中考规律探索型问题及答案

合集下载

中考数学重难点突破专题一:规律探索型问题试题(含答案)

中考数学重难点突破专题一:规律探索型问题试题(含答案)

精品基础教育教学资料,仅供参考,需要可下载使用!专题一 规律探索问题类型1 数字规律1.甲、乙、丙三位同学进行报数游戏,游戏规则为:甲报1,乙报2,丙报3,再甲报4,乙报5,丙报6,…依次循环反复下去,当报出的数为2020时游戏结束,若报出的数是偶数,则该同学得1分.当报数结束时甲同学的得分是__337__分.解析:甲报的数中第一个数为1,第2个数为1+3=4,第3个数为1+3×2=7,第4个数为1+3×3=10,…,第n 个数为1+3(n -1)=3n -2,3n -2=2020,则n =674,甲报出了674个数,一奇一偶,所以偶数有674÷2=337个,得337分.2.如图,给正五边形的顶点依次编号为1,2,3,4,5,若从某一顶点开始,沿五边形的边顺时针行走,顶点编号是几,就走几个边长,则称这种走法为一次“移位”.如:小宇在编号为3的顶点上时,那么他应走3个边长,即从3→4→5→1为第一次“移位”,这时他到达编号为1的顶点;然后从1→2为第二次“移位”.若小宇从编号为2的顶点开始,第10次“移位”,则他所处顶点的编号为__3__.3.(2017·六盘水)计算1+4+9+16+25+…的前29项的和是__8555__.解析:12+22+32+42+52+…+292+…+n 2=0×1+1+1×2+2+2×3+3+3×4+4+4×5+5+…(n -1)n +n=(1+2+3+4+5+…+n)+[0×1+1×2+2×3+3×4+…+(n -1)n]=n (n +1)2+{13(1×2×3-0×1×2)+13(2×3×4-1×2×3)+13(3×4×5-2×3×4)+…+13[(n -1)·n·(n +1)-(n -2)·(n -1)·n]}=n (n +1)2+13[(n -1)·n·(n +1)]=n (n +1)(2n +1)6, ∴当n =29时,原式=29×(29+1)×(2×29+1)6=8555. 类型2 图形规律4.(2017·天水)观察下列的“蜂窝图”则第n 个图案中的“”的个数是__3n +1__.(用含有n 的代数式表示)5.(2017·临沂)将一些相同的“○“按如图所示摆放,观察每个图形中的“○“的个数,若第n 个图形中“○“的个数是78,则n 的值是( B )A .11B .12C .13D .14解:第1个图形有1个小圆;第2个图形有1+2=3个小圆;第3个图形有1+2+3=6个小圆;第4个图形有1+2+3+4=10个小圆;第n 个图形有1+2+3+…+n =n (n +1)2个小圆;∵第n 个图形中“○“的个数是78,∴78=n (n +1)2,解得:n 1=12,n 2=-13(不合题意舍去).6.(2017·德州)观察下列图形,它是把一个三角形分别连接这个三角形三边的中点,构成4个小三角形,挖去中间的一个小三角形(如图1);对剩下的三个小三角形再分别重复以上做法,…将这种做法继续下去(如图2,图3…),则图6中挖去三角形的个数为( C )A .121B .362C .364D .729解:图1挖去中间的1个小三角形,图2挖去中间的(1+3)个小三角形,图3挖去中间的(1+3+32)个小三角形,…则图6挖去中间的(1+3+32+33+34+35)个小三角形,即图6挖去中间的364个小三角形,类型3 坐标变化规律7.在平面直角坐标系中,对于平面内任一点(a ,b),若规定以下三种变换:①△(a ,b)=(-a ,b);②○(a ,b)=(-a ,-b);③Ω(a ,b)=(a ,-b),按照以上变换例如:△(○(1,2))=(1,-2),则○(Ω(3,4))等于__(-3,4)__.8.(2017·衢州)如图,正△ABO 的边长为2,O 为坐标原点,A 在x 轴上,B 在第二象限,△ABO 沿x 轴正方向作无滑动的翻滚,经一次翻滚后得到△A 1B 1O ,则翻滚3次后点B的对应点的坐标是__(5,3)__,翻滚2017次后AB 中点M 经过的路径长为 (134633+896)π .解析:如图作B 3E ⊥x 轴于E ,易知OE =5,B 3E =3,∴B 3(5,3),观察图象可知三次一个循环,一个循环点M 的运动路径为120·π·3180+120π·1180+120π·1180=(23+43)π,∵2017÷3=672…1,∴翻滚2017次后AB 中点M 经过的路径长为672·(23+43)π+233π=(134633+896)π.9.(2017·菏泽)如图,AB ⊥y 轴,垂足为B ,将△ABO 绕点A 逆时针旋转到△AB 1O 1的位置,使点B 的对应点B 1落在直线y =-33x 上,再将△AB 1O 1绕点B 1逆时针旋转到△A 1B 1O 2的位置,使点O 1的对应点O 2落在直线y =-33x 上,依次进行下去…若点B 的坐标是(0,1),则点O 12的纵坐标为__(-9-93,9+33)__.解:观察图象可知,O 12在直线y =-33x 时,OO 12=6·OO 2=6(1+3+2)=18+63, ∴O 12的横坐标=-(18+63)·cos30°=-9-93,O 12的纵坐标=12OO 12=9+33,∴O 12(-9-93,9+33). 10.定义:直线l 1与l 2相交于点O ,对于平面内任意一点M ,点M 到直线l 1、l 2的距离分别为p 、q ,则称有序实数对(p ,q)是点M 的“距离坐标”,根据上述定义,“距离坐标”是(1,2)的点的个数是( C )A .2B .3C .4D .5解析:如图,∵到直线l 1的距离是l 的点在与直线l 1平行且与l 1的距离是1的两条平行线a 1、a 2上,到直线l 2的距离为2的点在与直线l 2平行且与l 2的距离是2的两条平行线b 1、b 2上,∴“距离坐标”是(1,2)的点是M 1,M 2,M 3,M 4,一共4个.11.(2017·绍兴模拟)在平面直角坐标系中,对图形F 给出如下定义:如图形F 上的所有点都在以原点为顶点的角的内部或边界上,在所有满足条件的角中,其度数的最小值称为图形的坐标角度.例如,图中的矩形ABCD 的坐标角度是90°.现将二次函数y =ax 2(1≤a ≤3)的图象在直线y =1下方的部分沿直线y =1向上翻折,则所得图形的坐标角度α的取值范围是( B )A .30°≤α≤60°B .60°≤α≤90°C .90°≤α≤120°D .120°≤α≤150°12.(2017·昆山二模)赵爽弦图是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如图所示,若这四个全等直角三角形的两条直角边分别平行于x 轴和y 轴,大正方形的顶点B 1,C 1,C 2,C 3,…,C n 在直线y =-12x +72上,顶点D 1,D 2,D 3,…,D n 在x 轴上,则第n 个阴影小正方形的面积为__(23)2n -2__.解:设第n 个大正方形的边长为a n ,则第n 个阴影小正方形的边长为55a n,当x =0时,y =-12x +72=72,∴72=55a 1+52a 1,∴a 1= 5.∵a 1=a 2+12a 2,∴a 2=235,同理可得:a 3=23a 2,a 4=23a 3,a 5=23a 4,…,∴a n =(23)n -1a 1=5(23)n -1,∴第n 个阴影小正方形的面积为(55a n )2=[(23)n -1]2=(23)2n -2.。

中考数学专题复习——规律探索(详细答案)

中考数学专题复习——规律探索(详细答案)

中考数学复习专题——规律探索一.选择题1. (2018·湖北随州·3 分)我们将如图所示的两种排列形式的点的个数分别称作“三角形数”(如 1,3, 6,10…)和“正方形数”(如 1,4,9,1,在小于 200 的数中,设最大的“三角形数”为 m ,最大的 “正方形数”为 n ,则 m +n 的值为( )A .33B .301C .386D .5712.(2018•山东烟台市•3 分)如图所示,下列图形都是由相同的玫瑰花按照一定的规律摆成的,按此规律摆 下去,第 n 个图形中有 120 朵玫瑰花,则 n 的值为( )3.(2018•山东济宁市•3 分)如图,小正方形是按一定规律摆放的,下面四个选项中的图片, 适合填补图中空白处的是( )A .B . B.C .D .4. (2018 湖南张家界 3.00 分)观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256…, 则 2+22+23+24+25+…+21018 的末位数字是( )A .8B .6C .4D .0二、填空题 1. (2018·湖北江汉油田、潜江市、天门市、仙桃市·3 分)如图,在平面直角坐标系中,△P 1OA 1,△P 2A 1A 2, △P3A2A3,…都是等2.(2018•江苏淮安•3 分)如图,在平面直角坐标系中,直线l为正比例函数y=x 的图象,点A1的坐标为(1,,过点A1作x轴的垂线交直线l于点D1,以A1D1为边作正方形A1B1C1D1;过点C1作直线l的垂线,垂足为A2,交x 轴于点B2,以A2B2为边作正方形A2B2C2D2;过点C2作x 轴的垂线,垂足为A3,交直线l 于点D3,以A3D3为边作正方形A3B3C3D3,…,按此规律操作下所得到的正方形A n B n C n D n的面积是(92)n﹣1 .3.(2018•山东东营市•3分)如图,在平面直角坐标系中,点A1,A2,A3,…和B1,B2,B3,…分别在直线y=15x+b和x轴上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形.如果点A1(1,那么点A2018的纵坐标是20173()2.4.(2018•临安•3 分.)已知:2+23=22×23,3+38=32×38,4+415=42×415,5+524=52×524,…,若10+ba=102×ba符合前面式子的规律,则a+b= .5. (2018•广西桂林•3分)将从1开始的连续自然数按如图规律排列:规定位于第m行,第n列的自然记为6. (2018•广西南宁•3 分)观察下列等式:30=1,31=3,32=9,33=27,34=81,35=243,…,根据其中规律可 得 30+31+32+…+32018 的结果的个位数字是 .7. (2018·黑龙江龙东地区·3 分)如图,已知等边△A BC 的边长是 2,以 B C 边上的高 AB 1 为边作等边三角 形,得到第一个等边△AB 1C 1;再以等边△AB 1C 1 的 B 1C 1边上的高 AB 2 为边作等边三角形,得到第二个等边△AB 2C 2;再以等边△A B 2C 2 的B 2C 2边上的高 A B 3 为边作等边三角形,得到第三个等边△AB 3C 3;…,记△B 1CB 2 的面积为 S 1,△B 2C 1B 3 的面积为 S 2,△B 3C 2B 4 的面积为 S 3,如此下去,则 S n = .8.(2018·黑龙江齐齐哈尔·3 分)在平面直角坐标系中,点 A (3,1)在射线 O M 上,点 B (3,3)在 射线 ON 上,以 AB 为直角边作 Rt △A BA 1,以 BA 1 为直角边作第二个 Rt △BA 1B 1,以A 1B 1 为直角边作第三个 Rt△A 1B 1A 2,…,依次规律,得到 R t △B 2017A 2018B 2018,则点 B 2018 的纵坐标为 . 9.(2018•广东•3 分)如图,已B 1 作 B 1A 2∥OA 1 交双曲线于点 A 2,过 A 2 作 A 2B 2∥A 1B 1 交 x 轴于点 B 2,得到第二个等边△B 1A 2B 2;过 B 2 作 B 2A 3∥B 1A 2 交双曲线于点 A 3,过 A 3 作 A 3B 3∥A 2B 2 交 x 轴于点 B 3,得到第三个等边△B 2A 3B 3;以此类推,…,则点 B 6 的坐标 为 ( ) .nn201810. (2018•广西北海•3 分)观察下列等式: 30 = 1, 31 = 3, 32 = 9 , 33 = 27 , 34 = 81, 35= 243,…,根据其中规律可得 01220183+3+3+...3+的结果的个位数字是 。

中考规律探索型问题及答案

中考规律探索型问题及答案

规 律 探1.如图,下面是按照一定规律画岀的“数形图”,经观察可以发现:图A 比图A i 多岀2个“树枝”比图A 多岀4个“树枝”,图A 比图A 3多岀8个“树枝”,……,照此规律,图A 比图A2多岀“树枝”()D. 124【答案】C的代数式表示)OQQG O 0-O 0 0 5第1个图形 第2个图形0 Q0 0 0 0 90 0 O0 Q Q 9 0 Qoo oo • a C 殆彷0 4 0 0 0O第3个图形第4个图形【答案】n(n 1) 4或n 2 n 4 3.观察下列算式:2① 1 X 3 - 2 = 3 - 4 = -1 ② 2 X 4 - 3 2 = 8 - 9 = -1③ 3 X 5 - 4 2 = 15 - 16 = -1④ _________________________6.观察下面的变形规律:1 1 1 11 1 11----- =1 — — • ------------ = — — — • -------- =———1 2 223233434解答下面的问题:2.将一些半径相同的小圆按如图所示的规律摆放,请仔细观察,第 n 个图形有个小圆 (用含n(1 )请你按以上规律写出第 4个算式; 2)把这个规律用含字母的式子表示出来;(3)你认为(2)中所写岀的式子一定成立吗?并说明理由. 【答案】解:⑴4 6 5224 25 1 ;2⑵答案不唯一.如n n 2 n 11 ;2 2 2⑶ n n 2 n 1 n 2n n 2n 11.4. 观察上面的图形,它们是按一定规律排列的,依照此规律,第 【答案】155. 先找规律,再填数: 22n n2n 1【答案】11006____ 个图形共有120个8.如下数表是由从1开始的连续自然数组成,观察规律并完成各题的解答(1) _______________________________ 表中第8行的最后一个数是 ___________________ ,它是自然数 的平方,第8行共有 ____________________________ 个数;(2) ______________________________________________ 用含n 的代数式表示:第 n 行的第一个数是 _____ ,最后一个数是 _____________________________________________ ,第n 行共有____________ 个 数;(3)求第n 行各数之和.【解】(1) 64,8,15;(2) (n 1)2 1,n 2,2n 1;(3)第2行各数之和等于 3X 3 ;第3行各数之和等于 5X 7;第4行各数之和等于 7 X 7-13 ;类似的,第n(1 )若n 为正整数,请你猜想n(n 1)(2) (3) 证明你猜想的结论; 1 .求和: 丄+…+3 42009 2010【答案】 1(1)(2) 证明:n 1 n(n 1)n n(n 1)n 1 n n(n 1)1 n(n 1)(3) 原式=1+…+42009 2010 2010200920107.设 S ,=1g 丄,S 2=1厶 12 22 22丄,X3232■V …,S.=1 A4 n(n【答案】S n1 1~~2n=[1S= (用含n 的代数式表示,其中2n1 1 k 1 [1 占2 2 A 1 爲]2 21 n(n 1)1 n(n1 1 1 ‘ S =(1厂)+(1 厂)+(1 厂尸…+(1n(n 1))2小n 2n n 1接下去利用拆项法1 n(n 1)即可求和.n 1设 S .. .3则行各数之和等于(2n 1)(n2 n 1) = 2 n3 3n2 3n 1.「、 2 32012上乙“ _ 人— 2 3 2012 — 2 3 4 2013 e. — — 2013八9.求 1+2+2+2+…+2 的值,可令 S=1+2+2+2+…+2 ,则 2S=2+2+2+2+…+2,因此 2S- S=2 - 1.仿照以上推理,计算出1+5+52+53+…+5 2012的值为( )选C.个小正方形。

含答案 中考数学复习专题六 规律探索题

含答案  中考数学复习专题六  规律探索题

专题六 规律探索题类型一 数式规律1. 设a n 为正整数n 4的末位数,如a 1=1,a 2=6,a 3=1,a 4=6,…,则a 1+a 2+a 3+…+a 2019+a 2020+a 2021=________.2. 如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着-5,-2,1,9,且任意相邻四个台阶上数的和都相等.则第5个台阶上的数x =________,从下到上前35个台阶上数的和=________.第2题图3. 将从1开始的连续奇数按如图所示的规律排列,例如:位于第4行第3列的数为27,则位于第32行第13列的数是________.第3题图4. 如图,下列各正方形中的四个数具有相同的规律,根据规律,x 的值为________.第4题图5. 已知a >0,S 1=1a ,S 2=-S 1-1,S 3=1S 2,S 4=-S 3-1,S 5=1S 4,…(即当n 为大于1的奇数时,S n =1S n -1;当n 为大于1的偶数时,S n =-S n -1-1),按此规律,S 2018=________(用含a 的代数式表示).6. 观察下列等式:(x -1)(x +1)=x 2-1;(x -1)(x 2+x +1)=x 3-1;(x -1)(x 3+x 2+x +1)=x 4-1;(x -1)(x 4+x 3+x 2+x +1)=x 5-1;…根据以上规律,计算22020+22019+22018+…+23+22+2+1的结果是________,个位数字是________.7. 人们把5-12这个数叫做黄金分割数,著名数学家华罗庚优选法中的0.618法就应用了黄金分割数.设a =5-12,b =5+12,得ab =1,记S 1=11+a +11+b ,S 2=11+a 2+11+b 2,…,S 10=11+a 10+11+b 10.则S 1+S 2+…+S 10=________. 8.如图,某校礼堂的座位分为四个区域,前区一共有8排,其中第1排共有20个座位(含左、右区域),往后每排增加两个座位,前区最后一排与后区各排的座位数相同,后区一共有10排,则该礼堂的座位总数是________.第8题图9.观察下列等式:x 1=1+112+122=32=1+11×2; x 2=1+122+132=76=1+12×3; x 3=1+132+142=1312=1+13×4; …根据以上规律,计算x 1+x 2+x 3+…+x 2020-2021=________.10.“干支纪年法”是我国历法的一种传统纪年法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被称为“十天干”;子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”;“天干”以“甲”字开始,“地支”以“子”字开始,两者按干支顺序相配,组成了干支纪年法,其相配顺序为甲子、乙丑、丙寅…癸酉;甲戌、乙亥、丙子…癸未;甲申、乙酉、丙戌…癸巳;…共得到60个组合,称六十甲子,周而复始,无穷无尽.2021年是“干支纪年法”中的辛丑年,那么2050年是“干支纪年法”中的________.类型二 图形变化规律1. 如图,在平面直角坐标系中,函数y =3x 和y =-x 的图象分别为直线l 1,l 2,过点(1,0)作x 轴的垂线交l 1于点A 1,过点A 1作y 轴的垂线交l 2于点A 2,过点A 2作x 轴的垂线交l 1于点A 3,过点A 3作y 轴的垂线交l 2于点A 4,…,依次进行下去,则点A 6的坐标为________,点A2022的坐标为________.第1题图2. 如图,菱形ABCD中,∠ABC=120°,AB=1,延长CD至A1,使DA1=CD,以A1C为一边,在BC的延长线上作菱形A1CC1D1,连接AA1,得到△ADA1;再延长C1D1至A2,使D1A2=C1D1,以A2C1为一边,在CC1的延长线上作菱形A2C1C2D2,连接A1A2,得到△A1D1A2,…,按此规律,得到△A2020D2020A2021,记△ADA1的面积为S1,△A1D1A2的面积为S2,…,△A2020D2020A2021的面积为S2021,则S2021=________.第2题图3. 如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AC=1,且AC在直线l上,将△ABC 绕点A顺时针旋转到①,可得到点P1,此时AP1=2;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=2+3;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=3+3,…,按此规律继续旋转,直到点P2020为止,则AP2020等于________.第3题图4. 已知菱形A1B1C1D1的边长为2,∠A1B1C1=60°,对角线A1C1,B1D1相交于点O.以点O 为坐标原点,分别以OA1,OB1所在直线为x轴、y轴,建立如图所示的平面直角坐标系.以B1D1为对角线作菱形B1C2D1A2∽菱形A1B1C1D1,再以A2C2为对角线作菱形A2B2C2D2∽菱形B1C2D1A2,再以B2D2为对角线作菱形B2C3D2A3∽菱形A2B2C2D2,…,按此规律继续作下去,在x轴的正半轴上得到点A1,A2,A3,…,A n,则点A n的坐标为________.第4题图5. 如图,在矩形ABCD 中,AB =1,BC =2,连接AC ,过点D 作DC 1⊥AC 于C 1;以C 1A 、C 1D 为邻边作矩形AA 1DC 1,连接A 1C 1,交AD 于O 1,过点D 作DC 2⊥A 1C 1于C 2,交AC 于M 1,以C 2A 1,C 2D 为邻边作矩形A 1A 2DC 2,连接A 2C 2,交A 1D 于O 2,过点D 作DC 3⊥A 2C 2于C 3,交A 1C 1于M 2;以C 3A 2,C 3D 为邻边作矩形A 2A 3DC 3,连接A 3C 3,交A 2D 于O 3,过点D 作DC 4⊥A 3C 3于C 4,交A 2C 2于M 3;…若四边形AO 1C 2M 1的面积为S 1,四边形A 1O 2C 3M 2的面积为S 2,四边形A 2O 3C 4M 3的面积为S 3,…,四边形A n -1O n C n +1M n 的面积为S n ,则S n =________.(结果用含正整数n 的式子表示)第5题图6. 如图,在平面直角坐标系中,菱形OABC 的边OC 在x 轴的正半轴上,且点C 的坐标为(2,0),∠OCB =45°,将菱形OABC 绕点O 顺时针旋转45°后得到菱形OA 1B 1C 1,…,依此方式,绕点O 连续旋转2021次后得到菱形OA 2021B 2021C 2021,则点A 2021的坐标为________.第6题图7. 如图,在平面直角坐标系中,AB ⊥y 轴,垂足为B ,将△ABO 绕点A 逆时针旋转到△AB 1O 1的位置,使点B 的对应点B 1落在直线y =-34x 上,再将△AB 1O 1绕点B 1逆时针旋转到△A 1B 1O 2的位置,使点O 1的对应点O 2也落在直线y =-34x 上,以此进行下去…,若点B 的坐标为(0,3),则点B 21的纵坐标...为________.第7题图专题六 规律探索题类型一 数式规律1. 6667 【解析】∵a 1=1,a 2=6,a 3=1,a 4=6,a 5=5,a 6=6,a 7=1,a 8=6,a 9=1,a 10=0,…,即每10个数一循环,∴a 1+a 2+a 3+…+a 10=1+6+1+6+5+6+1+6+1+0=33,2021÷10=202……1,∴33×202+1=6667.2. -5;18 【解析】第1个至第4个台阶上数的和为-5+(-2)+1+9=3,∵任意相邻四个台阶上数的和都相等,∴-2+1+9+x =3,解得x =-5,则第5个台阶上的数x 是-5.由题意知,台阶上的数字每4个一循环,∵35÷4=8……3,∴从下到上前35个台阶上数的和为8×3-5-2+1=18.3. 2023 【解析】观察数字的变化,发现规律:第n 行,第n 列的数为2n (n -1)+1,∴第32行,第32列的数为2×32×(32-1)+1=1985,根据排列规律,偶数行的数从右往左依次增加2,∴第32行,第13列的数为1985+2×(32-13)=2023.4. 170 【解析】分析题目可得4=2×2,6=3×2,8=4×2;2=1+1,3=2+1,4=3+1;∴18=2b ,b =a +1.∴a =8,b =9.∵9=2×4+1,20=3×6+2,35=4×8+3,∴x =18b +a =18×9+8=170.5. -a +1a 【解析】S 1=1a ,S 2=-1a -1=-a +1a ,S 3=-a a +1,S 4=-1a +1,S 5=-(a +1),S 6=a ,S 7=1a ,…,∴每6个数是一个循环,∵2018÷6=336……2,∴S 2018=S 2=-a +1a .6. 22021-1 ;1 【解析】根据题意得:(x -1)(x n +x n -1+…+x +1)=x n +1-1,∵(2-1)×(22020+22019+…+2+1)=22020+1-1,∴22020+22019+…+2+1=22021-1,∵21=2,个位数字是2,22=4,个位数字是4,23=8,个位数字是8,24=16,个位数字是6,25=32,个位数字是2,…,∵2021÷4=505……1,∴22021的个位数字是2,∴22021-1的个位数字是1. 7. 10 【解析】∵a =5-12,b =5+12,∴ab =5-12×5+12=1,∵S n =11+a n +11+b n =2+a n +b n (1+a n )(1+b n )=2+a n +b n 1+(ab )n +a n +b n =2+a n +b n2+a n +b n =1,∴S 1=S 2=S 3=…=S n =1,∴S 1+S 2+S 3+…+S 10=10.8. 556个 【解析】∵前区一共有8排,其中第1排共有20个座位(含左、右区域),往后每排增加两个座位,∴前区最后一排座位数为20+2×(8-1)=34,∴前区座位数为(20+34)×8÷2=216,∵前区最后一排与后区各排的座位数相同,后区一共有10排,∴后区的座位数为10×34=340,∴该礼堂的座位总数是216+340=556个.9. -12021 【解析】x 1=1+11×2=1+1-12,x 2=1+12×3=1+12-13,x 3=1+13×4=1+13-14,…,x n =1+1n (n +1)=1+1n -1n +1,∴x 1+x 2+x 3+…+x n =1+1-12+1+12-13+1+13-14+…+1+1n -1n +1=n +1-1n +1,∴x 1+x 2+x 3+…+x 2020-2021=2020+1-12021-2021=-12021.10. 庚午年 【解析】公元纪年换算成干支纪年方法如下:天干算法:用公元纪年数减3,除以10(不管商数)所得余数,就是天干所对应的位数,地支算法:用公元纪年数减3,除以12(不管商数)所得余数,就是地支所对应的位数,2050-3=2047,2047÷10余数为7,∴天干为“庚”,2047÷12余数为7,∴地支为“午”,∴2050年为“庚午”年.类型二 图形变化规律1. (-27,27),(-31011,31011) 【解析】当x =1时,y =3x =3,∴点A 1的坐标为(1,3);当y =-x =3时,x =-3,∴点A 2的坐标为(-3,3);同理可得A 3(-3,-9),A 4(9,-9),A 5(9,27),A 6(-27,27),A 7(-27,-81),…,∴A 4n +1(32n ,32n +1),A 4n +2(-32n +1,32n +1),A 4n +3(-32n +1,-32n +2),A 4n +4(32n +2,-32n +2)(n 为自然数).∵2022=505×4+2,∴点A 2022的坐标为(-31011,31011).2. 24038· 3 【解析】∵四边形ABCD 是菱形,∴AB =AD =BC =CD =1,AD ∥BC ,AB ∥CD ,∵∠ABC =120°,∴∠BCD =60°,∴∠ADA 1=∠BCD =60°,∵DA 1=CD ,∴DA 1=AD ,∴△ADA 1为等边三角形,同理可得△A 1D 1A 2,…,△A 2020D 2020A 2021都为等边三角形,如解图,过点B 作BE ⊥CD 于点E ,∴BE =BC ·sin ∠BCD =32=A 1D ,∴S 1=12A 1D ·BE =34A 1D 2=34,同理可得,S 2=34A 2D 12=34×22=3,S 3=34A 3D 22=34×42=43,…,∴由此规律可得,S n =3·22n -4,∴S 2021=3×22×2021-4=24038· 3.第2题解图3. 2021+673 3 【解析】∵∠ACB =90°,∠B =30°,AC =1,∴AB =2,BC =3,∴将△ABC 绕点A 顺时针旋转到①,可得到点P 1,此时AP 1=2;将位置①的三角形绕点P 1顺时针旋转到位置②,可得到点P 2,此时AP 2=2+3;将位置②的三角形绕点P 2顺时针旋转到位置③,可得到点P 3,此时AP 3=3+3,…,∵2020÷3=673……1,∴AP 2020=673×(3+3)+2=2021+673 3.4. (3n -1,0) 【解析】根据题意得△A 1B 1C 1是等边三角形,∴A 1C 1=2,则点A 1的坐标是(1,0),B 1O =3,在Rt △A 2OB 1中,tan30°=B 1O A 2O ,得A 2O =3,则点A 2的坐标为(3,0),同理求出点A 3的坐标是(9,0),A 4的坐标是(27,0),…,即点A 3(32,0),A 4(33,0),…,∴点A n 的坐标为(3n -1,0)5. 9×4n -15n +1 【解析】∵在矩形ABCD 中,AB =1,BC =2,∴AC =5,∵DC 1⊥AC ,∴DC 1=AD ·CD AC =255,∴CC 1=CD 2-DC 21=12-(255)2=55,∴AC 1=455,∵四边形AA 1DC 1是矩形,∴AA 1=DC 1=255,∵DC 2⊥A 1C 1,∴∠AC 1A 1=∠C 1DM 1,∴tan ∠AC 1A 1=tan ∠C 1DM 1=AA 1AC 1=C 1C 2DC 2=12,∴由勾股定理可得C 1C 2=25,∴M 1C 2=15,∵点O 1是矩形AA 1DC 1对角线的交点,∴点O 1到AC 1的距离=12DC 1=55,∴S 1=S △AO 1C 1-S △C 1C 2M 1=12×455×55-12×15×25=925=9×152;同理可得A 1C 2=85,DC 2=45,C 2C 3=4525,M 2C 3=2525,点O 2到A 1C 1的距离=12DC 2=25,∴S 2=S △A 1O 2C 2-S △C 2C 3M 3=12×85×25-12×4525×2525=36125=9×453;同理可得S 3=9×4254,S 4=9×4355,…,以此类推可得S n =9×4n -15n +1.6. (0,-2) 【解析】如解图,∵四边形OABC 是菱形,且OC =2,∴OA =2,又∵∠OCB =45°,∴∠OAB =45°,∴A (-1,1),由旋转的性质得OA =OA 1=OA 2=…=OA 7= 2.∵菱形OABC 绕点O 顺时针旋转45°后得到菱形OA 1B 1C 1,相当于将线段OA 绕点O 顺时针旋转45°得到线段OA 1,易知点A 与A 2关于y 轴对称,点A 2与A 4关于x 轴对称,点A 与点A 6关于x 轴对称,其余点均在x 轴、y 轴上,∴A (-1,1),A 1(0,2),A 2(1,1),A 3(2,0),A 4(1,-1),A 5(0,-2),A 6(-1,-1),A 7(-2,0),….∵360°÷45°=8,∴图形在旋转过程中每8次为一个循环,∵2021÷8=252……5,∴点A 2021的坐标与点A 5的坐标相同,∴点A 2021的坐标为(0,-2).第6题解图7. 3875 【解析】∵AB ⊥y 轴,点B (0,3),∴OB =3,则点A 的纵坐标为3,将y =3代入y =-34x ,解得x =-4,即A (-4,3),∴OB =3,AB =4,OA =32+42=5,由旋转可知:OB =O 1B 1=O 2B 1=O 2B 2=...=3,OA =O 1A =O 2A 1=...=5,AB =AB 1=A 1B 1=A 2B 2= (4)∴OB 1=OA +AB 1=5+4=9,B 1B 3=3+4+5=12,∴OB 21=OB 1+B 1B 21=9+(21-1)÷2×12=129,设B 21(a ,-34a ),则OB 21=a 2+(-34a )2=129, 解得a =-5165或5165(舍),则-34a =-34×(-5165)=3875, 即点B 21的纵坐标为3875.。

