法,如下:1. AAA相似判定:如果两个三角形的对应角相等,则它们相似。
2. AA相似判定:如果两个三角形的一个角相等,并且两个角分别对应两个角相等,则它们相似。
3. SSS相似判定:如果两个三角形的对应边成比例,则它们相似。
4. SAS相似判定:如果两个三角形的一个角相等,并且两个角的相邻边的比相等,则它们相似。
这些判定方法能够帮助我们快速确定两个三角形是否相似,从而解决相关问题。
四、相似三角形的实际应用相似三角形的概念和性质在几何学中有广泛的应用。
下面介绍一些实际应用的例子:1. 相似三角形的测量:通过测量一个三角形的边长和角度,可以利用相似三角形的性质计算出其他三角形的边长和角度。
2. 地图比例尺:地图上的比例尺是通过相似三角形的性质确定的。
通过观察地图上的两个相似三角形,可以计算出地图上的实际距离。
3. 光学测距:在实际测量中,通过利用相似三角形的性质可以测量较远距离的物体高度、距离等。
北师大版数学九年级上 相似三角形的性质及判定知识点总结 习题型总结(学生版)
板块考试要求A 级要求B 级要求C 级要求相似三角形 了解相似三角形掌握相似三角形的概念,判定及性质,以及掌握相关的模型会运用相似三角形相关的知识解决有关问题一、相似的有关概念1.相似形具有相同形状的图形叫做相似形.相似形仅是形状相同,大小不一定相同.相似图形之间的互相变换称为相似变换. 2.相似图形的特性两个相似图形的对应边成比例,对应角相等. 3.相似比两个相似图形的对应角相等,对应边成比例.二、相似三角形的概念1.相似三角形的定义对应角相等,对应边成比例的三角形叫做相似三角形.如图,ABC △与A B C '''△相似,记作ABC A B C '''△∽△,符号∽读作“相似于”.知识点睛 中考要求 相似三角形的性质及判定A 'B 'C 'CB A2.相似比相似三角形对应边的比叫做相似比.全等三角形的相似比是1.“全等三角形”一定是“相似形”,“相似形”不一定是“全等形”.三、相似三角形的性质1.相似三角形的对应角相等如图,ABC △与A B C '''△相似,则有A A B B C C '''∠=∠∠=∠∠=∠,,.A 'B 'C 'CB A2.相似三角形的对应边成比例ABC △与A B C '''△相似,则有AB BC ACk A B B C A C ===''''''(k 为相似比).3.相似三角形的对应边上的中线,高线和对应角的平分线成比例,都等于相似比.如图1,ABC △与A B C '''△相似,AM 是ABC △中BC 边上的中线,A M ''是A B C '''△中B C ''边上的中线,则有AB BC AC AMk A B B C A C A M ====''''''''(k 为相似比). M 'MA 'B 'C 'C BA图1如图2,ABC △与A B C '''△相似,AH 是ABC △中BC 边上的高线,A H ''是A B C '''△中B C ''边上的高线,则有AB BC AC AHk A B B C A C A H====''''''''(k 为相似比).H 'H AB C C 'B 'A '图2如图3,ABC △与A B C '''△相似,AD 是ABC △中BAC ∠的角平分线,A D ''是A B C '''△中B A C '''∠的角平分线,则有AB BC AC ADk A B B C A C A D ====''''''''(k 为相似比).D 'D A 'B 'C B A图34.相似三角形周长的比等于相似比. 如图4,ABC △与A B C '''△相似,则有AB BC ACk A B B C A C ===''''''(k 为相似比).应用比例的等比性质有AB BC AC AB BC ACk A B B C A C A B B C A C ++====''''''''''''++.A 'B 'C 'CB A图45.相似三角形面积的比等于相似比的平方.如图5,ABC △与A B C '''△相似,AH 是ABC △中BC 边上的高线,A H ''是A B C '''△中B C ''边上的高线,则有AB BC AC AHk A B B C A C A H ====''''''''(k 为相似比).进而可得21212ABC A B C BC AHS BC AH k S B C A H B C A H '''⋅⋅==⋅=''''''''⋅⋅△△.H 'H AB C C 'B 'A '图5四、相似三角形的判定1.平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似.2.如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.可简单说成:两角对应相等,两个三角形相似.3.如果一个三角形的两边和另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似.4.如果一个三角形的三条边与另一个三角形的你对应成比例,那么这两个三角形相似.可简单地说成:三边对应成比例,两个三角形相似.5.如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.6.直角三角形被斜边上的高分成的两个直角三角形相似(常用但要证明)7.如果一个等腰三角形和另一个等腰三角形的顶角相等或一对底角相等,那么这两个等腰三角形相似;如果它们的腰和底对应成比例,那么这两个等腰三角形也相似.五、相似证明中的比例式或等积式、比例中项式、倒数式、复合式证明比例式或等积式的主要方法有“三点定形法”.1.横向定型法欲证AB BCBE BF=,横向观察,比例式中的分子的两条线段是AB和BC,三个字母A B C,,恰为ABC△的顶点;分母的两条线段是BE和BF,三个字母B E F,,恰为BEF△的三个顶点.因此只需证ABC EBF△∽△.2.纵向定型法欲证AB DEBC EF=,纵向观察,比例式左边的比AB和BC中的三个字母A B C,,恰为ABC△的顶点;右边的比两条线段是DE和EF中的三个字母D E F,,恰为DEF△的三个顶点.因此只需证ABC DEF△∽△.3.中间比法由于运用三点定形法时常会碰到三点共线或四点中没有相同点的情况,此时可考虑运用等线,等比或等积进行变换后,再考虑运用三点定形法寻找相似三角形.这种方法就是等量代换法.在证明比例式时,常用到中间比.比例中项式的证明,通常涉及到与公共边有关的相似问题。
北师大九年级数学上第四章相似三角形的性质及判定讲义
教学过程前课回顾1. 相似三角形的判定:①两角对应相等,两个三角形相似②两边对应成比例且夹角相等,两三角形相似 ③三边对应成比例,两三角形相似④如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角形相似⑤平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似⑥直角三角形被斜边上的高分成的两个直角三角形和原三角形相似 2. 相似三角形的性质①相似三角形的对应角相等 ②相似三角形的对应边成比例③相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比④相似三角形周长的比等于相似比⑤相似三角形面积的比等于相似比的平方错题重现1.若3x-7y=0, 则y∶x=_______, =________。
2.若a=7, b=4, c=5, 则b, a, c 的第四比例项d=_______。
3.若线段a=4, b=6, 则a, b 的比例中项为________。
4.已知:===, 则=______,=_________。
