集合的概念集合与元素
元素与集合的概念
元素与集合的概念1. 元素的概念在数学中,元素是指集合中的一个个体或成员。
元素可以是任何事物、对象、数字等。
元素是集合的构成部分,一个集合可以包含多个元素。
1.1 定义元素的定义可以通过集合论的角度进行解释。
在集合论中,元素是指集合中的一个个体,该个体可以是任何事物、对象、数字等。
元素是集合的基本构成单位,集合中的每个元素都是独立的,没有重复。
1.2 重要性元素在数学中起着非常重要的作用,它是集合论的基础概念之一。
元素的概念使得我们能够将不同的个体或事物进行分类和组织,从而建立起数学中的各种集合。
元素的概念也是数学中许多重要理论和定理的基础,例如集合的交并运算、集合的包含关系等。
1.3 应用元素的概念在数学中有广泛的应用。
以下是一些常见的应用场景:•集合论:元素是集合论的基本概念,集合论研究的对象就是集合和其中的元素之间的关系和性质。
•数论:元素可以是整数、有理数、实数等,用于研究数的性质和规律。
•几何学:元素可以是点、线、面等几何图形的基本构成单位,用于研究几何图形的性质和关系。
•概率论:元素可以是随机试验的结果,用于研究随机事件的概率和统计规律。
2. 集合的概念集合是由一些确定的元素组成的整体,是数学中最基本的概念之一。
集合可以包含有限个元素,也可以包含无限个元素。
集合可以用不同的方式表示和描述,例如列举法、描述法、集合运算等。
2.1 定义集合的定义可以从直观和集合论两个角度进行解释。
•直观定义:集合是由一些确定的元素组成的整体。
集合中的元素可以是任何事物、对象、数字等。
集合中的元素是独立的,没有重复。
•集合论定义:集合是一个确定的对象,该对象的性质是一个个体是否属于该对象。
例如,集合A表示所有满足某个条件的元素的集合,可以表示为A={x|x满足某个条件}。
2.2 重要性集合在数学中起着非常重要的作用,它是数学的基础概念之一。
集合的概念使得我们能够将不同的元素进行分类和组织,从而建立起数学中的各种结构和理论。
集合的所有概念
集合的所有概念
集合是现代数学的一个重要概念,它是指由一些确定的元素所组成的整体。
以下是集合的一些基本概念:
1. 元素:组成集合的个体。
2. 子集:如果集合A 中的所有元素都属于集合B,则称集合A 是集合B 的子集。
3. 真子集:如果集合A 是集合B 的子集,但A 不等于B,则称集合A 是集合B 的真子集。
4. 并集:由属于集合A 或属于集合B 的所有元素组成的集合,称为集合A 与B 的并集。
5. 交集:由属于集合A 且属于集合B 的所有元素组成的集合,称为集合A 与B 的交集。
6. 补集:在一个给定的集合中,除了该集合中的元素之外的所有元素组成的集合,称为该集合的补集。
7. 空集:不包含任何元素的集合。
8. 列举法:将集合中的元素一一列举出来表示集合的方法。
9. 描述法:用集合所满足的条件来表示集合的方法。
10. 文氏图:用平面上的矩形框来表示集合及集合之间的关系的图形。
集合的概念与表示方法
一、集合的概念 一般地, 一定范围内某 些确定的,不同的对象的全 体构成一个集合. 集合中每个对象称为这 个集合的元素.
一、集合的概念
1.集合:用大写字母表示,如A,B 2.元素:用小写字母表示,如a,b 3.元素与集合关系:
…
…
如果a是集合A的元素,就说a 属于集合A,记作a A; 如果a不是集合A的元素,就 说a不属于集合A,记作a A.
(2)平行四边形,四边形;
(3)直角三角形,等边三角形; (4)-3, 2,6,|3|,-6 ;
(5)(2,3),(3,2),(-2,3);
3)无序性:集合中的元素是无先后 顺序的.集合中的任何两个元素都 可以交换位置.
5.集合的分类
⑴有限集:含有有限个元素的集合.
⑵无限集:含有无限个元素的集合.
(六)课堂小结: 1.集合的概念:一定范围内某些确定的、不同对象的 全体构成一个集合.集合通常用大写字母A.B.C……… 表示,如集合A.B集合中的对象称为元素,元素用小写 字母a.b.c表示。元素与集合的关系:从属关系 aA bA 2.集合中元素的性质:确定性 互异性 无序性 3.集合的表示方法 :描述法、列举法、文恩图法 4.集合的分类:有限集、无限集、空集 5.特殊集合的表示:自然数集:N 整数集:Z 有 理数集:Q 实数集:R
例3.已知集合A={ a+2,(a+1)2 ,a2+3a+3}, 若1∈A,求实数a的值.
解:①a+2=1时即a=-1时 A={1,0,1}不满足元素的互异性 ②1=(a+1)2时即a=0或a=-2经检 验a=0符合条件 ③1=a2+3a+3时即a=-1或a=-2 经检验都不符合条件 综上:a=0
集合的含义与表示
称这两个集合相等
湖南省长沙市一中卫星远程学校
练习1.下列指定的对象,能构成一个集合 ( B ) 的是 ①很小的数 ②不超过 30的非负实数 ③直角坐标平面的横坐标与纵坐标相等的点 ④的近似值 ⑤高一年级优秀的学生 ⑥所有无理数 ⑦大于2的整数 ⑧正三角形全体 A. ②③④⑥⑦⑧ C. ②③⑥⑦ B. ②③⑥⑦⑧ D. ②③⑤⑥⑦⑧
解:当a=0时,x=-1.
当a≠0时,=16-4×4a=0. a=1. 此时x=-2. ∴a=1时这个元素为-2. ∴a=0时这个元素为-1.
课堂练习
1.教科书5面练习第1、2题
2.教科书11面习题1.1第1、2题
课堂小结
1.集合的定义 2.集合元素的性质 3.集合与元素的关系 4.集合的表示 5.集合的分类
解:当a=0时,x=-1.
例4已知集合
A={x|ax2+4x+4=0,x∈R,a∈R} 只有一个元素,求a的值与这个元素.
解:当a=0时,x=-1.
当a≠0时,=16-4×4a=0. a=1. 此时x=-2.
例4已知集合
A={x|ax2+4x+4=0,x∈R,a∈R} 只有一个元素,求a的值与这个元素.
2.集合的表示:
集合常用大写字母A,B,C,…表示,元素常用 小写字母a,b,c,…表示.
3.集合与元素的关系:
如果a是集合A的元素,就说a属于集 合A,记作a∈A. 如果a不是集合A的元素,就说a不属 于集合A,记作aA.
例如:A表示方程x2=1的解. 2A,1∈A.
