圆周运动专题

合集下载

专题7:圆周运动圆周运动加速度公式

专题7:圆周运动圆周运动加速度公式

专题7:圆周运动圆周运动加速度公式专题7:圆周运动参考答案1.向心力有哪些主要特点?(1)大小:F向=ma向=m =mω2r=m r=m(2πn)2r (2)方向:总是沿半径方向指向圆心,方向时刻改变,是变力.(3)效果:产生向心加速度.仅改变速度的方向,不改变速度的大小.(4)产生:向心力是按效果命名的,不是性质力,它可以是某一个力,也可以是某一个力沿某方向的分力,也可以是某几个力的合力.题型1:描述匀速圆周运动的物理量及其关系1.如图所示,在验证向心力公式的实验中,质量相同的钢球①放在A盘的边缘,钢球②放在B盘的边缘,A、B两盘的半径之比为2∶1.a、b分别是与A盘、B盘同轴的轮.a轮、b轮半径之比为1∶2,当a、b两轮在同一皮带带动下匀速转动时,钢球①②受到的向心力之比为()A.2∶1 B.4∶1 C.1∶4D.8∶1 解析:本题考查圆周运动等知识.由题意“在同一皮带带动下匀速转动”,说明a、b两轮的线速度相等,即va=vb,又因a轮与A盘同轴,b轮与B盘同轴,角速度相等,联立并代入F=得到D项正确.答案:D2.无级变速在变速范围内任意连续地变换速度,性能优于传统的挡位变速,很多种高档汽车都应用了无级变速.如图4-2-6是截锥式无级变速模型示意图,两个锥轮之间有一个滚轮,主动轮、滚轮、从动轮之间靠着彼此之间的摩擦力带动.以下判断中正确的是()①.当位于主动轮与从动轮之间的滚轮从右向左移动时从动轮转速降低,滚轮从左向右移动时从动轮转速增加②.当位于主动轮与从动轮之间的滚轮从左向右移动时从动轮转速降低,滚轮从右向左移动时从动轮转速增加③.当滚轮位于主动轮直径为D1、从动轮直径为D2的位置上时,则主动轮转速为n1、从动轮转速为n2之间的关系为:n2=④.当滚轮位于主动轮直径为D1、从动轮直径为D2的位置上时,则主动轮转速为n1、从动轮转速为n2之间的关系为:n2=A .①②正确B .③④正确C .①④正确D .②③正确解析:设某一时刻,滚轮位于主动轮直径为D1、从动轮直径为D2的位置上,三个轮的轮缘的线速度相等,得n1D1=n2D2,即n2=,故③选项正确,④错误;当位于主动轮与从动轮之间的滚动轮从左向右移动时,D1变小,D2变大,在n1不变的情况下,n2变小,反之,当滚轮从右向左移动时,D1变大,D2变小,在n1不变的情况下,n2变大,故②正确,①错误 .答案:D 在分析传动问题时,关键要抓住两点1.固定在一起共轴转动的物体上各点的角速度相同.2.不打滑的摩擦传动和皮带传动的两轮边缘上各点的线速度大小相等.3.图示所示为某一皮带传动装置.主动轮的半径为r1,从动轮的半径为r2.已知主动轮做顺时针转动,转速为n,转动过程中皮带不打滑.下列说法正确的是( )①.从动轮做顺时针转动②.从动轮做逆时针转动③.从动轮的转速为n④.从动轮的转速为nA.①③正确B.②③正确C.①④正确D.②④正确解析:本题考查的知识点是圆周运动.因为主动轮顺时针转动,从动轮通过皮带的摩擦力带动转动,所以从动轮逆时针转动,选项①错误②正确;由于通过皮带传动,皮带与轮边缘接触处的速度相等,所以由2πnr1=2πn2r2,得从动轮的转速为n2=,选项③正确④错误.答案:B 4.图是自行车传动机构的示意图,其中Ⅰ是大齿轮,Ⅱ是小齿轮,Ⅲ是后轮.(1)假设脚踏板的转速为n r/s,则大齿轮的角速度是________ rad/s.(2)要知道在这种情况下自行车前进的速度有多大,除需要测量大齿轮Ⅰ的半径r1,小齿轮Ⅱ的半径r2外,还需要测量的物理量是________.(3)用上述量推导出自行车前进速度的表达式:________________.解析:(1)大齿轮的角速度ω1=2πn.(2)对Ⅰ、Ⅱ两齿轮有ω1r1=ω2r2,设后轮半径为R,则自行车前进的速度v=ω2R=·R=.所以还需要测量的物理量是后轮的半径R.(3)v=答案:(1)2πn(2)后轮的半径R (3)v=题型2:匀速圆周运动的实例分析圆周运动中动力学问题的解答方法1.确定做圆周运动的物体作为研究对象.2.明确运动情况,包括搞清楚运动的速率v、半径R及圆心O的位置等.3.分析受力情况,对物体实际受力情况进行正确的分析,画出受力图,确定指向圆心的合外力F(即提供向心力).4.合理选用公式F=ma=5.如图所示,固定的锥形漏斗内壁是光滑的,内壁上有两个质量相等的小球A和B,在各自不同的水平面做匀速圆周运动,以下说法正确的是( ) A.vA>vBB.ωA>ωBC.aA>aBD.压力NA>NB答案:A 6.小球m用长为L的悬线固定在O点,在O点正下方有一光滑圆钉C(如图所示).今把小球拉到悬线呈水平后无初速地释放,当悬线呈竖直状态且与钉相碰时下列说法错误的是( )A.小球的角速度突然增大B.小球的向心加速度突然增大C.钉子的位置越靠近小球,线就越容易断D.钉子的位置越远离小球,线就越容易断【解析】当绳竖直碰到钉子的瞬间,小球的速度不变,但转动半径减小,由知增大,选项A正确;由知,向心加速度变大,选项B正确;根据/r知,r越小,则悬线的拉力越大,悬线越容易断,选项C对D错.【答案】D 7.随着经济的持续发展,人民生活水平的不断提高,近年来我国私家车数量快速增长,高级和一级公路的建设也正加速进行.为提高公路弯道部分的行车速度,防止发生侧滑,常将弯道部分设计成外高内低的斜面.如果某品牌汽车的质量为m,汽车行驶时弯道部分的半径为r,汽车轮胎与路面的动摩擦因数为μ,路面设计的倾角为θ,如图4-2-8所示.(重力加速度g取10m/s2) (1)为使汽车转弯时不打滑,汽车行驶的最大速度是多少? (2)若取sin θ=,r=60 m,汽车轮胎与雨雪路面的动摩擦因数为μ=0.3,则弯道部分汽车行驶的最大速度是多少?解析:(1)汽车弯道处的运动可认为是匀速圆周运动,其轨道平面在水平面内对汽车受力分析如图所示,竖直方向:Ncos θ=mg+fsinθ 水平方向:Nsin θ+fcos θ=又f=μN,可得v=(2)代入数据可得:v=14.6 m/s.8.如图甲所示,一根细线上端固定在S点,下端连一小铁球A,让小铁球在水平面内做匀速圆周运动,此装置构成一圆锥摆(不计空气阻力).下列说法中正确的是( )A.小球做匀速圆周运动时,受到重力、绳子的拉力和向心力作用B.小球做匀速圆周运动时的角速度一定大于(l为摆长) C.另有一个圆锥摆,摆长更大一点,两者悬点相同,如图4-2-19乙所示,如果改变两小球的角速度,使两者恰好在同一水平面内做匀速圆周运动,则B球的角速度大于A球的角速度D.如果两个小球的质量相等,则在图乙中两条细线受到的拉力相等解析:如下图所示,小铁球做匀速圆周运动时,只受到重力和绳子的拉力,而向心力是由重力和拉力的合力提供的,故A项错误.根据牛顿第二定律和向心力公式可得:mgtanθ=mlω2sin θ,即ω=.当小铁球做匀速圆周运动时,θ一定大于零,即cos θ一定小于1,因此,当小铁球做匀速圆周运动时角速度一定大于,故B项正确.设点S到点O的距离为h,则mgtanθ=mhω2tan θ,即ω=,若两圆锥摆的悬点相同,且两者恰好在同一水平面内做匀速圆周运动时,它们的角速度大小一定相等,即C项错误.如右上图所示,细线受到的拉力大小为T=,当两个小球的质量相等时,由于θA<θB,即cosθA>cos θB,所示A球受到的拉力小于B球受到的拉力,进而可以判断两条细线受到的拉力大小不相等,故D项错误.答案:B 9.(2021·衡水模拟)如图所示,在竖直的转动轴上,a、b两点间距为40cm,细线ac长50cm,bc长30 cm,在c点系一质量为m的小球,在转动轴带着小球转动过程中,下列说法不正确的是() A.转速小时,ac受拉力,bc松弛B.bc刚好拉直时ac中拉力为1.25mgC.bc拉直后转速增大,ac拉力不变D.bc拉直后转速增大,ac拉力增大10.铁路转弯处常竖立一速度标示牌,即火车以此速度大小行驶时,车轮边缘和内、外侧铁轨均无挤压作用.如果火车转弯时的速度小于标示速度,那么() A.外侧铁轨与轮缘间产生挤压作用 B.内侧铁轨与轮缘间产生挤压作用 C.内、外侧铁轨与轮缘均有挤压作用D.内、外侧铁轨与轮缘均无挤压作用【解析】当火车转弯时若对轮缘无挤压,则火车只受重力和铁轨的支持力如图,由牛顿第二定律得:mgtan,此时有v=当火车转弯速度小于时,所需的向心力减小,所以导致内轨对火车内侧车轮轮缘有水平向左的压力,B选项正确.【答案】 B.11.如图所示,一个竖直放置的圆锥筒可绕其中心OO′转动,筒内壁粗糙,筒口半径和筒高分别为R和H,筒内壁A点的高度为筒高的一半.内壁上有一质量为m的小物块随圆锥筒一起做匀速转动,则下列说法正确的是( )A.小物块所受合外力指向O点B.当转动角速度ω=时,小物块受摩擦力可能沿AO方向,也可能背离AO方向C.当转动角速度ω>时,小物块受摩擦力沿AO方向 D.