5.已知:a∶b∶c=3∶4∶5, a+b -c=4, 则4a+2b-3c=________。
知识详解知识点二:相似三角形的判定 相似三角形的几种基本图形:A C E DB①E DCB A ②A③C BDE D BCA⑥A CB④D A CDBP⑤图①为“A ”型图,条件是DE ∥BC ,基本结论是△ADE ∽△ABC ; 图②为“X ”型图,条件是ED ∥BC ,基本结论是△ADE ∽△ABC ; 图③,图④是图①的变式;图⑤是图②的变式;图⑥是“母子”型图,条件是CD 为斜边上的高,基本结论是△ACD ∽△ABC ∽△CBD 。
典型例题作辅助线构造“A ”“X ”型例1、如图,1==DEAECD BD ,求BF AF 。
(试用多种方法解)方法一:方法二:方法三:例2、如图,AD 是△ABC 的中线,E 是AD 上的一点,且AE=31AD ,CE 交AB 于点F ,若AF=1.2cm ,求AB 的长。
北师大版九上数学4.7相似三角形的性质知识点精讲
知识点总结6.相似三角形的性质相似三角形的性质★★★相似三角形的对应角相等,对应边成比例.相似三角形性质定理1★★★ 相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比.相似三角形性质定理2★★★相似三角形的周长的比等于相似比.相似三角形性质定理3★★★相似三角形的面积的比等于相似比的平方.要点解析1.性质定理1和定理2可以概括为:相似三角形中对应线段(高、中线、角平分线)及周长的比都等于相似比. 即相似三角形对应高的比=对应中线的比=对应角平分线的比=周长的比=相似比.在这些比例中,只要知道任何一组线段的比,就可以求出其他对应线段的比.2.相似三角形的性质3为:相似三角形的面积比=相似比的平方,要防止出现“面积比=相似比”的错误.如果其中两个三角形相似,它们之间有怎样的性质呢?相似三角形线段的关系在相似三角形中,除了角和边外,还有三种主要线段:高线、中线,角平分线。
这些对应线段之间有怎样的关系呢?相似三角形周长和面积的关系周长比等于相似比。
面积的比等于相似比的平方。
【例】一块三角形木板,工人师傅要把它切割成:一块三角形和一块梯形,要使切割出的三角形与梯形面积之比为4:5,该怎么切割呢?同理,当DE平行于AC或AB时,也可以得到类似的结果,因此可以有三种切割方法。
相似三角形的性质(1)对应角相等,对应边的比相等;(2)对应高的比,对应中线的比,对应角平分线的比都等于相似比;(3)相似三角形周长之比等于相似比;面积之比等于相似比的平方.(4)射影定理习题讲析△ABC的三边之比为3:4:5,与其相似的△DEF的最短边是9cm,则其最长边的长是A、5cmB、10cmC、15cmD、30cm解析:C试题分析:由△ABC的三边之比为3:4:5,根据相似三角形的对应边成比例,可得与其相似的△DEF的三边之比为3:4:5,又由与其相似的△DEF的最短边是9cm,即可求得答案。
解:∵△ABC的三边之比为3:4:5,∴与其相似的△DEF的三边之比为3:4:5,∵与其相似的△DEF的最短边是9cm,∴其最长边的长是:15cm.故选:C.如图,在△ABC中,∠C=90°,∠A=30°.在△A′B′C′中,∠C′=90°,A′C′=B′C′.能否分别将这两个三角形各自分割成两个三角形,使△ABC所分成的两个三角形与△A′B′C′所分成的两个三角形分别对应相似?若能,请设计一种分割方案;若不能,请说明理由.解析:试题分析:要想让分成的每个三角形分别对应相似.那么唯一的方法就是把各个三角形中的直角进行分割.把∠C分为45°,45°,那么两个三角形的两个角分别为30°,45°;45°,60°,把∠C′分为30°,60°,那么两个三角形的两个角分别为30°,45°;45°,60°,相应的两个三角形都有两角对应相等,那么相似.试题解析:如图所示:∵∠C=90°,∠A=30°,∠C′=90°,A′C′=B′C′,∴∠B=60°,∠A′=∠B′=45°,又∵∠ACE=∠BCE=45°,∠A′C′F=30°,∠B′C′F=60°,∴∠A=∠AA′C′F,∠ACE=∠A′,∴△ACE∽△C′A′F,∵∠B=∠B′C′F,∠B′=∠BCE,∴△BCE∽△C′B′F.(1)若四边形ABCD的对角线AC将四边形分成面积相等的两个三角形,证明直线AC必平分对角线BD.(2)写出(1)的逆命题,这个逆命题是否正确?为什么?答案。
北师大版九年级上册数学[《探索相似三角形相似的条件》知识点整理及重点题型梳理](基础)
新北师大版九年级上册初中数学重难点突破知识点梳理及重点题型巩固练习探索相似三角形相似的条件(基础)【学习目标】1. 相似三角形的概念.2.相似三角形的三个判定定理.3.黄金分割.4. 进一步探索相似三角形的判定及其应用,提高运用“类比”思想的自觉性,提高推理能力.【要点梳理】要点一、相似三角形的概念相似三角形:三个角分别相等,三边成比例的两个三角形叫做相似三角形.要点诠释:(1)书写两个三角形相似时,要注意对应点的位置要一致,即∽,则说明点A的对应点是A′,点B的对应点是B′,点C的对应点是C′;(2)对于相似比,要注意顺序和对应的问题,如果两个三角形相似,那么第一个三角形的一边和第二个三角形的对应边的比叫做第一个三角形和第二个三角形的相似比.当相似比为1时,两个三角形全等.要点二、相似三角形的三个判定定理定理:两角分别相等的两个三角形相似.两边成比例且夹角相等的两个三角形相似.三边成比例的两个三角形相似.要点诠释:(1)要判定两个三角形是否相似,只需找到这两个三角形的两个对应角相等即可,对于直角三角形而言,若有一个锐角对应相等,那么这两个三角形相似.(2)此方法要求用三角形的两边及其夹角来判定两个三角形相似,应用时必须注意这个角必需是两边的夹角,否则,判断的结果可能是错误的.要点三、相似三角形的常见图形及其变换:要点四、黄金分割1.定义:一般地,点C 把线段AB 分成两条线段AC 和BC 两段,如果AC BC AB AC=,那么线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比.要点诠释:12AC AB =≈0.618AB(0.618是黄金分割的近似值,12是黄金分割的准确值). 2.作一条线段的黄金分割点:如图,已知线段AB ,按照如下方法作图:(1)经过点B 作BD ⊥AB ,使BD =21AB . (2)连接AD ,在DA 上截取DE =DB .(3)在AB 上截取AC =AE .则点C 为线段AB 的黄金分割点. 要点诠释:一条线段的黄金分割点有两个.【典型例题】类型一、相似三角形的概念1. 下列能够相似的一组三角形为( ).A.所有的直角三角形B.所有的等腰三角形C.所有的等腰直角三角形D.所有的一边和这边上的高相等的三角形【答案】C【解析】A 中只有一组直角相等,其他的角是否对应相等不可知;B 中什么条件都不满足;D 中只有一条对应边的比相等;C 中所有三角形都是由90°、45°、45°角组成的三角形,且对应边的比也相等.答案选C.【总结升华】根据相似三角形的概念,判定三角形是否相似,一定要满足三个角对应相等,三条对应边的比相等.举一反三:【变式】(2014秋•江阴市期中)给出下列几何图形:①两个圆;②两个正方形;③两个矩形;④两个正六边形;⑤两个等边三角形;⑥两个直角三角形;⑦两个菱形.其中,一定相似的有 (填序号).【答案】①②④⑤.类型二、相似三角形的三个判定定理2、如图,点D在等边△ABC的BC边上,△ADE为等边三角形,DE与AC交于点F.(1)证明:△ABD∽△DCF;(2)除了△ABD∽△DCF外,请写出图中其他所有的相似三角形.