4.常用数集及记法:
N:自然数集(含0)
-1 3
x | 0
x | x
x 2
集合的概念与运算
集合的概念与运算教案●知识梳理 1.集合的有关概念2.元素与集合、集合与集合之间的关系 (1)元素与集合:“∈”或“”.(2)集合与集合之间的关系:包含关系、相等关系. 3.集合的运算(1)交集:由所有属于集合A 且属于集合B 的元素所组成的集合,叫做集合A 与B 的交集,记为A ∩B ,即A ∩B ={x |x ∈A 且x ∈B }. (2)并集:由所有属于集合A 或属于集合B 的元素所组成的集合,叫做集合A 与集合B 的并集,记为A ∪B ,即A ∪B ={x |x ∈A 或x ∈B }. (3)补集:一般地,设S 是一个集合,A 是S 的一个子集(即A S ),由S 中所有不属于A 的元素组成的集合,叫做子集A 在全集S 中的补集(或余集),记为SA ,即S A ={x |x ∈S 且x A }.●点击双基1.(2004年全国Ⅱ,1)已知集合M ={x |x 2<4},N ={x |x 2-2x -3<0},则集合M ∩N 等于A.{x |x <-2}B.{x |x >3}C.{x |-1<x <2}D.{x |2<x <3}2.(2005年北京西城区抽样测试题)已知集合A ={x ∈R|x <5-},B ={1,2,3,4},则(R A )∩B 等于A.{1,2,3,4}B.{2,3,4}C.{3,4}D.{4}∉⊆∉23.(2004年天津,1)设集合P ={1,2,3,4,5,6},Q ={x ∈R|2≤x ≤6},那么下列结论正确的是A.P ∩Q =PB.P ∩Q QC.P ∪Q =QD.P ∩Q P4.设U 是全集,非空集合P 、Q 满足P Q U ,若求含P 、Q 的一个集合运算表达式,使运算结果为空集,则这个运算表达式可以是_______________.5.已知集合A ={0,1},B ={x |x ∈A ,x ∈N*},C ={x |x A },则A 、B 、C 之间的关系是___________________.●典例剖析【例1】 已知A ={x |x 3+3x 2+2x >0},B ={x |x 2+ax +b ≤0}且A ∩B ={x |0<x ≤2},A ∪B ={x |x >-2},求a 、b 的值.深化拓展∅⊆(2004年上海,19)记函数f (x )=的定义域为A ,g (x )=lg [(x -a -1)(2a -x )](a <1)的定义域为B . (1)求A ;(2)若B A ,求实数a 的取值范围.【例2】 (2004年湖北)设集合P ={m |-1<m ≤0},Q ={m ∈R|mx 2+4mx -4<0对任意实数x 恒成立},则下列关系中成立的是 A.P Q B.Q P C.P =Q D.P ∩Q =Q132++-x x ⊆【例3】已知集合A={(x,y)|x2+mx-y+2=0},B={(x,y)|x-y+1=0,0≤x≤2},如果A∩B≠,求实数m的取值范围.●闯关训练夯实基础1.集合A={(x,y)|x+y=0},B={(x,y)|x-y=2},则A∩B是A.(1,-1)B.C.{(1,-1)}D.{1,-1}2.(2004年上海,3)设集合A ={5,log 2(a +3)},集合B ={a ,b }.若A ∩B ={2},则A ∪B =______________.3.设A ={x |1<x <2},B ={x |x >a },若A B ,则a 的取值范围是___________________.4.已知集合A ={x ∈R|ax 2+2x +1=0,a ∈R}只有一个元素,则a 的值为__________________.5.(2004年全国Ⅰ,理6)设A 、B 、I 均为非空集合,且满足A B I ,则下列各式中错误..的是 A.(I A )∪B =I B.(I A )∪(I B )=I C.A ∩(I B )= D.(I A )∩(I B )=I B 6.(2005年春季北京,15)记函数f (x )=log 2(2x -3)的定义域为集合M ,函数g (x )= 的定义域为集合N .求:(1)集合M 、N ; (2)集合M ∩N 、M ∪N .⎩⎨⎧-==11y x ⊆⊆∅)1)(3(--x x培养能力7.已知A ={x ∈R|x 2+2x +p =0}且A ∩{x ∈R|x >0}=,求实数p 的取值范围.8.已知P ={(x ,y )|(x +2)2+(y -3)2≤4},Q ={(x ,y )|(x +1)2+(y -m )2<},且P ∩Q =Q ,求m 的取值范围.探究创新9.若B ={x |x 2-3x +2<0},是否存在实数a ,使A ={x |x 2-(a +a 2)x +a 3<0}且A ∩B =A ?请说明你的理由.41●思悟小结1.对于集合问题,要首先确定属于哪类集合(数集、点集或某类图形),然后确定处理此类问题的方法.2.关于集合的运算,一般应把各参与运算的集合化到最简,再进行运算.3.含参数的集合问题,多根据集合元素的互异性来处理.4.集合问题多与函数、方程、不等式有关,要注意各类知识的融会贯通.解决问题时常用数形结合、分类讨论等数学思想.教学点睛1.对于集合问题,要首先确定属于哪类集合(数集、点集或某类图形),然后确定处理此类问题的方法.2.集合问题多与函数、方程、不等式有关,要注意各类知识的融会贯通.3.强化数形结合、分类讨论的数学思想.拓展题例【例1】设M、N是两个非空集合,定义M与N的差集为M-N={x|x∈M且x N},则M-(M-N)等于A.NB.M∩NC.M∪ND.M【例2】设集合P={1,a,b},Q={1,a2,b2},已知P=Q,求1+a2+b2的值.。
第1讲 集合的概念,集合的表示方法集合之间的关系(学生版)
第1讲集合的概念,集合的表示方法集合之间的关系【基础知识】一、集合的意义1.集合:某些指定的对象集在一起就形成一个集合(简称集)。
2.元素:集合中每个对象叫做这个集合的元素。
3.属于:如果a是集合A的元素,就说a属于A,记作a∈Aa∉4.不属于:如果a不是集合A的元素,就说a不属于A,记作A5.有限集:含有有限个元素的集合。
6.无限集:含有无限个元素的集合。
7.集合相等:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,记作A=B。
8.数学上,常常需要用到数的集合.数的集合简称数集9.空集:我们把不含任何元素的集合,记作φ。
二、集合的表示方法1)列举法:把集合中的元素一一列举出来,写在大括号内表示集合。
通常元素个数较少时用列举法。
2)描述法:用确定的条件表示某些对象是否属于这个集合,并把这个条件写在大括号内表示集合的方法。
有些集合的元素不能无遗漏地一一列举出来,或者不便于、不需要一一列举出来,常用描述法。
区间:在数学上,常常需要表示满足一些不等式的全部实数所组成的集合.为了方便起见,我们引入区间(interval)的概念.闭区间在数轴上表示开区间在数轴上表示半开半闭区间在数轴上表示这里的实数a,b统称为这些区间的端点.三、集合之间的关系1、子集:定义:对于两个集合A 与B ,如果集合A 的任何一个元素都是集合B 的元素,我们就说集合A 包含于集合B ,或集合B 包含集合A ,此时我们称A 是B 的子集。
即:B A B x A x ⊆∈⇒∈,则若任意 记作:A B B A ⊇⊆或;读作:A 包含于B 或B 包含A ;注意:B A ⊆有两种可能:(1)A 是B 的一部分;(2)A 与B 是同一集合 2、真子集:【考点剖析】考点一:集合的意义例1.下列所给对象不能构成集合的是________. (1)高一数学课本中所有的难题; (2)某一班级16岁以下的学生; (3)某中学的大个子;(4)某学校身高超过1.80米的学生; (5)1,2,3,1.例2.已知x 、y 、z 为非零实数,代数式x |x |+y |y |+z |z |+|xyz |xyz的值所组成的集合是M ,则下列判断正确的是( )A .B .C .M ∉-4D .M ∈4 例3.用“∈”或“∉”填空(1)-3______N ; (2)3.14______Q ; (3)13______Z ;(4)-12______R ; (5)1______N *; (6)0________N .例4.已知集合},012{2R x x ax x A ∈=++=,且A 中只有一个元素,求x 的值.例5.已知},0,1{2x x ∈,求实数x 的值.例6.已知集合S 的三个元素a .、b 、c 是△ABC 的三边长,那么△ABC 一定不是( ) A .锐角三角形 B .直角三角形C .钝角三角形D .等腰三角形 例7.设A 为实数集,且满足条件:若a .∈A ,则a-11∈A (a .≠1). 求证:(1)若2∈A ,则A 中必还有另外两个元素; (2)集合A 不可能是单元素集. 证明.例8.设P 、Q 为两个非空实数集合,P 中含有0,2,5三个元素,Q 中含有1,2,6三个元素,定义集合P +Q 中的元素是a +b ,其中a ∈P ,b ∈Q ,则P +Q 中元素的个数是多少?考点二:集合的表示方法例1.写出下列集合中的元素(并用列举法表示):(1)既是质数又是偶数的整数组成的集合 (2)大于10而小于20的合数组成的集合例2.