第4章凸轮机构
第4章--凸轮机构
理论轮廓 实际轮廓
④将各中心点连接成一条光滑曲线。 ⑤作各位置滚子圆的内(外)包络线(中心轨迹的等距曲线)。
3、对心直动平底推杆盘形凸轮
对心直动平底推杆凸轮机构中,
已知凸轮的基圆半径r0,角速度ω和
推杆的运动规律,设计该凸轮轮廓曲
线。
8’ 7’ 5’ 3’ 1’
一、凸轮机构的工作过程
名词术语:基圆、基圆半径、推程、
s
推程运动角、远停程、远停程角、 B’
回程、 回程运动角、 近停程、 近停程角
运动规律:推杆在推程或回程
时,其位移S、速度V、和加速 度a 随时间t 的变化规律。
A
D δ0
2
δ’0
r0
δ
0
δ01
h
t
o δ0 δ δ’ δ δ
01 0 02
ω
B
S=S(t)
滚子材料可选用20Cr、18CrMoTi等,经渗碳淬火,表 面硬度达56~62HRC,也可用滚动轴承作为滚子。
实例分析
实例一 图4-33是钉 鞋机中主要组成部件—凸 轮组件,从图中可看出, 当钉鞋机转动手轮,使得 凸轮组件转动时,实际上 是四个不同的凸轮同时在 转动,两个是凹槽凸轮, 两个是一般常见的盘形凸 轮。钉鞋机就是靠四个凸 轮带动相对应的杆件运动 来达到预定的运动要求, 完成钉鞋机的工作。
④作平底直线族的内包络线。
4、偏置直动尖顶推杆盘形凸轮
偏置直动尖顶推杆凸轮机构中,
e
已知凸轮的基圆半径r0,角速度ω和推
-ω
杆的运动规律和偏心距e,设计该凸轮
轮廓曲线。
8’ 7’ 5’ 3’ 1’
1 3 5 78
第四章 凸轮机构
直动从动件凸轮机构
摆动从动件凸轮机构
7
4.1 凸轮机构的应用和类型
凸轮机构分类 按从动件的形式分:
尖顶从动件凸轮机构
平底从动件凸轮机构
滚子从动件凸轮机构
8
4.1 凸轮机构的应用和类型
凸轮机构分类
按凸轮与从动件保持接触的方式分类(锁合方式):
重力锁合
,t
h cos 2 2
2 2
,t
加速度曲线不连续,存在 柔性冲击。余弦加速度运动 规律适用于中低速中载场 合。
a
amax4.93h2Φ 2
,t
4.2 从动件的运动规律
3. 余弦加速度运动规律
v 5 h /20 4 3 6 2
速度线图
7 1
8 0
第四章 凸轮机构
4.1 凸轮机构的应用和类型
4.2 从动件的常用运动规律 4.3 凸轮机构的压力角
4.4 图解法设计凸轮轮廓
1
4.1 凸轮机构的应用和类型
凸轮机构实例
内燃机配气机构
2
4.1 凸轮机构的应用和类型
凸轮机构实例
自动机床进刀机构
3
4.1 凸轮机构的应用和类型
凸轮机构实例
绕线机构
4
4.1 凸轮机构的应用和类型
弹簧力锁合
槽道凸轮机构
等宽凸轮机构
力封闭凸轮机构
等径凸轮机构
共轭凸轮机构
几何结构封闭凸轮机构
4.1 凸轮机构的应用和类型 凸轮机构的特点:
优点:只需设计适当的凸轮轮廓,便可使从动件得到 所需的运动规律,并且结构简单、紧凑,设计方便。
缺点:凸轮廓线与推杆之间为点接触或线接触,易 磨损,所以凸轮机构多用在传力不大的场合。
机械设计基础第四章
对心尖端直动从动件 12 盘形凸轮机构
等速运动规律 等加速等减速运动规律 余弦加速度运动规律 正弦加速度运动规律
13
一、等速运动规律
h v2 常数 t1
h s2 v2 t t t1
a2 0
刚性冲击
14
从动件的速度有突变,加速度理论上
发生无穷突变,产生巨大的惯性力, 从而对凸轮机构造成强烈冲击。
轮廓的设计方法及步骤
凸轮机构的基圆半径与许用压力角有什么关系? 棘轮机构和槽轮机构各有什么特点? 槽轮机构有哪些主要参数?如何选取?