【思路点拨】(1)利用等边三角形的性质以及相似三角形的判定方法两角对应相等的两三角形相似得出即可;(2)利用对顶角的性质以及相似三角形的性质进而判断得出即可.【答案与解析】(1)证明:∵△ABC,△ADE为等边三角形,∴∠B=∠C=∠3=60°,∴∠1+∠2=∠DFC+∠2,∴∠1=∠DFC,∴△ABD∽△DCF;(2)解:∵∠C=∠E,∠AFE=∠DFC,∴△AEF∽△DCF,∴△ABD∽△AEF,故除了△ABD∽△DCF外,图中相似三角形还有:△AEF∽△DCF,△ABD∽△AEF.【总结升华】此题主要考查了相似三角形的两个对应角相等的判定方法以及等边三角形的性质等知识,得出对应角关系是解题关键.举一反三【变式】如图,在△ABC中,AB=AC,BD=CD,CE⊥AB于E.求证:△ABD∽△CBE.【答案】证明:在△ABC中,AB=AC,BD=CD,∴AD⊥BC,∵CE⊥AB,∴∠ADB=∠CEB=90°,又∵∠B=∠B,∴△ABD∽△CBE.3、(2014秋•洪江市期中)如图所示,在△ABC中,AB=8cm,BC=16cm,点P从点A开始沿边AB 向点B以1cm/s的速度移动,点Q从点B开始沿边BC向点C以2cm/s的速度移动,如果点P、Q同时出发,经过多长时间后,△PBQ与△ABC相似?试说明理由.【思路点拨】首先设经x秒钟△PBQ与△ABC相似,由题意可得AP=xcm,BQ=2xcm,BP=AB﹣AP=(8﹣x)cm,又由∠B是公共角,分别从=或=分析,即可求得答案.【答案与解析】解:设经x秒钟△PBQ与△ABC相似,则AP=xcm,BQ=2xcm,∵AB=8cm,BC=16cm,∴BP=AB﹣AP=(8﹣x)cm,∵∠B是公共角,∵①当=,即=时,△PBQ∽△ABC,解得:x=4;②当=,即=时,△QBP∽△ABC,解得:x=1.6,∴经4或1.6秒钟△PBQ与△ABC相似.【总结升华】此题考查了相似三角形的判定.属于动点型题目,注意掌握数形结合思想、分类讨论思想与方程思想的应用.4、网格图中每个方格都是边长为1的正方形.若A,B,C,D,E,F都是格点,试说明△ABC∽△DEF.【思路点拨】利用图形与勾股定理可以推知图中两个三角形的三条对应边成比例,由此可以证得△ABC∽△DEF.【答案与解析】举一反三【变式】如图所示,在4×4的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上.(1)填空:∠ABC=________,BC=_________;(2)判断△ABC与△DEF是否相似?并证明你的结论.【答案】(1)解:∠ABC=90°+45°=135°,(2)△ABC ∽△DEF .证明:∵在4×4的正方形方格中,∠ABC=135°,∠DEF=90°+45°=135°, ∴∠ABC=∠DEF .BC FE===∴△ABC ∽△DEF .类型三、黄金分割5. 如图所示,矩形ABCD 是黄金矩形(即BC AB =215-≈0.618),如果在其内作正方形CDEF ,得到一个小矩形ABFE ,试问矩形ABFE 是否也是黄金矩形?【思路点拨】(1)矩形的宽与长之比值为215-,则这种矩形叫做黄金矩形.(2)要说明ABFE 是不是黄金矩形只要证明AB AE =215-即可. 【答案与解析】矩形ABFE 是黄金矩形. 理由如下:因为AB AE =ABED AB AD AB ED AD -=- =21512151)15)(15()15(21152-=-+=-+-+=-- 所以矩形ABFE 也是黄金矩形.【总结升华】判断四边形是否是黄金矩形,要根据实际条件灵活选择判断方法.举一反三:【变式】以长为2的线段AB 为边作正方形ABCD ,取AB 的中点P ,连接PD ,在BA 的延长线上取点F ,使PF =PD ,以AF 为边作正方形AMEF ,点M 在AD 上,如图所示,(1)求AM ,DM 的长,(2)试说明AM 2=AD ·DM(3)根据(2)的结论,你能找出图中的黄金分割点吗?【答案】(1)∵正方形ABCD 的边长是2,P 是AB 中点,∴AD =AB =2,AP =1,∠BAD =90°,∴PD =522=+AD AP 。
北师大九年级数学上第四章相似三角形的性质讲义
相似三角形的性质一、知识点回顾1、相似三角形的性质(1)相似三角形的对应角相等,对应边成比例。
(2)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比。
(3)相似三角形周长的比等于相似比。
以上各条可以概括为:相似三角形的对应线段之比等于相似比。
(4)相似三角形面积之比等于相似比的平方。
二、例题:例1、如图,在Rt △ABC 内有三个内接正方形,DF=9cm ,GK=6cm ,求第三个正方形的边长PQ 。
解: 设PQ=xcm ,则PK=6-x 。
∵GF=9-6=3cmRt △FGK ∽ Rt △KPQ ∴PQPKGK GF = 即:xx -=663∴x =4cm即:正方形的边长为4cm例2、如图,在△ABC 中,EF ∥BC ,且EF=32BC=2cm ,△AEF 的周长为10cm ,求梯形BCFE 的周长。
解:∵EF ∥BC∴△AEF ∽ △ABC ∴BCEFABC AEF =∆∆周长周长(相似三角形的周长之比等于相似比)∴△ABC 的周长为15cm∴梯形BCFE 的周长=△ABC 的周长-△AEF 周长+2EF=9cm例3、如图,△ABC 被DE 、FG 分成面积相等的三部分,且DE ∥FG ∥BC 。
求DE :FG :BC 。
解:∵DE ∥FG ∴△ADE ∽ △AFG∴2⎪⎭⎫ ⎝⎛=∆∆FG DE S S AFG ADE (相似三角形的面积之比等于相似比的平方)。
∵S 1=S 2∴212=⎪⎭⎫⎝⎛FG DE 即:21=FG DE 同理31=BC DE ∴DE :FG :BC=1:2:3例4、如图,矩形FGHN 内接于△ABC ,F 、G 在BC 上,N 、H 分别在AB 、AC 上,且AD ⊥BC 于D ,交NH 于E ,AD=8cm ,BC=24cm ,NF :NH=1:2,求此矩形的面积。
解:∵NH ∥BC ∴△ANH ∽ △ABC 又∵AD ⊥BC ,NH ∥FG ∴AE ⊥NHD∴BCNHAD AE =(相似三角形的对应边上的高之比等于相似比) 设NF=x ,则NH=2x ,AE=AD -ED=8-x ∴24288xx =- ∴x =4.8 ∴S 矩形FGHN =NF×NH=46.08答:矩形的面积为46.08cm 2三、训练题: 【基础与巩固】1.等腰三角形ABC 的腰的长为12,底的长为10,等腰三角形A ′B ′C•′的两边长分别为5和6,且△ABC ∽△A ′B ′C ′,则△A ′B ′C ′的周长为( ).(A )17 (B )16 (C )17或16 (D )342.两个相似多边形的一组对应边分别为3cm•和4.5cm ,•如果它们的面积和为78cm 2,那么较大的多边形面积为( ).(A )46.8cm 2 (B )42cm 2 (C )52cm 2 (D )54cm 23.顺次连接三角形三边的中点,所成的三角形与原三角形的对应高的比是( ). (A )1:4 (B )1:3 (C )1:2 (D )1:24.已知△ABC ∽△A ′B ′C ′,且AB=2A ′B ′,如果△ABC 的周长是26cm ,•那么△A ′B ′C ′的周长是______cm ;5.把一个四边形放大成与其相似的四边形,如果边长扩大为原来的10倍,•那么面积扩大为原来的________倍,如果面积扩大为原来的25倍,那么边长扩大为原来的_________倍;6.