当转动角速度ω<时,小物块受摩擦力沿AO方向解析:匀速圆周运动物体所受合外力提供向心力,指向物体圆周运动轨迹的圆心,A项错;当小物块在A点随圆锥筒做匀速转动,且其所受到的摩擦力为零时,小物块在筒壁A点时受到重力和支持力的作用,它们的合力提供向心力,设筒转动的角速度为ω,有:mgtan θ=mω2·,由几何关系得:tan θ=,联立以上各式解得ω=,B项错误;当角速度变大时,小物块所需向心力增大,故摩擦力沿AO方向,其水平方向分力提供部分向心力,C项正确;当角速度变小时,小物块所需向心力减小,故摩擦力沿OA方向,抵消部分支持力的水平分力,D项错.答案:C12.如图所示,一根细线下端拴一个金属小球P,细线的上端固定在金属块Q上,Q放在带小孔的水平桌面上.小球在某一水平面内做匀速圆周运动(圆锥摆).现使小球改到一个更高一些的水平面上做匀速圆周运动(图上未画出),两次金属块Q都保持在桌面上静止.则后一种情况与原来相比较,下面的判断中正确的是…( )A.Q受到桌面的支持力变大B.Q受到桌面的静摩擦力变小C.小球P运动的角速度变大D.小球P运动的周期变大【解析】小球受力分析如图,竖直方向有,Tcosmg,水平方向有Tsinsintan.当小球改到一个更高一些的水平面上做匀速圆周运动时,即变大,则角速度变大,选项C对D错;竖直方向上仍有T′cos而Q受到桌面的支持力′cos选项A错误;Q受到桌面的静摩擦力f=T′sinsin 随变大而增大,选项B错误.【答案】 C13.当汽车通过拱桥顶点的速度为5 m/s时,车对桥顶的压力为车重的3/4,如果要使汽车在粗糙的桥面行驶至桥顶时,不受摩擦力作用,则汽车通过桥顶的速度应为多少? 【解析】设拱桥的半径为r,速度为5 m/s时,根据牛顿第二定律和向心力公式,对车有/r,N=3mg/4.车不受摩擦力,即车对桥的压力为零,有/r.解以上各式得 m/s.题型3:离心运动 (1)当F=mrω2时,物体做匀速圆周运动;(2)当F=0时,物体沿切线方向飞出;(3)当F<mrω2时,物体逐渐远离圆心,F为实际提供的向心力.如图所示.向心运动,当提供向心力的合外力大于做圆周运动所需向心力时,即F>mrω2,物体渐渐向圆心靠近.如图所示.14.如图是摩托车比赛转弯时的情形,转弯处路面常是外高内低,摩托车转弯有一个最大安全速度,若超过此速度,摩托车将发生滑动.对于摩托车滑动的问题,下列论述正确的是( )A.摩托车一直受到沿半径方向向外的离心力作用B.摩托车所受外力的合力小于所需的向心力C.摩托车将沿其线速度的方向沿直线滑去D.摩托车将沿其半径方向沿直线滑去解析:本题考查圆周运动的规律和离心现象.摩托车只受重力、地面支持力和地面的摩擦力作用,没有离心力,A项错误;摩托车正确转弯时可看作是做匀速圆周运动,所受的合力等于向心力,如果向外滑动,说明提供的向心力即合力小于需要的向心力,B项正确;摩托车将在沿线速度方向与半径向外的方向之间做离心曲线运动,C、D项错误.答案:B15.中央电视台《今日说法》栏目最近报道了一起发生在湖南长沙某区湘府路上的离奇交通事故.家住公路拐弯处的张先生和李先生家在三个月内连续遭遇了七次大卡车侧翻在自家门口的场面,第八次有辆卡车冲进李先生家,造成三死一伤和房屋严重损毁的血腥惨案.经公安部门和交通部门协力调查,画出的现场示意图如图4-2-12所示.交警根据图示作出以下判断,你认为正确的是()①.由图可知汽车在拐弯时发生侧翻是因为车做离心运动②.由图可知汽车在拐弯时发生侧翻是因为车做向心运动③.公路在设计上可能内(东)高外(西)低④.公路在设计上可能外(西)高内(东)低A.①④正确 B.②③正确C.①③正确 D.②④正确解析:由题图可知发生事故时,卡车在做圆周运动,从图可以看出卡车冲入民宅时做离心运动,故选项①正确,选项②错误;如果外侧高,卡车所受重力和支持力提供向心力,则卡车不会做离心运动,也不会发生事故,故选项③正确.答案:C 题型4:竖直平面内的圆周运动中的临界问题16.长L=0.5 m质量可忽略的细杆,其一端可绕O点在竖直平面内转动,另一端固定着一个物体A.A的质量为m=2 kg,当A 通过最高点时,如图4-3-3所示,求在下列两种情况下杆对小球的力:(1)A在最低点的速率为m/s;(2)A在最低点的速度为6 m/s.解析:对物体A由最低点到最高点过程,机械能守恒.即① 假设细杆对A的弹力F向下,则A的受力图如右图所示.以A为研究对象,在最高点有mg+F=所以F= (1)当v0=m/s时,由①式得v=1 m/s.F=2×(-10)N=-16 N,负值说明F的实际方向与假设向下的方向相反,即杆给A向上的16 N的支撑力.(2)当v0=6 m/s时,由①式得v=4 m/s.F=2×(-10)N=44 N 正值说明杆对A施加的是向下的44 N的拉力.答案:(1)16 N向上(2)44 N 向下在例1中若把细杆换成细绳,则在(1)(2)两种情况下小球能通过最高点吗?若能,此时细绳对小球的拉力为多少?答案:(1)v0= m/s时不能(2)v0=6 m/s时能44 N 由于两种模型过最高点的临界条不同,所以在分析问题时首先明确是哪种模型,然后再利用条讨论.17.m为在水平传送带上被传送的小物体(可视为质点),A为终端皮带轮,如图4-3-7所示,已知皮带轮半径为 r,传送带与皮带轮间不会打滑,当m可被水平抛出时,A轮每秒的转数最少是( ) A.B.C.D.解析:当m被水平抛出时只受重力的作用,支持力N=0.在圆周最高点,重力提供向心力,即mg=,所以v=.而v=2πf·r,所以f==,所以每秒的转数最小为,A正确.答案:A18.如图所示,小球在竖直放置的光滑圆形管道内做圆周运动,内侧壁半径为R,小球半径为r,则下列说法正确的是( ) A.小球通过最高点时的最小速度vmin=B.小球通过最高点时的最小速度vmin=0C.小球在水平线ab以下的管道中运动时,内侧管壁对小球一定有作用力D.小球在水平线ab以上的管道中运动时,外侧管壁对小球一定有作用力解析:小球沿管上升到最高点的速度可以为零,故A错误,B 正确;小球在水平线ab以下的管道中运动时,由外侧管壁对小球的作用力FN与球重力在背离圆心方向的分力Fmg的合力提供向心力,即:N-Fmg=m,因此,外侧管壁一定对球有作用力,而内侧壁无作用力,C错误;小球在水平线ab以上的管道中运动时,小球受管壁的作用力与小球速度大小有关,D错误.答案:B19.如图所示,一轻杆一端固定在O点,另一端固定一小球,在竖直平面内做圆周运动,通过最高点时,由于球对杆有作用,使杆发生了微小形变,关于杆的形变量与球在最高点时的速度大小关系,正确的是( )A.形变量越大,速度一定越大B.形变量越大,速度一定越小C.形变量为零,速度一定不为零D.速度为零,可能无形变【解析】杆的形变量可能是伸长量,也可能是压缩量.如果伸长量越大,即杆对球向下的拉力越大,则小球的速度越大;如果压缩量越大,即杆对球向上的支持力越大,则小球的速度越小,选项A、B错误;如果杆的形变量为零,即杆对球没有力作用,则小球的重力提供向心力,速度不为零,选项D错误.【答案】C20.如图所示,从光滑的1/4圆弧槽的最高点滑下的小滑块,滑出槽口时速度方向为水平方向,槽口与一个半球顶点相切,半球底面为水平,若要使小物块滑出槽口后不沿半球面下滑,已知圆弧轨道的半径为半球的半径为则和应满足的关系是 ( )A.B.C.D.【解析】小物块滑到槽口时,若对球面没有压力即重力不大于向心力时,则其滑出槽口后不沿半球面下滑.根据机械能守恒可得小物块滑到槽口时的速度为v,有/2.在槽口有/解得.【答案】 D21.如图所示,半径为R,内径很小的光滑半圆管道竖直放置,质量为m的小球以某一速度进入管内,小球通过最高点P时,对管壁的压力为0.5mg.求:(1)小球从管口飞出时的速率;(2)小球落地点到P点的水平距离.解析:(1)分两种情况,当小球对管下部有压力时,则有mg-0.5mg=,v1=.当小球对管上部有压力时,则有mg+0.5mg=,v2= (2)小球从管口飞出做平抛运动,2R=gt2,t=2 ,S1=v1t=R,Sx2=v2t=R.答案:(1)或(2)R或R 题型5:匀速圆周运动中的临界问题22.用一根细绳,一端系住一个质量为m的小球,另一端悬在光滑水平桌面上方h处,绳长l大于h,使小球在桌面上做匀速圆周运动.求若使小球不离开桌面,其转速最大值是( )A.B.C. D.解析:以小球为研究对象,小球受三个力的作用:重力G、水平面支持力FN、绳子拉力F.在竖直方向合力为零,在水平方向合力为所需向心力,绳与竖直方向夹角为θ,则R=htan θ,Fcosθ+N=mg Fsin θ=mω2R=m4π2n2htan θ 当球即将离开水平面时N=0,转速n有最大值,即 mg=,nmax=答案:A23.如图所示,物块在水平圆盘上,与圆盘一起绕固定轴飞速转动,下列说法中正确的是( ) A.物块处于平衡状态B.物块受三个力作用C.在角速度一定时,物块到转轴的距离越远,物块越不容易脱离圆盘D.在物块到转轴距离一定时,物块运动周期越小,越不容易脱离圆盘解析:对物块受力分析可知,物块受竖直向下的重力、垂直圆盘向上的支持力及指向圆心的摩擦力共三个力作用,合力提供向心力,A错,B正确.根据向心力公式F=mrω2可知,当ω一定时,半径越大,所需的向心力越大,越容易脱离圆盘;根据向心力公式F=mr2可知,当物块到转轴距离一定时,周期越小,所需向心力越大,越容易脱离圆盘,C、D错误.答案:B。