中考规律探索题与答案

中考规律探索题与答案

探索规律题类型一数字规律1、下面是按一定规律排列的一列数:,那么第n个数是.解析∵分子分别为1、 3 、5 、 7 ,⋯,∴第 n 个数的分子是2n ﹣ 1 。

∵4 ﹣ 3=1=1 2 ,7﹣3=4=2 2 ,12﹣3=9=3 2 ,19﹣3=16=42,⋯,∴第n 个数的分母为n 2 +3。

∴第n个数是。

2、观察下列等式:,,,,,,。

试猜想,的个位数字是 __ ___。

解析本题主要考查规律探索。

观察等式:,,,,,可得,次方的个位数字是,次方的个位数字是,次方的个位数字是,次方的个位数字是,次方的个位数字是,个位数字的变化是以、、、为周期,即周期为,又因为,所以的个位数字与的个位数字相同为。

故本题正确答案为。

考点规律探索。

3 、古希腊数学家把数1,3,6,10,15,21,叫做三角形数, 它有一定的规律性 , 若把第一个三角形数记为, 第二个三角形数记为,第n个三角形数记为, 则.答案解 :,═,,═,═, ⋯,,则,因此,本题正确答案是:.解析根据三角形数得到,,,,, 即三角形数为从 1 到它的顺号数之间所有整数的和, 即、,然后计算可得 .4 、按一定规律排列的一列数:,,,,,,,,请你仔细观察,按照此规律对应的数字应为_____。

答案解析本题主要考查规律探索。

将中间两个化为分数之后为:,,,,,,,,观察可知分子是从开始不断递增的奇数,分母是从开始不断递增的质数,那么根据这个规律即可得到。

故本题正确答案为。

考点规律探索。

5 、如图 , 下列各图形中的三个数之间均具有相同的规律, 依此规律 , 那么第 4个图形中的,一般地 , 用含有 m,n 的代数式表示 y, 即.答案解:观察,发现规律:,,,,因此,本题正确答案是:63;解析观察给定图形 , 发现右下的数字=右上数字( 左下数字, 依此规律即可得出结论 .6 、观察下列数据:,,,,,,它们是按一定规律排列的,依照此规律,第个数据是 _____ 。

中考数学专题训练:规律探索——数式规律(附参考答案)

中考数学专题训练:规律探索——数式规律(附参考答案)

中考数学专题训练:规律探索——数式规律(附参考答案)1.按一定规律排列的单项式:a,√2a2,√3a3,√4a4,√5a5,…,第n个单项式是( ) A.√n B.√n−1a n-1C.√n a n D.√n a n-12.在如图所示的运算程序中,若开始输入x的值为48,我们发现第一次输出的结果为24,第二次输出的结果为12……则第2 023次输出的结果为( )A.6 B.3C.622 021D.322 0223.将从1开始的连续奇数按如图所示的规律排列,例如,位于第4行第3列的数为27,则位于第32行第13列的数是( )A.2 025 B.2 023C.2 021 D.2 0194.根据图中数字的规律,若第n个图中的q=143,则p的值为( )A.100 B.121C.144 D.1695.按一定规律排列的单项式:a2,4a3,9a4,16a5,25a6,…,第n个单项式是( ) A.n2a n+1B.n2a n-1C.n n a n+1D.(n+1)2a n6.根据图中数字的排列规律,在第⑦个图中,a-b-c的值是( )A.62 B.64C.-66 D.-1907.将从1开始的连续自然数按以下规律排列:若有序数对(n,m)表示第n行,从左到右第m个数,如(3,2)表示6,则表示99的有序数对是______________.8.根据图中数字的规律,则x+y的值是_______..例9.对于正整数a,我们规定:若a为奇数,则f(a)=3a+1;若a为偶数,则f(a)=a2=5.若a1=8,a2=f(a1),a3=f(a2),a4=f(a3),…,如f(15)=3×15+1=46,f(10)=102依此规律进行下去,得到一列数a1,a2,a3,a4,…,a n,…,(n为正整数),a1+a2+a3+…+a2 022=__________.参考答案1.C 2.A 3.B 4.B 5.A 6.A 7.(10,18) 8.593 9.4 725。

中考一轮复习--专题五 规律探索题

中考一轮复习--专题五 规律探索题
(2)图形的结构观察.
(3)通过对简单、特殊情况的观察,再推广到一般情况.
2.规律探究的基本原则:
(1)遵循类推原则,项找项的规律,和找和的规律,差找差的规律,积
找积的规律.
(2)遵循有序原则,从特殊开始,从简单开始,先找3个,发现规律,再
验证运用规律.
类型一
类型二
类型三
类型一 数式的变化规律
例1(2019·安徽)观察以下等式:
∴S5= =-1-a,
4
∴S6=-S5-1=a.
1
1
∴S7= = =S1,
6
故此规律为 6 个一循环,
∵2 018÷6=336 余 2,
1+
∴S2 018=- .
1
2
3
4
5
6
7
4.(2018·黑龙江龙东区)如图,已知等边△ABC的边长是2,以BC边上
的高AB1为边作等边三角形,得到第一个等边△AB1C1;再以等边
(2)∵2 020÷3=673…1,∴需要小正方形674个,大正方形673个.
1
2
3
4
5
6
7
7.图1是由若干个小圆圈堆成的一个形如等边三角形的图案,最上
面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共堆了n层.
将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有
n(n + 1)
圆圈的个数为1+2+3+…+n= 2 .如果图3和图4中的圆圈各有13