要把一根1m 长的铜丝截成两段,用它们围成两个相似三角形,且相似比为35,那么截成的两段铜丝长度的差应是______m .7.如果两个相似三角形对应高的比是1:2,那么它们的面积比是______;8.如果两个相似三角形对应中线的比等于5:6,•那么这两个相似三角形的相似比为_______;9.如果两个相似三角形的周长分别为9cm 和15cm ,•那么这两个相似三角形的对应角平分线的比为________;10.若△ABC ∽△A ′B ′C ′,AD 、A ′D ′分别是△ABC 、△A ′B ′C ′的高,AD : A ′D ′=3:4,△A ′B ′C ′的一条中线B ′E ′=16cm ,则△ABC 的中线 BE=_______cm .11.在一张比例尺为1:5 000•的地图上,•一块多边形区域的周长是72cm ,•面积是320cm 2,求这个区域的实际周长和面积.12.已知△ABC 的三边长分别为3,4,5,与它相似的△A ′B ′C ′的最大边长为15,•求△A ′B ′C ′的面积.13.如图,△ABC ∽△A ′B ′C ′,AD 、A ′D ′分别是这两个三角形的高,EF 、E•′F ′分别是这两个三角形的中位线.''''AD EFA D F F 与相等吗?为什么?14. 如图,在Rt △ABC 中,∠A=90°,AB=3cm ,AC=4cm ,以斜边BC 上距点B3cm 的点P•为中心,把AB C F G HND E这个三角形按逆时针方向旋转90°成图中的△DEF位置,•求旋转前后两个直角三角形重叠部分的面积是多少?15. 如图,△ABC∽△A′B′C′,AD、A′D′分别是△ABC、△A′B′C′的角平分线,BE、B′E′分别是△ABC、△A′B′C′的中线,AD、BE相交于点O,A′D′、B′E′相交于点O′.△AOE与△A′O′E′相似吗?为什么?16. 如图,在矩形FGHN中,点F、G在边BC上,点N、H分别在边AB、AC上,且AD⊥BC,•垂足为D,AD交NH于点E,AD=8cm,BC=24cm,NF:NH=1:2,求此矩形的面积.17. 一块直角三角形木块的面积为1.5m2,直角边AB长1.5m,想要把它加工成一个面积尽可能大的正方形桌面,甲、乙两人的加工方法分别如图①、图②所示.你能用所学的知识说明谁的加工方法更符合要求吗?(加工损耗忽略不计)【拓展与延伸】1、如图,梯形ABCD中,AD∥BC,对角线BD分成两部分面积的比是1:2,EF是中位线,则被EF分成的两部分面积之比为S AEFD:S BCFE=()A、3:4B、4:5 C:5:7 D、7:92、如图,梯形ABCD中,AD∥BC,对角线AC、BD相交于点O,若S△AOD:S△ACD=1:3,则S△AOD:S△BOC 等于()A、1:6 B、1:3 C、1:4 D、1:63、如图,DE∥BC,DE把△ABC的面积分成相等的两部分,那么DE:BC等于()A、1:2B、1:4C、2:2D、2:24、如图,将△ABC的高AD三等分,过每一个分点作底边的平行线,这样把三角形分成三部分,设这三部分的面积为S1,S2,S3,则S1:S2:S3=()A 、1:2:3B 、2:3:4C 、1:3:5D 、3:5:75、如图,在△ABC 中,∠CBA=90°,BD ⊥AC 于D ,则下面关系式中错误的是( )A 、AB 2=AD×AC B 、BD 2=AD×DC C 、AB 2=AC 2-BC 2 D 、AB 2=AC×DC6、如图,在△ABC 中,AD ⊥BC ,PQMN 为正方形,且顶点在△ABC 各边上,BC=60cm ,AD=40cm ,则正方形边长为( )A 、12cmB 、16cmC 、20cmD 、24cm7、如果两个相似三角形的对应边的比是4:5,周长的和为18cm ,那么这两个三角形的周长分别为_______________。
九年级相似三角形知识点总结
九年级相似三角形知识点总结在九年级的数学课堂上,我们学习了很多与几何形状有关的知识,其中一个重要的内容就是相似三角形。
相似三角形是指两个具有相同形状但可能不同大小的三角形。
在本文中,我们将对九年级相似三角形的知识点进行总结,希望能够帮助同学们更好地理解和应用这些知识。
1. 相似三角形的定义相似三角形是指具有相同形状但可能不同大小的三角形。
两个三角形相似的条件是它们的对应角度相等,并且对应边的比例相等。
如果两个三角形满足这两个条件,我们可以说它们是相似的。
2. 相似三角形的判定在判断两个三角形是否相似时,我们可以使用以下几种方法:(1)AA相似判定法:如果两个三角形的两个角分别相等,则它们是相似的。
(2)SAS相似判定法:如果两个三角形的一个角相等,并且有一个对应边的比例相等,则它们是相似的。
(3)SSS相似判定法:如果两个三角形的三条边的比例都相等,则它们是相似的。
通过掌握这些判定方法,我们可以准确地判断两个三角形是否相似。
3. 相似三角形的性质相似三角形具有一些特殊的性质,这些性质对于解决与相似三角形相关的问题非常有帮助。
(1)相似三角形的对应边比例相等性质:如果两个三角形相似,那么它们的对应边之间的比例相等。
具体来说,如果两个三角形的对应边分别为a、b、c和d、e、f,那么有a/b=c/d=e/f。
(2)相似三角形的角度比例相等性质:如果两个三角形相似,那么它们的对应角度之间的比例相等。
具体来说,如果两个三角形的对应角度分别为A、B、C和A'、B'、C',那么有A/A'=B/B'=C/C'。
(3)相似三角形的高线比例相等性质:如果两个三角形相似,那么它们的对应高线之间的比例相等。
具体来说,如果两个三角形的对应边分别为a、b、c和d、e、f,那么有h(a)/h(d)=h(b)/h(e)=h(c)/h(f),其中h(x)表示与边x相对应的高线的长度。
北师大版九年级上册数学相似三角形整理与复习
相似三角形整理与复习【考点分析】①了解比例的性质、线段的比、成比例的线段;通过建筑、艺术上的实例了解黄金分割. ②通过具体实例认识图形的相似,了解相似多边形和相似比. ③掌握两条直线被一组平行线所截,所得的对应线段成比例.一、比例线段1. 比例线段:在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条 线段叫做成比例线段,简称比例线段.2. 第四比例项:若d cb a =,则d 叫a 、b 、c 的第四比例项. 3. 比例中项:若cb b a =,即ac b =2,则b 叫a 、c 的比例中项.针对练习:1、下列说法中正确的是( )A.两条线段的比总是整数B.两条线段的比总是正数C.两条线段的比可能为0D.两条线段的比与所采用的长度单位有关 2、下列各组中的四条线段成比例的是( )A.a =2,b =3,c =2,d =3B.a =4,b =6,c =5,d =10C.a =2,b =5,c =23,d =15D.a =2,b =3,c =4,d =1二、比例的性质1 基本性质:ac b cbb a bc ad d c b a =⇔==⇔=2;(a 、b 、c 、d 都不为零) 2 等比性质: 如果)0(≠++++====n f d b nm f e d c b a ,那么b a n f d b m e c a =++++++++ .温馨提示:(1)此性质的证明运用了“设k 法”,这种方法是有关比例计算,变形中一种常用方法.(2)应用等比性质时,要考虑到分母是否为零.(3)可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.如:ba f db ec a f ed c b a fe d c b a =+-+-⇒=--=⇒==32323322;其中032≠+-f d b三、黄金分割点C 把线段AB 分成两条线段AC 和BC, 如果ACBCAB AC =,那么称线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点, AC 与AB 的比叫做黄金比.四、相似多边形1. 一般地,形状相同的图形称为相似图形。