用描述法表示下列集合:(1)被5除余1的正整数所构成的集合(2)平面直角坐标系中第一、第三象限的点构成的集合 (3)函数122+-=x x y 的图像上所有的点 (4)例3.用列举法表示下列集合:(1)},,5),{(N y N x y x y x ∈∈=+(2)},032{2R x x x x ∈=--(3)},032{2R x x x x ∈=+-(4)},512{Z x N xx ∈∈-例4.用适当的方法表示下列集合(1)大于0且不超过6的全体偶数组成的集合A (2)被3除余2的自然数全体组成的集合B (3)直角坐标平面上第二象限的点组成的集合C例5.下列表示同一个集合的是( )A .)}3,2{()},2,3{(==N MB .}3,2{},2,3{==N MC .)}3,2{(},2,3{==N MD .φ==N M },0{ 例6.已知集合,用列举法分别表示集合B A 、例7.设∇是R 上的一个运算,A 是R 的非空子集,若对任意A b a ∈,,有A b a ∈∇,则称A 对运算∇封闭,下列数集对加法、减法、乘法和除法(除法不等于零)四则运算都封闭的是()A .自然数集B .整数集C .有理数集D .无理数集例8.(2021·上海曹杨二中高一期末)已知集合{}{}2230,M x x x N x x a =--<=>,若M N ⊆,则实数a 的取值范围是__________. 考点三:集合之间的关系例1.已知A ={0,1},B ={x |x ⊆A },则A 与B 的关系正确的是( )A .A ⊆B B .A B =C .B A ⊆D .A ∈B例2.已知集合}2,,{b a b a a A ++=,集合},,{2ac ac a B =,若B A =,求实数c 的值例3.已知集合}01{},06{2=+==-+=ax x B x x x A 且A ≠⊂B ,求a 的值.例4.定义A *B ={x |x ∈A ,且x ∉B },若A ={1,3,4,6},B ={2,4,5,6},则A *B 的子集个数为例5.设}2,1{B }4,3,2,1{A ==,,试求集合C ,使A C ≠⊂且C B ⊆例6.设集合A ={x |x 2+4x =0,x ∈R },B ={x |x 2+2(a +1)x +2a -1=0},若B ⊆A ,求实数a 的取值范围.例7.已知集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},若B ⊆A ,求实数m 的取值范围.例8.若集合M ={x |x 2+x -6=0},N ={x |(x -2)(x -a )=0},且N ⊆M ,求实数a 的值.例9.已知,则A 与B 之间的包含关系为 ;【难度】★★ 【答案】B ≠⊂A例10.已知集合}3{>=x x A ,集合}1{m x x B >+=,若A B ≠⊂,实数m 的取值范围是,若A B ⊆,实数m 的取值范围是【过关检测】一、单选题1.(2021·上海市实验学校高一期末)设Q 是有理数,集合{|,,0}X x x a a b x ==+∈≠Q ,在下列集合中;(1){|2,}y y x x X =∈;(2){|}y y x X =∈;(3)1{|,}y y x X x =∈;(4)2{|,}y y x x X =∈;与X 相同的集合有( ) A .4个B .3个C .2个D .1个2.(2021·上海高一期末)已知“非空集合M 的元素都是集合P 的元素”是假命题,给出下列四个命题: ①M 的元素不都是P 的元素;②M 的元素都不是P 的元素; ③存在x P ∈且x M ∈;④存在x M ∈且x P ∉; 这四个命题中,真命题的个数为( ). A .1个 B .2个C .3个D .4个3.(2020·上海高一专题练习)下列各对象可以组成集合的是( ) A .与1非常接近的全体实数B .某校2015-2016学年度笫一学期全体高一学生C .高一年级视力比较好的同学D .与无理数π相差很小的全体实数4.(2020·上海高一专题练习)下面每一组的两个集合,相等的是( ) A .{(1,2)}M =,{(2,1)}N = B .{1,2}M =,{(1,2)}N =C .M =∅,{}N =∅D .{}2|210M x x x =-+=,{1}N =5.(2020·上海高一专题练习)方程组的解构成的集合是 A .{1}B .(1,1)C .{(1,1)}D .{1,1}6.(2020·上海高一专题练习)下列命题中正确的( ) ①0与{0}表示同一个集合;②由1,2,3组成的集合可表示为{1,2,3}或{3,2,1}; ③方程(x -1)2(x -2)=0的所有解的集合可表示为{1,1,2};④集合{x |4<x <5}可以用列举法表示. A .只有①和④ B .只有②和③ C .只有②D .以上语句都不对7.(2020·上海高一课时练习)已知非零实数,,a b c ,则代数式a b ca b c++表示的所有的值的集合是( ) A .{3} B .{3}- C .{3,3}-D .{3,3,1,1}--8.(2020·上海高一课时练习)集合是指( ) A .第二象限内的所有点B .第四象限内的所有点C .第二象限和第四象限内的所有点D .不在第一、第三象限内的所有点9.(2020·上海高一专题练习)如果{}1A x x =>-,那么错误的结论是( ) A .0A ∈B .C .A φ∈D .A φ⊆10.(2020·上海高一专题练习)以下六个关系式:{}00∈,{}0⊇∅,0.3Q ∉, , ,是空集,错误的个数是( ) A .4 B .3C .2D .1二、填空题11.(2021·上海高一期末)10的所有正因数组成的集合用列举法表示为__________. 12.(2021·上海市实验学校高一期末)集合6{|3P x x =∈-Z 且}x ∈Z ,用列举法表示集合P =________ 13.(2021·上海市西南位育中学高一期末)已知集合(){}21320A x m x x =-+-=有且仅有两个子集,则实数m =______.14.(2021·上海市南洋模范中学高一期末)已知集合(){}lg 4A x y x =∈=-N ,则A 的子集个数为______. 15.(2021·上海市西南位育中学高一期末)设,,则A ___________B .(填“⊂”、“”、“”或“”) 16.(2020·上海高一课时练习)已知集合A ={1,2,a 2-2a },若3∈A ,则实数a =______. 17.(2020·上海高一专题练习)用符号“∈”或“∉”填空(1)0______N ,N ,N (2)12-_____,Q π______Q(3)________{}|,,x x a a Q b Q =+∈∈18.(2020·上海高一专题练习)集合2{|(6)20}A x ax a x =+-+=是单元素集合,则实数a =________ 19.(2020·上海高一专题练习)1∈{a 2−a −1,a ,−1},则a 的值是_________.20.(2020·上海高一专题练习)已知集合{}2|320M x x x =-+=,集合{}2|220,N x x x k k R=++=∈非空,若M N ⋂=∅,则k 的取值范围是___; 21.(2020·上海高一专题练习)定义集合运算(){}|,,AB z z xy x y x A y B ==+∈∈,集合{}{}0,1,2,3A B ==,则集合AB 所有元素之和为________22.(2020·上海高一专题练习)集合{1,4,9,16,25}用描述法来表示为________.23.(2020·上海高一专题练习)已知集合2{|()(1)0}M x x a x ax a =--+-=各元素之和等于3,则实数a =___________.24.(2020·上海高一课时练习)定义“×”的运算法则为:集合{(,)|,}A B x y x A y B ⨯=∈∈,设集合{1,23}P =,,{2,4,6,8}Q =,则集合P Q ⨯中的元素个数为________.25.(2020·上海高一课时练习)已知集合{}2|1,||2,A y y x x x Z ==+∈,用列举法表示为________. 26.(2020·上海高一专题练习)满足的集合A 的个数为____________个. 27.(2020·上海高一专题练习)已知A ,B 是两个集合,下列四个命题: ①A 不包含于B ⇔对任意x ∈A ,有x ∉B ②A 不包含于B ⇔AB =∅③A 不包含于B ⇔A 不包含B ④A 不包含于B ⇔存在x ∈A ,x ∉B 其中真命题的序号是______28.(2020·上海高一专题练习)集合A={x |ax −6=0},B={x |3x 2−2x=0},且A ⊆B ,则实数a =____ 29.(2020·上海高一专题练习)满足的集合M 共有___________个.30.(2020·上海高一专题练习)已知集合A 中有n 个元素,则集合A 的子集个数有_____个,真子集有_____个,非空真子集_______个. 三、解答题31.(2020·上海高一课时练习)已知2{1,0,}x x ∈,求实数x 的值.32.(2020·上海高一课时练习)含有3个实数的集合可表示为,也可表示为{}2,,0a a b +,求20092010a b +的值.33.(2020·上海高一课时练习)用适当的方法表示下列集合,并判断它是有限集还是无限集. (1)第三象限内所有点组成的集合; (2)由大于-3而小于9的偶数组成的集合; (3)所有被5除余2的奇数组成的集合.34.(2020·上海高一课时练习)选择适当的方法表示下列集合. (1)Welcome 中的所有字母组成的集合; (2)所有正偶数组成的集合; (3)二元二次方程组的解集; (4)所有正三角形组成的集合.35.(2020·上海高一课时练习)用适当的方法表示下列集合 (1)大于0且不超过6的全体偶数组成的集合A (2)被3除余2的自然数全体组成的集合B (3)直角坐标平面上第二象限的点组成的集合C36.(2020·上海高一课时练习)用适当的方法表示下列集合. (1)由所有小于20的既是奇数又是质数的正整数组成的集合; (2)由所有非负偶数组成的集合;(3)直角坐标系内第三象限的点组成的集合.37.(2020·上海高一专题练习)A ={x |x <2或x >10},B ={x |x <1-m 或x >1+m }且BA ,求m 的范围.38.(2020·上海高一专题练习)已知A ={x |},B ={x |25x -≤≤},若AB ,求实数m 的取值范围.。