.
类型一
类型二
类型三
分析:(1)观察图形,结合已知条件,得出将基本图每复制并平移一
次,特征点增加5个,由此得出图4中特征点的个数为17+5=22个,进

规律探索--图形规律(解析版)-中考数学重难点题型专题汇总

规律探索--图形规律(解析版)-中考数学重难点题型专题汇总

规律探索-中考数学重难点题型专题汇总图形规律1.如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是A.B.C.D.【答案】D【解析】由题意知,原图形中各行、各列中点数之和为10,符合此要求的只有,故选D.【名师点睛】本题主要考查图形的变化规律,解题的关键是得出原图形中各行、各列中点数之和为10.2.将字母“C”,“H”按照如图所示的规律摆放,依次下去,则第4个图形中字母“H”的个数是()A.9B.10C.11D.12【答案】B【分析】列举每个图形中H的个数,找到规律即可得出答案.【详解】解:第1个图中H的个数为4,第2个图中H的个数为4+2,第3个图中H的个数为4+2×2,第4个图中H的个数为4+2×3=10,故选:B.【点睛】本题考查了规律型:图形的变化类,通过列举每个图形中H 的个数,找到规律:每个图形比上一个图形多2个H 是解题的关键.3.把菱形按照如图所示的规律拼图案,其中第①个图案中有1个菱形,第②个图案中有3个菱形,第③个图案中有5个菱形,…,按此规律排列下去,则第⑥个图案中菱形的个数为()A.15B.13C.11D.9【答案】C 【分析】根据第①个图案中菱形的个数:1;第②个图案中菱形的个数:123+=;第③个图案中菱形的个数:1225+⨯=;…第n 个图案中菱形的个数:()121n +-,算出第⑥个图案中菱形个数即可.【详解】解:∵第①个图案中菱形的个数:1;第②个图案中菱形的个数:123+=;第③个图案中菱形的个数:1225+⨯=;…第n 个图案中菱形的个数:()121n +-,∴则第⑥个图案中菱形的个数为:()126111+⨯-=,故C 正确.故选:C.【点睛】本题主要考查的是图案的变化,解题的关键是根据已知图案归纳出图案个数的变化规律.4.如图是用黑色棋子摆成的美丽图案,按照这样的规律摆下去,第10个这样的图案需要黑色棋子的个数为()A.148B.152C.174D.202【分析】观察各图可知,后一个图案比前一个图案多2(n+3)枚棋子,然后写成第n个图案的通式,再取n=10进行计算即可求解.【解析】根据图形,第1个图案有12枚棋子,第2个图案有22枚棋子,第3个图案有34枚棋子,…第n个图案有2(1+2+…+n+2)+2(n﹣1)=n2+7n+4枚棋子,故第10个这样的图案需要黑色棋子的个数为102+7×10+4=100+70+4=174(枚).故选:C.5.把黑色三角形按如图所示的规律拼图案,其中第①个图案中有1个黑色三角形,第②个图案中有3个黑色三角形,第③个图案中有6个黑色三角形,…,按此规律排列下去,则第⑤个图案中黑色三角形的个数为()A.10B.15C.18D.21n个图案中黑色三角形的个数为1+2+3+4+……+n,据此可得第⑤个图案中黑色三角形的个数.【解析】∵第①个图案中黑色三角形的个数为1,第②个图案中黑色三角形的个数3=1+2,第③个图案中黑色三角形的个数6=1+2+3,……∴第⑤个图案中黑色三角形的个数为1+2+3+4+5=15,故选:B.Y Y-=()6.观察下列树枝分杈的规律图,若第n个图树枝数用n Y表示,则94A.4152⨯B.4312⨯C.4332⨯D.4632⨯【答案】B【分析】根据题目中的图形,可以写出前几幅图中树枝分杈的数量,从而可以发现树枝分杈的变化规律,进而得到规律21nn Y =-,代入规律求解即可.【详解】解:由图可得到:11223344211213217211521n n Y Y Y Y Y =-==-==-==-==-则:9921Y =-,∴944942121312Y Y -=--+=⨯,故答案选:B.【点睛】本题考查图形规律,解答本题的关键是明确题意,利用数形结合的思想解答.7.用正方形按如图所示的规律拼图案,其中第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,此规律排列下去,则第⑨个图案中正方形的个数为()A.32B.34C.37D.41【分析】第1个图中有5个正方形,第2个图中有9个正方形,第3个图中有13个正方形,……,由此可得:每增加1个图形,就会增加4个正方形,由此找到规律,列出第n 个图形的算式,然后再解答即可.【详解】解:第1个图中有5个正方形;第2个图中有9个正方形,可以写成:5+4=5+4×1;第3个图中有13个正方形,可以写成:5+4+4=5+4×2;第4个图中有17个正方形,可以写成:5+4+4+4=5+4×3;...第n 个图中有正方形,可以写成:5+4(n-1)=4n+1;当n=9时,代入4n+1得:4×9+1=37.故选:C.【点睛】本题主要考查了图形的变化规律以及数字规律,通过归纳与总结结合图形得出数字之间的规律是解决问题的关键.8.在平面直角坐标系中,等边AOB ∆如图放置,点A 的坐标为()1,0,每一次将AOB ∆绕着点О逆时针方向旋转60︒,同时每边扩大为原来的2倍,第一次旋转后得到11AOB ∆,第二次旋转后得到22A OB ∆,…,依次类推,则点2021A 的坐标为()A.()202020202,2-B.()202120212,2C.()202020202,2⨯D.()201120212,2-【答案】C【分析】由题意,点A 每6次绕原点循环一周,利用每边扩大为原来的2倍即可解决问题.解:由题意,点A 每6次绕原点循环一周,20216371......5÷= ,2021A ∴点在第四象限,202120212OA =,202160xOA ∠=︒,∴点2020A 的横坐标为20212020122=2⨯,纵坐标为20212020=3222-⨯-,()2020202020212,2A ∴,故选:C.【点睛】本题考查坐标与图形变化-旋转,规律型问题,解题的关键是理解题意,学会探究规律的方法,属于中考常考题型.9.如图,用大小相同的小正方形拼大正方形,拼第1个正方形需要4个小正方形,拼第2个正方形需要9个小正方形…,按这样的方法拼成的第(n+1)个正方形比第n 个正方形多个小正方形.【分析】观察不难发现,所需要的小正方形的个数都是平方数,然后根据相应的序数与正方形的个数的关系找出规律解答即可.【解析】∵第1个正方形需要4个小正方形,4=22,第2个正方形需要9个小正方形,9=32,第3个正方形需要16个小正方形,16=42,…,∴第n+1个正方形有(n+1+1)2个小正方形,第n 个正方形有(n+1)2个小正方形,故拼成的第n+1个正方形比第n 个正方形多(n+2)2﹣(n+1)2=2n+3个小正方形.故答案为:2n+3.10.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2019个图形中共有__________个〇.【答案】6058【解析】由图可得,第1个图象中〇的个数为:1+3×1=4,第2个图象中〇的个数为:1+3×2=7,第3个图象中〇的个数为:1+3×3=10,第4个图象中〇的个数为:1+3×4=13,…∴第2019个图形中共有:1+3×2019=1+6057=6058个〇,故答案为:6058.【名师点睛】本题考查图形的变化类,解答本题的关键是明确题意,发现图形中〇的变化规律,利用数形结合的思想解答.11.如图,每一图中有若干个大小不同的菱形,第1幅图中有1个菱形,第2幅图中有3个菱形,第3幅图中有5个菱形,如果第n幅图中有2019个菱形,则n=__________.【答案】1010【解析】根据题意分析可得:第1幅图中有1个.第2幅图中有2×2-1=3个.第3幅图中有2×3-1=5个.第4幅图中有2×4-1=7个.…可以发现,每个图形都比前一个图形多2个.故第n幅图中共有(2n-1)个.当图中有2019个菱形时,2n-1=2019,n=1010,故答案为:1010.【名师点睛】本题考查规律型中的图形变化问题,难度适中,要求学生通过观察,分析、归纳并发现其中的规律.12.观察下列图形规律,当图形中的“○”的个数和“.”个数差为2022时,n的值为____________.【答案】不存在【分析】首先根据n=1、2、3、4时,“•”的个数分别是3、6、9、12,判断出第n 个图形中“•”的个数是3n;然后根据n=1、2、3、4,“○”的个数分别是1、3、6、10,判断出第n 个“○”的个数是()12n n +;最后根据图形中的“○”的个数和“.”个数差为2022,列出方程,解方程即可求出n 的值是多少即可.【详解】解:∵n=1时,“•”的个数是3=3×1;n=2时,“•”的个数是6=3×2;n=3时,“•”的个数是9=3×3;n=4时,“•”的个数是12=3×4;……∴第n 个图形中“•”的个数是3n;又∵n=1时,“○”的个数是1=1(11)2⨯+;n=2时,“○”的个数是32=n=3时,“○”的个数是3(31)62⨯+=,n=4时,“○”的个数是4(41)102⨯+=,……∴第n 个“○”的个数是()12n n +,由图形中的“○”的个数和“.”个数差为2022()1320222n n n +∴-=①,()1320222n n n +-=②解①得:无解解②得:1255,22n n +-==故答案为:不存在【点睛】本题考查了图形类规律,解一元二次方程,找到规律是解题的关键.13.将黑色圆点按如图所示的规律进行排列,图中黑色圆点的个数依次为:1,3,6,10,……,将其中所有能被3整除的数按从小到大的顺序重新排列成一组新数据,则新数据中的第33个数为___________.【答案】1275【分析】首先得到前n个图形中每个图形中的黑色圆点的个数,得到第n个图形中的黑色圆点的个数为()12n n+,再判断其中能被3整除的数,得到每3个数中,都有2个能被3整除,再计算出第33个能被3整除的数所在组,为原数列中第50个数,代入计算即可.【详解】解:第①个图形中的黑色圆点的个数为:1,第②个图形中的黑色圆点的个数为:()1222+⨯=3,第③个图形中的黑色圆点的个数为:()1332+⨯=6,第④个图形中的黑色圆点的个数为:()1442+⨯=10,第n个图形中的黑色圆点的个数为()1 2n n+,则这列数为1,3,6,10,15,21,28,36,45,55,66,78,91,,其中每3个数中,都有2个能被3整除,33÷2=161,16×3+2=50,则第33个被3整除的数为原数列中第50个数,即50512⨯=1275,故答案为:1275.【点睛】此题考查了规律型:图形的变化类,关键是通过归纳与总结,得到其中的规律.14.如图,3条直线两两相交最多有3个交点,4条直线两两相交最多有6个交点,按照这样的规律,则20条直线两两相交最多有______个交点【答案】190【分析】根据题目中的交点个数,找出n条直线相交最多有的交点个数公式:1(1) 2n n-.【详解】解:2条直线相交有1个交点;3条直线相交最多有1123322+==⨯⨯个交点;4条直线相交最多有11236432++==⨯⨯个交点;5条直线相交最多有1123410542+++==⨯⨯个交点;⋯20条直线相交最多有12019190 2⨯⨯=.故答案为:190.【点睛】本题考查的是多条直线相交的交点问题,解答此题的关键是找出规律,即n条直线相交最多有1(1) 2n n-.15.如图,用火柴棍拼成一个由三角形组成的图形,拼第一个图形共需要3根火柴棍,拼第二个图形共需要5根火柴棍;拼第三个图形共需要7根火柴棍;……照这样拼图,则第n 个图形需要___________根火柴棍.【答案】2n+1【分析】分别得到第一个、第二个、第三个图形需要的火柴棍,找到规律,再总结即可.【详解】解:由图可知:拼成第一个图形共需要3根火柴棍,拼成第二个图形共需要3+2=5根火柴棍,拼成第三个图形共需要3+2×2=7根火柴棍,拼成第n 个图形共需要3+2×(n-1)=2n+1根火柴棍,故答案为:2n+1.【点睛】此题考查图形的变化规律,找出图形之间的联系,得出运算规律解决问题.16.如图都是由同样大小的小球按一定规律排列的,依照此规律排列下去,第___个图形共有210个小球.【答案】20【分析】根据已知图形得出第n 个图形中黑色三角形的个数为1+2+3+ +n=()12n n +,列一元二次方程求解可得.【详解】解:∵第1个图形中黑色三角形的个数1,第2个图形中黑色三角形的个数3=1+2,第3个图形中黑色三角形的个数6=1+2+3,第4个图形中黑色三角形的个数10=1+2+3+4,……∴第n 个图形中黑色三角形的个数为1+2+3+4+5+ +n=()12n n +,当共有210个小球时,()12102n n +=,解得:20n =或21-(不合题意,舍去),∴第20个图形共有210个小球.故答案为:20.【点睛】本题考查了图形的变化规律,解一元二次方程,解题的关键是得出第n 个图形中黑色三角形的个数为1+2+3+……+n.17.如图,由两个长为2,宽为1的长方形组成“7”字图形ABCDEF,其中顶点A 位于x 轴上,顶点B,D 位于y 轴上,O 为坐标原点,则OB OA的值为__________.(2)在(1)的基础上,继续摆放第二个“7”字图形得顶点F 1,摆放第三个“7”字图形得顶点F 2,依此类推,…,摆放第n 个“7”字图形得顶点F n-1,…,则顶点F 2019的坐标为__________.【答案】(1)12;(2)606255(,【解析】(1)∵∠ABO+∠DBC=90°,∠ABO+∠OAB=90°,∴∠DBC=∠OAB,∵∠AOB=∠BCD=90°,∴△AOB∽△BCD,∴OB DC OA BC =,∵DC=1,BC=2,∴OB OA =12,故答案为:12.(2过C 作CM⊥y 轴于M,过M 1作M 1N⊥x 轴,过F 作FN 1⊥x 轴.根据勾股定理易证得BD ==CM=OA=5,DM=OB=AN=5,∴C(5),∵AF=3,M 1F=BC=2,∴AM 1=AF-M 1F=3-2=1,∴△BOA≌ANM 1(AAS),∴NM 1=OA=255,∵NM 1∥FN 1,∴1111251553M N AM FN AF FN ==,,∴FN 1=655,∴AN 1=355,∴ON 1=OA+AN 1=253555555+=,∴F(555,655),同理,F 1(857555,F 2(55,),F 3(1459555,),F 4(17510555,),…F 2019),即(【名师点睛】此题考查了平面图形的有规律变化,要求学生通过观察图形,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键18.如图,正方形1ABCB 中,AB =,AB 与直线l 所夹锐角为60︒,延长1CB 交直线l 于点1A ,作正方形1112A B C B ,延长12C B 交直线l 于点2A ,作正方形2223A B C B ,延长23C B 交直线l 于点3A ,作正方形3334A B C B ,…,依此规律,则线段20202021A A =________.【答案】20203【分析】利用tan30°计算出30°角所对直角边,乘以2得到斜边,计算3次,找出其中的规律即可.【详解】∵AB 与直线l 所夹锐角为60︒,正方形1ABCB 中,AB =,∴∠11B AA =30°,∴11B A =1B A∴111=2=2(3AA -;∵11B A =1,∠122B A A =30°,∴22B A =11B A tan30°=33133⨯=,∴2112=23A A -⨯;∴线段20202021A A =202112020332(33-⨯=,故答案为:2020)3.【点睛】本题考查了正方形的性质,特殊角三角函数值,含30°角的直角三角形的性质,规律思考,熟练进行计算,抓住指数的变化这个突破口求解是解题的关键.19.如图,菱形ABCD 中,120ABC ∠=︒,1AB =,延长CD 至1A ,使1DA CD =,以1AC 为一边,在BC 的延长线上作菱形111ACC D ,连接1AA ,得到1ADA ∆;再延长11C D 至2A ,使1211D A C D =,以21A C 为一边,在1CC 的延长线上作菱形2122A C C D ,连接12A A ,得到112A D A ∆……按此规律,得到202020202021A D A ∆,记1ADA ∆的面积为1S ,112A D A ∆的面积为2S ……202020202021A D A ∆的面积为2021S ,则2021S =_____.【答案】40382【分析】由题意易得60,1BCD AB AD CD ∠=︒===,则有1ADA ∆为等边三角形,同理可得112A D A ∆…….202020202021A D A ∆都为等边三角形,进而根据等边三角形的面积公式可得134S =,2S =242n n S -=,然后问题可求解.【详解】解:∵四边形ABCD 是菱形,∴1AB AD CD ===,//,//AD BC AB CD ,∵120ABC ∠=︒,∴60BCD ∠=︒,∴160ADA BCD ∠=∠=︒,∵1DA CD =,∴1DA AD =,∴1ADA ∆为等边三角形,同理可得112A D A ∆…….202020202021A D A ∆都为等边三角形,过点B 作BE⊥CD 于点E,如图所示:∴3sin 2BE BC BCD =⋅∠=,∴1121133244A D BE A S D =⋅==,同理可得:2222133244S A D ==⨯=,2233233444S A D ==⨯=∴由此规律可得:242n n S -=,∴2202144038202122S ⨯-==⋅;故答案为40382【点睛】本题主要考查菱形的性质、等边三角形的性质与判定及三角函数,熟练掌握菱形的性质、等边三角形的性质与判定及三角函数是解题的关键.20.将一些相同的“〇”按如图所示的规律依次摆放,观察每个“龟图”的“〇”的个数,则第30个“龟图”中有___________个“〇”.【答案】875【分析】设第n 个“龟图”中有a n 个“〇”(n 为正整数),观察“龟图”,根据给定图形中“〇”个数的变化可找出变化规律“a n =n 2−n+5(n 为正整数)”,再代入n=30即可得出结论.【详解】解:设第n 个“龟图”中有a n 个“〇”(n 为正整数).观察图形,可知:a 1=1+2+2=5,a 2=1+3+12+2=7,a 3=1+4+22+2=11,a 4=1+5+32+2=17,…,∴a n =1+(n+1)+(n −1)2+2=n 2−n+5(n 为正整数),∴a 30=302−30+5=875.故答案是:875.【点睛】n =n 2−n+5(n 为正整数)”是解题的关键.21.下面各图形是由大小相同的三角形摆放而成的,图①中有1个三角形,图②中有5个三角形,图③中有11个三角形,图④中有19个三角形…,依此规律,则第n 个图形中三角形个数是_______.【答案】21n n +-【分析】此题只需分成上下两部分即可找到其中规律,上方的规律为(n-1),下方规律为n 2,结合两部分即可得出答案.【详解】解:将题意中图形分为上下两部分,则上半部规律为:0、1、2、3、4……n-1,下半部规律为:12、22、32、42……n 2,∴上下两部分统一规律为:21n n +-.故答案为:21n n +-.【点睛】本题主要考查的图形的变化规律,解题的关键是将图形分为上下两部分分别研究22.如图是一组有规律的图案,它们是由边长相等的正三角形组合而成,第1个图案有4个三角形,第2个图案有7个三角形,第3个图案有10个三角形…按此规律摆下去,第n 个图案有个三角形(用含n 的代数式表示).【分析】根据图形的变化发现规律,即可用含n 的代数式表示.【解析】第1个图案有4个三角形,即4=3×1+1第2个图案有7个三角形,即第3个图案有10个三角形,即10=3×3+1…按此规律摆下去,第n 个图案有(3n+1)个三角形.故答案为:(3n+1).23.如图,四边形ABCD 是矩形,延长DA 到点E,使AE=DA,连接EB,点F 1是CD 的中点,连接EF 1,BF 1,得到△EF 1B;点F 2是CF 1的中点,连接EF 2,BF 2,得到△EF 2B;点F 3是CF 2的中点,连接EF 3,BF 3,得到△EF 3B;…;按照此规律继续进行下去,若矩形ABCD 的面积等于2,则△EF n B 的面积为.(用含正整数n 的式子表示)【分析】先求得△EF 1D 的面积为1,再根据等高的三角形面积比等于底边的比可得EF 1F 2的面积,EF 2F 3的面积,…,EF n﹣1F n 的面积,以及△BCF n 的面积,再根据面积的和差关系即可求解.【解析】∵AE=DA,点F 1是CD 的中点,矩形ABCD 的面积等于2,∴△EF 1D 和△EAB 的面积都等于1,∵点F 2是CF 1的中点,∴△EF 1F 2的面积等于12,同理可得△EF n﹣1F n 的面积为12n−1,∵△BCF n 的面积为2×12n ÷2=12n ,∴△EF n B 的面积为2+1﹣1−12−⋯−12n−1−12n =2﹣(1−12n )=2n +12n .故答案为:2n +12n .。

2024年中考数学复习重难点题型训练—规律探索题(含答案解析)

2024年中考数学复习重难点题型训练—规律探索题(含答案解析)