《圆周运动》专题复习

《圆周运动》专题复习

《圆周运动》专题复习一.知识综述圆周运动是机械运动中一种典型的曲线运动。

高考对该知识点的考查主要有三个方面,一是基本概念,如线速度、角速度、向心加速度、向心力、转速;二是水平面内的匀速圆周运动,以考查圆周运动的基本规律及其应用为主;三是竖直平面内非匀速圆周运动,以考查受力分析、临界条件、极值、向心力公式和机械能守恒及功能关系为主。

圆周运动中涉及的基本概念是历所高考选择题的重要素材;而竖直平面内圆周运动问题,作为匀速圆周运动的方法解决变速圆周运动问题的应用,更是今后考查的热点。

因此,在复习本知识点时,既要注重对基础知识的熟练掌握,又要对典型问题进行归纳总结。

另外,由于这部分知识扩展空间很大,因此还要兼顾机械能守恒、功能关系、电场力、洛仑兹力等相关知识的复习。

二.基础知识归纳1.线速度(1)定义:做圆周运动的物体,通过的弧长l ∆跟通过这段弧长所用时间t ∆的比值,叫圆周运动的线速度。

(2)定义式:tl v ∆∆=。

(3)方向:与圆弧的切线方向相同。

2.角速度(1)做圆周运动的物体,连接物体和圆心的半径转过的角度θ∆跟所用时间t ∆的比值,叫做圆周运动的角速度。

(2)定义式:t∆∆=θω。

(3)国际单位:弧度/秒(rad/s)。

3.周期、频率和转速(1)周期T :做匀速圆周运动的物体,运动一周所用的时间,叫做周期。

国示单位是秒(s) ;(2)频率f :做匀速圆周运动的物体,一秒内运动的周数,叫做频率。

国际单位是赫兹(Hz 或1-s ) ,Tf 1=; (3)转速n :做匀速圆周运动的物体在单位时间内转过的转数。

国际单位是转/秒(r/s )。

4.向心加速度(1)表达式:rv r a n 22==ω。

(2)方向:时刻改变且总是指向圆心。

温馨提示:①当v 一定时,n a 与r 成反比; ②当ω一定时,n a 与r 成正比。

5.向心力(1)表达式:rv m r m ma F n n 22===ω(2)方向:时刻改变且总是指向圆心。

专题:圆周运动25题(教师)含答案

专题:圆周运动25题(教师)含答案

智源教育-用心成就未来!圆周运动专题1.质量为m的球用长为L的细绳悬于天花板的O点,并使之在水平面内做匀速圆周运动,细线与竖直线成θ角,求(1)画出小球的受力示意图(2)小球做匀速圆周运动线速度的大小【答案】(1)【解析】试题分析:其合力提供向心力,F合=mgtanθ,由几何关系可知,小球运动半径为r=Lsinθ,由向心力公式得:mgtanθ=mv2/r2.长度为L的细线下挂一个质量为m的小球,小球半径忽略不计,现用一个水平力F 拉小球使悬线偏离竖直方向θ角并保持静止状态,如图所示,撤掉F后,小球从静止开始运动到最低点时,求:(1)小球的速度大小(2)绳子拉力为多少?【答案】(1(2)T=3mg-2mgcosθmv/2【解析】(1)根据机械能守恒定律:mgl(1-cosθ)=27分)(2)拉力与重量的合力提供向心力:T-mg=mv²/l (8分)T=3mg-2mgcosθ3.如图所示,一个半径R=1.0m的圆弧形光滑轨道固定在竖直平面内,轨道的一个端点B和圆心O的连线与竖直方向夹角θ=60°,C为轨道最低点,D为轨道最高点.一个质量m=0.50kg的小球(视为质点)从空中A点以v0=4.0m/s的速度水平抛出,恰好从轨道的B端沿切线方向进入轨道.重力加速度g取10m/s2.试求:(1)小球抛出点A距圆弧轨道B端的高度h.(2)小球经过轨道最低点C时对轨道的压力F C.(3)小球能否到达轨道最高点D?若能到达,试求对D点的压力F D.若不能到达,试说明理由.【答案】(1)2.4m(2)F=F'= 42N ,方向竖直向下.(3)12N,方向竖直向下【解析】(1)B,,v=m2/s2,(2解得274C根据牛顿第二定律,1分),解得F'C=42N,根据牛顿第三定律,F=F'= 42N ,方向竖直向下.(3)设小球能到达DD代入数据,解得小球受到的压力12NF'=D根据牛顿第三定律,小球对轨道的压力为F D=F'D = 12N,方向竖直向下4.某高速公路转弯处,弯道半径R=100m,汽车轮胎与路面问的动摩擦因数为μ=0.8,路面要向圆心处倾斜,汽车若以v=15m/s的速度行驶时.(1)在弯道上没有左右滑动趋势,则路面的设计倾角θ应为多大(用正切表示)? (2) 若θ=37°,汽车的质量为2000kg,当汽车的速度为30m/s时车并没有发生侧向滑动,求此时地面对汽车的摩擦力的大小和方向。

专题4 圆周运动

专题4    圆周运动

专题4圆周运动知识结构,(1)匀速圆周运动是匀变速曲线运动。

()(2)物体做匀速圆周运动时,其角速度是不变的。

()(3)物体做匀速圆周运动时,其合外力是不变的。

()(4)匀速圆周运动的向心加速度与半径成反比。

()(5)匀速圆周运动的向心力是产生向心加速度的原因。

()(6)比较物体沿圆周运动的快慢看线速度,比较物体绕圆心转动的快慢,看周期或角速度。

()(7)做匀速圆周运动的物体,当合外力突然减小时,物体将沿切线方向飞出。

()(8)摩托车转弯时速度过大就会向外发生滑动,这是摩托车受沿转弯半径向外的离心力作用的缘故。

()要点一圆周运动的运动学问题1.圆周运动各物理量间的关系2.对公式v =ωr 的理解当r 一定时,v 与ω成正比;当ω一定时,v 与r 成正比;当v 一定时,ω与r 成反比。

3.对a =v 2r=ω2r 的理解 当v 一定时,a 与r 成反比;当ω一定时,a 与r 成正比。

4.常见的三种传动方式及特点(1)皮带传动:如图4-3-1甲、乙所示,皮带与两轮之间无相对滑动时,两轮边缘线速度大小相等,即v A =v B 。

图4-3-1(2)摩擦传动:如图4-3-2甲所示,两轮边缘接触,接触点无打滑现象时,两轮边缘线速度大小相等,即v A =v B 。

图4-3-2(3)同轴传动:如图乙所示,两轮固定在一起绕同一转轴转动,两轮转动的角速度大小相等,即ωA =ωB 。

例1.(2015·广州调研)如图4-3-3所示,当正方形薄板绕着过其中心O 并与板垂直的转动轴转动时,板上A 、B 两点( ) 图4-3-3A .角速度之比ωA ∶ωB =2∶1B .角速度之比ωA ∶ωB =1∶ 2C .线速度之比v A ∶v B =2∶1D .线速度之比v A ∶v B =1∶ 2解析:选D 板上A 、B 两点的角速度相等,角速度之比ωA ∶ωB =1∶1,选项A 、B 错误;线速度v =ωr ,线速度之比v A ∶v B =1∶2,选项C 错误,D 正确。

(原创)专题复习 圆周运动

(原创)专题复习    圆周运动

专题复习 圆周运动考点一 圆周运动的运动学问题题型1 皮带、摩擦(或齿轮)传动1.如图所示,轮1O 、3O 固定在同一转轴上,轮1O 、2O 用皮带连接且不打滑。

在1O 、2O 、3O 三个轮的边缘各取一点A 、B 、C ,已知三个轮的半径之比123::2:1:1r r r =,则( )A .A 、B 两点的线速度大小之比:1:1A B v v = B .B 、C 两点的线速度大小之比:1:1B C v v =C .A 、B 两点的角速度之比:1:1A B ωω=D .A 、C 两点的向心加速度大小之比:1:1A C a a = 2.(多选)小张的爸爸妈妈给他新买了变速自行车,小张利用所学知识对这辆变速自行车进行了仔细的研究,如图是变速自行车的部分简化图,A 是脚踏板齿轮上与链条接触的点,D 是自行车后轮上与链条相接触的齿轮上的点(即2齿轮边缘上的一点),B 是脚踏板转轴上的一点,E 是自行车后轮边缘上的一点,已知4A D r r =,20E D r r =,则下列说法正确的是( )A .A 与B 的角速度相等,D 与E 的角速度不相等B .A 转动1圈,则D 转动2圈C .线速度20E A v v =,向心加速度14A D a a = D .在A 转动周期不变的情况下,为了让自行车跑得更快,可以将后轮链条调节到1齿轮考点二 水平面上圆周运动题型1 水平转盘3.如图所示,一圆盘可绕一通过圆心且垂直于盘面的竖直轴转动,在圆盘上放一块橡皮,橡皮块随圆盘一起转动(俯视为逆时针)。

某段时间圆盘转速不断增大,但橡皮块仍相对圆盘静止,在这段时间内,关于橡皮块所受合力F 的方向的四种表示(俯视图)中,正确的是( )A .B .C .D .4.如图,叠放在水平转台上的物体A 、B 、C 能随转台一起以角速度ω匀速转动,A 、B 、C 的质量分别为3m 、2m 、m ,A 与B 、B 和C 与转台间的动摩擦因数都为μ,A 和B 、C 离转台中心的距离分别为r 、1.5r 。

竖直平面内圆周运动专题

竖直平面内圆周运动专题
(以绳与小球的连接为例)
gl
E
F
qE
q
qE
mg mg mg
第9页/共11页
三、小结 一、几种常见物理模型 二、复合场中竖直平面内的圆周运动
第10页/共11页
感谢您的:如图所示, AB、CD为四分之一圆弧轨道, B、C切线水平,
A点切线竖直, BC段水平, AB弧半径为R , CD弧半径为2 R . 将一质量为m的光滑小球由A点静止释放, 试求小球向右
恰好通过B、C两点后的瞬间, 对轨道的压力.
A B
D C
第8页/共11页
二、复合场中竖直平面内的圆周运动
B
O D
A
第5页/共11页
一、几种常见物理模型
R F mg
光滑下凹轨道
gR
mg R
光滑上凸轨道
第6页/共11页
例4:光滑的水平轨道和半径为R的竖直圆形轨道顺接, 弧顶 到水平面的高度为h , 且R > h , 如图所示, 一个质量为m 的小球以水平速度v0开始运动, 欲使小球能沿轨道运动 到达轨道右侧, 小球的初速度v0应满足什么条件? v0
A O
第3页/共11页
一、几种常见物理模型
F mg R
gR
mg R
光滑圆管内
(与轻杆相似)
第4页/共11页
光滑圆轨内侧
(与轻绳相似)
例3:如图所示, 光滑的水平轨道与竖直放置的光滑半圆形轨道顺 接, 圆半径为R . 一小球由D点出发向A运动, 通过B点时加速 度大小为2 g , 试求:小球通过B点时对轨道的压力.
例1:绳系着装有水的水桶,在竖直平面内做圆周运动,水的 质量m=0.5kg,绳长l=60cm,求: (1)最高点水不流出的最小速率? (2)水在最高点速率v=3m/s时,水对桶底的压力?