北师大版初三(上)数学:相似三角形性质(学生版)
相似三角形性质1.性质1相似三角形对应高的比、对应角平分线的比、对应中线的比都等于_________. 2. 性质2相似三角形的周长比等于________,面积比等于________.1、三角形相似的性质【例1】如图,AD 是△ABC 的高,AD=h ,点R 在AC 边上,点S 在AB 边上,SR ⊥AD ,垂足为E.当SR=12BC 时,求DE 的长.如果SR=13BC 呢?练1. △DEF ∽△ABC ,若相似比k =1,则△DEF ______△ABC ;若相似比k =2,则=AC DF ______,=EFBC______.练2. (2014春•普陀区校级月考)若△ABC ∽△A 1B 1C 1,且相似比为k 1;△A 1B 1C 1∽△A 2B 2C 2,且相似比为k 2,则△ABC ______△A 2B 2C 2,且相似比为______.【例2】如图,小强自制了 一个小孔成像装置,其中纸筒的长度为15 cm .他准备了一支长为20 cm 的蜡烛,想要得到高度为5 cm 的像,蜡烛应放在距离纸筒多远的地方?练3.如图,AB 和CD 表示两根直立于地面的柱子,AD 和BC 表示起固定作用的两根钢筋,AD 与BC的交点为M.已知AB = 10 m,CD = 15 m,求点M离地面的高度MH.练4.△ABC ∽△A′B′C′,AD 和A′D′是它们的对应角平分线.已知AD = 8 cm,A′D′= 3 cm,求△ABC 与△A′B′C′对应高的比.2.相似三角形面积的比、周长比【例3】如果△ABC ∽△A′B′C′,相似比为2,那么△ABC 与△A′B′C′的周长比是多少?面积比呢?如果△ABC ∽△A′B′C′,相似比为k,那么你能求△ABC 与△A′B′C′的周长比和面积比吗?练5. 等腰三角形ABC 的腰长为12,底的长为10,等腰三角形A′B′C′的两边长分别为5和6,且△ABC ∽△A′B′C′,则△A ‘B ′C ′的周长为( )。
北师大版九年级数学上册 相似三角形的性质
SE R
∴SR∥BC
∴∠AER=∠ADC=90° ∴ AE是ΔASR的高.
B PD Q C
BC=60cm,AD=40cm,四边形PQRS是正方形. (2) ΔASR与ΔABC相似吗?为什么?
解: ΔASR与ΔABC相似. 理由:
∵ SR∥BC
A
∴ ∠ASR=∠B, ∠ARS=∠C ∴ ΔASR与ΔABC相似.
【详解】解:如图所示,过点 C 作CF AB交 AB 的延长线于点 F,设 BD=m,
∵ AD AC , ∴∠DAC=90°, 又∵∠DAE+∠DAC+∠CAF=180°, ∴∠DAE+∠CAF=90°, 又∵ , , DE AB CF AB ∴∠DEA=∠CFA=90°, 又∵∠CAF+∠ACF=90°, ∴∠DAE=∠ACF,
故这两条角平分线的长分别为18cm,24cm.
练一练
1、△ABC∽△A'B'C',BD和B'D'是它们的对应 中线,已知 AC ,2B'D'=4cm,求BD的长.
A' C' 3
解:∵ △ABC∽△A'B'C′, BD和B'D'是它们的对应中线
∴
BD AC 2 B'D' A'C' 3
(相似三角形对应中线的比等于相似比)
AD
BC
,
AD∥
BC
,得出
BE
1 2
AD
,
BEF ∽△DAF ,由相似三角形的性质
得出 : : 即可. S BEF
S
ADF
(1)2 2
1
4
【详解】解: 点 E 是边 BC 的中点,
九年级数学相似三角形知识点汇总参考(搜集整理全面细致)
九年级数学相似三角形知识点汇总参考一、比例线段及比例的性质1.比例线段:(1)线段的比:如果选用同一长度单位量得两条线段a,b的长度分别是m,n,那么就说这两条线段的比是a:b=m:n,或写成,其中a叫做比的前项;b叫做比的后项.(2)成比例线段:在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段.(3)比例的项:已知四条线段a,b,c,d,如果,那么a,b,c,d,叫做组成比例的项,线段a,d叫做比例外项,线段b,c叫做比例内项,线段d还叫做a,b,c的第四比例项.(4)比例中项:如果作为比例线段的内项是两条相同的线段,即a:b=b:c或,那么线段b叫做线段a和c的比例中项.2.比例的性质(1)比例的基本性质:(2)反比性质:(3)更比性质: 或(4)合比性质:(5)等比性质: 且3.平行线分线段成比例定理(1)三角形一边的平行线性质定理: 平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例.(2)三角形一边的平行线性质定理推论:平行于三角形一边并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边的对应成比例.(3)三角形一边的平行线判定定理:如果一条直线截三角形的两边所得的对应线段成比例,那么这条直线平行于三角形的第三边.(4)三角形一边的平行线判定定理推论:如果一条直线截三角形两边的延长线(这两边的延长线在第三边的同侧)所得的对应线段成比例,那么这条直线平行于三角形的第三边.(5)平行线分线段成比例定理:两条直线被三条平行的直线所截,截得的对应线段成比例.(6)平行线等分线段定理:两条直线被三条平行的直线所截,如果在一条直线上截得的线段相等,那么在另一条直线上截得的线段也相等.这几个定理主要提出由平行线可得到比例式;反之,有比例可得到平行线.首先要弄清三个基本图形:这三个基本图形的用途是: 1.由平行线产生比例式 基本图形(1): 若l 1//l 2//l 3,则或或或 基本图形(2): 若DE//BC ,则或或或 基本图形(3): 若AC//BD ,则或或或在这里必须注意正确找出对应线段,不要弄错位置. 2.由比例式产生平行线段 基本图形(2):若, , , ,, 之一成立,则DE//BC. 基本图形(3):若,,,,,之一成立,则AC//DB.4.三角形的重心三角形三条中线的交点叫做三角形的重心.二、黄金分割 1.黄金分割是指把一条线段(AB)分成两条线段,使其中较大的线段(AC)是原线段(AB)与较小线段(BC)的比例中项(AC 2=AB·BC),C 点为黄金分割点. 2.黄金分割的求法 ①代数求法:已知:线段AB ,求作:线段AB 的黄金分割点C.分析:设C 点为所求作的黄金分割点,则AC 2=AB·CB,设AB =,AC =x ,那么 CB =-x , 由AC 2=AB·CB,得:x 2=·(-x)=0, 根据求根公式,得:x =整理后,得:x 2+x -∴(不合题意,舍去),即AC =AB≈0.618AB, 则C 点可作.②黄金分割的几何求法(尺规法):已知:线段AB , 求作:线段AB 的黄金分割点C. 作法:如图:(1)过B 点作BD ⊥AB ,使BD =AB.(2)连结AD ,在AD 上截取DE =DB.(3)在AB 上截取AC =AE. 则点C 就是所求的黄金分割点.证明:∵AC =AE =AD -AB ,而AD =∴AC =.5-1三、相似三角形 1.相似多边形(1)相似多边形的特征:相似多边形的对应角相等,对应边的比相等.