2024年中考数学复习重难点题型训练—规律探索题(含答案解析)类型一数式规律1.(2023·云南·统考中考真题)按一定规律排列的单项式:2345,a ,第n 个单项式是()AB1n -CnD1n -【答案】Ca ,指数为1开始的自然数,据此即可求解.【详解】解:按一定规律排列的单项式:2345,a ,第nn ,故选:C .【点睛】本题考查了单项式规律题,找到单项式的变化规律是解题的关键.2.(2023·山东·统考中考真题)已知一列均不为1的数123n a a a a ,,,,满足如下关系:1223121111a a a a a a ++==--,34131111n n na a a a a a +++==-- ,,,若12a =,则2023a 的值是()A .12-B .13C .3-D .2【答案】A【分析】根据题意可把12a =代入求解23a =-,则可得312a =-,413a =,52a =……;由此可得规律求解.【详解】解:∵12a =,∴212312a +==--,3131132a -==-+,411121312a -==+,51132113a +==-,…….;由此可得规律为按2、3-、12-、13四个数字一循环,∵20234505.....3÷=,∴2023312a a ==-;故选A .【点睛】本题主要考查数字规律,解题的关键是得到数字的一般规律.3.(2023·湖南常德·统考中考真题)观察下边的数表(横排为行,竖排为列),按数表中的规律,分数202023若排在第a 行b 列,则a b -的值为()11122113223114233241……A .2003B .2004C .2022D .2023【答案】C【分析】观察表中的规律发现,分数的分子是几,则必在第几列;只有第一列的分数,分母与其所在行数一致.【详解】观察表中的规律发现,分数的分子是几,则必在第几列;只有第一列的分数,分母与其所在行数一致,故202023在第20列,即20b =;向前递推到第1列时,分数为201912023192042-=+,故分数202023与分数12042在同一行.即在第2042行,则2042a =.∴2042202022.a b -=-=故选:C .【点睛】本题考查了数字类规律探索的知识点,解题的关键善于发现数字递变的周期性和趋向性.4.(2023·四川内江·统考中考真题)对于正数x ,规定2()1xf x x =+,例如:224(2)213f ⨯==+,1212212312f ⨯⎛⎫== ⎪⎝⎭+,233(3)312f ⨯==+,1211313213f ⨯⎛⎫== ⎪⎝⎭+,计算:11111(1)1011009932f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭(2)(3)(99)(100)(101)f f f f f +++++= ()A .199B .200C .201D .202【答案】C【分析】通过计算11(1)1,(2)2,(3)223f f f f f ⎛⎫⎛⎫=+=+= ⎪ ⎪⎝⎭⎝⎭,⋯可以推出11111(1)(2)(3)(99)(100)(101)1011009932f f f f f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++++++++++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭结果.【详解】解:2(1)1,11f ==+ 12441212(2),,(2)2,112323212f f f f ⨯⎛⎫⎛⎫====+= ⎪ ⎪+⎝⎭⎝⎭+122331113(3),,(3)2,113232313f f f f ⨯⨯⎛⎫⎛⎫====+= ⎪ ⎪+⎝⎭⎝⎭+…2100200(100)1100101f ⨯==+,1212100()11001011100f ⨯==+,1(100)(2100f f +=,11111(1)(2)(3)(99)(100)(101)1011009932f f f f f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++++++++++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭21001=⨯+201=故选:C .【点睛】此题考查了有理数的混合运算,熟练掌握运算法则,找到数字变化规律是解本题的关键.5.(2021·湖北鄂州市·中考真题)已知1a 为实数﹐规定运算:2111a a =-,3211a a =-,4311a a =-,5411a a =-,……,111n n a a -=-.按上述方法计算:当13a =时,2021a 的值等于()A.23-B.13C.12-D.23【答案】D 【分析】当13a =时,计算出23421,,3,32a a a ==-=⋅⋅⋅⋅⋅⋅,会发现呈周期性出现,即可得到2021a 的值.【详解】解:当13a =时,计算出23421,,3,32a a a ==-=⋅⋅⋅⋅⋅⋅,会发现是以:213,,32-,循环出现的规律,202136732=⨯+ ,2021223a a ∴==,故选:D .【点睛】本题考查了实数运算规律的问题,解题的关键是:通过条件,先计算出部分数的值,从中找到相应的规律,利用其规律来解答.6.(2021·湖北随州市·中考真题)根据图中数字的规律,若第n 个图中的143q =,则p的值为()A.100B.121C.144D.169【答案】B 【分析】分别分析n 的规律、p 的规律、q 的规律,再找n 、p 、q 之间的联系即可.【详解】解:根据图中数据可知:1,2,3,4n =,……22221,2,3,4,p =……222221,31,41,51,q =----……则2p n =,2(1)1q n =+-,∵第n 个图中的143q =,∴2(1)1=143q n =+-,解得:11n =或13n =-(不符合题意,舍去)∴2=121p n =,故选:B .【点睛】本题主要考查数字之间规律问题,将题中数据分组讨论是解决本题的关键.7.(2021·山东济宁市·中考真题)按规律排列的一组数据:12,35,□,717,926,1137,…,其中□内应填的数是()A.23B.511C.59D.12【答案】D 【分析】分子为连续奇数,分母为序号的平方1+,根据规律即可得到答案.【详解】观察这排数据发现,分子为连续奇数,分母为序号的平方1+,∴第n 个数据为:2211n n -+当3n =时W 的分子为5,分母为23110+=∴这个数为51102=故选:D .【点睛】本题考查了数字的探索规律,分子和分母分别寻找规律是解题关键.8.(2021·湖北十堰市·)将从1开始的连续奇数按如图所示的规律排列,例如,位于第4行第3列的数为27,则位于第32行第13列的数是()A.2025B.2023C.2021D.2019【答案】B 【分析】根据数字的变化关系发现规律第n 行,第n 列的数据为:2n(n-1)+1,即可得第32行,第32列的数据为:2×32×(32-1)+1=1985,再依次加2,到第32行,第13列的数据,即可.解:观察数字的变化,发现规律:第n行,第n列的数据为:2n(n-1)+1,∴第32行,第32列的数据为:2×32×(32-1)+1=1985,根据数据的排列规律,第偶数行从右往左的数据一次增加2,∴第32行,第13列的数据为:1985+2×(32-13)=2023,故选:B.【点睛】本题考查了数字的变化类,解决本题的关键是观察数字的变化寻找探究规律,利用规律解决问题.9.(2020•天水)观察等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2;…已知按一定规律排列的一组数:2100,2101,2102,…,2199,2200,若2100=S,用含S的式子表示这组数据的和是()A.2S2﹣S B.2S2+S C.2S2﹣2S D.2S2﹣2S﹣2【分析】根据已知条件和2100=S,将按一定规律排列的一组数:2100,2101,2102,…,2199,2200,求和,即可用含S的式子表示这组数据的和.【解析】∵2100=S,∴2100+2101+2102+…+2199+2200=S+2S+22S+…+299S+2100S=S(1+2+22+…+299+2100)=S(1+2100﹣2+2100)=S(2S﹣1)=2S2﹣S.10.(2023·湖南岳阳·统考中考真题)观察下列式子:21110-=⨯;22221-=⨯;23332-=⨯;24443-=⨯;25554-=⨯;…依此规律,则第n (n 为正整数)个等式是.【答案】()21n n n n -=-【分析】根据等式的左边为正整数的平方减去这个数,等式的右边为这个数乘以这个数减1,即可求解.【详解】解:∵21110-=⨯;22221-=⨯;23332-=⨯;24443-=⨯;25554-=⨯;…∴第n (n 为正整数)个等式是()21n n n n -=-,故答案为:()21n n n n -=-.【点睛】本题考查了数字类规律,找到规律是解题的关键.11.(2023·山东临沂·统考中考真题)观察下列式子21312⨯+=;22413⨯+=;23514⨯+=;……按照上述规律,2n =.【答案】()()111n n -++【分析】根据已有的式子,抽象出相应的数字规律,进行作答即可.【详解】解:∵21312⨯+=;22413⨯+=;23514⨯+=;……∴()()2211n n n ++=+,∴()()2111n n n -++=.故答案为:()()111n n -++【点睛】本题考查数字类规律探究.解题的关键是从已有的式子中抽象出相应的数字规律.12.(2023·四川成都·统考中考真题)定义:如果一个正整数能表示为两个正整数m ,n 的平方差,且1m n ->,则称这个正整数为“智慧优数”.例如,221653=-,16就是一个智慧优数,可以利用22()()m n m n m n -=+-进行研究.若将智慧优数从小到大排列,则第3个智慧优数是;第23个智慧优数是.【答案】1545【分析】根据新定义,列举出前几个智慧优数,找到规律,进而即可求解.【详解】解:依题意,当3m =,1n =,则第1个一个智慧优数为22318-=当4m =,2n =,则第2个智慧优数为224214-=当4m =,1n =,则第3个智慧优数为224115-=,当5m =,3n =,则第5个智慧优数为225316-=当5m =,2n =,则第6个智慧优数为225221-=当5m =,1n =,则第7个智慧优数为225324-=……6m =时有4个智慧优数,同理7m =时有5个,8m =时有6个,12345621+++++=第22个智慧优数,当9m =时,7n =,第22个智慧优数为2297814932-=-=,第23个智慧优数为9,6m n ==时,2296813645-=-=,故答案为:15,45.【点睛】本题考查了新定义,平方差公式的应用,找到规律是解题的关键.13.(2023·山东聊城·统考中考真题)如图,图中数字是从1开始按箭头方向排列的有序数阵.从3开始,把位于同一列且在拐角处的两个数字提取出来组成有序数对:()3,5;()7,10;()13,17;()21,26;()31,37…如果单把每个数对中的第一个或第二个数字按顺序排列起来研究,就会发现其中的规律.请写出第n 个数对:.【答案】()221,22n n n n ++++【分析】根据题意单另把每个数对中的第一个或第二个数字按顺序排列起来研究,可发现第n 个数对的第一个数为:()11n n ++,第n 个数对的第二个位:()211n ++,即可求解.【详解】解:每个数对的第一个数分别为3,7,13,21,31,…即:121⨯+,231⨯+,341⨯+,451⨯+,561⨯+,…则第n 个数对的第一个数为:()2111n n n n ++=++,每个数对的第二个数分别为5,10,17,26,37,…即:221+;231+;241+;251+;261+…,则第n 个数对的第二个位:()221122n n n ++=++,∴第n 个数对为:()221,22n n n n ++++,故答案为:()221,22n n n n ++++.【点睛】此题考查数字的变化规律,找出数字之间的排列规律,利用拐弯出数字的差的规律解决问题.14.(2023·内蒙古通辽·统考中考真题)点Q 的横坐标为一元一次方程37322x x +=-的解,纵坐标为a b +的值,其中a ,b 满足二元一次方程组2428a b a b -=⎧⎨-+=-⎩,则点Q 关于y 轴对称点Q '的坐标为___________.【答案】()5,4--【分析】先分别解一元一次方程37322x x +=-和二元一次方程组2428a b a b -=⎧⎨-+=-⎩,求得点Q的坐标,再根据直角坐标系中点的坐标的规律即可求解.【详解】解:37322x x +=-,移项合并同类项得,525x =,系数化为1得,5x =,∴点Q 的横坐标为5,∵2428a b a b -=⎧⎨-+=-⎩①②,由2+⨯①②得,3=12b -,解得:4b =-,把4b =-代入①得,24=4a +,解得:0a =,∴=04=4a b +--,∴点Q 的纵坐标为4-,∴点Q 的坐标为()5,4-,又∴点Q 关于y 轴对称点Q '的坐标为()5,4--,故答案为:()5,4--.【点睛】本题考查解一元一次方程和解二元一次方程组、代数值求值、直角坐标系中点的坐标的规律,熟练掌握解一元一次方程和解二元一次方程组的方法求得点Q 的坐标是解题的关键.15.(2023·湖北恩施·统考中考真题)观察下列两行数,探究第②行数与第①行数的关系:2-,4,8-,16,32-,64,……①0,7,4-,21,26-,71,……②根据你的发现,完成填空:第①行数的第10个数为;取每行数的第2023个数,则这两个数的和为.【答案】1024202422024-+【分析】通过观察第一行数的规律为(2)n -,第二行数的规律为(2)1n n -++,代入数据即可.【详解】第一行数的规律为(2)n -,∴第①行数的第10个数为10(2)1024-=;第二行数的规律为(2)1n n -++,∴第①行数的第2023个数为2023(2)-,第②行数的第2023个数为2023(2)2024-+,∴202422024-+,故答案为:1024;202422024-+.【点睛】本题主要考查数字的变化,找其中的规律,是今年考试中常见的题型.16.(2021·湖南怀化市·中考真题)观察等式:232222+=-,23422222++=-,2345222222+++=-,……,已知按一定规律排列的一组数:1002,1012,1022,……,1992,若1002=m ,用含m 的代数式表示这组数的和是___________.【答案】100(21)m -【分析】根据规律将1002,1012,1022,……,1992用含m 的代数式表示,再计算0199222+++ 的和,即可计算1001011011992222++++ 的和.【详解】由题意规律可得:2399100222222++++=- .∵1002=m∴23991000222222=2m m +++++== ,∵22991001012222222+++++=- ,∴10123991002222222=++++++ 12=2m m m m =+=.102239910010122222222+=++++++ 224=2m m m m m =++=.1032399100101102222222222=++++++++ 3248=2m m m m m m =+++=.……∴1999922m =.故10010110110199992222222m m m ++++=+++ .令012992222S ++++= ①12310022222S ++++= ②②-①,得10021S-=∴10010110110199992222222m m m ++++=+++ =100(21)m -故答案为:100(21)m -.【点睛】本题考查规律问题,用含有字母的式子表示数、灵活计算数列的和是解题的关键.17.(2022·湖南怀化)正偶数2,4,6,8,10,……,按如下规律排列,2468101214161820……则第27行的第21个数是______.【答案】744【分析】由图可以看出,每行数字的个数与行数是一致的,即第一行有1个数,第二行有2个数,第三行有3个数••••••••第n行有n个数,则前n行共有(1)2n n+个数,再根据偶数的特征确定第几行第几个数是几.【详解】解:由图可知,第一行有1个数,第二行有2个数,第三行有3个数,•••••••第n行有n个数.∴前n行共有1+2+3+⋯+n=(1)2n n+个数.∴前26行共有351个数,∴第27行第21个数是所有数中的第372个数.∵这些数都是正偶数,∴第372个数为372×2=744.故答案为:744.【点睛】本题考查了数字类的规律问题,解决这类问题的关键是先根据题目的已知条件找出其中的规律,再结合其他已知条件求解.18.(2021·四川眉山市·中考真题)观察下列等式:1311 212x===+⨯;2711623x ===+⨯;313111234x ===+⨯;……根据以上规律,计算12320202021x x x x ++++-= ______.【答案】12016-【分析】根据题意,找到第n 个等式的左边为1与1n(n 1)+的和;利用这个结论得到原式=112+116+1112+…+1120202021⨯﹣2021,然后把12化为1﹣12,16化为12﹣13,120152016⨯化为12015﹣12016,再进行分数的加减运算即可.【详解】11(1)n n =++,20201120202021x =+⨯12320202021x x x x ++++- =112+116+1112+…+1120202021⨯﹣2021=2020+1﹣12+12﹣13+…+12015﹣12016﹣2021=2020+1﹣12016﹣2021=12016-.故答案为:12016-.【点睛】本题考查了二次根式的化简和找规律,解题关键是根据算式找的规律,根据数字的特征进行简便运算.19.(2022·安徽)观察以下等式:第1个等式:()()()22221122122⨯+=⨯+-⨯,第2个等式:()()()22222134134⨯+=⨯+-⨯,第3个等式:()()()22223146146⨯+=⨯+-⨯,第4个等式:()()()22224158158⨯+=⨯+-⨯,……按照以上规律.解决下列问题:(1)写出第5个等式:________;(2)写出你猜想的第n 个等式(用含n 的式子表示),并证明.【答案】(1)()()()2222516101610⨯+=⨯+-⨯(2)()[][]22221(1)21(1)2n n n n n +=+⋅+-+⋅,证明见解析【分析】(1)观察第1至第4个等式中相同位置的数的变化规律即可解答;(2)观察相同位置的数变化规律可以得出第n 个等式为()[][]22221(1)21(1)2n n n n n +=+⋅+-+⋅,利用完全平方公式和平方差公式对等式左右两边变形即可证明.(1)解:观察第1至第4个等式中相同位置数的变化规律,可知第5个等式为:()()()2222516101610⨯+=⨯+-⨯,故答案为:()()()2222516101610⨯+=⨯+-⨯;(2)解:第n 个等式为()[][]22221(1)21(1)2n n n n n +=+⋅+-+⋅,证明如下:等式左边:()2221441n n n +=++,等式右边:[][]22(1)21(1)2n n n n +⋅+-+⋅[][](1)21(1)2(1)21(1)2n n n n n n n n =+⋅+++⋅⋅+⋅+-+⋅[](1)411n n =+⋅+⨯2441n n =++,故等式()[][]22221(1)21(1)2n n n n n +=+⋅+-+⋅成立.【点睛】本题考查整式规律探索,发现所给数据的规律并熟练运用完全平方公式和平方差公式是解题的关键.20.(2021·贵州铜仁市·中考真题)观察下列各项:112,124,138,1416,…,则第n 项是______________.【答案】12nn +【分析】根据已知可得出规律:第一项:1111122=+,第二项:2112242=+,第三项:3113382=+…即可得出结果.【详解】解:根据题意可知:第一项:1111122=+,第二项:2112242=+,第三项:3113382=+,第四项:41144162=+,…则第n 项是12n n +;故答案为:12nn +.【点睛】此题属于数字类规律问题,根据已知各项的规律得出结论是解决此类题目的关键.0.618≈这个数叫做黄金比,著名数学家华罗庚优选法中的“0.618法”就应用了黄金比.设12a =,b =11111S a b =+++,2222211S a b =+++,…,10010010010010011S a b=+++,则12100S S S +++= _______.【答案】5050【分析】利用分式的加减法则分别可求S 1=1,S 2=2,S 100=100,•••,利用规律求解即可.【详解】解: 12a =,b =11122ab =⨯=∴,1112211112a ba ba b b ba bS a a ++++=+==+++++++ ,222222222222222222221112a b a b S a b a b a b a b ++++=+=⨯=⨯=+++++++,…,10101001001001010101010010011100100111a b S a b a b a b +++=+=⨯=+++++∴12100S S S +++= 121005050++⋯⋯+=故答案为:5050【点睛】本题考查了分式的加减法,二次根式的混合运算,求得1ab =,找出的规律是本题的关键.22.(2021·江西中考真题)下表在我国宋朝数学家杨辉1261年的著作《详解九章算法》中提到过,因而人们把这个表叫做杨辉三角,请你根据杨辉三角的规律补全下表第四行空缺的数字是______.【答案】3【分析】通过观察每一个数字等于它上方相邻两数之和.【详解】解:通过观察杨辉三角发现每一个数字等于它上方相邻两数之和的规律,例如:第3行中的2,等于它上方两个相邻的数1,1相加,即:211=+;第4行中的3,等于它上方两个相邻的数2,1相加,即:321=+;⋅⋅⋅⋅⋅⋅由此规律:故空缺数等于它上方两个相邻的数1,2相加,即空缺数为:3,故答案是:3.【点睛】本题考查了杨辉三角数的规律,解题的关键是:通过观察找到数与数之间的关系,从来解决问题.23.(2022·山东泰安)将从1开始的连续自然数按以下规律排列:若有序数对(),n m 表示第n 行,从左到右第m 个数,如()3,2表示6,则表示99的有序数对是_______.【答案】()10,18【分析】分析每一行的第一个数字的规律,得出第n 行的第一个数字为211n +-(),从而求得最终的答案.【详解】第1行的第一个数字:()2111=+-1第2行的第一个数字:()22121=+-第3行的第一个数字:()25131=+-第4行的第一个数字:()210141=+-第5行的第一个数字:()217151=+-…..,设第n 行的第一个数字为x ,得()211x n =+-设第1n +行的第一个数字为z ,得21z n =+设第n 行,从左到右第m 个数为y 当99y =时221(1)991n n +-≤<+∴22(1)98n n -≤<∵n 为整数∴10n =∴21182x n =+-=()∴9982118m =-+=故答案为:()10,18.【点睛】本题考查数字规律的性质,解题的关键是熟练掌握数字规律的相关性质.24.(2022·浙江舟山)观察下面的等式:111236=+,1113412=+,1114520=+,……(1)按上面的规律归纳出一个一般的结论(用含n 的等式表示,n 为正整数)(2)请运用分式的有关知识,推理说明这个结论是正确的.【答案】(1)1111(1)n n n n =+++(2)见解析【分析】(1)根据所给式子发现规律,第一个式子的左边分母为2,第二个式子的左边分母为3,第三个式子的左边分母为4,…;右边第一个分数的分母为3,4,5,…,另一个分数的分母为前面两个分母的乘积;所有的分子均为1;所以第(n+1)个式子为1111(1)n n n n =+++.(2)由(1)的规律发现第(n+1)个式子为1111(1)n n n n =+++,用分式的加法计算式子右边即可证明.(1)解:∵第一个式子()1111123621221=+=+++,第二个式子()11111341231331=+=+++,第三个式子()11111452041441=+=+++,……∴第(n+1)个式子1111(1)n n n n =+++;(2)解:∵右边=111111(1)(1)(1)(1)n n n n n n n n n n n n ++=+==+++++=左边,∴1111(1)n n n n =+++.【点睛】此题考查数字的变化规律,分式加法运算,解题关键是通过观察,分析、归纳发现其中各分母的变化规律.类型二图形规律25.(2023·重庆·统考中考真题)用长度相同的木棍按如图所示的规律拼图案,其中第①个图案用了9根木棍,第②个图案用了14根木棍,第③个图案用了19根木棍,第④个图案用了24根木棍,……,按此规律排列下去,则第⑧个图案用的木棍根数是()A .39B .44C .49D .54【答案】B 【分析】根据各图形中木棍的根数发现计算的规律,由此即可得到答案.【详解】解:第①个图案用了459+=根木棍,第②个图案用了45214+⨯=根木棍,第③个图案用了45319+⨯=根木棍,第④个图案用了45424+⨯=根木棍,……,+⨯=根,第⑧个图案用的木棍根数是45844故选:B.【点睛】此题考查了图形类规律的探究,正确理解图形中木棍根数的变化规律由此得到计算的规律是解题的关键.25.(2023·重庆·统考中考真题)用圆圈按如图所示的规律拼图案,其中第①个图案中有2个圆圈,第②个图案中有5个圆圈,第③个图案中有8个圆圈,第④个图案中有11个圆圈,…,按此规律排列下去,则第⑦个图案中圆圈的个数为()A.14B.20C.23D.26【答案】B【分析】根据前四个图案圆圈的个数找到规律,即可求解.=⨯-;【详解】解:因为第①个图案中有2个圆圈,2311=⨯-;第②个图案中有5个圆圈,5321=⨯-;第③个图案中有8个圆圈,8331=⨯-;第④个图案中有11个圆圈,11341…,⨯-=;所以第⑦个图案中圆圈的个数为37120故选:B.【点睛】本题考查了图形类规律探究,根据前四个图案圆圈的个数找到第n个图案的规律为31n -是解题的关键.27.(2023·山东日照·统考中考真题)数学家高斯推动了数学科学的发展,被数学界誉为“数学王子”,据传,他在计算1234100+++++ 时,用到了一种方法,将首尾两个数相加,进而得到100(1100)12341002⨯++++++= .人们借助于这样的方法,得到(1)12342n n n ++++++= (n 是正整数).有下列问题,如图,在平面直角坐标系中的一系列格点(),i i i A x y ,其中1,2,3,,,i n = ,且,i i x y 是整数.记n n n a x y =+,如1(0,0)A ,即120,(1,0)a A =,即231,(1,1)a A =-,即30,a = ,以此类推.则下列结论正确的是()A .202340a =B .202443a =C .2(21)26n a n -=-D .2(21)24n a n -=-【答案】B 【分析】利用图形寻找规律()211,1n A n n ---,再利用规律解题即可.【详解】解:第1圈有1个点,即1(0,0)A ,这时10a =;第2圈有8个点,即2A 到()91,1A ;第3圈有16个点,即10A 到()252,2A ,;依次类推,第n 圈,()211,1n A n n ---;由规律可知:2023A 是在第23圈上,且()202522,22A ,则()202320,22A 即2023202242a =+=,故A 选项不正确;2024A 是在第23圈上,且()202421,22A ,即2024212243a =+=,故B 选项正确;第n 圈,()211,1n A n n ---,所以2122n a n -=-,故C 、D 选项不正确;故选B .【点睛】本题考查图形与规律,利用所给的图形找到规律是解题的关键.28.(2022·江西)将字母“C”,“H”按照如图所示的规律摆放,依次下去,则第4个图形中字母“H”的个数是()A.9B.10C.11D.12【答案】B 【分析】列举每个图形中H 的个数,找到规律即可得出答案.【详解】解:第1个图中H 的个数为4,第2个图中H 的个数为4+2,第3个图中H 的个数为4+2×2,第4个图中H 的个数为4+2×3=10,故选:B.【点睛】本题考查了规律型:图形的变化类,通过列举每个图形中H 的个数,找到规律:每个图形比上一个图形多2个H 是解题的关键.29.(2022·重庆)用正方形按如图所示的规律拼图案,其中第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,此规律排列下去,则第⑨个图案中正方形的个数为()A.32B.34C.37D.41【答案】C 【分析】第1个图中有5个正方形,第2个图中有9个正方形,第3个图中有13个正方形,……,由此可得:每增加1个图形,就会增加4个正方形,由此找到规律,列出第n 个图形的算式,然后再解答即可.【详解】解:第1个图中有5个正方形;第2个图中有9个正方形,可以写成:5+4=5+4×1;第3个图中有13个正方形,可以写成:5+4+4=5+4×2;第4个图中有17个正方形,可以写成:5+4+4+4=5+4×3;...第n 个图中有正方形,可以写成:5+4(n-1)=4n+1;当n=9时,代入4n+1得:4×9+1=37.故选:C.【点睛】本题主要考查了图形的变化规律以及数字规律,通过归纳与总结结合图形得出数字之间的规律是解决问题的关键.30.(2021·广西玉林市·中考真题)观察下列树枝分杈的规律图,若第n 个图树枝数用n Y 表示,则94Y Y -=()A.4152⨯B.4312⨯C.4332⨯D.4632⨯【答案】B【分析】根据题目中的图形,可以写出前几幅图中树枝分杈的数量,从而可以发现树枝分杈的变化规律,进而得到规律21nn Y =-,代入规律求解即可.【详解】解:由图可得到:11223344211213217211521n n Y Y Y Y Y =-==-==-==-==-则:9921Y =-,∴944942121312Y Y -=--+=⨯,故答案选:B.【点睛】本题考查图形规律,解答本题的关键是明确题意,利用数形结合的思想解答31.(2021·黑龙江大庆市·中考真题)如图,3条直线两两相交最多有3个交点,4条直线两两相交最多有6个交点,按照这样的规律,则20条直线两两相交最多有______个交点【答案】190【分析】根据题目中的交点个数,找出n 条直线相交最多有的交点个数公式:1(1)2n n -.【详解】解:2条直线相交有1个交点;3条直线相交最多有1123322+==⨯⨯个交点;4条直线相交最多有11236432++==⨯⨯个交点;5条直线相交最多有1123410542+++==⨯⨯个交点;⋯20条直线相交最多有120191902⨯⨯=.故答案为:190.【点睛】本题考查的是多条直线相交的交点问题,解答此题的关键是找出规律,即n 条直线相交最多有1(1)2n n -.32.(2023·四川遂宁·统考中考真题)烷烃是一类由碳、氢元素组成的有机化合物,在生产生活中可作为燃料、润滑剂等原料,也可用于动、植物的养护.通常用碳原子的个数命名为甲烷、乙烷、丙烷、……、癸烷(当碳原子数目超过10个时即用汉文数字表示,如十一烷、十二烷……)等,甲烷的化学式为4CH ,乙烷的化学式为26C H ,丙烷的化学式为38C H ……,其分子结构模型如图所示,按照此规律,十二烷的化学式为.【答案】1226C H 【分析】根据碳原子的个数,氢原子的个数,找到规律,即可求解.【详解】解:甲烷的化学式为4CH ,乙烷的化学式为26C H ,丙烷的化学式为38C H ……,碳原子的个数为序数,氢原子的个数为碳原子个数的2倍多2个,十二烷的化学式为1226C H ,故答案为:1226C H .【点睛】本题考查了规律题,找到规律是解题的关键.33.(2023·山西·统考中考真题)如图是一组有规律的图案,它由若干个大小相同的圆片组成.第1个图案中有4个白色圆片,第2个图案中有6个白色圆片,第3个图案中有8个白色圆片,第4个图案中有10个白色圆片,…依此规律,第n 个图案中有个白色圆片(用含n 的代数式表示)【答案】()22n +【分析】由于第1个图案中有4个白色圆片4221=+⨯,第2个图案中有6个白色圆片6222=+⨯,第3个图案中有8个白色圆片8223=+⨯,第4个图案中有10个白色圆片10224=+⨯,⋯,可得第(1)n n >个图案中有白色圆片的总数为22n +.【详解】解:第1个图案中有4个白色圆片4221=+⨯,第2个图案中有6个白色圆片6222=+⨯,第3个图案中有8个白色圆片8223=+⨯,第4个图案中有10个白色圆片10224=+⨯,⋯,∴第(1)n n >个图案中有()22n +个白色圆片.故答案为:()22n +.【点睛】此题考查图形的变化规律,通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.解题关键是总结归纳出图形的变化规律.34.(2023·黑龙江绥化·统考中考真题)在求123100++++ 的值时,发现:1100101+=,299101+= ,从而得到123100++++= 101505050⨯=.按此方法可解决下面问题.图(1)有1个三角形,记作11a =;分别连接这个三角形三边中点得到图(2),有5个三角形,记作25a =;再分别连接图(2)中间的小三角形三边中点得到图(3),有9个三角形,记作39a =;按此方法继续下去,则123n a a a a ++++= .(结果用含n 的代数式表示)【答案】22n n -/22n n -+【分析】根据题意得出()14143n a n n =+-=-,进而即可求解.【详解】解:依题意,()1231,5,9,14143n a a a a n n ===⋅⋅⋅=+-=-,,∴123n a a a a ++++= ()21432122n n n n n n +-==-=-,故答案为:22n n -.【点睛】本题考查了图形类规律,找到规律是解题的关键.35.(2022·山东泰安)观察下列图形规律,当图形中的“○”的个数和“.”个数差为2022时,n 的值为____________.【答案】不存在【分析】首先根据n=1、2、3、4时,“•”的个数分别是3、6、9、12,判断出第n 个图形中“•”的个数是3n;然后根据n=1、2、3、4,“○”的个数分别是1、3、6、10,判断出第n 个“○”的个数是()12n n +;最后根据图形中的“○”的个数和“.”个数差为2022,列出方程,解方程即可求出n 的值是多少即可.【详解】解:∵n=1时,“•”的个数是3=3×1;n=2时,“•”的个数是6=3×2;n=3时,“•”的个数是9=3×3;n=4时,“•”的个数是12=3×4;……∴第n 个图形中“•”的个数是3n;又∵n=1时,“○”的个数是1=1(11)2⨯+;n=2时,“○”的个数是2(21)32⨯+=,n=3时,“○”的个数是3(31)62⨯+=,n=4时,“○”的个数是4(41)102⨯+=,……∴第n 个“○”的个数是()12n n +,由图形中的“○”的个数和“.”个数差为2022()1320222n n n +∴-=①,()1320222n n n +-=②解①得:无解解②得:12n n ==故答案为:不存在【点睛】本题考查了图形类规律,解一元二次方程,找到规律是解题的关键.36.(2022·四川遂宁)“勾股树”是以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程所画出来的图形,因为重复数次后的形状好似一棵树而得名.假设如图分别是第一代勾股树、第二代勾股树、第三代勾股树,按照勾股树的作图原理作图,则第六代勾股树中正方形的个数为______.【答案】127【分析】由已知图形观察规律,即可得到第六代勾股树中正方形的个数.【详解】解:∵第一代勾股树中正方形有1+2=3(个),第二代勾股树中正方形有1+2+22=7(个),第三代勾股树中正方形有1+2+22+23=15(个),......∴第六代勾股树中正方形有1+2+22+23+24+25+26=127(个),故答案为:127.【点睛】本题考查图形中的规律问题,解题的关键是仔细观察图形,得到图形变化的规律.37.(2021·湖南常德市·中考真题)如图中的三个图形都是边长为1的小正方形组成的网格,其中第一个图形有11⨯个正方形,所有线段的和为4,第二个图形有22⨯个小正方形,所有线段的和为12,第三个图形有33⨯个小正方形,所有线段的和为24,按此规律,则第n 个网格所有线段的和为____________.(用含n 的代数式表示)【答案】2n 2+2n【分析】本题要通过第1、2、3和4个图案找出普遍规律,进而得出第n 个图案的规律为S n =4n+2n ×(n-1),得出结论即可.【详解】解:观察图形可知:第1个图案由1个小正方形组成,共用的木条根数141221,S =⨯=⨯⨯第2个图案由4个小正方形组成,共用的木条根数262232,S =⨯=⨯⨯第3个图案由9个小正方形组成,共用的木条根数383243,S =⨯=⨯⨯第4个图案由16个小正方形组成,共用的木条根数4104254,S =⨯=⨯⨯…由此发现规律是:第n 个图案由n 2个小正方形组成,共用的木条根数()22122,n S n n n n =+=+ 故答案为:2n 2+2n.【点睛】本题考查了规律型-图形的变化类,熟练找出前四个图形的规律是解题的关键.38.(2021·黑龙江绥化市·中考真题)下面各图形是由大小相同的三角形摆放而成的,图①中有1个三角形,图②中有5个三角形,图③中有11个三角形,图④中有19个三角形…,依此规律,则第n 个图形中三角形个数是_______.【答案】21n n +-【分析】此题只需分成上下两部分即可找到其中规律,上方的规律为(n-1),下方规律为n 2,结合两部分即可得出答案.【详解】解:将题意中图形分为上下两部分,则上半部规律为:0、1、2、3、4……n-1,下半部规律为:12、22、32、42……n 2,∴上下两部分统一规律为:21n n +-.故答案为:21n n +-.【点睛】本题主要考查的图形的变化规律,解题的关键是将图形分为上下两部分分别研究.类型三与函数有关规律39.(2023·山东烟台·统考中考真题)如图,在直角坐标系中,每个网格小正方形的边长均为1个单位长度,以点P 为位似中心作正方形123PA A A ,正方形456,PA A A ⋯,按此规律作下去,所作正方形的顶点均在格点上,其中正方形123PA A A 的顶点坐标分别为()()()123,0,2,1,1,0P A A ---,()32,1A --,则顶点100A 的坐标为()。