76
作业
85~86页: 4-2,4-3,4-4,4-5,4-9,4-11
77
rk<ρmin时,可画出完整的轮廓曲线β’
49
rk=ρmin时, ρ′=0
β’出现尖点 易磨损,从而改变预定的从动件运动规律
50
rk>ρmin时, ρ’<0 β’将出现交叉,在交 叉点以上部分的曲线 加工时将被切去,致 使从动件不能实现预 期的运动规律而发生 运动失真。
51
外凸时,rk min ,
3
内 燃 机 的 凸 轮 配 气 机 构
4
绕线机的凸轮绕线机构
5
缝纫机的凸轮拉线机构
6
移动凸轮机构
7
分类
按凸轮的形状分
盘形凸轮 移动凸轮 圆柱凸轮
8
按从动件的结构型式分
尖顶从动件
构造简单、易磨损、用于仪表机构
滚子从动件
磨损小,应用广
平底从动件
受力小、润滑好,用于高速传动
9
按从动件的运动方式分
※ 从动件在反转时依次占据的位置均是偏距圆的切线55
机械设计基础-第4章-1-凸轮机构
30
30
120
120
90
δ
360
七、解析法设计凸轮轮廓曲线
1、偏置直动滚子从动件盘形凸轮轮廓的设计
建立凸轮转轴中心的坐标系xOy
根据反转法原理,凸轮以w转过j角;
B点坐标为
x y
(s0 (s0
s) sin j s) cosj
e cosj esinj
上式即为凸轮理论廓线方程
实际廓线与理论廓线在法线上相距
凸轮机构由凸轮、从动件和机架三部分组成。
凸轮机构是高副机构,易于磨损,因此只适用于传 递动力不大的场合。
示例一 内燃机配气机构
示例二 靠模车削机构
示例 绕线机的凸轮绕线机构
示例 缝纫机的凸轮拉线机构
凸轮机构的主要优点: 使从动件实现预定的运动规律,结接触,容易磨损。 用于传递动力不大的控制机构或调节机构。
2、自D0起,沿-ω方向取δ1-4 角,等分各部分,从D1起以 从动件长度为半径作圆,与基 圆交于C点。
3、C1D1起,分别量取β角, 与2的圆交于B点,连接B0、 B1、B2…,即为凸轮曲线。
例题:设计盘形凸轮机构,已知凸轮角速度ω1逆时针转动, 基圆半径r0=30mm,从动件的行程h=40mm。从动件的 位移线图如下:
第四章 凸轮机构及间歇运动机构
§4-1 凸轮机构的应用和分类 §4-2 从动件常用的运动规律 §4-3 盘形凸轮轮廓曲线的设计 §4-4 凸轮机构设计中应注意的问题 §4-5 间歇运动机构
§4-1 凸轮机构的应用和分类
凸轮是一种具有曲线轮廓或凹槽的构件,它通过与从 动件的高副接触,在运动时可以使从动件获得连续或不 连续的任意预期运动。
当凸轮继续以角速度ω1逆时针 转过角度δ2时,从动件尖顶从 C到D,在最远位置停止不动, 对应的δ2是远休止角。
机械设计基础 第七版 第4章 凸轮机构
4.1.2 凸轮机构的分类
2 按从动件的端部结构分类
(2)滚子从动件 从动件端部装有可以自山转动 的滚子,滚子与凸轮轮廓之间为滚 动摩擦,耐磨损,可以承受较大的 载荷,故应用广泛,如图所示。
动画
4.1.2 凸轮机构的分类
2 按从动件的端部结构分类
(3)平底从动件
从动件的端部是一平底,这种
从动件与凸轮轮廓接触处在一定条
1
按凸轮形状分类
(3)圆柱凸轮 圆柱体的表面上具有曲线凹槽或端面上具有曲线轮廓,称为圆
柱凸轮。属于空间凸轮机构。
动画 圆柱凸轮机构
4.1.2 凸轮机构的分类
2 按从动件的端部结构分类
(1)尖顶从动件 从动件端部以尖顶与凸轮轮廓接 触,如图所示。这种从动件结构最简 单,尖顶能与复杂的凸轮轮廓保持接 触,因此理论上可以实现任意预期的 运动规律。尖顶从动件是研究其他类 型从动件凸轮机构的基础。由于尖顶 与凸轮是点接触,易磨损,故仅适用 于低速轻载的凸轮机构中。