圆周运动专题

圆周运动专题

圆周运动专题经典例题1. 基本概念、公式的理解和运用【例1】关于匀速圆周运动,下列说法正确的是( )A. 线速度不变B. 角速度不变C. 加速度为零D. 周期不变【例2】在绕竖直轴匀速转动的圆环上有A 、B 两点,如图1所示,过A 、B 的半径与竖直轴的夹角分别为30°和60°,则A 、B 两点的线速度之比为 ;向心加速度之比为 。

ωO60°30°AB图12. 传动带传动问题【例3】如图2所示,a 、b 两轮靠皮带传动,A 、B 分别为两轮边缘上的点,C 与A 同在a 轮上,已知B A r r 2=,B r OC =,在传动时,皮带不打滑。

求:(1)=B C ωω: ;(2)=B C v v : ;(3)=B C a a : 。

C A B abO r A r B图2【例4】如下图所示,质量相等的小球A 、B 分别固定在轻杆的中点和端点,当杆在光滑水平面上绕O 点匀速转动时求杆OA 和AB 段对球A 的拉力之比。

OF 1A BF 2F 2【例5】如图所示,一个内壁光滑的圆锥筒的轴线垂直于水平面,圆锥筒固定不动,有两个质量相同的小球A 和B 紧贴着内壁分别在图中所示的水平面内作匀速圆周运动,则下列说法正确的是( )A. 球A 的线速度必定大于球B 的线速度B. 球A 的角速度必定小于球B 的角速度C. 球A 的运动周期必定小于球B 的运动周期D. 球A 对筒壁的压力必定大于球B 对筒壁的压力αF NA G AB G BF N F AF B【例6】甲、乙两名滑冰运动员,kg M 80=甲,kg M 40=乙,面对面拉着弹簧秤做匀速圆周运动的滑冰表演,如图5所示,两人相距0.9m ,弹簧秤的示数为9.2N ,下列判断中正确的是( )A. 两人的线速度相同,约为40m/sB. 两人的角速度相同,为6rad/sC. 两人的运动半径相同,都是0.45mD. 两人的运动半径不同,甲为0.3m ,乙为0.6m甲乙图53.匀速圆周运动的多解问题 【例7】如图13所示,直径为d 的圆筒绕中心轴做匀速圆周运动,枪口发射的子弹速度为v ,并沿直径匀速穿过圆筒。

2024年新高考二轮物理复习专题——圆周运动

2024年新高考二轮物理复习专题——圆周运动

考情透析命题点考频分析命题特点核心素养水平面内圆周运动及临界问题2023:全国甲T4江苏T132022:全国甲T1北京T8河北T10浙江6月T2山东T82021:全国甲T2浙江6月T7广东T4本专题主要涉及水平面内、竖直面内和斜面上的圆周运动基本规律及临界问题等。

高考常以生活中圆周运动的实例为命题背景。

物理观念:能清晰、系统地理解向心力、临界状态的概念和各种圆周运动的规律。

能正确解释关于圆周运动的自然现象,综合应用所学的物理知识解决圆周运动的实际问题。

科学思维:能将较复杂的圆周运动过程转换成标准的物理模型。

能对常见的物理问题进行分析,通过推理,获得结论并作出解释。

竖直面内圆周运动及临界问题斜面上的圆周运动及临界问题热点突破1水平面内圆周运动及临界问题▼考题示例1(2023·湖南·模拟题)(多选)如图所示,半径为R的半球形陶罐固定在可以绕竖直轴旋转的水平转台上,转台转轴与过陶罐球心O的对称轴OO′重合,转台以一定角速度ω匀速旋转。

甲、乙两个小物块(可视为质点)质量均为m,分别在转台的A、B两处随陶罐一起转动且始终相对罐壁静止,OA、OB与OO′间的夹角分别为a=30°和β=60°,重力加速度大小为g。

当转台的角速度为ω0时,小物块乙受到的摩擦力恰好为零,下列说法正确的是()A .ω0=g RB .当转台的角速度为ω0时,甲有上滑的趋势C .当角速度从0.5ω0缓慢增加到1.5ω0的过程中,甲受到的摩擦力一直增大D .当角速度从0.5ω0缓慢增加到1.5ω0的过程中,甲受到的支持力一直增大答案:BD解析:A 、小物块乙受到的摩擦力恰好为零,重力和支持力的合力提供向心力,即mg tan β=mω02R sin β,解得:ω0=2gR,故A 错误;B 、设转台角速度为ω时,物块甲受到的摩擦力为零,重力和支持力的合力提供向心力,mg tan α=mω2R sin α,解得:ω=2g3R<ω0;所以当转速为ω0时,支持力和重力的合力不足以提供向心力,甲有沿内壁切线上滑的趋势,故B 正确;C 、甲的临界角速度ω=2g3R>0.5ω0,所以当角速度从0.5ω0缓慢增大到2g3R时,甲有沿内壁切线下滑的趋势,角速度从2g3R缓慢增大到1.5ω0时,甲有沿内壁切线上滑的趋势,摩擦力方向发生了变化,其大小先减小再反向增大,故C 错误;D 、将甲收到的力分解为水平方向和竖直方向,竖直方向的合力为0,即mg =N cos α+f sin α,由C 可知,角速度从0.5ω0缓慢增加到1.5ω0的过程中,先减小再反向增大,则支持力一直在增大,故D 正确;故选:BD 。

经典物理圆周运动专题复习

经典物理圆周运动专题复习

圆周运动专题复习1、(多选)如图甲所示,用一轻质绳拴着一质量为m 的小球,在竖直平面内做圆周运动(不计阻力),小球运动到最高点时绳对小球的拉力为F T ,小球在最高点的速度大小为v ,其F T -v 2图象如图乙所示,则( ) A .轻质绳长为mbaB .当地的重力加速度为a mC .若v 2=b ,小球运动到最低点时绳的拉力为6a D .当v 2=c 时,轻质绳最高点拉力大小为acb+a【答案】A C 【解析】A B .在最高点,根据牛顿第二定律得:2T v F mg m L +=,则2T v F m mg L=-可知图线的斜率m a k L b==,纵轴截距m g =a ,则当地的重力加速度ag m =,轻绳的长度bmL a=故A 正确、B 错误。

C . 若小球运动到最高点时的速度v 2=b ,即v 2=g L ,则从最高点到最低点:22111222mv mgL mv +=最低点时21v T mg m L-=解得T =6m g =6a 选项C 正确;D .当v 2=c 时,代入解得T c acF m mg a L b=--=故D 错误。

2、过山车是游乐场中常见的设施。

下图是一种过山车的简易模型,它由水平轨道和在竖直平面内的三个圆形轨道组成,B 、C 、D 分别是三个圆形轨道的最低点,半径、。

一个质量为k g 的小球(视为质点),从轨道的左侧A 点以的初速度沿轨道向右运动,A 、B 间距。

小球与水平轨道间的动摩擦因数,圆形轨道是光滑的。

假设水平轨道足够长,圆形轨道间不相互重叠。

重力加速度取,计算结果保留小数点后一位数字。

试求:(1)小球在经过第一个圆形轨道的最高点时,轨道对小球作用力的大小;(2)如果小球恰能通过第二个圆形轨道,B、C间距L应是多少。

【答案】(1)10.0N;(2)12.5m(1)设小球经过第一个圆轨道的最高点时的速度为v1,根据动能定理得-μm g L1-2m g R1=m v12-m v02小球在最高点受到重力m g和轨道对它的作用力F,根据牛顿第二定律有F+m g=m代入数据解得轨道对小球作用力的大小F=10.0N(2)设小球在第二个圆轨道的最高点的速度为v2,小球恰能通过第二圆形轨道,根据牛顿第二定律有m g=m根据动能定理-μm g(L1+L)-2m g R2=m v22-m v02代入数据解得B、C间距L=12.5m3、如图所示,粗糙的斜面A B下端与光滑的圆弧轨道B C D相切于B,整个装置竖直放置,C是最低点,圆心角θ=37°,D与圆心O等高,圆弧轨道半径R=1m,斜面长L=4m。

圆周运动专题

圆周运动专题

越大
(C)使物体A的转动半径变小一些,在转动过程中半径会随时
稳定
(D)以上说法都不正确
O A
第22页/共35页
B O′
水平转盘:例6、如图,细绳一端系着质量M=0.6千克的物体,静止在水平面,另一 端通过光滑小孔吊着质量m=0.3千克的物体,M的中点与圆孔距离为0.2米,并知M 和水平面的最大静摩擦力为2牛,现使此平面绕中心轴线转动,问角速度在什么范 围m会处于静止状态?(g取10米/秒2)
钢丝绳下端可挂载重物,以便在车间内移动物体.本题中铸件开始做匀速直线运动, 行车突然停止,铸件的速度在瞬间内不变,钢丝绳的悬点固定,铸件在竖直平面内 做小幅度的圆周运动.
第8页/共35页
• 变式训练2—1 如图所示,一根绳长l
=1m,上端系在滑轮的轴上,下端拴
一质量为m=1kg的物体,滑轮与物
体一起以2m/s的速度匀速向右运动,
第14页/共35页
传送带模型:例1、如图所示,两个轮通过皮带传动
,设皮带与轮之间不打滑,A为半径为R的O1轮缘上一 点,B、C为半径为2R的O2轮缘和轮上的点, O2C=2R/3,当皮带轮转动时,A、B、C三点的角度 之比:
ωA : ωB : ωC = 2 : 1 : 1 ; A、B、C三点的线速度之比vA : vB : vC = 3 : 3 : 1 ; 及三点的向心加速度之比aA : aB: aC = 6 : 3 : 1 .
线速度即小球运动的合速度,小球位置越低,势能转化为动能就越多,速 度也就越大,C正确.
小球在最低位置时速度为水平速度,由于小球做圆周运动
,绳拉力与球重力的合力提供向心力,即 D错误.
v2 T mg m
R
第24页/共35页

圆周运动全考点模型专题

圆周运动全考点模型专题

- 1 -圆周运动全模型高分专题水平面内的圆周运动(一般为匀速圆周运动)1.(机车转弯类模型)火车轨道在转弯处外轨高于内轨,其高度差由转弯半径与火车速度确定。

若在某转弯处规定行驶速度为,则下列说法中正确的是( )A. 当以V 的速度通过此弯路时,火车重力与轨道面支持力的合力提供向心力B. 当以V 的速度通过此弯路时,火车重力、轨道面支持力和外轨对轮缘弹力的合力提供向心力C. 当速度大于v 时,轮缘挤压外轨D. 当速度小于v 时,轮缘挤压外轨解:A 、当火车以v 的速度通过此弯路时,火车重力与轨道面支持力的合力恰好提供向心力,内外轨都无压力.所以A 选项是正确的,B 错误.C 、若速度大于规定速度,重力和支持力的合力不够提供,此时外轨对火车有侧压力,轮缘挤压外轨.所以C 选项是正确的.D 、若速度小于规定速度,重力和支持力的合力提供偏大,此时内轨对火车有侧压力,轮缘挤压内轨.故D 错误.所以AC 选项是正确的.2.(机车转弯类模型)汽车与路面之间的动摩擦因数4.0=μ,转弯处弯道半径为m R 4=,g 取2/10s m 。

(1)若路面铺成水平的,汽车转弯时速度不能超过多大?(2)若路面铺成外侧高内侧低的坡面,倾角为︒=7.5θ,汽车以多大速度转弯,与路面无摩擦。

1:此时汽车做圆周运动,由最大静摩擦力提供向心力,则解得:2:此时由重力分力:提供向心力,则3.(水平摆模型)把一个长为20cm ,劲度系数为360N /m 的弹簧,一端固定,作为圆心,弹簧的另一端连接一个质量为0.50kg 的小球,当小球以min /360r π的转速在光滑水平面上做匀速圆周运动时,弹簧的伸长应为( )A. 5.2cmB. 5.3cmC. 5.0cmD. 5.4cm解:小球在弹簧弹力的作用下做匀速圆周运动,角速度,设弹簧伸长量为,由胡克定律和牛顿第二定律得:,解得:,故C 项正确。