中考《规律探索》题训练含答案

中考《规律探索》题训练含答案

规律探索一.选择题1.(2015湖南邵阳第10题3分)如图.在矩形ABCD中.已知AB=4.BC=3.矩形在直线上绕其右下角的顶点B 向右旋转90°至图①位置.再绕右下角的顶点继续向右旋转90°至图②位置.….以此类推.这样连续旋转2015次后.顶点A在整个旋转过程中所经过的路程之和是()考点:旋转的性质;弧长的计算..专题:规律型.分析:首先求得每一次转动的路线的长.发现每4次循环.找到规律然后计算即可.解答:解:转动一次A的路线长是:.转动第二次的路线长是:.转动第三次的路线长是:.转动第四次的路线长是:0.转动五次A的路线长是:.以此类推.每四次循环.故顶点A转动四次经过的路线长为:+2π=6π.2015÷4=503余3顶点A转动四次经过的路线长为:6π×504=3024π.故选:D.点评:本题主要考查了探索规律问题和弧长公式的运用.发现规律是解决问题的关键.2.(2015湖北荆州第10题3分)把所有正奇数从小到大排列.并按如下规律分组:(1).(3.5.7).(9.11.13.15.17).(19.21.23.25.27.29.31).….现有等式A m=(i.j)表示正奇数m是第i组第j个数(从左往右数).如A7=(2.3).则A2015=()A.(31.50)B.(32.47)C.(33.46)D.(34.42)考点:规律型:数字的变化类.分析:先计算出2015是第1008个数.然后判断第1008个数在第几组.再判断是这一组的第几个数即可.解答:解:2015是第=1008个数.设2015在第n组.则1+3+5+7+…+(2n﹣1)≥1008.即≥1008.解得:n≥.当n=31时.1+3+5+7+…+61=961;当n=32时.1+3+5+7+…+63=1024;故第1008个数在第32组.第1024个数为:2×1024﹣1=2047.第32组的第一个数为:2×962﹣1=1923.则2015是(+1)=47个数.故A2015=(32.47).故选B.点评:此题考查数字的变化规律.找出数字之间的运算规律.利用规律解决问题.3.(2015湖北鄂州第10题3分)在平面直角坐标系中.正方形A1B1C1D1 、D1E1E2B2、A2B2C2D2、D2E3E4B3、A3B3C3D3……按如图所示的方式放置.其中点B1在y轴上.点C1、E1、E2、C2、E3、E4、C3……在x轴上.已知正方形A1B1C1D1 的边长为1.∠B1C1O=60°.B1C1∥B2C2∥B3C3……则正方形A2015B2015C2015D2015的边长是()A. B. C. D.【答案】D.考点:1.正方形的性质;2.解直角三角形.4. (2015•山东威海.第12 题3分)如图.正六边形A1B1C1D1E1F1的边长为2.正六边形A2B2C2D2E2F2的外接圆与正六边形A1B1C1D1E1F1的各边相切.正六边形A3B3C3D3E3F3的外接圆与正六边形A2B2C2D2E2F2的各边相切.…按这样的规律进行下去.A10B10C10D10E10F10的边长为()A.B.C.D.考点:正多边形和圆..专题:规律型.分析:连结OE1.OD1.OD2.如图.根据正六边形的性质得∠E1OD1=60°.则△E1OD1为等边三角形.再根据切线的性质得OD2⊥E1D1.于是可得OD2=E1D1=×2.利用正六边形的边长等于它的半径得到正六边形A2B2C2D2E2F2的边长=×2.同理可得正六边形A3B3C3D3E3F3的边长=()2×2.依此规律可得正六边形A10B10C10D10E10F10的边长=()9×2.然后化简即可.解答:解:连结OE1.OD1.OD2.如图.∵六边形A1B1C1D1E1F1为正六边形.∴∠E1OD1=60°.∴△E1OD1为等边三角形.∵正六边形A2B2C2D2E2F2的外接圆与正六边形A1B1C1D1E1F1的各边相切.∴OD2⊥E1D1.∴OD2=E1D1=×2.∴正六边形A2B2C2D2E2F2的边长=×2.同理可得正六边形A3B3C3D3E3F3的边长=()2×2.则正六边形A10B10C10D10E10F10的边长=()9×2=.故选D.点评:本题考查了正多边形与圆的关系:把一个圆分成n(n是大于2的自然数)等份.依次连接各分点所得的多边形是这个圆的内接正多边形.这个圆叫做这个正多边形的外接圆.记住正六边形的边长等于它的半径.5.(2015•山东日照 .第11题3分)观察下列各式及其展开式:(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…请你猜想(a+b)10的展开式第三项的系数是()A.36 B.45 C.55 D.66考点:完全平方公式..专题:规律型.分析:归纳总结得到展开式中第三项系数即可.解答:解:解:(a+b)2=a22+2ab+b2;(a+b)3=a3+3a2b+3ab2+b3;(a+b)4=a4+4a3b+6a2b2+4ab3+b4;(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5;(a+b)6=a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+b6;(a+b)7=a7+7a6b+21a5b2+35a4b3+35a3b4+21a2b5+7ab6+b7;第8个式子系数分别为:1.8.28.56.70.56.28.8.1;第9个式子系数分别为:1.9.36.84.126.126.84.36.9.1;第10个式子系数分别为:1.10.45.120.210.252.210.120.45.10.1.则(a+b)10的展开式第三项的系数为45.故选B.点:此题考查了完全平方公式.熟练掌握公式是解本题的关键6 , (2015•山东临沂,第11题3分)观察下列关于x 的单项式.探究其规律:x .3x 2.5x 3.7x 4.9x 5.11x 6.…. 按照上述规律.第2015个单项式是( ) (A ) 2015x 2015. (B ) 4029x 2014. (C ) 4029x 2015. (D ) 4031x 2015.【答案】C 【解析】试题分析:根据这组数的系数可知它们都是连续奇数.即系数为(2n -1).而后面因式x 的指数是连续自然数.因此关于x 的单项式是.所以第2015个单项式的系数为2×2015-1=4029.因此这个单项式为.故选C考点:探索规律7.(2015·河南.第8题3分)如图所示.在平面直角坐标系中.半径均为1个单位长度的半圆O 1.O 2.O 3.… 组成一条平滑的曲线.点P 从原点O 出发.沿这条曲线向右运动.速度为每秒2个单位长度.则第2015秒时.点P 的坐标是( )A .(2014,0)B .(2015.-1)C . (2015,1)D . (2016,0)B 【解析】本题考查直角坐标系中点坐标的规律探索.∵半圆的半径r =1.∴半圆长度=π. ∴第2015秒点P 运动的路径长为:2π×2015. ∵2π×2015÷π=1007…1.∴点P 位于第1008个半圆的中点上.且这个半圆在x 轴的下方. ∴此时点P 的横坐标为:1008×2-1=2015.纵坐标为-1.∴点P (2015.-1) .第8题图”中的“○”的个数.若第n个“龟图”中有245个“○”.则n=()A.14 B.15 C.16 D.17考点:规律型:图形的变化类..分析:分析数据可得:第1个图形中小圆的个数为5;第2个图形中小圆的个数为7;第3个图形中小圆的个数为11;第4个图形中小圆的个数为17;则知第n个图形中小圆的个数为n(n﹣1)+5.据此可以再求得“龟图”中有245个“○”是n的值.解答:解:第一个图形有:5个○.第二个图形有:2×1+5=7个○.第三个图形有:3×2+5=11个○.第四个图形有:4×3+5=17个○.由此可得第n个图形有:[n(n﹣1)+5]个○.则可得方程:[n(n﹣1)+5]=245解得:n1=16.n2=﹣15(舍去).故选:C.点评:此题主要考查了图形的规律以及数字规律.通过归纳与总结结合图形得出数字之间的规律是解决问题的关键.注意公式必须符合所有的图形.8. (2015•四川省宜宾市.第7题.3分)如图.以点O为圆心的20个同心圆.它们的半径从小到大依次是1、2、3、4、……、20.阴影部分是由第l个圆和第2个圆.第3个圆和第4个圆.…….第l9个圆和第20个圆形成的所有圆环.则阴影部分的面积为(B)A.231πB.210πC.190πD.171π9. (2015•浙江宁波.第10题4分)如图.将△ABC 沿着过AB 中点D 的直线折叠.使点A 落在BC 边上的A 1处.称为第1次操作.折痕DE 到BC 的距离记为1h ;还原纸片后.再将△ADE 沿着过AD 中点D 1的直线折叠.使点A 落在DE 边上的A 2处.称为第2次操作.折痕D 1E 1到BC 的距离记为2h ;按上述方法不断操作下去.经过第2015次操作后得到的折痕D 2014E 2014到BC 的距离记为2015h .若1h =1.则2015h 的值为【 】A .201521 B .201421 C . 2015211-D . 2014212-【答案】D .【考点】探索规律题(图形的变化类);折叠对称的性质;三角形中位线定理.【分析】根据题意和折叠对称的性质.DE 是△ABC 的中位线.D 1E 1是△A D 1E 1的中位线.D 2E 2是△A 2D 2E 1的中位线.… ∴21111122h =+=-. 32211111222h =++=-.42331111112222h =+++=-.…20152201420141111112222h =+++⋅⋅⋅+=-. 故选B二.填空题1.(2015•甘肃武威,第18题3分)古希腊数学家把数1.3.6.10.15.21.…叫做三角形数.其中1是第一个三角形数.3是第2个三角形数.6是第3个三角形数.…依此类推.那么第9个三角形数是 45 .2016是第 63 个三角形数.4. (2015•四川省内江市.第16题.5分)如图是由火柴棒搭成的几何图案.则第n个图案中有2n(n+1)根火柴棒.(用含n的代数式表示)考点:规律型:图形的变化类..专题:压轴题.分析:本题可分别写出n=1.2.3.….所对应的火柴棒的根数.然后进行归纳即可得出最终答案.解答:解:依题意得:n=1.根数为:4=2×1×(1+1);n=2.根数为:12=2×2×(2+1);n=3.根数为:24=2×3×(3+1);n =n 时.根数为:2n (n +1).点评: 本题是一道找规律的题目.这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化.是按照什么规律变化的.5.(2015·深圳.第15题 分)观察下列图形.它们是按一定规律排列的.依照此规律.第56个图形有 个太阳。

中考数学必考题型《规律探索》分类专项练习含答案

中考数学必考题型《规律探索》分类专项练习含答案

中考数学必考题型《规律探索》分类专项练习类型一 数式规律1. 我国战国时期提出了“一尺之棰,日取其半,万世不竭”这一命题,用所学知识来解释可理解为:设一尺长的木棍,第一天折断一半,其长为12尺,第二天再折断一半,其长为14尺,…,第n 天折断一半后得到的木棍长应为________尺. 12n2. 如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第9行从左至右第5个数是________.第2题图41【解析】由图形可知,第n 行最后一个数为1+2+3+…+n =n (n +1)2,∴第8行最后一个数为8×92=36=6,则第9行从左至右第5个数是36+5=41.3. 观察下列关于自然数的式子:第一个式子:4×12-12 ① 第二个式子:4×22-32 ② 第三个式子:4×32-52 ③ …根据上述规律,则第2019个式子的值是______.8075 【解析】∵4×12-12=3①,4×22-32=7②,4×32-52=11③,…,4n 2-(2n -1)2=4n -1,∴第2019个式子的值是4×2019-1=8075. 4. 将数1个1,2个12,3个13,…,n 个1n (n 为正整数)顺次排成一列:1,12,12,13,13,13,…,1n ,1n ,…,记a 1=1,a 2=12,a 3=12,…,S 1=a 1,S 2=a 1+a 2,S 3=a 1+a 2+a 3,…,S n =a 1+a 2+…+a n ,则S 2019=________.63364 【解析】根据题意,将该数列分组,1个1的和为1,2个12的和为1,3个13的和为1,…;∵1+2+3+…+63=2016个数,则第2019个数为64个164的第3个数,则此数列中,S 2019=1×63+3×164=63364. 类型二 图形规律5. 如图,在平面直角坐标系中,第一次将△OAB 变换成△OA 1B 1,第二次将△OA 1B 1变换成△OA 2B 2,第三次将△OA 2B 2变换成△OA 3B 3,…,已知A (1,3),A 1(2,3),A 2(4,3),A 3(8,3),B (2,0),B 1(4,0),B 2(8,0),B 3(16,0).观察每次变换前后的三角形的变化,按照变换规律,则点A n 的坐标是________.第5题图(2n,3)【解析】∵A(1,3),A1(2,3),A2(4,3),A3(8,3),…,∴纵坐标不变,为3,横坐标都和2有关,为2n,即点An的坐标是(2n,3).6. 如图,把正方形铁片OABC置于平面直角坐标系中,顶点A的坐标为(3,0),点P(1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置,…,则正方形铁片连续旋转2019次后,点P的坐标为________.第6题图(6058,1)【解析】∵铁片OABC为正方形,A(3,0),P(1,2),∴正方形铁片OABC 的边长为3,如解图第一个循环周期内的点P1,P2,P3,P4的坐标分别为(5,2),(8,1),(10,1),(13,2),每增加一个循环,对应的点的横坐标就增加12.而2019÷4=504……3,即504个循环周期后点P2016的横坐标为504×12+1=6049,纵坐标为2,所以点P2019的横坐标为6049+9=6058,纵坐标为1.故P2019(6058,1).第6题解图7. 如图,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3,…,组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒π2个单位长度,则第2019秒时,点P 的坐标是________.第7题图(2019,-1) 【解析】∵圆的半径都为1,∴半圆的周长=π,以时间为点P 的下标.观察发现规律:P 0(0,0),P 1(1,1),P 2(2,0),P 3(3,-1),P 4(4,0),P 5(5,1),…,∴P 4n (4n ,0),P 4n +1(4n +1,1),P 4n +2(4n +2,0),P 4n +3(4n +3,-1).∵2019÷4=504……3,∴第2019秒时,点P 的坐标为(2019,-1).8. 如图,已知菱形OABC 的顶点O (0,0),B (2,2),若菱形绕点O 逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D 的坐标为________.第8题图(-1,-1) 【解析】∵菱形OABC 的顶点O (0,0),B (2,2),∴BO 与x 轴的夹角为45°,∵菱形的对角线互相垂直平分,∴点D是线段OB的中点,∴点D的坐标是(1,1),∵菱形绕点O逆时针旋转,每秒旋转45°,360°÷45°=8,∴每旋转8秒,菱形的对角线交点就回到原来的位置(1,1),∵60÷8=7……4,∴第60秒时是把菱形绕点O 逆时针旋转了7周回到原来位置后,又旋转了4秒,即又旋转了4×45°=180°,∴点D 的对应点落在第三象限,且对应点与点D关于原点O成中心对称,∴第60秒时,菱形的对角线交点D的坐标为(-1,-1).9. 如图,∠MON=60°,作边长为1的正六边形A1B1C1D1E1F1,边A1B1、F1E1分别在射线OM、ON上,边C1D1所在的直线分别交OM、ON于点A2、F2,以A2F2为边作正六边形A2B2C2D2E2F2,边C2D2所在的直线分别交OM、ON于点A3、F3,再以A3F3为边作正六边形A3B3C3D3E3F3,…,依此规律,经第n次作图后,点B n到ON的距离是________.第9题图3n-13【解析】由题可知,∠MON=60°,设B n到ON的距离为h n,∵正六边形A1B1C1D1E1F1的边长为1,∴A1B1=1,易知△A1OF1为等边三角形,∴A1B1=OA1=1,∴OB1=2,则h1=2×32=3,又∵OA2=A2F2=A2B2=3,∴OB2=6,则h2=6×32=33,同理可得:OB3=18,则h3=18×32=93,…,依此可得OB n=2×3n-1,则h n=2×3n -1×32=3n -1 3.∴B n 到ON 的距离h n = 3n -1 3.10. 如图,正方形AOBO 2的顶点A 的坐标为A (0,2),O 1为正方形AOBO 2的中心;以正方形AOBO 2的对角线AB 为边,在AB 的右侧作正方形ABO 3A 1,O 2为正方形ABO 3A 1的中心;再以正方形ABO 3A 1的对角线A 1B 为边,在A 1B 的右侧作正方形A 1BB 1O 4,O 3为正方形A 1BB 1O 4的中心;再以正方形A 1BB 1O 4的对角线A 1B 1为边,在A 1B 1的右侧作正方形A 1B 1O 5A 2,O 4为正方形A 1B 1O 5A 2的中心;…;按照此规律继续下去,则点O 2018的坐标为________.第10题图(21010-2,21009) 【解析】由A (0,2)和A 1(2,4)可知直线AA 1的解析式为y =x +2,由图可知点A 1,A 2,…,A n 的纵坐标分别为22,23,…,2n +1,将y =2n +1代入y =x +2,得2n +1=x +2,∴x =2n +1-2,∴点A n 的坐标为(2n +1-2,2n +1),由图可知O 2n 横坐标与A n 的横坐标相同,O 2n 纵坐标是A n 的纵坐标的12,∴O 2n 的坐标为(2n +1-2,2n),∴当n =1009时,O 2018的坐标为(21010-2,21009). 真题反馈:1. 观察下列一组数:,,,,,…,它们是按一定规律排列的,那么这一组数的第n个数是.2. 如图,用黑白两种颜色的菱形纸片,按黑色纸片数逐渐增加1的规律拼成下列图案,若第n个图案中有2017个白色纸片,则n的值为( )A.671 B.672 C.673 D.6743. 观察下列一组图形,其中图形①中共有2颗星,图形②中共有6颗星,图形③中共有11颗星,图形④中共有17颗星,…,按此规律,图形⑧中星星的颗数是( )A.43 B.45 C.51 D.534. 请你计算:(1-x)(1+x),(1-x)(1+x+x2),…,猜想(1-x)(1+x+x2+…+x n)的结果是( ).A. 1-x n+1B. 1+x n+1C. 1-x nD. 1+x n5. 如图,已知正方形ABCD,顶点A(1,3),B(1,1),C(3,1).规定“把正方形ABCD先沿x轴翻折,再向左平移1个单位”为一次变换,如此这样,连续经过2019次变换后,正方形ABCD的对角线交点M的坐标变为().A. (-2012,2)B. (-2012,-2)C. (-2013,-2)D. (-2013,2)6. 观察下列数据:-2,52,-103,174,-265,…,它们是按一定规律排列的,依照此规律,第11个数据是.7. 观察下列数据:-2,52,-103,174,-265,…,它们是按一定规律排列的,依照此规律,第11个数据是.8. 正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=x+1和x轴上,则点B6的坐标是.9. 如图,将若干个正三角形、正方形和圆按一定规律从左向右排列,那么第2015个图形是.10. 如图,弹性小球从点P(0,3)出发,沿所示方向运动,每当小球碰到矩形OABC的边时反弹,反弹时反射角等于入射角,当小球第1次碰到矩形的边时的点为P1,第2次碰到矩形的边时的点为P2,…,第n 次碰到矩形的边时的点为P n,则点P3的坐标是;点P2 019的坐标是.11.观察下列关于自然数的等式:32-4×12=5 ①52-4×22=9 ②72-4×32=13 ③…根据上述规律解决下列问题:(1)完成第四个等式:(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.12.(1)证明三角形中位线定理:三角形的中位线平行于第三边,且等于第三边的一半;[要求根据图(1)写出已知、求证、证明;在证明过程中,至少有两处写出推理依据(“已知”除外)(2)如图(2),在▱ABCD中,对角线焦点为O,A1,B1,C1,D1分别是OA,OB,OC,OD的中点,A2,B2,C2,D2分别是OA1,OB1,OC1,OD1的中点,…,以此类推.若▱ABCD的周长为1,直接用算式表示各四边形的周长之和l;(3)借助图形(3)反映的规律,猜猜l可能是多少?(1)(2) (3)。

专题29 规律探究题(共26题)(解析版)-2023年中考数学真题分项汇编(全国通用)

专题29 规律探究题(共26题)(解析版)-2023年中考数学真题分项汇编(全国通用)