(2)相似多边形的识别:如果两个多边形的对应角相等,对应边的比相等,那么这两个多边形相似. (3)相似比:我们把相似多边形对应边的比称为相似比. (4)相似多边形的性质①相似多边形的对应角相等,对应边的比相等. ②相似多边形的周长比等于相似比.③相似多边形的面积比等于相似比的平方. 2.相似三角形(1)相似三角形的定义:形状相同的三角形是相似三角形. (2)相似三角形的表示方法:用“∽”表示,读作相似于.如:△ABC 和△DEF 相似,可以写成△ABC ∽△DEF ,也可以写成△DEF ∽△ABC ,读作△ABC 相似于△DEF. (3)相似三角形的性质:①相似三角形的对应角相等,对应边的比相等. ②相似三角形对应边上的高的比相等,对应边上的中线的比相等,对应角的角平分线的比相等,都等于相似比. ③相似三角形的周长的比等于相似比,面积的比等于相似比的平方. (4)相似三角形的判定:①平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似; ②如果两个三角形的三组对应边的比相等,那么这两个三角形相似;③如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似; ④如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.⑤如果一个直角三角形的斜边和一条直角边与另一个三角形的斜边和一条直角边的比对应相等,那么这两个直角三角形相似.(5)相似三角形应用举例相似三角形的知识在实际生产和生活中有着广泛的应用,可以解决一些不能直接测量的物体的长度问题,加深学生对相似三角形的理解和认识.四、实数与向量相乘 1.实数与向量相乘的意义一般的,设为正整数,为向量,我们用表示个相加;用表示个相加.又当为正整数时,表示与同向且长度为的向量. 诠释:设P 为一个正数,P 就是将的长度进行放缩,而方向保持不变;—P 也就是将的长度进行放缩,但方向相反.2.向量数乘的定义一般地,实数与向量的相乘所得的积是一个向量,记作,它的长度与方向规定如下:(1)如果时,则:①的长度:;②的方向:当时,与同方向;当时,与反方向;(2)如果时,则:,的方向任意.实数与向量相乘,叫做向量的数乘.n a a nn a a n -n -m a m n a mnk a ka k 0,a 0且≠≠ka ||||||ka k a =ka 0k >ka a 0k <ka a k 0,a=0=或0ka =ka k a(1)向量数乘结果是一个与已知向量平行(或共线)的向量; (2)实数与向量不能进行加减运算;(3)表示向量的数乘运算,书写时应把实数写在向量前面且省略乘号,注意不要将表示向量的箭头写在数字上面;(4)向量的数乘体现几何图形中的位置关系和数量关系. 3.实数与向量相乘的运算律 设为实数,则:(1)(结合律);(2)(向量的数乘对于实数加法的分配律);(3) (向量的数乘对于向量加法的分配律) 4.平行向量定理(1)单位向量:长度为1的向量叫做单位向量. 诠释:任意非零向量与它同方向的单位向量的关系:,.(2)平行向量定理:如果向量与非零向量平行,那么存在唯一的实数,使.诠释:(1)定理中,,的符号由与同向还是反向来确定.(2)定理中的“”不能去掉,因为若,必有,此时可以取任意实数,使得成立. (3)向量平行的判定定理:是一个非零向量,若存在一个实数,使,则向量与非零向量平行. (4)向量平行的性质定理:若向量与非零向量平行,则存在一个实数,使. (5)A 、B 、C 三点的共线若存在实数λ,使 .要点五、向量的线性运算 1.向量的线性运算定义向量的加法、减法、实数与向量相乘以及它们的混合运算叫做向量的线性运算. 诠释:(1)如果没有括号,那么运算的顺序是先将实数与向量相乘,再进行向量的加减. (2)如果有括号,则先做括号内的运算,按小括号、中括号、大括号依次进行. 2.向量的分解平面向量基本定理:如果是同一平面内两个不共线(或不平行)的向量,那么对于这一平面内的任一向量,有且只有一对实数,使得.ka m n 、()()m na mn a =()m n a ma na +=+m (+b)=m a a mb +a 0a 0a a a =01a a a=b a m b ma =b m a=m b a a 0≠a 0=b 0=m b ma =a m b ma =b a b a m b ma =⇔AB //BC ⇔AB BC λ=12,e e a 12,λλ1122a e e λλ=+(1)同一平面内两个不共线(或不平行)向量叫做这一平面内所有向量的一组基底.一组基底中,必不含有零向量.(2) 一个平面向量用一组基底表示为形式,叫做向量的分解,当相互垂直时,就称为向量的正分解.(3) 以平面内任意两个不共线的向量为一组基底,该平面内的任意一个向量都可表示成这组基底的线性组合,基底不同,表示也不同.3.用向量方法解决平面几何问题 (1)利用已知向量表示未知向量用已知向量来表示另外一些向量,除利用向量的加、减、数乘运算外,还应充分利用平面几何的一些定理,因此在求向量时要尽可能转化到平行四边形或三角形中,利用三角形中位线、相似三角形对应边成比例等平面几何的性质,把未知向量转化为与已知向量有直接关系的向量来求解. (2)用向量方法研究平面几何的问题的“三步曲”:①建立平面几何与向量的联系,将平面几何问题转化为向量问题. ②通过向量运算,研究几何元素的关系. ③把运算结果“翻译”成几何关系.12,e e 12,e e 1122a e e λλ=+12,e e。
北师大版九年级数学上册_三角形相似判定方法的汇总及选用
三角形相似判定方法的汇总及选用一.相似三角形的判定方法:(1)定义法:对应角相等,对应边的比相等的两个三角形相似.(2)平行法:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似.(3)判定定理1:如果两个三角形的三组对应边的比相等,那么这两个三角形相似.(4)判定定理2:如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似.(5)判定定理3:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.注意:①在两个三角形中,只要满足两个角对应相等,那么这两个三角形相似,证明时,关键是寻找对应角;②一般地,公共角、对顶角、同角的余角(或补角)都是相等的,在证明过程中要特别注意,这一判定方法是三角形相似的最常用的方法.二.合理选择判定方法在运用相似三角形的判定定理解几何问题时,要注意定理的选择,即①已知有一角相等时,可选择判定定理2 或判定定理3;②已知有两边的比相等时,可选择判定定理1或判定定理2.还应注意形似三角形判定定理的作用,即①可以用来判定两个三角形相似;②间接证明角相等,线段成比例:间接地为计算线段长度及角的大小创造条件.例1:如图1,点D 在△ABC 的边AB 上,满足怎样的条件时,△ACD ∽△ABC ?试分别加以举例.分析:此题属于探索性问题,由相似三角形的判定方法可知:△ACD 与△ABC 已有公共角∠A,要使这两个三角形相似,可根据相似三角形的判定方法寻找一个条件即可.解:当满足以下三个条件之一时,△ACD ∽△ABC.条件一:∠ACD=∠B;条件二:∠ADC=∠ACB; 条件三:,ABAC AC AD =.2AB AD AC ⋅= 反思:本题探索的问题是相似三角形的判别方法,在探索两个三角形形似时,用分析法,可先证明△ACD ∽△ABC 然后寻找两个三角形中边的关系或角的关系即可.例2:如图2,已知△ABC 中,,900=∠C D 、E 在BC 上,且BD=DE=EC=AC ,指出图中相似三角形,并证明你的结论.