集合的基本概念元素集合之间的关系
第一章集合第一节集合的概念一、要点透析(一)集合的有关概念:由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的。
我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集。
集合中的每个对象叫做这个集合的元素。
1、集合的概念(1)元素:某些特定的研究对象叫做元素(2)集合:一些元素集在一起就形成一个集合(简称集)2、元素对于集合的隶属关系(1)属于:如果a 是集合A 的元素,就说a 属于A ,记作a A∈(2)不属于:如果a 不是集合A 的元素,就说a 不属于A ,记作a A∉3、集合中元素的特性(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可(2)互异性:集合中的元素没有重复(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)例1.下列各组对象能确定一个集合吗?(1)所有很大的实数()(2)好心的人()(3)1,2,2,3,4,5.()4、(1)集合通常用大写的拉丁字母表示,如A 、B 、C 、P 、Q ……元素通常用小写的拉丁字母表示,如a 、b 、c 、p 、q ……(2)“∈”的开口方向,不能把a A ∈颠倒过来写5、常用数集及记法(1)非负整数集(自然数集):全体非负整数的集合,记作N ,{}0,1,2,N = (2)正整数集:非负整数集内排除0的集,记作*N 或N +,{}*1,2,3,N = (3)整数集:全体整数的集合,记作Z ,{}012Z =±± ,,,(4)有理数集:全体有理数的集合,记作Q ,{}Q =整数与分数(5)实数集:全体实数的集合,记作R ,{}R =数轴上所有点所对应的数(6)空集:不含任何元素的集合,记作∅注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0(2)非负整数集内排除0的集,记作*N 或N +,Q 、Z 、R 等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成*Z例2.用适当的符号(∈∉,)填空:(1)3_____N;(2)0_____{Φ};(3)32____Z,0.5Q Q ,;2(二)集合的表示方法1、列举法:把集合中的元素一一列举出来,写在大括号内表示集合例如,由方程210x -=的所有解组成的集合,可以表示为{1,1}-注:(1)有些集合亦可如下表示:从51到100的所有整数组成的集合:{51,52,53,,100} ;所有正奇数组成的集合:{1,3,5,7,}(2)a 与{}a 不同:a 表示一个元素,{}a 表示一个集合,该集合只有一个元素例3、设a,b 是非零实数,那么ba +可能取的值组成集合的元素是:练习、由实数x,-x,|x |,332,x x -所组成的集合,最多含()(A )2个元素(B )3个元素(C )4个元素(D )5个元素2、描述法:用确定的条件表示某些对象是否属于这个集合,并把这个条件写在大括号内表示集合的方法格式:{|()}x A P x ∈含义:在集合A 中满足条件()P x 的x 的集合例如,不等式32x ->的解集可以表示为:{|32}x R x ∈->或{|32}x x ->所有直角三角形的集合可以表示为:{|}x x 是直角三角形例4、已知集合{}R a x ax x A ∈=+-=,023|2;(1)若A 是空集,求a 的取值范围;(2)若A 中只有一个元素,求a 的值,并把这个元素写出来;(3)若A 中至多有一个元素,求a 的取值范围3、文氏图:用一条封闭的曲线的内部来表示一个集合的方法4、何时用列举法?何时用描述法?(1)有些集合的公共属性不明显,难以概括,不便用描述法表示,只能用列举法如:集合2322{,32,5,}x x y x x y +-+(2)有些集合的元素不能无遗漏地一一列举出来,或者不便于、不需要一一列举出来,常用描述法如:集合2{(,)|1}x y y x =+;集合{1000}以内的质数思考:集合}1|),{(2+=x y y x 与集合}1|{2+=x y y 是同一个集合吗?(三)有限集与无限集有限集:含有有限个元素的集合无限集:含有无限个元素的集合空集:不含任何元素的集合,记作∅,如:2{|10}x R x ∈+=二、题型解析(一)集合的基本概念1以下元素的全体不能够构成集合的是()A.中国古代四大发明B.地球上的小河流C.方程210x -=的实数解D.周长为10cm 的三角形2方程组23211x y x y -=⎧⎨+=⎩的解集是()A.{5,1}B.{1,5}C.{(5,1)}D.{(1,5)}3给出下列关系:①12R ∈;Q ;③3N +∈;④0Z ∈,其中正确的个数是()A.1B.2C.3D.44下列各组中的两个集合M 和N ,表示同一集合的是()A.{}M π=,{3.14159}N =B.{2,3}M =,{(2,3)}N =C.{|11,}M x x x N =-<≤∈,{1}N =D.{}M π=,{,1,|N π=5已知实数2a =,集合{|13}B x x =-<<,则a 与B 的关系是6用适当的符号填空:已知{|32,}A x x k k Z ==+∈,{|61,}B x x m m Z ==-∈,则有:17A ;5-A ;17B 7已知x R ∈,则集合2{3,,2}x x x -中元素x 所应满足的条件为(二)集合的表示方法1用列举法表示下列集合①{|15}x N x ∈是的约数②{(,)|{1,2},{1,2}}x y x y ∈∈③2(,)24x y x y x y ⎧⎫+=⎧⎪⎪⎨⎨⎬-=⎩⎪⎪⎩⎭④{|(1),}nx x n N =-∈⑤{(,)|3216,,}x y x y x N y N +=∈∈⑥{(,)|,4}x y x y 分别是的正整数约数2用描述法表示下列集合①{1,4,7,10,13}②{2,4,6,8,10}-----③{1,5,25,125,625}④12340,,,,,251017⎧⎫±±±±⎨⎬⎩⎭(三)集合的分类1关于x 的方程0ax b +=,当a ,b 满足条件_____时,解集是有限集;当a ,b 满足条件_____时,解集是无限集2下列四个集合中,是空集的是()A.}33|{=+x x B.},,|),{(22R y x x y y x ∈-=C.}0|{2≤x x D.},01|{2R x x x x ∈=+-三、课下训练1、有下列说法:(1)0与{0}表示同一个集合;(2)由1,2,3组成的集合可表示为{1,2,3}或{3,2,1};(3)方程2(1)(2)0x x --=的所有解的集合可表示为{1,1,2};(4)集合{|45}x x <<是有限集,其中正确的说法是()A.只有(1)和(4)B.只有(2)和(3)C.只有(2)D.以上四种说法都不对2、试选择适当的方法表示下列集合:(1)二次函数223y x x =-+的函数值组成的集合;(2)函数232y x =-的自变量的值组成的集合3、已知集合4{|}3A x N Z x =∈∈-,试用列举法表示集合4、给出下列集合:①{(,)|1,1,2,3}x y x y x y ≠≠≠≠-;②12(,)13x x x y y y ⎧⎫≠≠⎧⎧⎪⎪⎨⎨⎨⎬≠≠-⎩⎩⎪⎪⎩⎭且③12(,)13x x x y y y ⎧⎫≠≠⎧⎧⎪⎪⎨⎨⎨⎬≠≠-⎩⎩⎪⎪⎩⎭或;④{}2222(,)[(1)(1)][(2)(3)]0x y x y x y -+-⋅-++≠其中不能表示“在直角坐标系xOy 平面内,除去点(1,1),(2,3)-之外的所有点的集合”的序号有5、已知集合2{|12x a A a x +==-有唯一实施解},试用列举法表示集合A。
集合的含义与表示
例1:判断下列各组对象能否组成一个集合:
(1)9以内的正偶数;
(2)篮球打得好的人;
(3)2012年伦敦奥运会的所有参赛运动员;
(4)高一(1)班所有高个子同学.