专题29规律探究题(26题)一、单选题1.(2023·重庆·统考中考真题)用长度相同的木棍按如图所示的规律拼图案,其中第①个图案用了9根木棍,第②个图案用了14根木棍,第③个图案用了19根木棍,第④个图案用了24根木棍,……,按此规律排列下去,则第⑧个图案用的木棍根数是()A.39B.44C.49D.54【答案】B【分析】根据各图形中木棍的根数发现计算的规律,由此即可得到答案.+=根木棍,【详解】解:第①个图案用了459+⨯=根木棍,第②个图案用了45214+⨯=根木棍,第③个图案用了45319+⨯=根木棍,第④个图案用了45424……,+⨯=根,第⑧个图案用的木棍根数是45844故选:B.【点睛】此题考查了图形类规律的探究,正确理解图形中木棍根数的变化规律由此得到计算的规律是解题的关键.2.(2023·重庆·统考中考真题)用圆圈按如图所示的规律拼图案,其中第①个图案中有2个圆圈,第②个图案中有5个圆圈,第③个图案中有8个圆圈,第④个图案中有11个圆圈,…,按此规律排列下去,则第⑦个图案中圆圈的个数为()A.14B.20C.23D.26【答案】B【分析】根据前四个图案圆圈的个数找到规律,即可求解.=⨯-;【详解】解:因为第①个图案中有2个圆圈,2311A .()31.34B .()31,34-【答案】A【分析】根据图象可得移动3次完成一个循环,从而可得出点坐标的规律()323n A n n --,.【详解】解:∵()121A -,,()412A -,,()703A ,,()1014A ,,L ,∴()323n A n n --,,∵1003342=⨯-,则34n =,∴()1003134A ,,故选:A .【点睛】本题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律.5.(2023·山东·统考中考真题)已知一列均不为1的数123n a a a a ,,,,满足如下关系:1223121111a a a a a a ++==--,,34131111nn na a a a a a +++==-- ,,,若12a =,则2023a 的值是()A .12-B .13C .3-D .2【答案】A【分析】根据题意可把12a =代入求解23a =-,则可得312a =-,413a =,52a =……;由此可得规律求解.【详解】解:∵12a =,∴212312a +==--,3131132a -==-+,411121312a -==+,51132113a +==-,…….;由此可得规律为按2、3-、12-、13四个数字一循环,∵20234505.....3÷=,∴2023312a a ==-;故选A .【点睛】本题主要考查数字规律,解题的关键是得到数字的一般规律.6.(2023·四川达州·统考中考真题)如图,四边形ABCD 是边长为12的正方形,曲线11112DA B C D A 是由多段90︒的圆心角的圆心为C ,半径为1CB ; 11C D 的圆心为D ,半径为 11111111,DC DA A B B C C D 、、、的圆心依次为A B C D 、、、循环,则20232023A B的长是()A .40452πB .2023【答案】A【分析】曲线11112DA B C D A …是由一段段1114(1)22n n AD AA n -==⨯-+,n BAA .2003B .2004C .2022D .2023【答案】C【分析】观察表中的规律发现,分数的分子是几,则必在第几列;只有第一列的分数,分母与其所在行数一致.【详解】观察表中的规律发现,分数的分子是几,则必在第几列;只有第一列的分数,分母与其所在行数一致,故202023在第20列,即20b =;向前递推到第1列时,分数为201912023192042-=+,故分数202023与分数12042在同一行.即在第2042行,则2042a =.∴2042202022.a b -=-=故选:C .【点睛】本题考查了数字类规律探索的知识点,解题的关键善于发现数字递变的周期性和趋向性.8.(2023·四川内江·统考中考真题)对于正数x ,规定2()1x f x x =+,例如:224(2)213f ⨯==+,1212212312f ⨯⎛⎫== ⎪⎝⎭+,233(3)312f ⨯==+,1211313213f ⨯⎛⎫== ⎪⎝⎭+,计算:11111(1)1011009932f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭(2)(3)(99)(100)(101)f f f f f +++++= ()A .199B .200C .201D .202【答案】C【分析】通过计算11(1)1,(2)2,(3)223f f f f f ⎛⎫⎛⎫=+=+= ⎪ ⎪⎝⎭⎝⎭,⋯可以推出11111(1)(2)(3)(99)(100)(101)1011009932f f f f f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++++++++++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭结果.【详解】解:2(1)1,11f ==+ 12441212(2),,(2)2,112323212f f f f ⨯⎛⎫⎛⎫====+= ⎪ ⎪+⎝⎭⎝⎭+122331113(3),,(3)2,113232313f f f f ⨯⨯⎛⎫⎛⎫====+= ⎪ ⎪+⎝⎭⎝⎭+A .202340a =B .2024a 【答案】B【分析】利用图形寻找规律2n A 【详解】解:第1圈有1个点,即第2圈有8个点,即2A 到(91,1A第3圈有16个点,即10A 到()252,2A ,;依次类推,第n 圈,()211,1n A n n ---;由规律可知:2023A 是在第23圈上,且()202522,22A ,则()202320,22A 即2023202242a =+=,故A 选项不正确;2024A 是在第23圈上,且()202421,22A ,即2024212243a =+=,故B 选项正确;第n 圈,()211,1n A n n ---,所以2122n a n -=-,故C 、D 选项不正确;故选B .【点睛】本题考查图形与规律,利用所给的图形找到规律是解题的关键.二、填空题10.(2023·四川成都·统考中考真题)定义:如果一个正整数能表示为两个正整数m ,n 的平方差,且1m n ->,则称这个正整数为“智慧优数”.例如,221653=-,16就是一个智慧优数,可以利用22()()m n m n m n -=+-进行研究.若将智慧优数从小到大排列,则第3个智慧优数是;第23个智慧优数是.【答案】1545【分析】根据新定义,列举出前几个智慧优数,找到规律,进而即可求解.【详解】解:依题意,当3m =,1n =,则第1个一个智慧优数为22318-=当4m =,2n =,则第2个智慧优数为224214-=当4m =,1n =,则第3个智慧优数为224115-=,当5m =,3n =,则第5个智慧优数为225316-=当5m =,2n =,则第6个智慧优数为225221-=当5m =,1n =,则第7个智慧优数为225324-=……6m =时有4个智慧优数,同理7m =时有5个,8m =时有6个,12345621+++++=第22个智慧优数,当9m =时,7n =,第22个智慧优数为2297814932-=-=,第23个智慧优数为9,6m n ==时,2296813645-=-=,故答案为:15,45.【点睛】本题考查了新定义,平方差公式的应用,找到规律是解题的关键.11.(2023·四川遂宁·统考中考真题)烷烃是一类由碳、氢元素组成的有机化合物,在生产生活中可作为燃C H【答案】1226【分析】根据碳原子的个数,氢原子的个数,找到规律,即可求解.CH,【详解】解:甲烷的化学式为4设有编号为1-100的100盏灯,分别对应着编号为1-100的100个开关,灯分为“亮”和“不亮”两种状态,每按一次开关改变一次相对应编号的灯的状态,所有灯的初始状态为“不亮”.现有100个人,第1个人把所有编号是1的整数倍的开关按一次,第2个人把所有编号是2的整数倍的开关按一次,第3个人把所有编号是3的整数倍的开关按一次,……,第100个人把所有编号是100的整数倍的开关按一次.问最终状态为“亮”的灯共有多少盏?几位同学对该问题展开了讨论:甲:应分析每个开关被按的次数找出规律:乙:1号开关只被第1个人按了1次,2号开关被第1个人和第2个人共按了2次,3号开关被第1个人和第3个人共按了2次,……丙:只有按了奇数次的开关所对应的灯最终是“亮”的状态.根据以上同学的思维过程,可以得出最终状态为“亮”的灯共有盏.【答案】10【分析】灯的初始状态为“不亮”,按奇数次,则状态为“亮”,按偶数次,则状态为“不亮”,确定1-100中,各个数因数的个数,完全平方数的因数为奇数个,从而求解.【详解】所有灯的初始状态为“不亮”,按奇数次,则状态为“亮”,按偶数次,则状态为“不亮”;因数的个数为奇数的自然数只有完全平方数,1-100中,完全平方数为1,4,9,16,25,36,49,64,81,100;有10个数,故有10盏灯被按奇数次,为“亮”的状态;故答案为:10.【点睛】本题考查因数分解,完全平方数,理解因数的意义,完全平方数的概念是解题的关键.14.(2023·湖北十堰·统考中考真题)用火柴棍拼成如下图案,其中第①个图案由4个小等边三角形围成1个小菱形,第②个图案由6个小等边三角形围成2个小菱形,……,若按此规律拼下去,则第n 个图案需要火柴棍的根数为(用含n 的式子表示).【答案】66n +/66n+【分析】当1n =时,有()2114+=个三角形;当2n =时,有()2216+=个三角形;当3n =时,有()2318+=个三角形;第n 个图案有()2122n n +=+个三角形,每个三角形用三根计算即可.【详解】解:当1n =时,有()2114+=个三角形;【答案】()22n +【分析】由于第1个图案中有4个白色圆片4221=+⨯,第2个图案中有6个白色圆片62=分别连接这个三角形三边中点得到图(2),有5个三角形,记作25a =;再分别连接图(2)中间的小三角形三边中点得到图(3),有9个三角形,记作39a =;按此方法继续下去,则123n a a a a ++++=.(结果用含n 的代数式表示)【答案】22n n -/22n n -+【分析】根据题意得出()14143n a n n =+-=-,进而即可求解.【详解】解:依题意,()1231,5,9,14143n a a a a n n ===⋅⋅⋅=+-=-,,∴123n a a a a ++++= ()21432122n n n n n n +-==-=-,故答案为:22n n -.【点睛】本题考查了图形类规律,找到规律是解题的关键.17.(2023·湖南怀化·统考中考真题)在平面直角坐标系中,AOB 为等边三角形,点A 的坐标为()1,0.把AOB 按如图所示的方式放置,并将AOB 进行变换:第一次变换将AOB 绕着原点O 顺时针旋转60︒,同时边长扩大为AOB 边长的2倍,得到11A OB △;第二次旋转将11A OB △绕着原点O 顺时针旋转60︒,同时边长扩大为11A OB △,边长的2倍,得到22A OB △,….依次类推,得到20332033A OB ,则20232033A OB △的边长为,点2023A 的坐标为.【答案】20232()202220222,32-⨯【分析】根据旋转角度为60︒,可知每旋转6次后点A 又回到x 轴的正半轴上,故点2023A 在第四象限,且202320232OA =,即可求解.在2023Rt OHA 中,2023HOA ∠∴202320232023cos 2OH OA HOA =⋅∠=2023202320232023sin 2A H OA HOA =⋅∠=∴点2023A 的坐标为()202220222,32-⨯.故答案为:20232,()202220222,32-⨯.【点睛】本题考查图形的旋转,解直角三角形的应用.熟练掌握图形旋转的性质,根据旋转角度找到点的坐标规律是解题的关键.18.(2023·山东临沂·统考中考真题)观察下列式子21312⨯+=;22413⨯+=;23514⨯+=;……按照上述规律,2n =.【答案】()()111n n -++【分析】根据已有的式子,抽象出相应的数字规律,进行作答即可.【详解】解:∵21312⨯+=;22413⨯+=;23514⨯+=;……∴()()2211n n n ++=+,∴()()2111n n n -++=.故答案为:()()111n n -++【点睛】本题考查数字类规律探究.解题的关键是从已有的式子中抽象出相应的数字规律.19.(2023·山东枣庄·统考中考真题)如图,在反比例函数8(0)y x x=>的图象上有1232024,,,P P P P 等点,它们的横坐标依次为1,2,3,…,2024,分别过这些点作x 轴与y 轴的垂线,图中所构成的阴影部分的面积从左到右依次为1232023,,,,S S S S ,则1232023S S S S ++++= .【答案】2023253【分析】求出1234,,,P P P P …的纵坐标,从而可计算出123n S S S S +++⋯+的值.【详解】当1x =时,1P 的纵坐标为8当2x =时,2P 的纵坐标为4,当3x =时,3P 的纵坐标为83,∴12320238202320242532023S S S S ⨯+++⋯+==.故答案为:2023253.【点睛】本题考查了反比例函数与几何的综合应用,解题的关键是求出881n S n n =-+.20.(2023·山东聊城·统考中考真题)如图,图中数字是从1开始按箭头方向排列的有序数阵.从3开始,把位于同一列且在拐角处的两个数字提取出来组成有序数对:()3,5;()7,10;()13,17;()21,26;()31,37…如果单把每个数对中的第一个或第二个数字按顺序排列起来研究,就会发现其中的规律.请写出第n 个数对:.【答案】()221,22n n n n ++++【分析】根据题意单另把每个数对中的第一个或第二个数字按顺序排列起来研究,可发现第n 个数对的第一个数为:()11n n ++,第n 个数对的第二个位:()211n ++,即可求解.【详解】解:每个数对的第一个数分别为3,7,13,21,31,…即:121⨯+,231⨯+,341⨯+,451⨯+,561⨯+,…则第n 个数对的第一个数为:()2111n n n n ++=++,每个数对的第二个数分别为5,10,17,26,37,…即:221+;231+;241+;251+;261+…,则第n 个数对的第二个位:()221122n n n ++=++,∴第n 个数对为:()221,22n n n n ++++,故答案为:()221,22n n n n ++++.【点睛】此题考查数字的变化规律,找出数字之间的排列规律,利用拐弯出数字的差的规律解决问题.【答案】()2023,1-【分析】将四分之一圆弧对应的A 律即可.【详解】∵A 点坐标为()1,1,且A ∴1A 点坐标为()2,0,又∵2A 为1A 点绕O 点顺时针旋转故2023A 为以点C 为圆心,半径为2022的2022A 顺时针旋转90︒所得故2023A 点坐标为()2023,1-.故答案为:()2023,1-.【点睛】本题考查了点坐标规律探索,通过点的变化探索出坐标变化的规律是解题的关键.22.(2023·山东东营·统考中考真题)如图,在平面直角坐标系中,直线l :33y x =-与x 轴交于点1A ,以1OA 为边作正方形111A B C O 点1C 在y 轴上,延长11C B 交直线l 于点2A ,以12C A 为边作正方形2221A B C C ,点2C 在y 轴上,以同样的方式依次作正方形3332A B C C ,…,正方形2023202320232022A B C C ,则点2023B 的横坐标是.【答案】2022313⎛⎫+ ⎪ ⎪⎝⎭【分析】分别求出点点1B 的横坐标是1,点2B 的横坐标是313+,点3B 的横坐标是223431333⎛⎫+=+ ⎪ ⎪⎝⎭,找到规律,得到答案见即可.【详解】解:当0y =,033x =-,解得1x =,∴点()11,0A ,∵111A B C O 是正方形,∴11111OA A B OC ===,∴点()11,1B ,和为.【答案】1024202422024-+【分析】通过观察第一行数的规律为(2)n -,第二行数的规律为(2)1n n -++,代入数据即可.【详解】第一行数的规律为(2)n -,∴第①行数的第10个数为10(2)1024-=;第二行数的规律为(2)1n n -++,∴第①行数的第2023个数为2023(2)-,第②行数的第2023个数为2023(2)2024-+,∴202422024-+,故答案为:1024;202422024-+.【点睛】本题主要考查数字的变化,找其中的规律,是今年考试中常见的题型.24.(2023·山东泰安·统考中考真题)已知,12345678,,,OA A A A A A A A △△△都是边长为2的等边三角形,按下图所示摆放.点235,,,A A A 都在x 轴正半轴上,且2356891A A A A A A ==== ,则点2023A 的坐标是.【答案】()2023,3-【分析】先确定前几个点的坐标,然后归纳规律,按规律解答即可.【详解】解:由图形可得:()()()()()()2356892,0,3,0,5,0,6,0,8,0,9,0,A A A A A A 如图:过1A 作1A B x ⊥轴,【答案】202223【分析】过点1A作1A M x⊥轴,交直线130AOM∠=︒,再根据等边三角形的性质、()12,0A ,12OA ∴=,当2x =时,233y =,即123232,,33M A M ⎛⎫= ⎪ ⎪⎝⎭,1113tan 3A M A OM A O ∴∠==,130A OM ∴∠=︒,112A B A 是等边三角形,211121160,A A B A A A B ∠=︒=∴,11130O O A M B A ∴∠=︒∠=,1112A B OA ==∴,1113sin 6022A B B C ∴=⋅︒=⨯,即点1B 的纵坐标为322⨯,同理可得:点2B 的纵坐标为2322⨯,点3B 的纵坐标为3322⨯,点4B 的纵坐标为4322⨯,归纳类推得:点n B 的纵坐标为132232n n -⨯=(n 为正整数),则点2023B 的纵坐标为2023120222323-=,故答案为:202223.【点睛】本题考查了点坐标的规律探索、等边三角形的性质、正比例函数的应用、解直角三角形等知识点,正确归纳类推出一般规律是解题关键.【答案】404623【分析】解直角三角形得出AOB ∠222ABC A B C ∽,得出111A B C S = ()2222n n n n n A B C ABC ABC S S S == ,从而得出【详解】解:∵22OB =,∴设(),C C C x y ,则3C C y x =,∴tan 3C Cy BOC x ∠==,∴60BOC ∠=︒,∴1cos602222OC OB =⨯︒=⨯=,3sin 602262BC OB =⨯︒=⨯=,∵130AOC BOC AOB ∠=∠-∠=︒,∴1AOB AOC ∠=∠,∴OA 平分BOC ∠,∵12AC l ⊥,AB OB ⊥,∴1263AC AB ==,∵1AB AC =,OA OA =,∴1Rt Rt OAB OAC ≌,∴122OC OB ==,∴112222CC OC OC =-=-=,∴12ABC OAB ACC BOCS S S S =-- 126126122222623232=⨯⨯⨯-⨯⨯-⨯⨯3=,∵2BC l ⊥,∴90BCO ∠=︒,∴906030CBO ∠=︒-︒=︒,∵112B C l ⊥,2BC l ⊥,222B C l ⊥,∴2112B B C C B C ∥∥,∴112230C B O C B O CBO ∠=∠=∠=︒,。

2024中考数学复习专题 规律探索题 (含答案)

2024中考数学复习专题 规律探索题 (含答案)