4.(凹凸桥模型)(多选)如图所示甲、乙、丙、丁是游乐场中比较常见的过山车,甲、乙两图的轨道车在轨道的外侧做圆周运动,丙、丁两图的轨道车在轨道的内侧做圆周运动,两种过山车都有安全锁(由上、下、侧三个轮子组成)把轨道车套在了轨道上,四个图中轨道的半径都为R ,下列说法正确的是( )A.甲图中,当轨道车以一定的速度通过轨道最高点时,座椅一定给人向上的力B.乙图中,当轨道车以一定的速度通过轨道最低点时,安全带一定给人向上的力C.丙图中,当轨道车以一定的速度通过轨道最低点时,座椅一定给人向上的力D.丁图中,轨道车过最高点的最小速度为gR5.(水平转盘模型)如图所示,水平圆盘绕竖直中心轴匀速转动,一小木块放在圆盘上随盘一起转动,且木块相对于圆盘保持静止,则下列说法正确的是()A.木块所受摩擦力的方向与其线速度的方向相反B.木块质量越大,就越不容易在圆盘上滑动C.木块离转轴越远,就越容易在圆盘上滑动D.圆盘转动的频率越快,木块就越容易在圆盘上滑动解:A、木块做匀速圆周运动时,运动中所受摩擦力提供向心力,其方向和线速度方向垂直,故A错误;B、木块在转盘上发生相对滑动的临界状态时有:mgμ=mω2r,质量消去,由此可知质量无关,故B错误;C、木块到转轴的距离越大,需要的向心力越大,越容易发生滑动,故C正确;D、发生相对滑动时,最大静摩擦力提供向心力,此时有:mgμ=mω2r,因此周期越小,即角速度ω越大,越容易发生相对滑动,故D对.故选:CD6.(水平转盘模型)如图所示,小物块放在水平转盘上,随盘同步做匀速圆周运动,则下列关于物块受力情况的叙述正确的是().A.受重力、支持力、静摩擦力和向心力的作用B.摩擦力的方向始终指向圆心OC.摩擦力的方向始终与线速度的方向相同D.静摩擦力提供使物块做匀速圆周运动的向心力解:A、小物块受到重力、支持力和静摩擦力三个力,向心力是物体做圆周运动所需要的力.故A错误.B、物块做圆周运动所需要的向心力由静摩擦力提供,向心力的方向指向圆心,所以静摩擦力的方向指向圆心.故B、D正确,C错误.- 2 -7.(水平转筒模型)如图所示,物体与圆筒壁的动摩擦因数为μ,圆筒的半径为R。

高中物理生活中的圆周运动专题讲解

高中物理生活中的圆周运动专题讲解

生活中的圆周运动要点一、静摩擦力提供向心力的圆周运动的临界状态 要点诠释:1、水平面上的匀速圆周运动,静摩擦力的大小和方向物体在做匀速圆周运动的过程中,物体的线速度大小不变,它受到的切线方向的力必定为零,提供向心力的静摩擦力一定沿着半径指向圆心。

这个静摩擦力的大小2f ma mr ω==向,它正比于物体的质量、半径和角速度的平方。

当物体的转速大到一定的程度时,静摩擦力达到最大值,若再增大角速度,静摩擦力不足以提供物体做圆周运动所需要的向心力,物体在滑动摩擦力的作用下做离心运动。

临界状态:物体恰好要相对滑动,静摩擦力达到最大值的状态。

此时物体的角速度rgμω=(μ为最大静摩擦因数),可见临界角速度与物体质量无关,与它到转轴的距离有关。

2、水平面上的变速圆周运动中的静摩擦力的大小和方向无论是加速圆周运动还是减速圆周运动,静摩擦力都不再沿着半径指向圆心,静摩擦力一定存在着一个切向分量改变速度的大小。

如图是在水平圆盘上的物体减速和加速转动时静摩擦力的方向:(为了便于观察,将图像画成俯视图)【典型例题】类型一、生活中的水平圆周运动 例1(多选)、(2015 安阳二模)如图所示,粗糙水平圆盘上,质量相等的A 、B 两物块叠放在一起,随圆盘一起做匀速圆周运动,则下列说法正确的是( )A .B 的向心力是A 的向心力的2倍B .盘对B 的摩擦力是B 对A 的摩擦力的2倍C .A 、B 都有沿半径向外滑动的趋势D .若B 先滑动,则B 对A 的动摩擦因数A μ小于盘对B 的动摩擦因数B μ 【答案】BC【解析】因为A 、B 两物体的角速度大小相等,根据2n F mr ω=,因为两物块的角速度大小相等,转动半径相等,质量相等,则向心力相等;对A 、B 整体分析,22B f mr ω=,对A 分析,有2A f mr ω=,知盘对B 的摩擦力是B 对A 的摩擦力的2倍,则B 正确;A 所受的摩擦力方向指向圆心,可知A 有沿半径向外滑动的趋势,B 受到盘的静摩擦力方向指向圆心,有沿半径向外滑动的趋势,故C 正确;对AB 整体分析,222B B mg mr μω=,解得:B B grμω=,对A 分析,2A A mg mr μω=,解得A A grμω=,因为B 先滑动,可知B 先到达临界角速度,可知B 的临界角速度较小,即B A μμ<,故D 错误。

专题:水平面内的圆周运动

专题:水平面内的圆周运动

水平面内的圆周运动一、水平圆盘问题例1、水平圆盘以角速度ω匀速转动,距转动轴L的位置有一小物块与圆盘相对静止,小物块的向心加速度多大所受摩擦力多大对接触面有什么要求离轴近的还是远的物体容易滑动练习:质量相等的小球A、B分别固定在轻杆的中点和端点,当杆在光滑的水平面上绕O点匀速转动时,求杆的OA段和AB段对小球的拉力之比;O A例2、中心穿孔的光滑水平圆盘匀速转动,距转动轴L的位置有一质量为m的小物块A通过一根细线穿过圆盘中心的光滑小孔吊着一质量为M的物体B,小物块A与圆盘相对静止,求盘的角速度;°变式:若圆盘上表面不光滑,与A的动摩擦因数为μ,则圆盘角速度的取值范围是多少例3、在半径为r的匀速转动的竖直圆筒内壁上附着一物块,物块与圆筒的动摩擦因数为μ,要使物块不滑下来,圆筒转动的角速度应满足什么条件例4、长为L的细线悬挂质量为M的小球,小球在水平面内做匀速圆周运动,细线与竖直方向夹角为θ,求1小球的角速度;2小球对细线的拉力大小;变式:一个光滑的圆锥形筒的轴线垂直于水平面,圆锥筒固定,质量为m的小球沿着筒的内壁在水平面内做匀速圆周运动,圆锥母线与轴线夹角为θ,小球到锥面顶点的高为h,1小球的向心加速度为多少2对圆锥面的压力为多大3小球的角速度和线速度各为多少·θ思考:小球的向心加速度与小球质量有关吗与小球的高度有关吗若有两个小球在同一光滑的圆锥形筒内转动,A球较高而B球较低,试比较它们的向心加速度、对圆锥面的压力、线速度、角速度大小;二、临界问题例5:如图所示,洗衣机内半径为r 的圆筒,绕竖直中心轴OO ′转动,小物块a 靠在圆筒的内壁上,它与圆筒的动摩擦因数为μ,现要使a 不下落,则圆筒转动的角速度ω至少为A .r g /μB .g μC .r g /D .r g μ/例6:如图所示,细绳一端系着质量M =的物体,静止在水平桌面上,另一端通过光滑的小孔吊着质量m =的物体 m,已知M 与圆孔距离为,M 与水平面间的最大静摩擦力为2N;现使此平面绕中心轴线转动,问角速度ω在什么范围m 会处于静止状态g =10m /s 2例7、如图所示,两根相同的细线长度分别系在小球和竖直杆M 、N 两点上,其长度分别为L 、R 且构成如图一个直角三角形,小球在水平面内做匀速圆周运动,细线能承受的最大拉力为2mg,当两根细线都伸直时,若保持小球做圆周运动的半径不变,求:小球的角速度范围变式、如图所示,两根相同的细线长度分别系在质量为m 的小球和竖直杆M 、N 两点上;小球在水平面内做匀速圆周运动,当两根细线都伸直时,小球到杆的距离为R,且细线与杆的夹角分别为θ和α,承受的最大拉力为2mg,若保持小球做圆周运动的半径不变,求:小球的角速度范围三、两个或多个物体的圆周运动例4:如图所示,A 、B 、C 三个物体放在水平旋转的圆盘上,三物与转盘的最大静摩擦因数均为μ,A 的质量是2m ,B 和C 的质量均为m ,A 、B 离轴距离为R ,C 离轴2R ,若三物相对盘静止,则A .每个物体均受重力、支持力、静摩擦力、向心力四个力作用B .C 的向心加速度最大 C .B 的摩擦力最小D .当圆台转速增大时,C 比B 先滑动,A 和B 同时滑动例5:在光滑杆上穿着两个小球m 1、m 2,且m 1=2m 2,用细线把两球连起来,当盘架匀速转动时,两小球刚好能与杆保持无相对滑动,如右图所示,此时两小球到转轴的距离r 1与r 2之比为A .1∶1B .1∶2C .2∶1D .1∶2四、课后作业1.在水平面上转弯的汽车,提供向心力的是A .重力与支持力的合力B .静摩擦力Mr o mgR v ≤μC .滑动摩擦力 D .重力、支持力、牵引力的合力 2.有长短不同,材料相同的同样粗细的绳子,各拴着一个质量相同的小球在光滑水平面上做匀速圆周运动,那么A .两个小球以相同的线速度运动时,长绳易断B .两个小球以相同的角速度运动时,长绳易断C .两个球以相同的周期运动时,短绳易断D .不论如何,短绳易断3.在一段半径为R 的圆孤形水平弯道上,已知弯道路面对汽车轮胎的最大静摩擦力等于车重的μ倍,则汽车拐弯时的安全速度是A .v gR ≤μ B . C .v gR ≤2μ D .v gR ≤μ 4.如图所示,A 、B 、C 三个小物体放在水平转台上,m A =2m B =2m C ,离转轴距离分别为2R A =2R B =R C ,当转台转动时,下列说法正确的是A .如果它们都不滑动,则C 的向心加速度最大B .如果它们都不滑动,则B 所受的静摩擦力最小C .当转台转速增大时,B 比A 先滑动D .当转台转速增大时,C 比B 先滑动5.如图所示,甲、乙两名滑冰运动员,M 甲=80kg,M 乙=40kg,面对面拉着弹簧秤做圆周运动的溜冰表演,两人相距,弹簧秤的示数为600N,下列判断中正确的是A .两人的线速度相同,约为sB .两人的角速度相同,约为5rad/sC .两人的运动半径相同,都是D .两人的运动半径不同,甲为,乙为6.汽车在倾斜的轨道上转弯如图所示,弯道的倾角为θ,半径为r ,则汽车完全不靠摩擦力转弯的速率是设转弯半径水平A .θsin grB .θcos grC .θtan grD .θcot gr7.一辆质量为1t 的赛车正以14m/s 的速度进入一个圆形跑道,已知跑道半径为50m,最大静摩擦力约等于滑动摩擦力,则:1此赛车转弯所需的向心力是多大2当天气晴朗时,赛车和路面之间的摩擦系数是,问比赛过程中赛车是否能顺利通过弯道3在雨天时,赛车和路面之间的摩擦系数是,问比赛过程中赛车是否能顺利通过弯道8.水平圆盘绕竖直轴以角速度ω匀速转动;一个质量为50kg 的人坐在离轴r=m/3处随盘一起转动;设人与盘的最大静摩擦力均为体重的倍,g取10 m/s2,求:1ω为多大时,人开始相对盘滑动;2此时离中心r′= m处的质量为100kg的另一个人是否已相对滑动请简述理由;。