练习1:有下列4组对象:(1)某校2015级新生;(2)小于0的自然数;(3)所有数学难题;(4)接近1的数.其中能构成集合的是________.
记作: , 读作: 包含于 或 包含 。
特别提醒:1、“ 是 的子集”的含义是:集合 的任何一个元素都是集合 的元素,即由 ,能推出 。如: ; 。2、当“ 不是 的子集”时,我们记作:“ ”,读作:“ 不包含于 ,(或 不包含 )”。如: 。3、任何集合都是它本身的子集。即对于任何一集合 ,它的任何一个元素都属于集合 本身,记作 。4、我们规定:空集是任何集合的子集,即对于任一集合 ,有 。5、在子集的定义中,不能理解为子集 是集合 中部分元素组成的集合。因为若 ,则 中不含有任何元素;若 = ,则 中含有 中的所有元素,但此时都说集合 是集合 的子集。
特别提醒:1、写清楚该集合中元素的代号;2、说明该集合中元素的特征;3、不能出现未被说明的字母;4、多层描述时,应当准确使用“或”、“且”、“非”;5、所有描述的内容都要写在大括号内;6、用于描述的语言要力求简明、确切。7、错误表示法: {实数集}或 {全体实数};正确的表示方法为:
(3)韦恩图法:用一条封闭的曲线的内部来表示一个集合的方法。如:集合 可用韦恩图表示为:
练习2:下列各组对象中,不能组成集合的是()
A.所有的正数B.所有的老人C.不等于零的数D.我国古代四大发明
类型二集合中元素的特性
例2:集合A是含有两个不同实数a-3,2a-1的集合,求实数a的取值范围.
集合的概念
第一节集合的概念及其表示1、集合的概念(1)集合:把一些具有共同特征的对象集在一起构成集合.(2)元素:集合中每个对象叫做这个集合的元素.集合通常用大写的拉丁字母表示,如A、B、C、……元素通常用小写的拉丁字母表示,如a、b、c、……2、元素与集合的关系(1)属于:如果a是集合A的元素,就说a属于A,记作a∈A(2)不属于:如果a不是集合A的元素,就说a不属于A,记作a AÏ要注意“∈”的方向,不能把a∈A颠倒过来写.3、集合分类根据集合所含元素个数不同,可把集合分为如下几类:(1)把不含任何元素的集合叫做空集Ф(2)含有有限个元素的集合叫做有限集(3)含有无穷个元素的集合叫做无限集注:应区分F,{}F,}0{,0等符号的含义根据集合的不同类型,可以把集合分为:数集、点集、集合集等4、常用数集及其表示方法(1)非负整数集(自然数集):全体非负整数的集合.记作N(2)正整数集:非负整数集内排除0的集.记作N*或N+(3)整数集:全体整数的集合.记作Z(4)有理数集:全体有理数的集合.记作Q(5)实数集:全体实数的集合.记作R注:(1)自然数集包括数0.,(2)非负整数集内排除0的集.记作N*或N+应用示例:用符号∈或Ï填空:(1)1______N,0______N,-3______N,0.5______N,2______N;(2)1______Z,0______Z,-3______Z,0.5______Z,2______Z;(3)1______Q,0______Q,-3______Q,0.5______Q,2______Q;(4)1______R,0______R,-3______R,0.5______R,2______R.3、集合中元素的特性(1)确定性:给定一个集合,任何对象是不是这个集合的元素是确定的了. (2)互异性:集合中的元素一定是不同的.(3)无序性:集合中的元素没有固定的顺序.例1.下列各组对象不能组成集合的是( )A.大于6的所有整数B.高中数学的所有难题C.被3除余2的所有整数D.函数y=x1图象上所有的点 变式训练:1.下列条件能形成集合的是( )A.充分小的负数全体B.爱好足球的人C.中国的富翁D.某公司的全体员工例2.在数集{2x,x 2-x}中,实数x 的取值范围是__________________。
集合的概念
探究:已知集合
A={x|ax2+4x+4=0,x∈R,a∈R} 只有一个元素,求a的值与这个元素.
探究:已知集合
A={x|ax2+4x+4=0,x∈R,a∈R} 只有一个元素,求a的值与这个元素.
解:当a=0时,x=-1.
探究:已知集合
A={x|ax2+4x+4=0,x∈R,a∈R} 只有一个元素,求a的值与这个元素.
例2
3 a 3,2a 1, a 1 , 求实数a 的值
若
2
例3若方程x2-5x+6=0
和方程x2-x-2=0的解为元素的集为
M,则M中元素的个数为 A.1 B.2 C.3 D.4 ( )
例3若方程x2-5x+6=0
和方程x2-x-2=0的解为元素的集为
M,则M中元素的个数为 A.1 B.2 C.3 D.4 ( C )
解:当a=0时,x=-1.
当a≠0时,=16-4×4a=0. a=1. 此时x=-2.
练习:用列举方法表示下列集合
x | x
2
(b 2) x b 1 0, b R
课堂练习
1. 练习第1、2题
2. 习题1.1第1、2题
小结:
1.本节主要学习了集合的基本概念、表示符 号;一些常用数集及其记法;集合的元素与 集合之间的关系;以及集合元素具有的特 征. 2.我们在进一步复习巩固集合有关概念的基 础上,又学习了集合的表示方法和有限集、 无限集、空集的概念,同学们要熟练掌握.
注:在不引起混淆的情况下,为了简便,有些集
合用描述法表示时,可以省去竖线及其左边的 部分,例如,由所有直角三角形组成的集合,可 以表示为{直角三角形};由练市中学的高一所 有学生 组成的集合,可以表示为{练市中学的高一 学生}等.