2024中考数学复习专题规律探索题类型一数式规律1. (2023鄂州)生物学中,描述、解释和预测种群数量的变化,常常需要建立数学模型.在营养和生存空间没有限制的情况下,某种细胞可通过分裂来繁殖后代,我们就用数学模型2n 来表示.即:21=2,22=4,23=8,24=16,25=32,…,请你推算22023的个位数字是()A. 8B. 6C. 4D. 22. (2023泰安)将从1开始的连续自然数按以下规律排列:…若有序数对(n,m)表示第n行,从左到右第m个数,如(3,2)表示6,则表示99的有序数对是________.3. (2022怀化)观察等式:2+22=23-2,2+22+23=24-2,2+22+23+24=25-2,…,已知按一定规律排列的一组数:2100,2101,2102,…,2199,若2100=m,用含m的代数式表示这组数的和是________.4. (2023张家界)有一组数据:a1=31×2×3,a2=52×3×4,a3=73×4×5,…,a n=2n+1n(n+1)(n+2).记S n=a1+a2+a3+…+a n,则S12=________.5. (2023达州)人们把5-12≈0.618这个数叫做黄金比,著名数学家华罗庚优选法中的“0.618法”就应用了黄金比.设a=5-12,b=5+12,记S1=11+a+11+b,S2=21+a2+2 1+b2,…,S100=1001+a100+1001+b100,则S1+S2+…+S100=________.6. (2023安徽)观察以下等式:第1个等式:(2×1+1)2=(2×2+1)2-(2×2)2,第2个等式:(2×2+1)2=(3×4+1)2-(3×4)2,第3个等式:(2×3+1)2=(4×6+1)2-(4×6)2,第4个等式:(2×4+1)2=(5×8+1)2-(5×8)2,…按照以上规律,解决下列问题:(1)写出第5个等式:____________________;(2)写出你猜想的第n个等式(用含n的式子表示),并证明.类型二图形规律考向1累加型7. (2023重庆B卷)把菱形按如图所示的规律拼图案,其中第①个图案中有1个菱形,第①个图案中有3个菱形,第①个图案中有5个菱形,…,按此规律排列下去,则第①个图案中菱形的个数为()第7题图A. 15B. 13C. 11D. 98. (2023济宁)如图,用相同的圆点按照一定的规律拼出图形.第一幅图4个圆点,第二幅图7个圆点,第三幅图10个圆点,第四幅图13个圆点…按照此规律,第一百幅图中圆点的个数是()第8题图A. 297B. 301C. 303D. 4009. (2023青海省卷)木材加工厂将一批木料按如图所示的规律依次摆放,则第n个图中共有木料________根.第9题图源自人教七上P70第10题10. (2022常德)如图中的三个图形都是边长为1的小正方形组成的网格,其中第一个图形有1×1个小正方形,所有线段的和为4,第二个图形有2×2个小正方形,所有线段的和为12,第三个图形有3×3个小正方形,所有线段的和为24,按此规律,则第n个网格中所有线段的和为________.(用含n的代数式表示)第10题图11. (2023遂宁)“勾股树”是以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程所画出来的图形,因为重复数次后的形状好似一棵树而得名.假设下图分别是第一代勾股树、第二代勾股树、第三代勾股树,按照勾股树的作图原理作图,则第六代勾股树中正方形的个数为________.第11题图12. (2023德阳)古希腊的毕达哥拉斯学派对整数进行了深入的研究,尤其注意形与数的关系,“多边形数”也称为“形数”,就是形与数的结合物.用点排成的图形如下:第12题图其中:图①的点数叫做三角形数,从上至下第一个三角形数是1,第二个三角形数是1+2=3,第三个三角形数是1+2+3=6,…图①的点数叫做正方形数,从上至下第一个正方形数是1,第二个正方形数是1+3=4,第三个正方形数是1+3+5=9,……由此类推,图①中第五个正六边形数是________.考向2成倍递变型13. (2023威海)由12个有公共顶点O 的直角三角形拼成如图所示的图形,①AOB =①BOC =①COD =…=①LOM =30°.若S ①AOB =1,则图中与①AOB 位似的三角形的面积为( )第13题图A. (43 )3B. (43 )7C. (43 )6D. (34)6 14. (2023荆州)如图,已知矩形ABCD 的边长分别为a ,b ,进行如下操作:第一次,顺次连接矩形ABCD 各边的中点,得到四边形A 1B 1C 1D 1;第二次,顺次连接四边形A 1B 1C 1D 1各边的中点,得到四边形A 2B 2C 2D 2;…如此反复操作下去,则第n 次操作后,得到四边形A n B n C n D n 的面积是( )A. ab 2nB. ab 2n -1C. ab 2n +1 D. ab22n第14题图15. (2023烟台)如图,正方形ABCD 边长为1,以AC 为边作第2个正方形ACEF ,再以CF 为边作第3个正方形FCGH ,…,按照这样的规律作下去,第6个正方形的边长为( ) A. (22 )5 B. (22 )6 C. (2 )5 D. (2 )6第15题图16. (2023广安)如图,四边形ABCD 是边长为12的正方形,曲线DA 1B 1C 1D 1A 2…是由多段90°的圆心角所对的弧组成的.其中,弧DA 1的圆心为A ,半径为AD ;弧A 1B 1的圆心为B ,半径为BA1;弧B1C1的圆心为C,半径为CB1;弧C1D1的圆心为D,半径为DC1….弧DA1、弧A1B1、弧B1C1、弧C1D1…的圆心依次按点A、B、C、D循环,则弧C2023D2023的长是________(结果保留π).第16题图17. (2023绥化)如图,①AOB=60°,点P1在射线OA上,且OP1=1,过点P1作P1K1①OA 交射线OB于K1,在射线OA上截取P1P2,使P1P2=P1K1;过点P2作P2K2①OA交射线OB 于K2,在射线OA上截取P2P3,使P2P3=P2K2;…;按照此规律,线段P2023K2023的长为________.第17题图考向3周期变化型18. (2023玉林)如图的电子装置中,红黑两枚跳棋开始放置在边长为2的正六边形ABCDEF 的顶点A处.两枚跳棋跳动规则是:红跳棋按顺时针方向1秒钟跳1个顶点,黑跳棋按逆时针方向3秒钟跳1个顶点,两枚跳棋同时跳动,经过2023秒钟后,两枚跳棋之间的距离是()A. 4B. 23C. 2D. 0第18题图19. (2023河南)如图,在平面直角坐标系中,边长为2的正六边形ABCDEF的中心与原点O 重合,AB①x轴,交y轴于点P.将①OAP绕点O顺时针旋转,每次旋转90°,则第2023次旋转结束时,点A的坐标为()A. (3,-1)B. (-1,-3)C. (-3,-1)D. (1,3)第19题图20. (2023毕节)如图,在平面直角坐标系中,把一个点从原点开始向上平移1个单位,再向右平移1个单位,得到点A1(1,1);把点A1向上平移2个单位,再向左平移2个单位,得到点A2(-1,3);把点A2向下平移3个单位,再向左平移3个单位,得到点A3(-4,0);把点A3向下平移4个单位,再向右平移4个单位,得到点A4(0,-4);…;按此做法进行下去,则点A10的坐标为________.第20题图类型三与函数图象结合21. (2023龙东地区)如图,在平面直角坐标系中,点A1,A2,A3,A4…在x轴上且OA1=1,OA2=2OA1,OA3=2OA2,OA4=2OA3…按此规律,过点A1,A2,A3,A4…作x轴的垂线分别与直线y=3x交于点B1,B2,B3,B4…记①OA1B1,①OA2B2,①OA3B3,①OA4B4…的面积分别为S1,S2,S3,S4…则S2023=________.第21题图22. (2022菏泽)如图,一次函数y =x 与反比例函数y =1x(x >0)的图象交于点A ,过点A 作AB ①OA ,交x 轴于点B ;作BA 1①OA ,交反比例函数图象于点A 1;过点A 1作A 1B 1①A 1B 交x 轴于点B 1;再作B 1A 2①BA 1,交反比例函数图象于点A 2,依次进行下去…,则点A 2022的横坐标为________.第22题图23. (2023盐城)《庄子·天下篇》记载“一尺之棰,日取其半,万世不竭”.如图,直线l 1:y =12x +1与y 轴交于点A ,过点A 作x 轴的平行线交直线l 2:y =x 于点O 1,过点O 1作y 轴的平行线交直线l 1于点A 1,以此类推,令OA =a 1,O 1A 1=a 2,…,O n -1A n -1=a n ,若a 1+a 2+…+a n ≤S 对任意大于1的整数n 恒成立,则S 的最小值为________.第23题图类型四 与实际问题结合24. (2022安徽)某矩形人行道由相同的灰色正方形地砖与相同的白色等腰直角三角形地砖排列而成,图①表示此人行道的地砖排列方式,其中正方形地砖为连续排列.【观察思考】当正方形地砖只有1块时,等腰直角三角形地砖有6块(如图①);当正方形地砖有2块时,等腰直角三角形地砖有8块(如图①);以此类推.第24题图【规律总结】(1)若人行道上每增加1块正方形地砖,则等腰直角三角形地砖增加________块;(2)若一条这样的人行道一共有n(n为正整数)块正方形地砖,则等腰直角三角形地砖的块数为______(用含n的代数式表示);【问题解决】(3)现有2022块等腰直角三角形地砖,若按此规律再建一条人行道,要求等腰直角三角形地砖剩余最少,则需要正方形地砖多少块?参考答案与解析1. C 【解析】21=2,22=4,23=8,24=16,25=32,则2的1,2,3,4次方的个位上的数分别为2,4,8,6,每4个一次循环,而22022中2022÷4=550……2,∴个位上的数为4.2. (10,18) 【解析】按照规律可得每一行的最后一个数为行数的平方,第n 行有(2n -1)个数.∵92=81,102=100,∴99是第10行,第18个数,∴表示99的有序数对是(10,18).3. m 2-m4.201182 【解析】∵a n =2n +1n (n +1)(n +2) =n +n +1n (n +1)(n +2) =n n (n +1)(n +2) +n +1n (n +1)(n +2) =1(n +1)(n +2) +1n (n +2) =1n +1 -1n +2 +12 (1n -1n +2),∴S 12=12 -13 +13 -14 +…+113 -114 +12 ×(1-13 +12 -14 +…+112 -114 )=12 -114 +12 ×(1+12 -113 -114 )=12 +12 +14 -126 -114 -128 =201182. 5. 5050 【解析】∵a =5-12 ,b =5+12 ,∴ab =1,∵S 1=11+a +11+b =2+a +b 1+a +b +ab =2+a +b 2+a +b =1,S 2=21+a 2 +21+b 2 =2(2+a 2+b 2)1+a 2+b 2+a 2b 2 =2(2+a 2+b 2)2+a 2+b 2=2,…,S 100=1001+a 100 +1001+b 100 =100(2+a 100+b 100)1+a 100+b 100+a 100b 100 =100(2+a 100+b 100)2+a 100+b 100=100,∴S 1+S 2+…+S 100=1+2+…+100=100×(100+1)2=5050. 6. 解:(1)(2×5+1)2=(6×10+1)2-(6×10)2;(2)(2n +1)2=[2n (n +1)+1]2-[2n (n +1)]2.证明:等式左边=4n 2+4n +1,等式右边=4n 2(n +1)2+1+4n (n +1)-4n 2(n +1)2=4n (n +1)+1=4n 2+4n +1,∴左边=右边,∴等式成立.7. C 【解析】经分析可得,第个图案的菱形个数为2n -1,∴第⑥个图案中菱形个数为2×6-1=11(个).8. B 【解析】第一幅图中圆点的个数是4=1×3+1;第二幅图中圆点的个数是7=2×3+1;第三幅图中圆点的个数是10=3×3+1;第四幅图中圆点的个数是13=4×3+1;…;按照此规律,第n 幅图中圆点的个数是3n +1,∴第一百幅图中圆点的个数是3×100+1=301.9. n (n +1)2【解析】∵第1个图中有木料1根,第2个图中有木料1+2=3根,第3个图中有木料1+2+3=6根,第4个图中有木料1+2+3+4=10根,…,∴第n 个图中有木料1+2+3+4+…+n =n (n +1)2根. 10. 2n 2+2n 【解析】观察图形可知:第一个图形由1个小正方形组成,所有线段的和为4×1=2×2×1, 第二个图形由4个小正方形组成,所有线段的和为6×2=2×3×2, 第三个图形由9个小正方形组成,所有线段的和为8×3=2×4×3, 第4个图形由16个小正方形组成,所有线段的和为10×4=2×5×4,…由此发现规律是:第n 个图形由n 2个小正方形组成,所有线段的和为2(n +1)·n =2n 2+2n .11. 127 【解析】第一代勾股树中正方形个数=20+21;第二代勾股树中正方形个数=20+21+22;第三代勾股树中正方形个数=20+21+22+23;第四代勾股树中正方形个数=20+21+22+23+24,…,∴第六代勾股树中正方形个数=20+21+22+23+24+25+26=127.12. 45 【解析】由题图可知,题图④前三层点数分别是:1=4×1-3,5=4×2-3,9=4×3-3,…,∴第n 层的点数是4n -3,∴第n 个正六边形数是1+5+9+…+4n -3=4×1-3+4×2-3+4×3-3+…+4n -3=2n 2-n ,∴题图④中第五个正六边形数是2×52-5=45.13. C 【解析】在Rt △AOB 中,∠AOB =30°,∵cos ∠AOB =OA OB ,∴OB =23OA .同理可得OC =23 OB ,∴OC =(23 )2OA ,…,∴OG =(23)6OA ,由题图可知△GOH 与△AOB 位似且位似比为(23 )6.∵S △AOB =1,∴S △GOH =[(23 )6]2=(43 )6. 14. A 【解析】第一次操作后S 四边形A 1B 1C 1D 1=12 S 矩形ABCD =12ab ,第二次操作后S 四边形A 2B 2C 2D 2=12 S 四边形A 1B 1C 1D 1=12 ×12 ab =ab 22 ,第三次操作后S 四边形A 3B 3C 3D 3=12S 四边形A 2B 2C 2D 2=ab 23 ,…,第n 次操作后S 四边形A n B n C n D n =ab 2n . 15. C 【解析】∵正方形ABCD 边长为1,∴AB =BC =1,∴AC =2 ,∴以AC 为边作第2个正方形ACEF 的边长为2 ;∵CF 是正方形ACEF 的对角线,∴CF =2 ×2 =(2 )2=2,∴以CF 为边作第3个正方形FCGH 的边长为2;又∵GF 是正方形FCGH 的对角线,∴GF =2 ×2 ×2 =(2 )3=22 ,以GF 为边作第4个正方形FGMN 的边长为22 ,…∴依此规律可知下一个正方形的边长是原来正方形边长的2 倍,即第n 个正方形的边长为(2 )n -1,∴第6个正方形的边长为(2 )5.16. 2022π 【解析】由题图可知,题图中由一段90°的弧组成的,弧所在圆的半径每次增加12 ,则弧C 1D 1的半径=12 ×4=12 ×4×1,弧C 2D 2的半径=12 ×8=12×4×2,弧C 3D 3的半径=12 ×12=12 ×4×3…,弧C 2022D 2022的半径=12×4×2022=4044,∴弧C 2022D 2022的长=90π180×4044=2022π. 17. 3 (1+3 )2022 【解析】∵∠AOB =60°,OP 1=1,∴P 1K 1=3 OP 1=3 ,∴P 1P 2=P 1K 1=3 ,∴OP 2=1+3 .∵P 2K 2=3 OP 2,∴P 2K 2=3 (1+3 ),∴OP 3=(1+3 )2,∴P 3K 3=3 OP 3=3 (1+3 )2,…,∴依此规律可得P 2023K 2023=3 (1+3 )2022.18. B 【解析】根据两枚跳棋跳动规则可知,红跳棋每过6秒钟跳动回顶点A ,黑跳棋每过18秒钟跳动回顶点A ,∵2022÷6=337,∴经过2022秒后,红跳棋在顶点A 处;∵2022÷18=112……6,6÷3=2,∴经过2022秒钟后,黑跳棋在顶点E 处.如解图,连接AE ,过点F 作FG ⊥AE 于点G ,∵六边形ABCDEF 是边长为2的正六边形,∴∠AFE =120°,FE =AF ,∴∠F AE =30°,∴AG =EG =AF ·cos 30°=2×32 =3 ,∴AE =23 ,即两枚跳棋之间的距离是23 .第18题解图19. B 【解析】如解图,连接OB ,∵AB ∥x 轴,∴AB ⊥y 轴,∵六边形ABCDEF 是正六边形,点O 是中心,∴OB =OA ,∠AOB =60°,∴∠AOP =30°,AP =12AB =1,∴OP =3 ,∴点A (1,3 ),将△AOP 绕点O 顺时针每次旋转90°,则第1次结束点A 的坐标为(3 ,-1),第2次结束点A 的坐标为(-1,-3 ),第3次结束点A 的坐标为(-3 ,1),第4次结束点A 的坐标为(1,3 ),…,∴每4次一个循环,∵2022=4×505+2,∴第2022次旋转结束时,相当于第2次结束,∴点A 的坐标为(-1,-3 ).第19题解图20. (-1,11) 【解析】由图象可知,A 5(5,1),将点A 5向左平移6个单位,再向上平移6个单位,可得A 6(-1,7),将点A 6向左平移7个单位,再向下平移7个单位,可得A 7(-8,0),将点A 7向右平移8个单位,再向下平移8个单位,可得A 8(0,-8),将点A 8向右平移9个单位,再向上平移9个单位,可得A 9(9,1),将点A 9向左平移10个单位,再向上平移10个单位,可得A 10(-1,11).21. 240433 【解析】∵S 1=1×32 = 20×32 ,S 2=2×232 = 22×32,… ,依此规律可得S n = 22(n -1)×32 ,∴S 2023= 22×(2023-1)×32= 240433 . 22. 2021 +2022 【解析】∵点A 是函数y =x 与y =1x的图象在第一象限的交点,∴点A 的坐标为(1,1),又∵AB 垂直于直线y =x ,∴点B 坐标为(2,0),又∵BA 1∥OA ,∴BA 1的解析式为y =x -2,与y =1x 联立,解得x =1+2 (负值已舍),即点A 1的横坐标为1+2 ;同理可得B 1的横坐标为22 ,∵B 1A 2∥BA 1,∴B 1A 2的解析式为y =x -22 ,与y =1x 联立,解得A 2的横坐标为2 +3 (负值已舍);…;依此按规律可得A 2021的横坐标为2021 +2022 .23. 2 【解析】由题可得a 1=OA =1,而y =x 与y 轴的正方向的夹角是45°,O 1A ⊥y 轴,∴O 1A =OA =1,∴ 点O 1的横坐标是1,对于y =12 x +1,当x =1时,y =32,∴a 2=O 1A 1=12 ,∴tan ∠A 1AO 1=O 1A 1O 1A =12 ,依次得出A 1O 2=A 1O 1=12 ,a 3=A 2O 2=12 A 1O 2=(12)2,…,可以得出A n -1O n -1=(12 )n -1,∴a 1+a 2+…+a n -1+a n =1+12 +…+(12 )n -2+(12)n -1①,①×2得2×(a 1+a 2+…+a n -1+a n )=2+1+12 +…+(12 )n -3+(12)n -2②,②-①得a 1+a 2+…+a n -1+a n =2-(12 )n -1,∴S ≥2-(12)n -1,∴S 的最小值是2. 24. 解:(1)2;【解法提示】观察题图②与题图③,每增加1块正方形地砖,则增加2块等腰直角三角形地砖.(2)2n +4;【解法提示】在题图②中,正方形地砖1块,等腰直角三角形地砖(4+2)块;在题图③中,正方形地砖2块,等腰直角三角形地砖(4+2×2)块;正方形地砖若有3块,则等腰直角三角形地砖(4+2×3)块;…;依此按规律可得正方形地砖若有n 块,则等腰直角三角形地砖有(4+2n )块.(3)设需要正方形地砖n块,∴2n+4≤2021,解得n≤1008.5,∵n为正整数,∴n最大取1008,答:需要正方形地砖1008块.。

中考中的规律探索问题

中考中的规律探索问题
贝 2 2 +… + = S ② U 2+ + 2 2.

答 案 :. 1 1 、2 ( ) 1 ( )8 2 24 六、 阅读 型探 索题 例 7 阅读 以下 材 料 并 填 空.
国 …
.. 2 ,, 5
由② 一①得 S= 一1 2 .
例 5 如 下 图 是 小 明用 火 柴 搭 的 1 、 、 “ 条 2条 3条 金



点 Q为( , 3. 4 一)
・ . .
点 P为( , 2 ;. 4 一 ) . 所求抛物线的解析式为 ‘
因抛 物 线 Y=一 +c n ) 移 时 , 数 。的 + ( ≠0 平 系 值 保 持 不 变 , 平 移 后 的 抛 物 线 的 解 析 式 为 Y: 一2 故 (

练 一练 , 会 更 棒 1 你
1 .下 面 是 用 棋 子 摆 成 的 “ ” : 上 字
() ÷
条折痕 ( 图中虚线 )继 续对折 , , 对折时 每次折痕与 上
— 条 折 痕 , 果 对 折 如
次的折痕保持平行 , 连续对 折三次后 , 以得到 7条 折 可
痕 , 么对 折 四次 可 以得 到 — 那 n次 , 以得 到— 可 — 条折痕.

, 前 1 在 6
得到 ( 2 条折痕 , 1+ ) 第三次对折可得到 ( + 2 ) 1 2+ 条折
痕 , 四次对 折 可得 到 ( 2+ 2 ) 折 痕 , 第 1+ 2 + 条 …… , 此 依
个 图 中 有
” 第 20 , 0 8个 图 案 是
类推 , n次对折可得到( + + + ’条折痕. 第 1 2 2… 2 ) 设 1 2+2 + +… + = . 2 一 S ①

中考数学:探索规律型问题(图形类)含答案

中考数学:探索规律型问题(图形类)含答案

中考数学:探索规律型问题(图形类)一、选择题1. 下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,…,则第⑥个图形中五角星的个数为【】A.50B.64C.68D.72【答案】D。

【分析】寻找规律:每一个图形左右是对称的,第①个图形一共有2=2×1个五角星,第②个图形一共有8=2×(1+3)=2×22个五角星,第③个图形一共有18=2×(1+3+5)=2×32个五角星,…,则第⑥个图形中五角星的个数为2×62=72。

故选D。

2. 小明用棋子摆放图形来研究数的规律.图1中棋子围城三角形,其棵数3,6,9,12,…称为三角形数.类似地,图2中的4,8,12,16,…称为正方形数.下列数中既是三角形数又是正方形数的是【】A.2010B.2012C.2014D.2016【答案】D。

【分析】观察发现,三角数都是3的倍数,正方形数都是4的倍数,所以既是三角形数又是正方形数的一定是12的倍数,然后对各选项计算进行判断即可得解:∵2010÷12=167…6,2012÷12=167…8,2014÷12=167…10,2016÷12=168,∴2016既是三角形数又是正方形数。

故选D。

3.边长为a的等边三角形,记为第1个等边三角形。

取其各边的三等分点,顺次连接得到一个正六边形,记为第1个正六边形。

取这个正六边形不相邻的三边中点顺次连接,又得到一个等边三角形,记为第2个等边三角形。

取其各边的三等分点,顺次连接又得到一个正六边形,记为第2个正六边形(如图)…,按此方式依次操作。

则第6个正六边形的边长是【】A.511a32⎛⎫⨯ ⎪⎝⎭B.511a23⎛⎫⨯ ⎪⎝⎭C.611a32⎛⎫⨯ ⎪⎝⎭D.611a23⎛⎫⨯ ⎪⎝⎭【答案】A。

中考数学总复习第40课 探索型问题

中考数学总复习第40课 探索型问题

- b =1,
2a
a=-1,
∴ -b2=1, 解得 b=2.
4a
即当顶点坐标为(1,1)时,a=-1.
- b =m, 2a
a=- 1 ,
当顶点坐标为 (m ,m ),m ≠0
时,
-b2=m , 4a
解得
b=2.
m
∴a 与 m 之间的关系式是:a=-m1 或 am+1=0.]
(2)∵a≠0,
∴y=ax2+bx=a
专题解读
1.探索型问题: 探索是人类认识客观世界过程中最生动,最活跃的思维活 动.探索问题主要考查学生探究、发现、总结问题的能力,主 要包括: (1)规律探索型问题; (2)结论探索型问题; (3)存在性探索型问题; (4)动态探索型问题. 2.解答探索型问题的注意事项: 由于探索型问题的题型新颖,综合性强,思维能力要求高,结 构独特,因此解题时并无固定模式,它要求解题者具有较扎实 的基本功,较强的观察力,丰富的想象力及综合分析问题的能 力.解题时要注意问题情境,注重思维的严密性,注意寻找问 题解决的切入口.有时也可采用以下方法来寻找突破口:(1)利 用特殊值(特殊点,特殊数量,特殊线段等)进行归纳,概括;(2) 反演推理法(反证法);(3)分类讨论法;(4)类比猜想法.
3,4 3
3,
-2 P2 3
3,4 3
3
;当∠PAO=90°时,P3
34 9
3,4 3
3 ;当∠POA=90°时,
-16 3,4 3
P4 9
3.
名师点拨
存在性探索问题是运用几何计算进行探索的综合型 问题,要注意相关的条件,可以先假设结论成立,然后通 过计算求相应的值,再作存在性的判断.
【预测演练 3】 如图 40-7,在△ABC 中,AB=AC=10 cm,BC=12 cm, 点 D 是 BC 边的中点.点 P 从点 B 出发,以 a(cm/s)(a>0)的速度沿 BA 匀速向点 A 运动;点 Q 同时以 1 cm/s 的速度从点 D 出发,沿 DB 匀 速向点 B 运动,其中一个动点到达端点时,另一个动点也随之停止运 动,设它们运动的时间为 t(s). (1)若 a=2,△BPQ∽△BDA (点 P 与点 D 对应),求 t 的值; (2)设点 M 在边 AC 上,四边形 PQCM 为平行四边形. ①若 a=5,求 PQ 的长; 2 ②是否存在实数 a,使得点 P 在∠ACB 的平分线上?若存在,请求 出 a 的值;若不存在,请说明理由.

中考数学专题训练:规律探索——图形累加(附参考答案)

中考数学专题训练:规律探索——图形累加(附参考答案)

中考数学专题训练:规律探索——图形累加(附参考答案)1.用大小相同的圆点摆成如图所示的图案,按照这样的规律摆放,则第10个图案(即n=10)中共有圆点的个数是()A.59B.65C.70D.712.如图是用黑色棋子摆成的美丽图案,按照这样的规律摆下去,第10个这样的图案需要黑色棋子的个数为()A.148B.152C.174D.2023.观察下列树枝分叉的规律图,若第n个图中树枝数用Y n表示,则Y9-Y4=()A.15×24B.31×24C.33×24D.63×244.用正方形按如图所示的规律拼图案,其中第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,按此规律排列下去,则第⑨个图案中正方形的个数为()A.32B.34C.37D.415.某数学家把1,3,6,10,15,21,…这样的数叫做三角形数,因为它的规律性可以如图表示.根据图形,若把第(1)个图形表示的三角形数记为a1=1,第(2)个图形表示的三角形数记为a2=3……则第(n)个图形表示的三角形数a n=______.(用含n的式子表示)6.将一些相同的“○”按如图所示的规律依次摆放,观察每个“龟图”的“○”的个数,则第30个“龟图”中有_______个“○”.7.用棋子摆成如图所示的图案,摆第20个图案需要_______颗棋子.8.观察下列“蜂窝图”,按照这样的规律,则第16个图案中的“”的个数是______.9.如图,用火柴棒拼成一个由三角形组成的图形,拼第一个图形共需要3根火柴棒;拼第二个图形共需要5根火柴棒;拼第三个图形共需要7根火柴棒……照这样拼图,则第n个图形(即图n)需要_____________根火柴棒.参考答案6.875 7.290 8.49 9.(2n+1) 1.C 2.C 3.B 4.C 5.n(n+1)2。

规律探索性问题(含解析)

规律探索性问题(含解析)

规律探索性问题第一部分 讲解部分一.专题诠释规律探索型题是根据已知条件或题干所提供的若干特例,通过观察、类比、归纳,发现题目所蕴含的数字或图形的本质规律与特征的一类探索性问题。

这类问题在素材的选取、文字的表述、题型的设计等方面都比较新颖新。

其目的是考查学生收集、分析数据,处理信息的能力。

所以规律探索型问题备受命题专家的青睐,逐渐成为中考数学的热门考题。

二.解题策略和解法精讲规律探索型问题是指在一定条件下,探索发现有关数学对象所具有的规律性或不变性的问题,它往往给出了一组变化了的数、式子、图形或条件,要求学生通过阅读、观察、分析、猜想来探索规律.它体现了“特殊到一般”的数学思想方法,考察了学生的分析、解决问题能力,观察、联想、归纳能力,以及探究能力和创新能力.题型可涉及填空、选择或解答.。

三.考点精讲 考点一:数与式变化规律通常根据给定一列数字、代数式、等式或者不等式,然后写出其中蕴含的一般规律,一般解法是先写出数式的基本结构,然后通过比较各式子中相同的部分和不同的部分,找出各部分的特征,改写成要求的规律的形式。

例1. 有一组数:13,25579,,101726,请观察它们的构成规律,用你发现的规律写出第n (n 为正整数)个数为 .分析:观察式子发现分子变化是奇数,分母是数的平方加1.根据规律求解即可. 解答:解:21211211⨯-=+; 23221521⨯-=+; 252311031⨯-=+;272411741⨯-=+; 219251265+⨯-=;…; ∴第n (n 为正整数)个数为2211n n -+. 点评:对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.此题的规律为:分子变化是奇数,分母是数的平方加1. 例2(2010广东汕头)阅读下列材料:1×2 =31(1×2×3-0×1×2), 2×3 = 31(2×3×4-1×2×3),3×4 = 31(3×4×5-2×3×4),由以上三个等式相加,可得1×2+2×3+3×4= 31×3×4×5 = 20. 读完以上材料,请你计算下列各题:(1) 1×2+2×3+3×4+···+10×11(写出过程);(2) 1×2+2×3+3×4+···+n ×(n +1) = ______________; (3) 1×2×3+2×3×4+3×4×5+···+7×8×9 = ______________.分析:仔细阅读提供的材料,可以发现求连续两个正整数积的和可以转化为裂项相消法进行简化计算,从而得到公式)1(433221+⨯++⨯+⨯+⨯n n[])1()1()2)(1()321432()210321(31+--++++⨯⨯-⨯⨯+⨯⨯-⨯⨯⨯=n n n n n n )2)(1(31++=n n n ;照此方法,同样有公式: )2()1(543432321+⨯+⨯++⨯⨯+⨯⨯+⨯⨯n n n [])2()1()1()3()2()1()43215432()32104321(41+⨯+⨯⨯--+⨯+⨯+⨯++⨯⨯⨯-⨯⨯⨯+⨯⨯⨯-⨯⨯⨯=n n n n n n n n )3)(2)(1(41+++=n n n n . 解:(1)∵1×2 = 31(1×2×3-0×1×2), 2×3 =31(2×3×4-1×2×3), 3×4 = 31(3×4×5-2×3×4),…10×11 =31(10×11×12-9×10×11), ∴1×2+2×3+3×4+···+10×11=31×10×11×12=440.(2))2)(1(31++n n n .(3)1260.点评:本题通过材料来探索有规律的数列求和公式,并应用此公式进行相关计算.本题系初、高中知识衔接的过渡题,对考查学生的探究学习、创新能力及综合运用知识的能力都有较高的要求.如果学生不掌握这些数列求和的公式,直接硬做,既耽误了考试时间,又容易出错.而这些数列的求和公式的探索,需要认真阅读材料,寻找材料中提供的解题方法与技巧,从而较为轻松地解决问题.例3(2010山东日照,19,8分)我们知道不等式的两边加(或减)同一个数(或式子)不等号的方向不变.不等式组是否也具有类似的性质?完成下列填空:一般地,如果⎩⎨⎧>>dc b a ,那么a +c b +d .(用“>”或“<”填空)你能应用不等式的性质证明上述关系式吗?分析:可以用不等式的基本性质和不等式的传递性进行证明。

中考数学复习《探索规律问题》经典题型及测试题(含答案)

中考数学复习《探索规律问题》经典题型及测试题(含答案)