专题一 11 圆周运动(知识点完整归纳)

专题一 11 圆周运动(知识点完整归纳)

11 圆周运动1.两种传动方式(1)皮带传动(摩擦传动、齿轮传动):两轮边缘线速度大小相等. (2)同轴转动:轮上各点角速度相等. 2.匀速圆周运动(1)常见模型:物体随水平平台转动、火车或汽车转弯、圆锥摆模型、天体的运动、带电粒子在匀强磁场中的运动等.(2)向心力:由合外力提供,只改变速度的方向,不改变速度的大小. (3)动力学规律:F 向=ma =m v 2r =mrω2=mr 4π2T 2=mr 4π2n 2=mωv .3.竖直平面内的非匀速圆周运动(1)轻绳(圆轨道内侧)模型:物体能做完整圆周运动的条件是在最高点F +mg =m v 2R ≥mg ,即v ≥gR ,物体在最高点的最小速度(临界速度)为gR .(2)拱形桥模型:在最高点有mg -F =m v 2R <mg ,即v <gR ;在最高点,当v ≥gR 时,物体将离开桥面做平抛运动.(3)细杆(管形轨道)模型:在最高点的临界条件是v =0,当0<v <gR 时物体受到的弹力向上;当v >gR 时物体受到的弹力向下;当v =gR 时物体受到的弹力为零. (4)常利用动能定理来建立最高点和最低点的速度联系.1.两类临界问题(1)与摩擦力有关的临界极值图1由摩擦力及其他力的合力提供向心力,发生相对滑动的临界条件是静摩擦力达到最大值,如图1,小物体随倾斜圆盘匀速转动的最大角速度,就是在最下端时摩擦力达到最大静摩擦力,由μmg cos 30°-mg sin 30°=mω2r ,可求得ω的最大值. (2)与弹力有关的临界极值压力、支持力的临界条件是物体间的弹力恰好为零;绳上拉力的临界条件是绳恰好拉直且无弹力或绳上拉力恰好为最大承受力. 2.两个结论(1)如图2,在同一水平面上做匀速圆周运动(圆锥摆)的两个小球,由mg tan θ=mω2h tan θ,知角速度(周期)相同.图2(2)如图3,小球能沿粗糙半圆周从P 经最低点Q 到R ,由于机械能的损失,在前半程的速度(摩擦力)总是大于后半程等高处的速度(摩擦力),P 到Q 克服摩擦力所做的功大于Q 到R 克服摩擦力所做的功.图3示例1 (描述圆周运动的物理量)(多选)(2019·江苏卷·6)如图4所示,摩天轮悬挂的座舱在竖直平面内做匀速圆周运动.座舱的质量为m ,运动半径为R ,角速度大小为ω,重力加速度为g ,则座舱( )图4A .运动周期为2πR ωB .线速度的大小为ωRC .受摩天轮作用力的大小始终为mgD .所受合力的大小始终为mω2R答案 BD解析 由题意可知座舱运动周期为T =2πω,线速度为v =ωR ,受到的合力为F =mω2R ,选项B 、D 正确,A 错误;座舱的重力为mg ,座舱做匀速圆周运动受到的向心力(即合力)大小不变,方向时刻变化,故座舱受摩天轮的作用力大小时刻在改变,选项C 错误.示例2 (水平面内圆周运动的临界问题)(多选)(2014·全国卷Ⅰ·20)如图5所示,两个质量均为m 的小木块a 和b (可视为质点)放在水平圆盘上,a 与转轴OO ′的距离为l ,b 与转轴的距离为2l ,木块与圆盘的最大静摩擦力为木块所受重力的k 倍,重力加速度大小为g .若圆盘从静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,下列说法正确的是( )图5A .b 一定比a 先开始滑动B .a 、b 所受的摩擦力始终相等C .ω=kg2l是b 开始滑动的临界角速度 D .当ω=2kg3l时,a 所受摩擦力的大小为kmg 答案 AC解析 小木块a 、b 做圆周运动时,由静摩擦力提供向心力,即F f =mω2R .当角速度增加时,静摩擦力增大,当增大到最大静摩擦力时,发生相对滑动,对木块a :F f a =mωa 2l ,当F f a =kmg 时,kmg =mωa 2l ,ωa =kgl;对木块b :F f b =mωb 2·2l ,当F f b =kmg 时,kmg =mωb 2·2l ,ωb =kg2l,所以b 先达到最大静摩擦力,选项A 正确;两木块滑动前转动的角速度相同,则F f a =mω2l ,F f b =mω2·2l ,F f a <F f b ,选项B 错误;当ω=kg2l时b 刚开始滑动,选项C 正确;当ω=2kg 3l 时,a 没有滑动,则F f a =mω2l =23kmg ,选项D 错误. 示例3 (竖直面内的圆周运动)(2020·全国卷Ⅰ·16)如图6,一同学表演荡秋千.已知秋千的两根绳长均为10 m ,该同学和秋千踏板的总质量约为50 kg.绳的质量忽略不计.当该同学荡到秋千支架的正下方时,速度大小为8 m/s ,此时每根绳子平均承受的拉力约为( )图6A .200 NB .400 NC .600 ND .800 N答案 B解析 取该同学与踏板为研究对象,到达最低点时,受力如图所示,设每根绳子中的平均拉力为F .由牛顿第二定律知:2F -mg =m v 2r ,代入数据得F =405 N ,故每根绳子平均承受的拉力约为405 N ,选项B 正确.示例4 (拋体与圆周的结合)(2018·全国卷Ⅲ·25改编)如图7所示,在竖直平面内,一半径为R 的光滑圆弧轨道ABC 和水平轨道P A 在A 点相切,BC 为圆弧轨道的直径,O 为圆心,OA 和OB 之间的夹角为α,sin α=35.一质量为m 的小球沿水平轨道向右运动,经A 点沿圆弧轨道通过C 点,落至水平轨道;在整个过程中,除受到重力及轨道作用力外,小球还一直受到一水平恒力的作用.已知小球在C 点所受合力的方向指向圆心,且此时小球对轨道的压力恰好为零.重力加速度大小为g .求:图7(1)水平恒力的大小和小球到达C 点时速度的大小; (2)小球从C 点落至水平轨道所用的时间. 答案 (1)34mg5gR 2 (2)355Rg解析 (1)设水平恒力的大小为F 0,小球到达C 点时所受合力的大小为F .由力的合成法则有F 0mg=tan α① F 2=(mg )2+F 02②设小球到达C 点时的速度大小为v ,由牛顿第二定律得 F =m v 2R③由①②③式和题给数据得F 0=34mg ④v =5gR2⑤ (2)小球离开C 点后在竖直方向上做初速度不为零的匀加速运动,加速度大小为g .设小球在竖直方向的初速度为v ⊥,从C 点落至水平轨道上所用时间为t .由运动学公式有v ⊥t +12gt 2=CD ○10 v ⊥=v sin α⑪又CD =R (1+cos α)⑫ 由⑤⑦⑩⑪⑫式和题给数据得 t =355R g。

物理:《圆周运动》课件 (复习专题)

物理:《圆周运动》课件 (复习专题)

但是这并不是竞技魅力的全部。奥林匹克运动会的发起人皮埃尔·德·顾拜旦曾说过:“奥运会重要的不是胜利而是参与,生 活的本质不是索取而是奋斗。在奥林匹克这个舞台上,有几万人在为自己的理想而奋斗,有几十万人,甚至几百万、几千万、 几亿人在为了来到这个舞台而不断超越着自我。他们中间的一些人可能最终也与金牌无缘,但一直在努力且永不放弃,应该赢 得社会的尊重和敬意”。其实,金牌并不是奥运会的全部。如果其光环被无限放大,也就背离了奥林匹克的本意。
(2)竖直平面内的圆周运动
例: 某兴趣小组设计了如图所示的玩具轨道,其 中“2008”四个等高数字用内壁光滑的薄壁细圆管 弯成,固定在竖直平面内(所有数字均由圆或半圆 组成,圆半径比细管的内径大得多),底端与水平 地面相切.弹射装置将一个小物体(可视为质点) 以Va=5 m/s的水平初速度由a点弹出,从b点进 入轨道,依次经过“8002”后从p点水平抛出.小 物体与地面ab段间的动摩擦因数μ=0.3,不计其 它机械能损失.已知ab段长L=1. 5 m,数字“0” 的半径R=0.2 m,小物体质量m=0.01 kg,g= 2 10 m/ .求:小物体经过数 s 字“0”的最高点时管道对小 物体作用力的大小和方向.
天真的提醒。相差十岁开外,已经有一代的辈份了吧?怎么好叫哥哥呢?“是。叔、叔,要教~导、你——!”轻狂书生一发 咬上了牙。小童生打个寒噤,觉得叔叔好怪哦!满脸写满疑问,就被怪叔叔脚不沾地的拖走了。各人都两两分好了组,便各安 其位,每组自据一案,个个面壁,低声商议,推一人执笔,免得由笔迹泄露哪句是谁所作。“你来写吧。”宝音对刘晨寂轻声 道。她写字还不算特别顺,不敢献丑。刘晨寂也不推让,执起笔来,问:“你要什么韵?”宝音沉思好一会儿:“我只想出几 个字,别等我了。你喜欢用什么韵?”“我不妨。”刘晨寂道,“先尽着你罢。”宝音低低道:“期。花期的期。”刘晨寂点 头,算是记下了。他总不动笔,宝音想得了一联,怕时间不够,也不好等他了,赧然道:“我有一联。”刘晨寂便提笔。宝音 当他自己要写了,等他,他只静着,反在等宝音。宝音方悟,他提笔,是要她说句子,他好录,忙红着脸报给他:“野老闲与 朱鹭钓,娇娥笑对杏花期。”怕写得不好,被他笑,声如蚊蚋,有几个字,简直连自己都听不清。他录下来,一字不错,点点 头:“挺好。”又问:“这是颈联了。后头呢?”后头,宝音想不出怎么结尾。刘晨寂道:“那我先写前半首?”宝音点头。 刘晨寂舒袖展锋,并不思索,写道:“久梦桃夭始自知,江南已是落花时。半城红谢唐人卷,两处青余陌上词。”如在静默的 冬夜,捧起一盏清茶,齿颊留香。他这样好的文风,前一题,怎交白卷?因他不在乎丢脸,宝音在乎。他特来替宝音解围、与 宝音搭档,就不能叫宝音在众人目光之下,冷汗涔涔。他为何对宝音这样好?宝音被感动了。她感动的时候,往往脑袋就会变 成一团浆糊。明柯当时若不用私奔的故事来感动她,她也不会犯糊涂去盗出金像。可惜她糊涂的时候,就写不出诗了。时间已 快到,有的人已经交卷了。刘晨寂道:“还有尾联?”宝音知道还有尾联,但她哪里编得出来了。“你心事太重了。”刘晨寂 叹道。是,宝音除了感动之外,还在猜他为何对她好,是不是跟表 有什么渊源,又想到明柯私奔的故事里,会不会有什么真 情,还在想恩与怨、情与仇、前世与今生,孰取孰舍、何去何从。“交给我罢?”刘晨寂无奈道。“嗯。”宝音应道。恍惚间 她觉得把手里一切难解的题,都交给刘晨寂发付了。刘晨寂写下收句:“须知桃下少年好,得意时节正展眉。” 看了她一眼, 这是他对她的期许么?叫她放下一切,专心享受表 的人生?宝音满眼的疑问,刘晨寂低下头去收拾纸笔,似再无意愿跟宝音 交流,纸卷底下,却不动声色递过来一件东西?宝音手指触及,但觉是张很小的纸,叠成个包,不知里头装了什么东西,心头 狂跳。这是什么?“回家之前,找空