4.1 凸轮机构的类型及应用 4.2 凸轮机构的从动件常用运动规律 4.3 盘形凸轮轮廓的设计方法 4.4 凸轮机构设计中应注意的问题 4.5 凸轮机构的常用材料和结构
4.1 凸轮机构的类型及应用
学习要点 •了解凸轮机构的组成、分类方法和在工程实际中的应用。
4.1.1 凸轮机构的应用和组成 4.1.2 凸轮机构的分类
4.1.2 凸轮机构的分类
1
按凸轮形状分类
(1)盘形凸轮
具有变化向径的盘状构件称为盘形凸轮。它是凸轮的基本形式。
内燃机配气机构
绕线机的凸轮机构
4.1.2 凸轮机构的分类
1
按凸轮形状分类
(2)移动凸轮 做移动的平面凸轮。可看作是当转动中心在无穷远处时盘形凸
机械设计基础 第四章
(1) 盘形凸轮机构
盘形凸轮机构是最常见的凸轮机构, 其机构中的凸轮是绕固定轴线转动并具 有变化向径的盘形零件,如图4-2所示。
图4-2 内燃机配气机构
(2) 移动凸轮机构
当盘形凸轮的 回转中心趋于无穷 远时,凸轮不再转 动,而是相对于机 架作直线往复运动, 这种凸轮机构称为 移动凸轮机构(参见 图4-4)。
用光滑的曲线连接这些点便得到推程等加速段的位移线图,等
减速段的位移线图可用同样的方法求得。
等加速、等减速运动规律的位移、速度、加速度线图如图 4-10所示。由图4-10(c) 可知,等加速、等减速运动规律在运动 起点O、中点A 和终点B 的加速度突变为有限值,从动件会产生 柔性冲击,适用于中速场合。
4.3 盘形凸轮轮廓的绘制
凸轮轮廓的设计方法有作图法和解析法两种。其中,作图 法直观、方便,精确度较低,但一般能满足机械的要求;解析 法精确高,计算工作量大。本节主要介绍作图法。
4.3.1 凸轮轮廓曲线设计的基本原理
凸轮机构工作时,凸轮是运动的,而绘在图纸上的凸轮是静 止的。因此,绘制凸轮轮廓时可采用反转法。
s
2h
2 0
2
(4-2)
等加速、等减速运动规律的位移线图的画法为:
将推程角
0 两等分,每等分为
0 2
;
将行程两等分,每等分 h ,将 0 若干等分,
2
2
得点1、2、3、…,过这些点作横坐标的垂线。
将 h 分成相同的等分,得点1′、2′、3′、…,连01′、02′、
2
03′、…与相应的横坐标的垂线分别相交于点1″、2″、3″、…,
图4-5 平底从动件
3. 按从动件与凸轮保持接触的方式分
(1) 力锁合的凸轮机构
第4章 凸轮机构
滚子半径(rT)的确定
内凹的凸轮轮廓
a min rT
不论滚子半径大小如何, 凸轮的工作廓线总是可 以平滑地作出。
外凸的凸轮轮廓
a min - rT
1)当ρmin= rT,实际轮 廓上将出现尖点
2)当ρmin<rT时,则 为负值,这时实际的轮 廓出现交叉,从动轮将 不能按照预期的运动规 律运动,这种现象称为
从动件位移曲线
盘形凸轮机构基本概念
凸轮轮廓组成 非圆弧曲线 AB、CD 圆弧曲线 BC、DA
基圆 基圆半径r0 推程 行程h
推程运动角δ0 远休止 远休止角δs 回程 回程运动角δh 近休止 近休止角δs
从动件位移曲线
等速运动规律
从动件速度为定值的运动规律称为等速运动规律。
推程
回程(空回行程) [a ] 70 0 ~ 80 0
压力角的选择和检验
压力角与机构尺寸的关系
由速度合成定理作出 B 点的速 度三角形,可得:
tana PD OP e ds/d e
BD s0 s
r02 e2 s
于是
r0
ds/d
(
e
s) 2
e2
tg[a ]
压力角的选择和检验
检验压力角
注意:若测量结果超过许用值,通常可用加大凸轮
基圆半径的方法使max 减小。
设计凸轮机构应注意的问题
若v、s、 已知,则压力角越大,基圆半径 越小,使得机构尺寸紧凑,但易产生自锁。
压力角越小,无用分力越小,受力性能提 高,传动效率加大,避免自锁。