中考数学复习《探索规律问题》经典题型及测试题(含答案)阅读与理解探索规律问题是中考数学中的常考问题,往往以选择题或填空题中的压轴题形式出现,主要命题方向有数式规律、图形变化规律、点的坐标规律等.基本解题思路为:从简单的、局部的、特殊的情形出发,通过分析、比较、提炼,发现其中的规律,进而归纳或猜想出一般性的结论,最后验证结论的正确性.即“从特殊情形入手→探索发现规律→猜想结论→验证”.类型一数式规律这类问题通常是先给出一组数或式子,通过观察、归纳这组数或式子的共性规律,写出一个一般性的结论.解决这类题目的关键是找出题目中的规律,即不变的和变化的,变化部分与序号的关系.例1 (2016·绥化)古希腊数学家把数1,3,6,10,15,21,…叫做三角数,它有一定的规律性.若把第一个三角数记为a1,第二个三角数记为a2,…,第n个三角数记为an ,计算a1+a2,a2+a3,a3+a4,…,由此推算a399+a400=.【分析】首先计算a1+a2,a2+a3,a3+a4的值,然后总结规律根据规律得出结论,进而求出a399+a400的值.【自主解答】∵a1+a2=1+3=4=22,a2+a3=3+6=9=32,a3+a4=6+10=16=42,…,∴an +an+1=(n+1)2.∴a399+a400=4002=160 000.故答案为160 000.变式训练:1.(2017·遵义)按一定规律排列的一列数依次为:,1,,,,,…,按此规律,这列数中的第100个数是.2.(2017年黄石)观察下列格式:=1﹣=+=1﹣+﹣=++=1﹣+﹣+﹣=…请按上述规律,写出第n个式子的计算结果(n为正整数).(写出最简计算结果即可)类型二图形规律这类题目通常是给出一组图形的排列(或通过操作得到一系列的图形),探求图形的变化规律,以图形为载体考查图形所蕴含的数量关系.解决此类问题先观察图案的变化趋势是增加还是减少,然后从第一个图形进行分析,运用从特殊到一般的探索方式,分析归纳找出增加或减少的变化规律,并用含有字母的代数式进行表示,最后用代入法求出特殊情况下的数值.例2 (2016·重庆)下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有4个小圆圈,第②个图形中一共有10个小圆圈,第③个图形中一共有19个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为( )A.64 B.77 C.80 D.85【分析】观察图形特点,可将图形分为两部分:上面的三角形和下面的正方形,因此小圆圈的个数分别是3+12,6+22,10+32,15+42,…,据此总结出规律求解即可.【自主解答】解:通过观察,得到小圆圈的个数分别是:第一个图形为:+12=4,第二个图形为:+22=6,第三个图形为:+32=10,第四个图形为:+42=15 …,所以第n个图形为:+n2,当n=7时,+72=85,故选D.变式训练:3.(2017·随州)在公园内,牡丹按正方形种植,在它的周围种植芍药,如图反映了牡丹的列数(n)和芍药的数量规律,那么当n=11时,芍药的数量为( )A.84株 B.88株 C.92株 D.121株4.(2015·德州)如图1,四边形ABCD中,AB∥CD,AD=DC=CB=a,∠A=60°.取AB的中点A1,连接A1C,再分别取A1C,BC的中点D1,C1,连接D1C1,得到四边形A1BC1D1.如图2,同样方法操作得到四边形A2BC2D2,如图3,…,如此进行下去,则四边形An BCnDn的面积为_______类型三点的坐标规律这类问题要求探索图形在运动过程中的规律,通常以平面直角坐标系为载体探索点的坐标的变化规律.解答时,应先写出前几次的变化过程,并将相邻两次的变化过程进行比对,明确哪些地方发生了变化,哪些地方没有发生变化,逐步发现规律,从而使问题得以解决.例3 (2017·东营)如图,在平面直角坐标系中,直线l:y=x﹣与x轴交于点B1,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x轴,交直线l于点B3,以A2B3为边长作等边三角形A3A2B3,…,则点A2017的横坐标是.21433an【分析】先根据直线l:y=x﹣与x轴交于点B1,可得B1(1,0),OB1=1,∠OB1D=30°,再,过A1作A1A⊥OB1于A,过A2作A2B⊥A1B2于B,过A3作A3C⊥A2B3于C,根据等边三角形的性质以及含30°角的直角三角形的性质,分别求得A1的横坐标为,A2的横坐标为,A3的横坐标为,进而得到An的横坐标为,据此可得点A2017的横坐标.【自主解答】解:由直线l:y=x﹣与x轴交于点B1,可得B1(1,0),D(﹣,0),∴OB1=1,∠OB1D=30°,如图所示,过A1作A1A⊥OB1于A,则OA=OB1=,即A1的横坐标为=,由题可得∠A1B2B1=∠OB1D=30°,∠B2A1B1=∠A1B1O=60°,∴∠A1B1B2=90°,∴A1B2=2A1B1=2,过A2作A2B⊥A1B2于B,则A1B=A1B2=1,即A2的横坐标为+1==,过A3作A3C⊥A2B3于C,同理可得,A2B3=2A2B2=4,A2C=A2B3=2,即A3的横坐标为+1+2==,同理可得,A4的横坐标为+1+2+4==,由此可得,An的横坐标为,∴点A2017的横坐标是,故答案为:.变式训练5.(2016·德州)如图,在平面直角坐标系中,函数y=2x和y=-x的图象分别为直线l1,l2,过点(1,0)作x轴的垂线交l1于点A1,过点A1作y轴的垂线交l2于点A2,过点A2作x轴的垂线交l1于点A3,过点A3作y轴的垂线交l2于点A4,…,依次进行下去,则点A2 017的坐标为__6.(2017·安顺)如图,在平面直角坐标系中,直线l:y=x+2交x轴于点A,交y轴于点A1,点A2,A3,…在直线l上,点B1,B2,B3,…在x轴的正半轴上,若△A1OB1,△A2B1B2,△A3B2B3,…,依次均为等腰直角三角形,直角顶点都在x轴上,则第n个等腰直角三角形An Bn-1Bn顶点Bn的横坐标为___。

(word完整版)中考数学规律探索专题复习

(word完整版)中考数学规律探索专题复习

中考数学规律探索专题复习一、典例精析类型之一 数字规律型例1. (2011丽江)下面是按一定规律排列的一列数:23,45-,87,169-,…那么第n 个数是 . 【简析】根据题意,首先从各个数开始分析,n=1时,分子:2=(﹣1)2•21,分母:3=2×1+1;n=2时,分子:﹣4=(﹣1)3•22,分母:5=2×2+1;…,即可推出第n 个数为12(1)21nn n +-•+。

【答案】解:∵n=1时,分子:2=(-1)2•21,分母:3=2×1+1;n=2时,分子:﹣4=(—1)3•22,分母:5=2×2+1; n=3时,分子:8=(—1)4•23,分母:7=2×3+1;n=4时,分子:﹣16=(-1)5•24,分母:9=2×4+1;…,∴第n 个数为:12(1)21n n n +-•+ 故答案为:12(1)21n n n +-•+. 例2:(2010深圳) 观察下列算式,用你所发现的规律得出22010的末位数字是( )。

21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,… A .2 B .4 C .6 D .8【简析】有些题目包含着事物的循环规律,找到了事物的循环规律,其他问题就可以迎刃而解.通过观察可以发现,本题中的数字从第1个到第4个为一个循环节,以此规律总结下来,第2010个图形应该就是一个循环节中的第2个数字,故选B.【答案】B对应练习1。

有一组数:1,2,5,10,17,26,……,请观察这组数的构成规律,用你发现的规律确定第8个数为 .2.(2011湛江)若:A 32=3×2=6,A 53=5×4×3=60,A 54=5×4×3×2=120,A 64=6×5×4×3=360,…,观察前面计算过程,寻找计算规律计算A 73= (直接写出计算结果),并比较A 103 A 104(填“>”或“<”或“=”) 类型之二 图形规律型例3:(2011•临沂)如图,上面各图都是用全等的等边三角形拼成的一组图形.则在第10个这……样的图形中共有 个等腰梯形.【简析】本题考查了图形的变化,解题的关键是按照一定的顺序依次找到符合条件的等腰梯形,做到不重复不遗漏.由于图②4个=2+1+1,图③8个3+2+2+1+1,图④16=4+3+3+2+2+1+1,由此即可得到第10个图形中等腰梯形的个数为:10+9+9+8+8+7+7+6+6+5+5+4+4+3+3+2+2+1+1=100. 【答案】100.例4: (2011兰州)如图,依次连结第一个矩形各边的中点得到一个菱形,再依次连结菱形各边的中点得到第二个矩形,按照此方法继续下去。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

规律探索型问题1. 如图,下面是按照一定规律画出的“数形图”,经观察可以发现:图A 2比图A 1多出2个“树枝”, 图A 3比图A 2多出4个“树枝”, 图A 4比图A 3多出8个“树枝”,……,照此 规律,图A 6比图A 2多出“树枝”D. 124答案C2. 将一些半径相同的小圆按如图所示的规律摆放,请仔细观察,第 n 个图形有 个小圆. 用含 n 的代数式表示答案(1)4n n ++或24n n ++3. 观察下列算式:① 1 × 3 - 22= 3 - 4 = -1② 2 × 4 - 32= 8 - 9 = -1③ 3 × 5 - 42= 15 - 16 = -1 ④ ……1请你按以上规律写出第4个算式; 2把这个规律用含字母的式子表示出来;3你认为2中所写出的式子一定成立吗并说明理由.答案解:⑴246524251⨯-=-=-;⑵答案不唯一.如()()2211n n n +-+=-;⑶()()221n n n +-+ ()22221n n n n =+-++22221n n n n =+--- 1=-.第1个图形第 2 个图形第3个图形 第 4 个图形4. 观察上面的图形,它们是按一定规律排列的,依照此规律,第_____个图形共有120 个;答案155. 先找规律,再填数:1111111111111111,,,,122342125633078456............111+_______.2011201220112012+-=+-=+-=+-=-=⨯则 答案110066. 观察下面的变形规律:211⨯ =1-12; 321⨯=12-31;431⨯=31-41;……解答下面的问题: 1若n 为正整数,请你猜想)1(1+n n = ;2证明你猜想的结论; 3求和:211⨯+321⨯+431⨯+…+201020091⨯ .答案 1111n n -+ 2证明:n 1-11+n =)1(1++n n n -)1(+n n n =1(1)n nn n +-+=)1(1+n n .3原式=1-12+12-31+31-41+…+20091-20101 =12009120102010-=. 7. 设12211=112S ++,22211=123S ++,32211=134S ++,…, 2211=1(1)n S n n +++ 设12...n S S S S =+++,则S=_________ 用含n 的代数式表示,其中n 为正整数.答案122++n nn .22111(1)n S n n =+++=21111[]2(1)(1)n n n n +-+⨯++=2111[]2(1)(1)n n n n ++⨯++ =21[1](1)n n ++∴S=1(1)12+⨯+1(1)23+⨯+1(1)34+⨯+…+1(1)(1)n n ++122++=n n n .接下去利用拆项法111(1)1n n n n =-++即可求和.8. 如下数表是由从1 开始的连续自然数组成,观察规律并完成各题的解答.1表中第8行的最后一个数是 ,它是自然数 的平方,第8行共有 个数;2用含n 的代数式表示:第n 行的第一个数是 ,最后一个数是 ,第n 行共有 个数;3求第n 行各数之和.解164,8,15;22(1)1n -+,2n ,21n -;3第2行各数之和等于3×3;第3行各数之和等于5×7;第4行各数之和等于7×7-13;类似的,第n 行各数之和等于2(21)(1)n n n --+=322331n n n -+-.9.求1+2+22+23+…+22012的值,可令S=1+2+22+23+…+22012,则2S=2+22+23+24+…+22013,因此2S ﹣S=22013﹣1.仿照以上推理,计算出1+5+52+53+…+52012的值为A .52012﹣1 B .52013﹣1 C . D .解析设S=1+5+52+53+…+52012,则5S=5+52+53+54+…+52013,因此,5S ﹣S=52013﹣1,S=答案选C .10.观察下列一组数:32,54,76,98,1110,…… ,它们是按一定规律排列的,那么这一组数的第k 个数是 . 答案122+k k11. 观察下列面一列数:1,-2,3,-4,5,-6,…根据你发现的规律,第2012个数是___________ 答案-201212.在下图中,每个图案均由边长为1的小正方形按一定的规律堆叠而成,照此规律,第10个图案中共有 个小正方形;答案100.13、如图,第1个图有2个相同的小正方形,第1个图有2个相同的小正方形,第2个图有6个相同的小正方形,第3个图有12个相同的小正方形,第4个图有20个相同的小正方形,……,按此规律,那么第n 个图有 个相同的小正方形;(1) 2 3 4 解析:因为()()()()1445420,1334312,122326,111212+⨯=⨯=+⨯=⨯=+⨯=⨯=+⨯=⨯=,故第n 个图有n n +2个小正方形 .答案n n +2或nn+114.如图,是由形状相同的正六边形和正三角形镶嵌而成的一组有规律的图案,则第n 个图案中阴影小三角形的个数是 .故答案为:4n ﹣2或2+4n ﹣1 答案4n ﹣2或2+4n ﹣115.在平面直角坐标系xOy 中,点1A ,2A ,3A ,…和1B ,2B ,3B ,…分别在直线y kx b =+和x 轴上.△OA 1B 1,△B 1A 2B 2,△B 2A 3B 3,…都是等腰直角三角形,如果A 11,1,A 223,27,那么点nA 的纵坐标是_ _____.答案123-⎪⎭⎫⎝⎛n 16.观察下列等式: 第1个等式:a 1==21×1﹣31; 第2个等式:a 2==21×31﹣51; 第3个等式:a 3==21× 51﹣71; 第4个等式:a 4==21×71﹣91; …请解答下列问题:1按以上规律列出第5个等式:a 5= = ;2用含有n 的代数式表示第n 个等式:a n = = n 为正整数; 3求a 1+a 2+a 3+a 4+…+a 100的值. 解答: 解:根据观察知答案分别为:1; ;2;;3.y xy=kx+bOB 3B 2 B 1 A 3 A 2A 117.右图中每一个小方格的面积为1,则可根据面积计算得到如下算式: ()127531-+⋅⋅⋅++++n = .()是正整数表示,用n n解答:当2=n 时:()224122131==-⨯+=+当3=n 时:()23913231531==-⨯++=++当4=n 时:()24161425317531==-⨯+++=+++猜想:()127531-+⋅⋅⋅++++n =2n18.一组数据为:234,2,4,8,x x x x --观察其规律,推断第n 个数据应为 .答案11(1)2n n n x +--19. 小明用棋子摆放图形来研究数的规律.图1中棋子围成三角形,其颗数3,6,9,12,···成为三角形数,类似地,图2中的4,8,12,16,···称为正方形数.下列数中既是三角形数又是正方形数的是答案:D20.下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,…,则第⑥个图形中五角星的个数为解析:都是轴对称图形,每一排的个数都是偶数,分别是2,4,6,…6,4,2,故第六个图形五角星个数可列式为:2+4+6+8+10+12+10+8+6+4+2=72.答案D21.根据排列规律,在横线上填上合适的代数式:x,-3x2,5x3, -7x4 ,9x5,… ,表示第n代数式.22.如图,第①个图形中一共有1个平行四边形,第②个图形中一共有5个平行四边形,第③个图形中一共有11个平行四边形,……则第⑩个图形中平行四边形的个数是解析图形①中1=1×1+0,图形②中5=2×2+1,图形③中11=3×3+2,……,依次类推,∴第⑩个图形中平行四边形的个数是10×10+9=109解答D.23.如图12,已知A1,A2,A3,…A n,…是x轴上的点,且OA1=A1A2=A2A3=…=A n-1A n…=1,分别过点A1,A2,A3,…A n,…作x轴的垂线交反比例函数y=1xx>0的图象于点B1,B2,B3,…B n,…,过点B2作B2P1⊥A1B1于点P1,过点B3作B3P2⊥A2B2于点P2……,记△B1P1B2的面积为S1,△B2P2B3的面积为S2……,△B n P n B n+1的面积为S n,则S1+S2+S3+…+S n=.解析由OA1=A1A2=A2A3=…=A n-1A n…=1,可得P1B2=P2B3=P3B4=…=P n B n+1=1,以及B11,1,B22,12,B33,13,…,B n n,1n,B n+1n+1,11n+,所以S1+S2+S3+…+S n=12B1P1·P1B2+1 2B2P2·P2B3+…12B n P n·P n B n+1=12B1P1+B2P2+…B n P n=121-12+12-13+…+1n-11n+=1 2 1-11n+=2(1)nn+.答案2(1)nn+yx O A1A2A3B1B2B3P1P2图1210题图24. 同样大小的黑色棋子按如图所示的规律摆放:① 第5个图形有多少颗黑色棋子 ② 第几个图形有2013颗棋子说明理由;解析第一个图需棋子6,第二个图需棋子9,第三个图需棋子12,第四个图需棋子15,第五个图需棋子18,…第n 个图需棋子3n+1枚. 答案118;2第670个图形25、如图,一只青蛙在圆周上标有数字的五个点上跳,若它停在奇数点上,则下次沿顺时针方向跳两个点;若停在偶数点上,则下次沿逆时针方向跳一个点.若青蛙从5这点开始跳,则经过2012次后它停在哪个数对应的点上 A .1 B .2 C .3 D .5 答案:D26、将1、错误!、错误!、错误!按右侧方式排列.若规定m ,n 表示第m 排从左向右第n 个数,则4,2与21,2表示的两数之积是 . A .1 B .2 C .2错误! D .6答案:D27、下列图形都是由同样大小的正方形按一定的规律组成,其中,第①个图形中一共有1个正方形,第②个图形中一共有5个正方形,第③个图形中一共有14个正方形,……则第⑦个图形中正方形的个数为A 、49B 、 100C 、140D 、91 答案:C第1个第2个 第3个 第4个134111122663263323第1排第2排第3排第4排第5排……28、如图,已知直线l :y =x ,过点A 0,1作y 轴的垂线交直线l 于点B ,过点B 作直线l 的垂线交y 轴于点A 1;过点A 1作y 轴的垂线交直线l 于点B 1,过点B 1作直线l 的垂线交y 轴于点A 2;…;按此作法继续下去,则点A 4的坐标为A 、0,64B 、0,128C 、0,256D 、0,512答案: C29、如图,直线x y 33=,点1A 坐标为1,0,过点1A 作x 轴的垂线交直线于点1B ,以原点O 为圆心,1OB 长为半径画弧交x 轴于点2A ;再过点2A 作x 轴的垂线交直线于点2B ,以原点O 为圆心,2OB 长为半径画弧交x 轴于点3A ,…,按此做法进行 下去,点n A 的横坐标为A .1)332(-n B .23()3n C .32()3n D .132()3n答案:A第29题图30.如图,△ABC 是边长为1的等边三角形.取BC 边中点E ,作ED ∥AB ,EF ∥AC ,得到四边形EDAF ,它的面积记作S 1;取BE 中点E 1,作E 1D 1∥FB ,E 1F 1∥EF ,得到四边形E 1D 1FF 1,它的面积记作S 2.照此规律作下去,S 2012=A .201023 B .201223 C .402423 D.402523答案:D31.观察下列图形:若图形1中阴影部分的面积为1,图形2中阴影部分的面积为43,图形3中阴影部分的面积为169,图形4中阴影部分的面积为6427,…,则第n 个图形中阴影部分的面积用字母表示为⑷⑶⑵⑴A .n 43B .n)43(C .1)43(-nD .1)43(+n答案:CA1第7题图第31题32.下列图形都是由同样大小的等边三角形按一定的规律组成,其中,第①个图形中一共有3根小棒,第②个图形中一共有9根小棒,第③个图形中一共有18根小棒,……,则第⑥个图形中小棒的根数为① ② ③A .60B .63C .69D .72 答案B33.已知a ≠0,12S a =,212S S =,322S S =,…,201220112S S =, 则2012S = 用含a 的代数式表示. 答案:1a34、如图,n +1个上底、两腰长皆为1,下底长为2的等腰梯形的下底均在同一直线上,设四边形P 1M 1N 1N 2面积为S 1,四边形P 2M 2N 2N 3的面积为S 2,……,四边形P n M n N n N n +1的面积记为S n ,则S n = ▲答案:33121n n ++ 35、设12211=112S ++,22211=123S ++,32211=134S ++,…, 2211=1(1)n S n n +++,若12...n S S S S =则S =_________ 用含n 的代数式表示,其中n 为正整数. 答案: )1()2(2++n n n……36、如图,对面积为1的△ABC 逐次进行以下操作:第一次操作,分别延长AB 、BC 、CA 至A 1、B 1、C 1,使得A 1B =2AB ,B 1C =2BC ,C 1A =2CA ,顺次连接A 1、B 1、C 1,得到△A 1B 1C 1,记其面积为S 1;第二次操作,分别延长A 1B 1,B 1C 1,C 1A 1至A 2,B 2,C 2,使得A 2B 1=2A 1B 1,B 2C 1=2B 1C 1,C 2A 1=2C 1A 1,顺次连接A 2,B 2,C 2,得到△A 2B 2C 2,记其面积为S 2……,按此规律继续下去,可得到△A 5B 5C 5,则其面积为S 5=_________. 第n 次操作得到△A n B n C n ,则△A n B n C n 的面积S n = .答案:195 19n37、在∠A 0°<∠A <90°的内部画线段,并使线段的两端点分别落在角的两边AB 、AC 上,如图所示,从点A 1开始,依次向右画线段,使线段与线段在两端点处互相垂直,A 1A 2为第1条线段.设AA 1=A 1A 2=A 2A 3=1,则∠A = ;若记线段A 2n-1A 2n 的长度为a n n 为正整数,如A 1A 2=a 1,A 3A 4=a 2,则此时a 2= ,a n = 用含n 的式子表示.答案:22.5;12+1(12)n -+38. 下图中的实心点个数1,5,12,22,…,被称为五角形数,若按此规律继续下去,则第5个五角形数是 .答案:35第38题 5 12 1 22第39题 D 2D 3E 2E 3E 1D 1A BC 39.如图,已知Rt △ABC ,D 1是斜边AB 的中点,过D 1作D 1E 1⊥AC 于E 1,连结BE 1交CD 1于D 2;过D 2作D 2E 2⊥AC 于E 2,连结BE 2交CD 1于D 3;过D 3作D 3E 3⊥AC 于E 3,…,如此继续,可以依次得到点E 4、E 5、…、E n ,分别记△BCE 1、△BCE 2、△BCE 3···△BCE n 的面积为S 1、S 2、S 3、…S n . 则S n = S △ABC 用含n 的代数式表示.答案:40. 一组按规律排列的数:2,0,4,0,6,0,…,其中第7个数是 ,第n 个数是 .用含字母n 的代数式表示,n 为正整数.答案:8,())1(2111+-++n n41、人们经常利用图形的规律来计算一些数的和、如在边长为1的网格图1中,从左下角开始,相邻的黑折线围成的面积分别是1,3,5,7,9,11,13,15,17…,它们有下面的规律:1+3=22;1+3+5=32;1+3+5+7=42;1+3+5+7+9=52;…第1题1请你按照上述规律,计算1+3+5+7+9+11+13的值,并在图1中画出能表示该算式的图形;2请你按照上述规律,计算第n条黑折线与第n﹣1条黑折线所围成的图形面积;3请你在边长为1的网格图2中画出下列算式所表示的图形1+8=32;1+8+16=52;1+8+16+24=72;1+8+16+24+32=92.解答:解:11+3+5+7+9+11+13=72.算式表示的意义如图1.2第n条黑折线与第n﹣1条黑折线所围成的图形面积为2n﹣1.3算式表示的意义如图2,3等.。

相关文档
最新文档