第六章-圆周运动章末复习-知识点和题型总结-2023年高一物理期末高效复习专题

第六章-圆周运动章末复习-知识点和题型总结-2023年高一物理期末高效复习专题

第六章:圆周运动章末复习知识点一:匀速圆周运动及其描述一、匀速圆周运动1.圆周运动:物体的运动轨迹是圆的运动.2.匀速圆周运动:质点沿圆周运动,如果在相等的时间内通过的圆弧长度相等,这种运动就叫匀速圆周运动.二、匀速圆周运动的线速度、角速度和周期1.线速度(1)定义式:v=Δs Δt.如果Δt取的足够小,v就为瞬时线速度.此时Δs的方向就与半径垂直,即沿该点的切线方向.(2)线速度的方向:质点在圆周某点的线速度方向沿圆周上该点的切线方向.(3)物理意义:描述质点沿圆周运动的快慢.2.角速度:半径转过的角度Δφ与所用时间Δt的比值,即ω=ΔφΔt(如图所示).国际单位是弧度每秒,符号是rad/s.3.转速与周期(1)转速n:做圆周运动的物体单位时间内转过的圈数,常用符号n表示.(2)周期T:做匀速圆周运动的物体运动一周所用的时间叫做周期,用符号T 表示.(3)转速与周期的关系:若转速的单位是转每秒(r/s),则转速与周期的关系为T=1n .4.匀速圆周运动的特点(1)线速度的大小处处相等.(2)由于匀速圆周运动的线速度方向时刻在改变,所以它是一种变速运动.这里的“匀速”实质上指的是“匀速率”而不是“匀速度三、描述圆周运动的各物理量之间的关系1.线速度与周期的关系:v=2πr T.2.角速度与周期的关系:ω=2πT.3.线速度与角速度的关系:v=ωr.知识点二、同轴转动和皮带传动1.同轴转动(1)角速度(周期)的关系:ωA=ωB,T A=T B.(2)线速度的关系:vAvB=rR.2.皮带(齿轮)传动(1)线速度的关系:v A=v B(2)角速度(周期)的关系:ωAωB=rR、TATB=Rr.知识点三、向心力1.定义:物体做匀速圆周运动时所受合力方向始终指向圆心,这个指向圆心的合力就叫做向心力.2.大小:F=mω2r=m v2 r.3.方向:总是沿半径指向圆心,方向时刻改变.4.效果力向心力是根据力的作用效果来命名的,凡是产生向心加速度的力,不管属于哪种性质,都是向心力.二:向心力的来源物体做圆周运动时,向心力由物体所受力中沿半径方向的力提供.几种常见的实例如下:实例向心力示意图用细线拴住的小球在竖直面内转动至最高点时绳子的拉力和重力的合力提供向心力,F向=F+G用细线拴住小球在光滑水平面内做匀速圆周运动线的拉力提供向心力,F向=F T物体随转盘做匀速圆周运动,且相对转盘静止转盘对物体的静摩擦力提供向心力,F向=F f小球在细线作用下,在水平面内做圆周运动重力和细线的拉力的合力提供向心力,F向=F合知识点四:向心加速度的方向及意义1.物理意义描述线速度改变的快慢,只表示线速度的方向变化的快慢,不表示其大小变化的快慢.2.方向总是沿着圆周运动的半径指向圆心,即方向始终与运动方向垂直,方向时刻改变.3.圆周运动的性质不论向心加速度a n的大小是否变化,a n的方向是时刻改变的,所以圆周运动的向心加速度时刻发生改变,圆周运动一定是非匀变速曲线运动.“匀速圆周运动中”的“匀速”应理解为“匀速率”.4.变速圆周运动的向心加速度做变速圆周运动的物体,加速度一般情况下不指向圆心,该加速度有两个分量:一是向心加速度,二是切向加速度.向心加速度表示速度方向变化的快慢,切向加速度表示速度大小变化的快慢.所以变速圆周运动中,向心加速度的方向也总是指向圆心.二:向心加速度的公式和应用1.公式a n =v2r=ω2r=4π2T2r=4π2n2r=4π2f2r=ωv.2.向心加速度的大小与半径的关系(1)当半径一定时,向心加速度的大小与角速度的平方成正比,也与线速度的平方成正比.随频率的增大或周期的减小而增大.(2)当角速度一定时,向心加速度与运动半径成正比.(3)当线速度一定时,向心加速度与运动半径成反比.(4)a n与r的关系图象:如图5­5­2所示.由a n­r图象可以看出:a n与r成正比还是反比,要看ω恒定还是v恒定.图5­5­2知识点五:生活在的圆周运动一:火车转弯问题1.轨道分析火车在转弯过程中,运动轨迹是一圆弧,由于火车转弯过程中重心高度不变,故火车轨迹所在的平面是水平面,而不是斜面.火车的向心加速度和向心力均沿水平面指向圆心.图5­7­32.向心力分析如图5­7­3所示,火车速度合适时,火车受重力和支持力作用,火车转弯所需的向心力完全由重力和支持力的合力提供,合力沿水平方向,大小F=mg tan θ.3.规定速度分析若火车转弯时只受重力和支持力作用,不受轨道压力,则mg tan θ=m v 2 0R,可得v0=gR tan θ(R为弯道半径,θ为轨道所在平面与水平面的夹角,v0为转弯处的规定速度).4.轨道压力分析(1)当火车行驶速度v等于规定速度v0时,所需向心力仅由重力和弹力的合力提供,此时火车对内外轨道无挤压作用.(2)当火车行驶速度v与规定速度v0不相等时,火车所需向心力不再仅由重力和弹力的合力提供,此时内外轨道对火车轮缘有挤压作用,具体情况如下:①当火车行驶速度v>v0时,外轨道对轮缘有侧压力.②当火车行驶速度v<v0时,内轨道对轮缘有侧压力.二:拱形桥汽车过凸形桥(最高点)汽车过凹形桥(最低点) 受力分析牛顿第二定律求向心力 F n =mg -F N =m v 2rF n =F N -mg =m v 2r牛顿第三定律求压力F 压=F N =mg -m v 2rF 压=F N =mg +m v 2r讨论v 增大,F 压减小;当v 增大到rg 时,F 压=0v 增大,F 压增大 超、失重汽车对桥面压力小于自身重力,汽车处于失重状态汽车对桥面压力大于自身重力,汽车处于超重状态知识点六:离心运动1.离心运动的实质离心现象的本质是物体惯性的表现.做圆周运动的物体,由于惯性,总是有沿着圆周切线飞出去的趋向,之所以没有飞出去,是因为受到向心力的作用.从某种意义上说,向心力的作用是不断地把物体从圆周运动的切向方向拉回到圆周上来.2.离心运动的条件做圆周运动的物体,提供向心力的外力突然消失或者合外力不能提供足够大的向心力.3.离心运动、近心运动的判断如图5­7­8所示,物体做圆周运动是离心运动还是近心运动,由实际提供的向心力F n 与所需向心力⎝ ⎛⎭⎪⎫m v 2r 或mr ω2的大小关系决定.图5­7­8(1)若F n =mr ω2(或m v 2r)即“提供”满足“需要”,物体做圆周运动.(2)若F n>mrω2(或m v2r)即“提供”大于“需要”,物体做半径变小的近心运动.(3)若F n<mrω2(或m v2r)即“提供”不足,物体做离心运动.由以上关系进一步分析可知:原来做圆周运动的物体,若速率不变,所受向心力减少(或向心力不变,速率变大)物体将做离心运动;若速度大小不变,所受向心力增大(或向心力不变,速率减小)物体将做近心运动.知识点七.竖直平面的圆周运动1.“绳模型”如上图所示,小球在竖直平面内做圆周运动过最高点情况。

专题08圆周运动-【好题汇编】三年(2022-2024)高考物理真题分类汇编(全国通用)(解析版)

专题08圆周运动-【好题汇编】三年(2022-2024)高考物理真题分类汇编(全国通用)(解析版)

圆周运动专题08考点01水平面内圆周运动1.(2024高考辽宁卷)“指尖转球”是花式篮球表演中常见的技巧。

如图,当篮球在指尖上绕轴转动时,球面上P、Q两点做圆周运动的()A.半径相等B.线速度大小相等C.向心加速度大小相等D.角速度大小相等【答案】D 【解析】由题意可知,球面上P 、Q 两点转动时属于同轴转动,故角速度大小相等,故D 正确;由图可知,球面上P 、Q 两点做圆周运动的半径的关系为P Q r r <,故A 错误;根据v r ω=可知,球面上P 、Q 两点做圆周运动的线速度的关系为P Q v v <,故B 错误;根据2n a r ω=可知,球面上P 、Q 两点做圆周运动的向心加速度的关系为P Q a a <,故C 错误。

2.(2024年高考江苏卷第8题)生产陶瓷的工作台匀速转动,台面面上掉有陶屑,陶屑与桌面间的动摩擦因数处处相同(台面足够大),则A.离轴OO’越远的陶屑质量越大B.离轴OO’越近的陶屑质量越大C.只有平台边缘有陶屑D..离轴最远的陶屑距离不超过某一值R 【参考答案】D【名师解析】由μmg=mRω2,解得离轴最远的陶屑距离不超过某一值R=μg/ω2,D 正确。