分析:先利用排除法找到不可能形似的,再证明相似的,△ACE 是等腰直角三角形,所以不可能同其他三角形相似;又△ACD 是直角三角形,所以不可能和非直角三角形△ADE 、△ABD 、△ABE 相似;又△ACD 和△ACB 对应边的比不相等,所以一也不可能相似;因为∠AED=∠BEA ,所以△AED 和△BEA 可能相似.证明:设AC=CE=ED=DB=a.,2,22a EB ED a AE =⋅=.2EB ED AE ⋅= 即AEEB ED AE =.∠AED=∠BEA , △AED ∽△BEA.反思:对于具体问题,一定要灵活处理.因为此题出现三角形较多,首先要“快刀斩乱麻”去掉那些不可能相似的三角形,再来检验那些可能相似的三角形. 例3:(苏州)如图3,梯形ABCD 中.AB ∥CD .AB=2CD ,E,F 分别是AB ,BC 的中点.EF 与BD 相交于点M .(1)求证:△EDM ∽△FBM ;(2)若DB=9,求BM .分析:(1)从已知条件中易推出BE=CD,BE ∥CD,于是根据一组对边平行且相等的四边形为平行四边形,得四边形DCBE 是平行四边形.因此CB ∥DE,故可推出△EDM ∽△FBM. (2)利用(1)中的△EDM ∽△FBM ,可得,BFDE BM DM =而F 为BC 的中点,得DE=2BF,DM=2EB.故BM 为所求. 解:(1)∵E 是AB 的中点,∴AB=2EB.∵AB ∥CD,∴四边形CBED 为平行四边形,∴ CB ∥DE.∴∠DEM=∠BFM, ∠EDM=∠FBM. ∴△EDM ∽△FBM.(2) ∵△EDM ∽△FBM, ∴BFDE BM DM =.∵F 是BC 的中点,∴ DE=2BF. ∴DM=2BM,∴BM=.331=DB图2BA 图3反思:遇到有平行条件时,通常利用平行线的性质;借助平行线的性质,找相等的角来证明三角形相似.例4:如图4,已知在△ABC 中, ∠C=,900D 、E 分别为AB 、BC 上的点,且.BC BE AB BD ⋅=⋅求证:DE ⊥AB.分析:证垂直的方法很多,我们已知当一个三角形与已知直角三角形全等,那么这个三角形也是直角三角形,类似地,我们也可以通过证一个三角形与已知三角形相似来证明垂直问题,而由∠B 为公共角, .BC BE AB BD ⋅=⋅可得△ABC ∽△EBD,故问题得证.证明: ∵.BC BE AB BD ⋅=⋅∠B=∠B, ∴△ABC ∽△EBD.∴∠EDB=∠C.又∵∠C=,900∴∠EDB=.900 ∴DE ⊥AB.反思:若将题设里的BC BE AB BD ⋅=⋅与结论DE ⊥AB 交换后,该如何证明?请与同伴交流你的证明思路.图4。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
板块考试要求A 级要求B 级要求C 级要求相似三角形 了解相似三角形掌握相似三角形的概念,判定及性质,以及掌握相关的模型会运用相似三角形相关的知识解决有关问题一、相似的有关概念1.相似形具有相同形状的图形叫做相似形.相似形仅是形状相同,大小不一定相同.相似图形之间的互相变换称为相似变换. 2.相似图形的特性两个相似图形的对应边成比例,对应角相等. 3.相似比两个相似图形的对应角相等,对应边成比例.二、相似三角形的概念1.相似三角形的定义对应角相等,对应边成比例的三角形叫做相似三角形.如图,ABC △与A B C '''△相似,记作ABC A B C '''△∽△,符号∽读作“相似于”.知识点睛 中考要求 相似三角形的性质及判定A 'B 'C 'CB A2.相似比相似三角形对应边的比叫做相似比.全等三角形的相似比是1.“全等三角形”一定是“相似形”,“相似形”不一定是“全等形”.三、相似三角形的性质1.相似三角形的对应角相等如图,ABC △与A B C '''△相似,则有A A B B C C '''∠=∠∠=∠∠=∠,,.A 'B 'C 'CB A2.相似三角形的对应边成比例ABC △与A B C '''△相似,则有AB BC ACk A B B C A C ===''''''(k 为相似比).3.相似三角形的对应边上的中线,高线和对应角的平分线成比例,都等于相似比.如图1,ABC △与A B C '''△相似,AM 是ABC △中BC 边上的中线,A M ''是A B C '''△中B C ''边上的中线,则有AB BC AC AMk A B B C A C A M ====''''''''(k 为相似比). M 'MA 'B 'C 'C BA图1如图2,ABC △与A B C '''△相似,AH 是ABC △中BC 边上的高线,A H ''是A B C '''△中B C ''边上的高线,则有AB BC AC AHk A B B C A C A H====''''''''(k 为相似比).H 'H AB C C 'B 'A '图2如图3,ABC △与A B C '''△相似,AD 是ABC △中BAC ∠的角平分线,A D ''是A B C '''△中B A C '''∠的角平分线,则有AB BC AC ADk A B B C A C A D ====''''''''(k 为相似比).D 'D A 'B 'C B A图34.相似三角形周长的比等于相似比. 如图4,ABC △与A B C '''△相似,则有AB BC ACk A B B C A C ===''''''(k 为相似比).应用比例的等比性质有AB BC AC AB BC ACk A B B C A C A B B C A C ++====''''''''''''++.A 'B 'C 'CB A图45.相似三角形面积的比等于相似比的平方.如图5,ABC △与A B C '''△相似,AH 是ABC △中BC 边上的高线,A H ''是A B C '''△中B C ''边上的高线,则有AB BC AC AHk A B B C A C A H ====''''''''(k 为相似比).进而可得21212ABC A B C BC AHS BC AH k S B C A H B C A H '''⋅⋅==⋅=''''''''⋅⋅△△.H 'H AB C C 'B 'A '图5四、相似三角形的判定1.平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似.2.如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.可简单说成:两角对应相等,两个三角形相似.3.如果一个三角形的两边和另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似.4.如果一个三角形的三条边与另一个三角形的你对应成比例,那么这两个三角形相似.可简单地说成:三边对应成比例,两个三角形相似.5.如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.6.直角三角形被斜边上的高分成的两个直角三角形相似(常用但要证明)7.如果一个等腰三角形和另一个等腰三角形的顶角相等或一对底角相等,那么这两个等腰三角形相似;如果它们的腰和底对应成比例,那么这两个等腰三角形也相似.五、相似证明中的比例式或等积式、比例中项式、倒数式、复合式证明比例式或等积式的主要方法有“三点定形法”.1.横向定型法欲证AB BCBE BF=,横向观察,比例式中的分子的两条线段是AB和BC,三个字母A B C,,恰为ABC△的顶点;分母的两条线段是BE和BF,三个字母B E F,,恰为BEF△的三个顶点.因此只需证ABC EBF△∽△.2.纵向定型法欲证AB DEBC EF=,纵向观察,比例式左边的比AB和BC中的三个字母A B C,,恰为ABC△的顶点;右边的比两条线段是DE和EF中的三个字母D E F,,恰为DEF△的三个顶点.因此只需证ABC DEF△∽△.3.中间比法由于运用三点定形法时常会碰到三点共线或四点中没有相同点的情况,此时可考虑运用等线,等比或等积进行变换后,再考虑运用三点定形法寻找相似三角形.这种方法就是等量代换法.在证明比例式时,常用到中间比.比例中项式的证明,通常涉及到与公共边有关的相似问题。