第一讲 元素与集合
第一讲 元素与集合一.集合的概念集合是一个原始的概念,是数学中一个不定义的概念.尽管如此,对一个具体的集合而言,很多情况下我们还是可以采用列举法或描述法给出它的一个准确而清晰的表示. 用描述法表示一个集合基于下面的概括原则:概括原则 对任给的一个性质P ,存在一个集合S ,它的元素恰好是具有性质P 的所有对象,即 S ={)(x P x },其中)(x P 表示“x 具有性质P ”.由此,我们知道集合的元素是完全确定的,同时它的元素之间具有互异性和无序性. 集合的元素个数为有限数的集合称为有限集,元素个数为无限数的集合称为无限集.如果有限集A 的元素个数为n ,则称A 为n 元集,记作n A =.空集不含任何元素.例1 设集合M ={052<--ax ax x } (1)当4=a 时,化简集合M ;(2)若M ∈3,且M ∉5,求实数a 的取值范围.例2 设A 是两个整数平方差的集合,即{}Z n m n m x x A ∈-==,,22.证明:(1)若A t s ∈,,则A st ∈.(2)若A t s ∈,,0≠t ,则22q p ts -=,其中q p ,是有理数.二、集合与集合的关系在两个集合的关系中,子集是一个重要的概念,它的两个特例是真子集和集合相等.从下面“充分必要条件”的角度来理解子集、真子集和集合相等的概念无疑是十分有益的:子 集:B A ⊆⇔对任意A x ∈,恒有B x ∈;真子集:A B ⇔⎩⎨⎧∉∈⊆Bx B x B A '',但且存在;集合相等:A =B ⇔B A ⊆,且A B ⊆.容易证明两个集合关系的如下性质:1.∅⊆A ,∅A (A ≠∅);2.A ⊆B ,B ⊆C ⇔A ⊆C ;3.“元集A 总共有n 2个不同的子集,有12-n 个不同的真子集.例1 设集合{}01<<-=m m P ,{}恒成立对任意实数x mx mx R m Q 0442<-+∈=,则下列关系中成立的是( )(A )P Q (B )Q P (C )P =Q (D )P ⋃Q =∅ 解题切入: 正确理解集合Q ,并解出Q .导析: 对于Q ,可设44)(2-+=mx mx x f ,由442-+mx mx <0恒成立,知函数)(x f 图象全位于x 轴下方,①当0=m 时,4)(-=x f 显然成立;②当0≠m 时,有0100<<-⇒⎩⎨⎧<∆<m m . 由①、②知{}01≤<-=m m Q ,故PQ .即A 正确. 评注: 利用函数思想解决方程与不等式等问题是最常用的数学思想之一,在平常的学习中要有意识强化这种重要数学思想的应用.本题易错点:容易忽略m =0的情况,习惯地将)(x f相关链接:(1)设A 、B 为两个集合,下列四个命题:①A 不包含于B ⇔ 对任意A x ∈有B x ∉;②A 不包含于B ⇔ A ∩B =∅;③A 不包含于B ⇔ A 不包含B ;④A 不包含于B ⇔ 存在A x ∈且B x ∉其中正确命题的序号是 .导析: (举特例)取A ={1,2},B ={1,3},排除①②;取A ={1},B =∅,排除③评注: 本题综合考查集合的包含关系.例2 设集合{}R y R x y x y x M ∈∈=+=,,1),(22,{}R y R x y x y x N ∈∈=-=,,0),(2,则集合M ∩N 中元素的个数为( )(A )1 (B )2 (C )3 (D )4解题切入: 关键是分清数集与点集.(数形结合):M 是由单位圆122=+y x 上的点组成,而N 是由抛物线2x y =上的点组成.画图可知M ∩N 中的公共元素(即交点)有两个,故选B .评注: 利用数形结合思想,可避开复杂的运算过程,从而提高同学们的解题速度与准确性.相关链接:设A ,B ,I 为3个非空集合,且满足I B A ⊆⊆,则以下各式中错误的是( )(A )(I A )∪B =I (B )(I A )∪(I B )=I(C )(I B )∩A =∅ (D )(I A )∩(I B )=I B导析:由B A ⊆知(I A )⊇I B , ∴(I A )∪(I B )=I A∵A ≠∅,例3 设函数b ax x x f ++=2)((R b a ∈,),集合A ={R x x f x x ∈=),(}, B ={()R x x f f x x ∈=,)(}.(1)证明:B A ⊆;(2)当A ={-l ,3}时,求集合B .分析 欲证B A ⊆,只需证明方程)(x f x =的根必是方程())(x f f x =的根.例 4 设关于x 的不等式2)1(2)1(22-≤+-a a x 和0)13(2)1(32≤+++-a x a x )(R a ∈的解集依次为A 、B ,求使B A ⊆的实数a 的取值范围.分析 要由B A ⊆求出a 的范围,必须先求出A 和B .习 题1.已知三元实数集A ={}y x xy x +,,,B ={}y xy ,,0,且A =B ,则20052005y x +等于( ).(A )0 (B )2 (C )1 (D )-l2.集合{}Z l n m l n m u u M ∈++==,,,4812与{}Z r q p r q p u u N ∈++==,,,121620的关系为( ).(A )M =N (B )M ⊄N ,N ⊄M (C )M N (D )N M3.设(){}20,20,≤≤≤≤=y x y x A ,(){}4,2,10,-≤≥≤=x y y x y x B 是直角坐标平面xOy 上的点集.则⎭⎬⎫⎩⎨⎧∈∈⎪⎭⎫ ⎝⎛++=B y x A y x y y x x C ),(,),(2,222112121所成图形的面积是( ). (A )6 (B )6.5 (C )2π (D )74.已知非空数集M ⊆{1,2,3,4,5},则满足条件“若M x ∈,则M x ∈-6”的集合M 的个数是( ).(A )3个 (B )7个 (C )15个 (D )31个5.集合⎭⎬⎫⎩⎨⎧∈>-<≤-N x x x x 且1,2110log 11的真子集的个数是 . 6.已知{}R x x x x A ∈<+-=,0342,{}R x x a x a x B x ∈≤++-≤+=-,05)7(2,0221.若B A ⊆,则实数a 的取值范围是 .7.已知{}+∈+==Na a x x M ,12,{}+∈+-==N b b b x x N ,542,则M 与N 的关系是 .8.非空集合S 满足:(1)S ⊆{1,2,…,2n +1},+∈N n ;(2)若S a ∈,则有S a n ∈-+22. 那么,同时满足(1)、(2)的非空集合S 的个数是 .9.集合{}54321,,,,x x x x x A =,计算A 中的二元子集两元素之和组成集合B ={3,4,5,6,7,8,9,10,11,13}.则A =.10.设集合M ={1,2,3,…,1000},现对M 的任一非空子集X ,令X a 表示X 中最大数与最小数之和.求所有这样的X a 的算术平均值.11.用)(x σ表示非空的整数集合S 的所有元素的和.设A ={1121,,,a a a }是正整数的集合,且1121a a a <<< ;又设对每个正整数n ≤1500,都存在A 的子集S ,使得)(x σ=n .求10a 的最小可能值.分析 要求10a 的最小值,显然应使)(x σ=1500.又由题设,应使11a 尽可能大,且前10个数之和不小于750,故取11a =750.考虑整数的二进制表示,由1+2+…+27=255知,前8个数应依次为1,2,4,8,16,32,64,128.这时109a a +=495,从而有10a =248.1.设E ={1,2,3,…,200},G ={10021,,,a a a }⊆E ,且G 具有下列两条性质:(1)对任何1≤i<j ≤100,恒有201≠+j i a a ;(2)100801001=∑=i i a.试证明:G 中的奇数的个数是4的倍数,且G 中所有数字的平方和为一个定数.跟着的是死算, 我xa1^2+a2^2+……+a100^2+(201-a1)^2+(201-a2)^2+……+(201-a100)^2=200x(200+1)x(2x200+1)/6=2686700平方和公式------↑2(a1^2+a2^2+……+a100^2)-402(a1+a2+……+a100) + 100x(201^2) = 2686700 ==> a1^2+a2^2+……+a100^2=1349380因为奇数的平方除以4余1 , 偶数的平方被4整除, 而1349380除以4余0,也就是说1349380被4整除那么G 中奇数必定是4的倍数,才满足平方和被4整除构造函数F(x)=(x-1/2)*(x-1/3)*...*(x-1/100),由定义可知X,X^3,X^5...X^97的系数和即为数集M 的所有含偶数个元素的子集的“积数”之和;设F(X)=a0+a1*x+a2*x^2+....a98*x^98+x^99;则F(1)=a0+a1+....+a98+1=1/2*2/3*...*99/100=1/100;F(-1)=a0-a1+.....+a98-1=-3/2*4/3*...100/99*101/100=-101/2;所以a1+a3+...+a97=[F(1)-F(-1)-2]/2=4851/200选A 。
1.1集合的概念(教师用)
集合的概念讲义知能点全解:知能点一:集合与元素的概念1、定义:一般地,一定范围内某些确定的,不同的对象的全体构成一个集合,简称集。
集合中每一个对象称为该集合的元素,简称元。
2、集合通常用大写的字母表示,如……;元素通常用小写的字母表知能点二:集合中元素的特性1、确定性:设是一个给定的集合,是某一具体的对象,则或者是的元素,或者不是的元素,二者必居其一,不能模棱两可.例1:能够组成集合的是( C )A.与2非常接近的全体实数; B.很著名的科学家的全体;C.某教室内的全体桌子; D.与无理数相差很2、互异性: 对于一个给定的集合,它的任意两个元素是不能相同的。
集合中相同的元素只能算是一个。
如方程有两个重根,其解集只能记为,而不能记为。
例 2:已知,且,求。
解:∵ ∴或 解得:或又∵时,且 与集合中元素的互异性矛盾知能点三:元素与集合的关系一般地,如果是集合的元素,就说属于,记作;如果不是集合的元知能点四:集合的分类:1、按照集合中元素的个数是有限还是无限,集合可分为:有限集和无限集。
(1)有限集:含有有限个元素的集合;(2)无限集:含有无限个元素的集合(3)空集:特别地,不含任何元素的集合叫做空集,记作.空集是个特殊的集合,空集归入有限集。
如:。
2、按照集合中元素的形式,性质及属性,集合可分为:(1)单元素集:只含一个元素的集合;如,。
(2)数集:有一些数字组成的集合;(3)点集:由符合某一条件的点,组成的集合;(4)解集:由方程或方程组,不等式或不等式组的解组成的解的集合,简称解集。
如:方程的解集是:。
知能点五:常用数集及记法1、回顾初中关于数的关系:2、常用数集及记法:(1)非负整数集(自然数集):全体非负整数的集合。
记作:(2)正整数集:非负整数集内排除0的集。
记作:或(3)整数集:全体整数的集合。
记作:(4)有理数集:全体有理数的集合。
记作:(5)实数集:全体实数的集合。
记作:例 3:用符号和填空:1、 , , , , , 。
集合的概念及运算
10.集合 M={m | m=2a-1, aZ} 与 N={n | n=6b1, bZ} 之间的 关系是 N M .