3.(2024年高考江苏卷)如图所示,细绳穿过竖直的管子拴住一个小球,让小球在A 高度处做水平面内的匀速圆周运动,现用力将细绳缓慢下拉,使小球在B 高度处做水平面内的匀速圆周运动,不计一切摩擦,则()A .线速度v A >v BB.角速度ωA <ωBC.向心加速度a A <a BD.向心力F A >F B 【答案】AD 【解析】设绳子与竖直方向的夹角为θ,对小球受力分析有F n =mg tan θ=ma由题图可看出小球从A 高度到B 高度θ增大,则由F n =mg tan θ=ma 可知a B >a A ,F B >F A 故C 错误,D 正确;再根据题图可看出,A 、B 位置在同一竖线上,则A 、B 位置的半径相同,则根据22n v F m m rrω==可得v A >v B ,ωA >ωB 故A 正确,B 错误。

圆周运动专题

圆周运动专题

1圆周运动专题题型一:竖直面内的圆周运动的临界问题分析 (一) 绳球模型(内轨道模型)过最高点的临界条件:最小速度 过程分析:杆球模型(双轨到模型)过最高点的临界条件:最小速度 过程分析:思维提升1:由于两种模型过最高点的临界条件不同,所以在分析时首先明确是哪种模型,然后在利用条件讨论。

还要理解它们临界条件不同的原因是轻绳不能承受压力,而轻杆既能承受拉力,也能承受压力。

2:杆球模型中,在事先不能判断弹力方向是向上还是向下时,可以先作一假设,做出正确的受力分析后,根据牛顿第二定律即可求解。

例1、如图所示,杯子里盛有m2=1kg 的水,用绳子系住水杯在竖直平面内做“水流星”表演,转动半径为r =1m ,水杯通过最高点的速度为v =4m/s ,求:在最高点时,水对杯底的压力例2、如图3所示,长为R 的轻杆,一端固定有一质量为m 的小球,使小球在竖直平面内做圆周运动,小球在最高时( )A.小球的最小速度v 最小=B.小球所需的向心力随此时速度v 增加而变大C.杆对球的作用随此时的速度v 增加而变大D.杆对球的作用力方向与球的重力相反时,大小随此时速度v 增加而变小汽车过桥模型 例3、一辆汽车以36km/h 的速率通过一座拱桥的桥顶,汽车对桥面的压力等于车重的一半,这座拱桥的半径是多少?若要使汽车过桥顶时对桥面无压力,则汽车过桥顶时的速度大小至少是多少?(取g =10 m/s2)题型二:匀速圆周运动中的临界问题例4、如图2所示,两绳系一质量为m=0.1kg 的小球,上面绳长L=2m ,两端都拉直时与轴的夹角分别为30°与45°,问球的角速度在什么范围内,两绳始终张紧;当角速度为3 rad/s 时,上、下两绳拉力分别为多大?例5、如图B-5所示,质量为m 的木块,用光滑细绳拴着,置于很大的水平转盘上,细绳穿过转盘中央的细管,与质量也为m 的小球相连,木块的最大静摩擦力为其重力的μ倍(μ=0.2),当转盘以角速度ω=4rad/s 匀速转动时,要保持木块与转盘相对静止,木块转动的轨道半径的范围是多少?2圆周运动练习题1、图示为某一皮带传动装置。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4 2009 年是中华人民共和国成立 60 周年,某学校物理兴趣小组用空心透明塑料管制作了如图 4 所示的竖直 “60”造型.两个“0”字型的半径均为 R.让一质量为 m,直径略小于管径的光滑小球从入口 A 处射入,依 次经过图中的 B、C、D 三点,最后从 E 点飞出.已知 BC 是“0”字型的一条直径,D 点是该造型最左侧的 一点,当地的重力加速度为 g,不计一切阻力,则小球在整个运动过程中 (BD ) A.在 B、C、D 三点中,距 A 点位移最大的是 B 点,路程最大的是 D 点 B.若小球在 C 点对管壁的作用力恰好为零,则在 B 点小球对管壁的压力大小为 6mg C.在 B、C、D 三点中,瞬时速率最大的是 D 点,最小的是 C 点 D.小球从 E 点飞出后将做匀变速运动
三,平抛和圆周的区别(挖掘题目的隐含条件,区分是平抛还是圆周) 7.如图 11 所示,ABC 和 DEF 是在同一竖直平面内的两条光滑轨道,其中 ABC 的末端水平,DEF 是半径为 r =0.4 m 的半圆形轨道,其直径 DF 沿竖直方向,C、D 可看作重合.现有一可视为质点的小球从轨道 ABC 上距 C 点高为 H 的地方由静止释放. (1)若要使小球经 C 处水平进入轨道 DEF 且能沿轨道运动,H 至少要有多高? (2)若小球静止释放处离 C 点的高度 h 小于(1)中 H 的最小值,小球可击中与圆心等高的 E 点,求此 h 的值.(取 g =10 m/s2) 解析 (1)设小球到达 C 点时的速度为 v,由机械能守恒定律得 mgH=12mv2 小球能在竖直平面内做圆周运动,则满足 mg≤mvr2 (3 分) 联立以上两式并代入数据解得 H≥0.2 m (2)若 h<H,小球过 C 点后做平抛运动,设球经 C 点时的速度大小为 vx,则有
1
5【例】如图 4-27 所示,质量为 3 m 的竖直圆环 A 的半径为 r,固定在质量为 2 m 的木板 B 上,木板 B 放在水平地面上,木板 B 的左右两侧各有一竖直挡板固定在地
上,B 恰好不能左右运动.在环的最低点静止放置一质量为 m 的小球 C,给小球一
水平向右的瞬时速度 v1,小球会在环内侧做圆周运动,为保证小球能通过环的最高 点,且不会使环在竖直方向上跳起,瞬时速度必须满足( ).
一,曲线运动的特点(由运动找轨迹的问题) 1.(改编题)如图 4-19 所示,在一次抗洪救灾工作中,一架离水面高为 H,沿水平直线飞行的直升飞机 A, 用悬索(重力可忽略不计)救护困在湖水中的伤员 B,在直升飞机 A 和伤员 B 以相同的水平速率匀速运动的 同时,悬索将伤员吊起.设经 t 时间后,A、B 之间的距离为 l,且 l=H-2t2.则在这段时间内关于伤员 B 的受力情况和运动轨迹正确的是下列哪个图( A ).
A.最小值 4gr
B.最大值 3 gr
C.最小值 5gr
Байду номын сангаас
D.最大值 10gr
二,图像问题(如何利用图像来求解的问题)
5 如图 4-2-12 所示,在同一竖直平面内两正对着的相同半圆光滑轨道,相隔一定的距离,虚线沿竖直方
向,一小球能在其间运动,今在最高点与最低点各放一个压力传感器,测试小球对轨道的压力,并通过计 算机显示出来,当轨道距离变化时,测得两点压力差 ΔFN 与距离 x 图象如图所示,g 取 10 m/s2,轨道半 径为 R,不计空气阻力,求:
(1)小球在最高点与最低点对轨道压力差 ΔFN 与距离 x 的关系式; (2)根据图象提供的信息,确定小球的质量为多少?
(3)若小球在最低点 B 的速度为 20 m/s,为使小球能沿轨道运动,x
的最大值为多少?
6 如图 4-15 所示,竖直平面内有一圆形绝缘轨道,半径为 R=1 m,匀强磁场垂直于轨道平面向内.一质 量为 m=1×10-3 kg、带电荷量为 q=+3.0×10-2 C 的小球,可在内壁滑动.开始时,在最低点处给小球 一个初 速度 v0,使小球在竖直面内逆时针做圆周运动.图 4-16(甲)所示是小球在竖直面内做圆周运动的速率随时 间变化的情况,图 4-16(乙)所示是小球所受轨道的弹力 F 随时间变化的情况,结合图象所给数据,求: (1)磁感应强度 B 的大小. (2)小球初速度 v0 的大小.
解析 (1)由甲、乙两图象知,当小球第二次过最高点时,速度的大小为 5 m/s,轨道与球间的弹力为零, 所以 mg+qvB=mvR2,代入数据解得:B=0.1 T. (2)由乙图象知,小球第一次过最低点时,轨道与球间的弹力 F=5.0×10-2 N,由牛顿第二定律得:F-mg +qv0B=mvR20.解得 v0=8 m/s. 答案 (1)0.1 T (2)8 m/s
二,圆周运动的规律(最高点最低点力的特点) 2 (改编题)如图 4-17 所示是游乐场中过山车的原理图.在原理图中半径分别为 R1=2.0 m 和 R2=8.0 m 的 两个光滑圆形轨道,固定在倾角为 α 的斜轨道面上的 Q、Z 两点,且两圆形轨道的最高点 A、B 均与 P 点 平齐,圆形轨道与斜轨道之间圆滑连接,且轨道光滑.现使小车(视做质点)从 P 点以一定的初速度沿斜面 向下运动.若小车在通过第一个圆形轨道的最高点 A 处时对轨道压力为其重力的 3 倍,则小车能否安全通 过第二个圆形轨道的最高点?(取 g=10 m/s2). 解析 小车通过 A 点时,根据牛顿运动定律及向心力公式得:mg+3mg=mvR21, 可得 v=2 gR1.小车恰能通过第二个圆形轨道最高点的临界条件是小车重力提供向 心力,即有:mg=mvR2mi2n由已知 R2=4R1,得 vmin=2 gR1,所以小车能通过 B 点的最小 速度应为 2 gR1.小车在运动过程中,由于没有摩擦力,所以机械能守恒,即小车到 B 点时的速度与到达 A 点时的速度相等,均为 2 gR1,恰满足临界条件,因此小车恰好能通过最高点 B,即 小车能安全通过第二个圆形轨道的最高点. 3.如图 8-3-28 所示,ABC 为竖直平面内的光滑绝缘轨道,其中 AB 为倾斜直轨道,BC 为与 AB 相切的圆 形轨道,并且圆形轨道处在匀强磁场中,磁场方向垂直纸面向里.质量相同的甲、乙、丙三个小球中,甲 球带正电、乙球带负电、丙球不带电.现将三个小球在轨道 AB 上分别从不同高度处由静止释放,都恰好 通过圆形轨道的最高点,则( ) A.经过最高点时,三个小球的速度相等 B.经过最高点时,甲球的速度最小 C.甲球的释放位置比乙球的高 D.运动过程中三个小球的机械能均保持不变 解析:三个小球在运动过程中机械能守恒,对甲有 qv1B+mg=mrv12,对乙有 mg-qv2B=mrv22,对丙有 mg=mrv32, 可判断 A、B 错,C、D 对;选 C、D.本题中等难度.答案:CD
相关文档
最新文档