这类问题的典型模型是射影定理模型,模型的特征和结论要熟练掌握和透彻理解.倒数式的证明,往往需要先进行变形,将等式的一边化为1,另一边化为几个比值和的形式,然后对比值进行等量代换,进而证明之.复合式的证明比较复杂.通常需要进行等线代换(对线段进行等量代换),等比代换,等积代换,将复合式转化为基本的比例式或等积式,然后进行证明.六、相似证明中常见辅助线的作法在相似的证明中,常见的辅助线的作法是做平行线构造成比例线段或相似三角形,同时再结合等量代换得到要证明的结论.常见的等量代换包括等线代换、等比代换、等积代换等. 如图:AD 平分BAC ∠交BC 于D ,求证:BD ABDC AC=.证法一:过C 作CE AD ∥,交BA 的延长线于E . ∴1E ∠=∠,23∠=∠.∵12∠=∠,∴3E ∠=∠.∴AC AE =.∵AD CE ∥,∴BD BA BADC BE AC==. 点评:做平行线构造成比例线段,利用了“A”型图的基本模型.证法二;过B 作AC 的平行线,交AD 的延长线于E . ∴12E ∠=∠=∠,∴AB BE =.∵BE AC ∥,∴BD BE AB DC AC AC==. 点评:做平行线构造成比例线段,利用了“X”型图的基本模型.七、相似证明中的面积法面积法主要是将面积的比,和线段的比进行相互转化来解决问题. 常用的面积法基本模型如下:如图:1212ABC ACDBC AHS BC S CD CD AH ⋅⋅==⋅⋅△△.321ED CAB BA CDE12图1:“山字”型HD CBA图2:“田字”型GHODCBA如图:1212ABC BCDBC AHS AH AO S DG OD BC DG ⋅⋅===⋅⋅△△.如图:ABD ABD AED ACE AED ACE S S S AB AD AB ADS S S AE AC AE AC⋅=⋅=⋅=⋅△△△△△△.八、相似证明中的基本模型IH G FE D CB AGF EDBAEDCB A ED C BAEFDC BA F ED C BAOD C BAODC BAHE DCBAE DCBAEDCBAODBAD C BD BCAEDCAD C AG EDCBAGFEDCBA G FE DC B ADEFCBA图3:“燕尾”型CDEBAH PMNF EDCBAGHG FEDC BAE FDCBAFE DCBA一、与三角形有关的相似问题【例1】 如图,在ABC △中,AC AB >,点D 在AC 边上,若在增加一个条件就能使ABC ACB △∽△,则这个条件可以是 .CDBA【巩固】如图,D 、E 是ABC ∆的边AC 、AB 上的点,且AD AC ⋅=AE AB ⋅,求证:ADE B ∠=∠.EDCBA【巩固】如图,在ABC ∆中,AD BC ⊥于D ,CE AB ⊥于E ,ABC ∆的面积是BDE ∆面积的4倍,6AC =,求DE的长.ED CA【例2】 如图,ABC △中,60ABC ∠=︒,点P 是ABC △内一点,使得APB BPC CPA ∠=∠=∠,86PA PC ==,,则PB = .例题精讲PCBA【巩固】如图,已知三个边长相等的正方形相邻并排,求EBF EBG ∠+∠.HGFED CB A【例3】 如图,已知ABC ∆中,:1:3AE EB =,:2:1BC CD =,AD 与CE 相交于F ,则AF EFFC FD +的值为( )A.52B.1C.32【巩固】在ABC ∆中,BD CE =,DE 的延长线交BC 的延长线于P , 求证:AD BP AE CP ⋅=⋅.PE D CBA【巩固】如图,M 、N 为ABC △边BC 上的两点,且满足BM MN NC ==,一条平行于AC 的直线分别交AB 、AM 和AN 的延长线于点D 、E 和F .求证:3EF DE =.F NMED CBAA DEFCB【例4】 如图,已知////AB EF CD ,若AB a =,CD b =,EF c =,求证:111c a b=+.DCF EBA【巩固】如图,AB BD ⊥,CD BD ⊥,垂足分别为B 、D ,AC 和BD 相交于点E ,EF BD ⊥,垂足为F .证明:111AB CD EF+=. FDCEAB【巩固】如图,已知////AB EF CD ,找出ABD S ∆、BED S ∆、BCD S ∆之间的关系,并证明你的结论.NM H D CF EB A【例5】 如图,在四边形ABCD 中,AC 与BD 相交于点O ,直线l 平行于BD ,且与AB 、DC 、BC 、AD及AC 的延长线分别相交于点M 、N 、R 、S 和P .求证:PM PN PR PS ⋅=⋅lSR PNMO DC BA【巩固】已知,如图,四边形ABCD ,两组对边延长后交于E 、F ,对角线BD EF ∥,AC 的延长线交EF 于G .求证:EG GF =.【考点】相似三角形的性质与判定 【难度】5星 【题型】解答 【关键词】【例6】 如图, ABC ∆中,BC a =,若11D E ,分别是AB AC ,的中点,则1112D E a =;若22D E 、分别是11D B E C 、的中点,则2213224a D E a a ⎛⎫=+= ⎪⎝⎭;若33D E 、分别是22D B E C 、的中点,则33137248D E a a a ⎛⎫=+= ⎪⎝⎭;…………若n n D E 、分别是-1-1n n D B E C 、的中点,则n n D E =_________.【例7】 如图,ABC △内有一点P ,过P 作各边的平行线,把ABC △分成三个三角形和三个平行四边形.若三个三角形的面积123S S S ,,分别为112,,,则ABC △的面积是 .GFECDBAE n D n E 3D 3E 2D 2E 1D 1CBAP S 3S 2S 1I HGF E D CBA【例8】 如图,梯形ABCD 的两条对角线与两底所围成的两个三角形的面积分别为22p q ,,则梯形的面积是( )A .()222p q +B .()2p q +C .22p q pq ++D .222222p q P q p q +++【巩固】如图,梯形ABCD 中,AD BC ∥,两条对角线AC 、BD 相交于O ,若:1:9AOD COB S S =△△,那么:BOC DOC S S =△△ .OAB CD二、与平行四边形有关的相似问题【例9】 如图,已知平行四边形ABCD 中,过点B 的直线顺次与AC 、AD 及CD 的延长线相交于点E 、F 、G ,若5BE =,2EF =,则FG 的长是 .q 2p 2O A B CDEFGDC AB【巩固】如图,已知DE AB ∥,2OA OC OE =⋅,求证:AD BC ∥.DOEC【例10】 如图,ABCD 的对角线相交于点O ,在AB 的延长线上任取一点E ,连接OE 交BC 于点F ,若AB a AD c BE b ===,,,求BF 的值.OFEDCBAKOFE D CBA【巩固】如图:矩形ABCD 的面积是36,在AB AD ,边上分别取点E F ,,使得3AE EB =,2DF AF =,且DE与CF 的交点为点O ,求FOD ∆的面积。