11.已知 R 为全集, A={x | log 1(3-x)≥-2}, B={x | x 5 ≥1}, 求 +2 2 CRA∩B. (-2, -1)∪{3} 12.调查 100 名有携带药品出国的旅游者, 其中 75 人带有感冒 药, 80 人带有胃药, 那么既带感冒药又带胃药的人数的最大值 和最小值分别为多少? 解: 设既带感冒药又带胃药的人数为 x, 既不带感冒药又不带 胃药的人数为 a. 记这100名出国旅游者组成全集 I , 其中带感冒药的人组成集 合 A, 带胃药的人组成集合 B. 则 x=card(A∩B) 且 card(A)=75, card(B)=80, 依题意得: a+card(A)+card(B)-x=100, 0≤a≤20. ∴x=a+55, 0≤a≤20. ∴55≤x≤75. 故既带感冒药又带胃药的人数的最大值为 75, 最小值为 55. 13.已知函数 f(x)=ax2-1, aR, xR, 设集合 A={x | f(x)=x}, 集 合 B={x | f[f(x)]=x}, 且 A=B, 求实数 a 的取值范围.
2, a+b, 0}, 则 a2006+b2007= 1 . 1.若{a, b , 1}={ a a 2.若集合 M={-1, 1, 2}, N={y | y=x2, x∈M}, 则 M∩N 是 ( B ) A. {1, 2, 4} B. { 1 } C. {1, 4} D. x+1 3.若集合 M={12, a}, 集合P={x | x -2 ≤0, x∈Z} 且 M∩P={0}, 记 M∪P=S, 则集合 S 的真子集个数是 ( D) A. 8 B. 7 C. 16 D. 15 4.已知集合 S, M, N, P 如图所示, 则图中阴影部分表示的集合 S 是( D) A. M∩(N∪P) B. M∩Cs(N∩P) P M N C. M∪Cs(N∩P) D. M∩Cs(N∪P)
《集合》知识点总结
《集合》知识点总结一、集合的基本概念1、集合:一些指定的对象集在一起就成为一个集合,其中每一个对象称为元素。
2、集合的表示:用大括号{}或小括号()表示,元素与集合的关系为“属于”或“不属于”。
3、集合的特性:确定性、互异性、无序性。
二、常见集合的表示方法1、自然数集:N2、整数集:Z3、有理数集:Q4、实数集:R三、集合的运算1、交集:取两个集合的公共元素组成的集合,记作A∩B。
2、并集:把两个集合合并起来,记作A∪B。
3、补集:把属于一个集合但不在该集合的元素组成的集合,记作CuA。
四、集合间的关系1、子集:若一个集合A的每一个元素都是另一个集合B的元素,则称A是B的子集。
2、真子集:如果A是B的子集,且A≠B,则称A是B的真子集。
3、相等:当且仅当两个集合的元素完全相同,且不强调元素的顺序时,两个集合相等。
五、集合的基本运算性质1、若A、B为两个集合,有A∩B=B∩A。
2、若A、B为两个集合,有Cu(A∩B)=CuA∪CuB。
3、若A、B、C为三个集合,有(A∩B)∩C=A∩(B∩C)。
4、若A、B为两个集合,有(CuA)∪B=(A∪B)∩CuB。
5、若A、B、C为三个集合,有(A∪B)∩C=(A∩C)∪(B∩C)。
6、若A、B为两个集合,有(CuA)∩B=Cu(A∪B)。
7、若A、B为两个集合,有(CuA)∪(CuB)=Cu(A∩B)。
集合知识点总结一、集合、元素及其关系1、集合的基本概念:集合是一个不重复的元素的集合,常用大写字母表示集合,如A={1,2,3},B={apple,banana,cherry}。
2、集合的表示方法:常用的表示方法有列举法和描述法。
列举法是把集合中的元素一一列举出来,适用于元素数量较少的集合;描述法是用集合中元素的共同特征来描述集合,如自然数集N={n|n是自然数}。
3、集合的元素关系:如果集合A中的任意一个元素都是集合B中的元素,那么称A是B的子集,记作A⊆B。
集合概念、表示方法、分类以及集合之间的关系
集合概念、表示方法、分类以及集合之间的关系一般地,我们把研究对象统称为元素,一些元素组成的总体叫集合,也简称集。
通常用大括号{ }或大写的拉丁字母A,B,C…表示,而元素用小写的拉丁字母a,b,c…表示。
元素与集合的关系有“属于∈”及“不属于∉两种)⑴若a是集合A中的元素,则称a属于集合A,记作a∈A;⑵若a不是集合A的元素,则称a不属于集合A,记作a∉A。
非负整数集(或自然数集),记作N;;N内排除0的集.正整数集,记作N*或N+整数集,记作Z;有理数集,记作Q;实数集,记作R;⑴确定性:⑵互异性:⑶无序性:1:判断以下元素的全体是否组成集合,并说明理由:⑴某班个子较高的同学⑵长寿的人⑷倒数等于它本身的数⑸某校2011级新生;⑹血压很高的人;⑺著名的数学家;⑻平面直角坐标系内所有第三象限的点7.元素与集合的关系:(元素与集合的关系有“属于∈”及“不属于∉”)⑴若a是集合A中的元素,则称a属于集合A,记作a∈A;⑵若a不是集合A的元素,则称a不属于集合A,记作a∉A。
例如,我们A 表示“1~20以内的所有质数”组成的集合,则有3∈A ,4∉A ,等等。
练:A={2,4,8,16},则4A ,8 A ,32 A.巩固练习分析:练1.已知集合P 的元素为21,,3m m m --, 若2∈P 且-1∉P ,求实数m 的值。
练2下面有四个命题:①若-a ∉Ν,则a ∈Ν ②若a ∈Ν,b ∈Ν,则a +b 的最小值是2③集合N 中最小元素是1 ④ x 2+4=4x 的解集可表示为{2,2}其中正确命题的个数是( )3求集合{2a ,a 2+a }中元素应满足的条件?4若t 1t 1+-∈{t},求t 的值.⒈列举法:把集合中的元素一一列举出来, 并用花括号“{}”括起来表示2.用列举法表示下列集合:(1) 小于5的正奇数组成的集合;(2) 能被3整除而且大于4小于15的自然数组成的集合;⒉描述法:用集合所含元素的共同特征表示集合的方法,称为描述法。
集合与元素的含义
集合与元素的含义集合:把某些指定对象(研究对象)集在一起就形成一个集合元素:集合中每个对象叫做这个集合的元素集合与元素的关系集合通常用大写拉丁字母A,B,C......表示,元素用小写拉丁字母a,b,c......表示。
如果a是集合A中的元素,就说a属于A,记作a∈A,读作a属于集合A。
如果a不是集合A中的元素,就说a不属于A,记作a∉A,读作a不属于集合A。