针对凸轮机构传力性能和尺寸紧凑的矛盾, 设计时通常应考虑许用压力角[a]。 一般只针对推程进行压力角的校核。回程 中从动件是由弹簧、自重等外力驱动,而非由 凸轮驱动,故在回程中通常不产生自锁。
机械原理_第4章__凸轮机构及其设计
图4.1 内燃机配气凸轮机构
图4.2
绕线机排线凸轮机构
图4.3所示为录音机卷带装置中的凸轮机构。工作时,凸 轮1处于图示最低位置,在弹簧5的作用下,安装于带轮轴上 的摩擦轮3紧靠卷带轮4,从而将磁带卷紧。停止放音时,凸 轮1随按键上移,其轮廓迫使从动件顺时针方向摆动,使摩 擦轮与卷带轮分离,从而停止卷带。
1. 多项式运动规律
多项式运动规律的一般形式为
s = C 0 + C 1δ + C 2 δ 2 + C 3δ 3 + L + C n δ n
式中, δ 为凸轮转角;s为从动件位 为凸轮转角;s C C C C C 移; 0 , 1 , 2 , 3 ,…, n 为待定常数,可利用边 界条件来确定。 常用的有一次(n=1)多项式(即等速运动规律) 常用的有一次(n=1)多项式(即等速运动规律);二次 (n=2)多项式(即等加速等减速运动规律);五次(n=5) (n=2)多项式(即等加速等减速运动规律);五次(n=5) 多项式运动规律。
图4.10 改进等速 运动规律
图4.11 改进等加速等减速 运动规律
【例4.1】 直动从动件凸轮机构。已知:从动件行程 h=20mm,推程运动角 δ t = 150° ,远休止角 δ s = 60°,回程 运动角 δ h = 120° ,近休止角 δ 's = 30° ;从动件推程、回程分 别采用简谐运动规律和摆线运动规律。试写出从动件一 个运动循环的位移、速度和加速度方程。 解:(1) 从动件推程运动方程。 推程段采用简谐运动规律,故将推程运动角 δ t = 150° 5π /6、行程h=20mm代入简谐运动规律推程运 = 动方程式,可推出
● 4.4 凸轮轮廓曲线的设计——解析法 凸轮轮廓曲线的设计——解析法 曲线的设计—— ●4.4.1 滚子直动从动件盘形凸轮机构 ●4.4.2 滚子摆动从动件盘形凸轮机构理论轮廓 曲线方程 ●4.4.3 平底直动从动件盘形凸轮机构 ●4.4.4 滚子直动从动件圆柱凸轮机构 ● 4.5 凸轮机构基本尺寸的确定 ●4.5.1 凸轮机构的压力角和自锁 ●4.5.2 凸轮基圆半径的确定 ●4.5.3 滚子半径的选择 ●4.5.4 平底从动件的平底尺寸的确定 ● 小结
第4章凸轮机构及简谐运动机构
机械设计基础 —— 凸轮机构及间歇运动机构
三、对心直动平底从动件盘形凸轮
已知凸轮的基圆半径rmin,角速度ω 1和从动件 运动规律,设计该凸轮轮廓曲线。
7’ 5’ 3’ 8’ 9’ 11’ 12’ 13’ 14’ 9 11 13 15
-ω 1
ω1
1’ 2’ 3’ 12 4’ 3 4 5’ 5 6’ 6 7 7’ 8 8’
1’
1 3 5 78
15 14’ 14 13’ 13 12 11 9 10 12’
11’ 设计步骤: 10’ 9’ ①选比例尺μ l作基圆rmin。 ②反向等分各运动角。原则是:陡密缓疏。 ③确定反转后,从动件平底直线在各等份点的位置。 ④作平底直线族的内包络线。
机械设计基础 —— 凸轮机构及间歇运动机构
四、摆动从动件盘形凸轮机构
已知凸轮的基圆半径rmin, 角速度ω 1,摆杆长度l以 及摆杆回转中心与凸轮 回转中心的距离d,摆杆 角位移方程,设计该凸 d 轮轮廓曲线。
4’ 3’ 2’ 1’ 1 2 3 4
A l
φ1
A1 ω 1
5’ 6’
7’ 8’ 5 6 7 8
A8
B’2 φ2 B’1 A2 B’3 B B2 B3 B 1 B’φ3 4 ω rmin 1 120° 4 B A3 90 ° B8 60 ° B5 B6 B’6