注意:符号“∈”,“∉”是用来表示元素与集合之间关系的,不能用来表示集合与集合之间的关系数学中一些常用的数集极其记法非负整数集(自然数集):全体非负整数的集合, 记作N正整数集:非负整数集内排除0的集, 记作N*或N+整数集:全体整数的集合, 记作Z有理数集:全体有理数的集合, 记作Q实数集:全体实数的集合, 记作R练习一:判断数0,¾ ,π,-5,3分别属于N、Z、Q、R、N+中的哪个集合?集合的表示方法:图示法:用一条封闭的曲线所围成的图形的内部表示一个集合例如:用图示法表示大于5且小于10的整数用图示法表示大于1且小于10的偶数列举法:把集合中的元素一一列举出来,并用大括号{ }括起来表示集合的方法。
例如:用列举法表示大于5且小于10的整数用列举法表示大于1且小于10的偶数用列举法表示由方程的所有解组成的集合用列举法表示从51到100的所有整数组成的集合练习二用列举法表示下列集合:(1)小于10的所有自然数组成的集合(2)方程X2=X的所有实数根组成的集合(3)由1-20以内的所有素数组成的集合(4)所有正奇数组成的集合列举法适用于集合中元素较少的,可以列举出来的,而有些集合中的元素是列举不完的,但是我们可以用这个集合中的元素所具有的共同特征来描述,也就是集合的另一种表示方法---描述法描述法:用集合所含元素的共同特征表示集合的方法。
具体方法是:在大括号内先写上这个集合元素的一般符号及取值范围,再画一条竖线,在竖线后写出这个集合元素所具有的共同特征。
集合和元素的概念
集合和元素的概念
集合:指具有某种特定性质的事物的总体,或是一些确认对象的汇集。
元素是指构成集合的事物或对象。
集合的元素可以是任何事物,可以是人,可以是物,也可以是字母或数字等。
元素通常用a、b、c、d、x等小写字母来表示;而集合通常用A、B、C、D、X等字母来表示。
若然x 是集合A 的元素,记作x ∈ A;若然x 不是集合A 的元素,记作x ? A。
集合的无序性:一个集合中,每个元素的地位都是相同的,元素之间是无序的。
集合的互异性:一个集合中,任何两个元素都认为是不相同的,即每个元素只能出现一次。
集合的确定性:给定一个集合,任给一个元素,该元素或者属于或者不属于该集合,二者必居其一,不允许有模棱两可的情况出现。
集合的概念知识清单
——书山有路勤为径,学海无涯苦作舟;
1 集合的概念知识清单
1. 集合的概念:由某些确定的对象组成的整体叫作集合,简称集;通常情况用大写的
英文字母A,B,C ……来表示; 2.
元素的概念:集合中每一个对象叫做该集合的元素;通常情况用小写的英文字母 c b a ,,……来表示;
3. 集合与元素的基本关系:*
如果a 是A 的元素,则说a 属于A ,记作A a ∈;
如果a 不是A 的元素,则说a 不属于A ,记作A a ∉;
4. 集合的性质:*
(1)确定性:集合中的每一个元素都是确定的;
(2)互异性:集合中的每个元素不重复出现;
(3)无序性:集合中的元素可以没有顺序;
5. 常用数集的表示:*
(1)全体非负整数组成的集合称为非负整数集(或自然数集),记作N ;
(2)全体正整数组成的集合称为正整数集,记作+N N 或*
;
(3)全体整数组成的集合称为整数集,记作Z ;
(4)全体有理数组成的集合称为有理数集,记作Q ;
(5)全体实数组成的集合称为实数集,记作R ; 6. 集合的分类:
(1)有限集:含有限个元素组成的集合;
(2)无限集:含无限个元素组成的集合;
(3)空集:不含任何元素组成的集合,记作∅;
7. 集合的表示方法:
(1)列举法:将集合的元素一一列举出来,并用花括号“{ }”括起来的方法;
(2)描述法:把集合中元素所具有的共同特征表示出来的方法;
(3)图示法(Venn 图):在平面中用封闭曲线的内部表示集合的方法;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动脑思考 探索新知
一、集合与元素 的概念
将某些确定的对象看成一个整体就构成一个集合(简称集).
组成集合的对象叫做这个集合的元素.
观察你的文具盒,什么是集合?什么是元素 ?
.
操作
高教社
动脑思考 探索新知
二、集合的性质
确定性
互异性
无序性
一个给定的集 合中的元. 素必 须是确定的
一个给定的集 合中的元素都 是互不相同的
我们每个人手里都有一把自 学成才的钥匙,这就是:理想、 勤奋、毅力、虚心和科学的方法。
----------华罗庚
开始学习啦!
第一章 集合与充要条件
1.1 集合的概念
1.1.1 集合与元素
高教社
张立艳
【学习目标】理解集合、元素的概念及其关系, 掌握常用数集的字母表示;
• 【学习重点】
• 集合的概念
一个给定的集 合中的元素排 列无顺序
高教社
三、集合与元素表示方法:
一般采用大写英文字母A,B,C…表示集合,小写英文 字母a,b,c… 表示集合的元素.
动脑思考 探索新知
四、元素与集合的关 系
元素与集合
元素a是集合A 的元素,. 记作a∈A, 读作a属于A.
高教社
元素a不是集合A 的元素,
记作a A,
读作a不属于A.
例1 下列对象能否组成集合: (1)所有小于10的自然数; (2)某班个子高的同学; (3)方程x2-1=0的所有解; (4)不等式x-2˃0的所有解. (5)方程x2+1=0的解集
五、集合的分类:
1、有限集:含有有限个元素的集合 2、无限集:含有无限个元素的集合 3、空集:不含任何元素的集合,记作ɸ
”填空 0.5 N -5 ϵ Z πQ -1.2 ϵ R
3ϵ N
3ϵ Z 7.21 ϵ Q
πϵ R
1、选择题: (1)下列对象能组成集合的是( A )
A、大于5的自然数 B、一切很大的数 C、班上个子很高的同学 D、班上考试得分很高的同学
(2)下列对象不能组成集合的是( B) A、 不大于8的自然数 B、很接近于1的数 C、班上身高超过1.8米的同学 D、班上数学小测中得分在85分以上的同学
思考:0集合是空集吗?
六、常用数集及代表字母:
数集:由数组成的集合叫做数集。有理Fra bibliotek集Q 实数集 R
无理数集
整数集Z 分数集
正整数集Z+或N*
零构成的集合 负整数集Z正分数集
自然数集N
负分数集
例2: 用符号“ϵ”或“ (1) -3 N (2) 1.5 Z
(3) -0.2 ϵ Q (4) 1.5 ϵ R
• 集合与元素的关系
• 常用数集的符号
• 【学习难点】
• “属于ϵ”和“不属于 ”的理解以及符号表示
• 数学符号语言的认知和运用
创设情景 兴趣导入
问题 某商店进了一批货,包括:面包、饼干、汉堡、彩笔、
水笔、橡皮、果冻、薯片、裁纸刀、尺子.
将这些商品放在指定的篮筐里:
食品篮筐
.
文具篮筐
.
操作
高教社
2、下列对象能否组成集合?若能组成集合,判断哪些是有限集,哪些是 无限集,哪些是空集? (1)某班学习好的同学; (2)绝对值不小于3的所有整数; (3)方程x-6=0的解集; (4)方程x2+2=0的解集 (5)不等式x-1<0的解集; (6)方程x2-5x-6=0的解集。
谢谢大家!