φ4
B’5 A4
A7
φ7
A6
B7 B’7
φ6
A
φ5
机械设计基础 —— 凸轮机构及间歇运动机构
4-4 凸轮机构设计中应注意的问题
一、压力角与凸轮的基圆半径 压力角α:从动件上受力方向与运动方向所夹的锐角。 受力分析(不计凸轮与从动件的摩擦): α = α(t) Fy= Fn cosα Fx= Fn sinα
机械原理第四章凸轮机构及其设计
组合运动规律
组合后的从动件运动规律应满足的条件: 1. 满足工作对从动件特殊的运动要求。 2. 各段运动规律的位移、速度和加速度曲线在连接点处其值应分别相等,避免刚性冲击和柔性冲击
,这是运动规律组合时应满足的边界条件。 3. 应使最大速度vmax和最大加速度amax的值尽可能小,以避免过大的动量和惯性力对机构运转造成
摆动从动件盘形凸轮廓线的设计
(1)选取适当的比例尺,作出从动件的位移线图,并将推程和回程区 间位移曲线的横坐标各分成若干等份。与移动从动件不同的是,这 里纵坐标代表从动件的摆角, 单位角度。
移动从动件盘形凸轮廓线的设计
若同时作出这族滚子圆的内、外包络线 h'和 h" 则形成槽凸轮的轮廓曲线。
由上述作图过程可知,在滚子从动件盘形凸 轮机构的设计中,r0指的是理论廓线的基圆半 径。需要指出的是,从动件的滚子与凸轮实 际廓线的接触点是变化的。
移动从动件盘形凸轮廓线的设计
偏置移动滚子从动件盘形凸轮机构具体设计 步骤演示
凸轮廓线设计的基本原理
反转时,凸轮机构的运动: 凸轮固定不动,而让从动件连同导路一起 绕O点以角速度(-ω)转过φ1角 。 此时从动件将一方面随导路一起以角速度 (-ω)转动,同时又在导路中作相对移动 ,运动到图中粉红色虚线所示的位置,从 动件向上移动的距离与前相同。 从动件尖端所占据的位置 B 一定是凸轮轮 廓曲线上的一点。若继续反转从动件,可 得凸轮轮廓曲线上的其它点。
基本概念
偏距 凸轮回转中心至从动件导路的偏置距离 e。
偏距圆 以e为半径作的圆。
基本概念
行程 从动件往复运动的最大位移,用h表示 。
基本概念
推程 从动件背离凸轮轴心运动的行程。
第4章 凸轮机构
实际廓线的曲率半径:ra 滚子半径:rr
内凹轮廓:
理论轮廓曲线最小曲率半径的求法:
二、凸轮机构的压力角和自锁
当不计凸轮与从动件之间的摩擦时,凸轮作用于从动件上的 力F将沿接触点法线nn 方向
力F可分解成F 1 和 F 2 两个分 力 F2 = F cosα F1 = F sinα 自锁 F1≤F
假想给整个机构加一公 共角速度-ω,
凸轮:相对静止不动
推杆:一方面随导轨以-ω 绕凸轮轴心转动
另一方面又沿导轨作预期的 往复移动 推杆尖顶在这种复合运动中 的运动轨迹即为凸轮轮廓曲 线。
(二)、图解法的方法和步骤
设计凸轮廓线的图解法是根据反转法原 理作出从动件推杆尖顶在反转运动中依 次占据的各位置,然后作出其高副元素 所形成的曲线族;并作从动件高副元素 所形成的曲线族的包络线,即是所求的 凸轮轮廓曲线。
3、对心直动平底从动件盘形凸轮机构 已知条件: 凸轮的基圆半径为r0,凸轮沿逆时针方向等速回转。推 杆的运动规律如图所示。试设计对心直动平底从动件盘形凸轮机构 的凸轮廓线。
4、偏置直动尖顶从动件盘形凸轮机构 已知条件:已知凸轮的基圆半径为r0,凸轮沿逆时针方向等速回转。 从动画中看,从动件 而推杆的运动规律已知,已知偏距e。试设计。
通常设计凸轮机构时是先根据结构要求初步确定基圆半径r0 后校核凸轮机构的最 大压力角αmax .
(4)、压力角校核 αmax一般出现在 1)从动件的起点位置 2)从动件最大速度位置 3)凸轮轮廓向径变化最大部分
滚子从动件按理论轮廓校核 平底从动件一般α=0,不需校核 若αmax > [α]: 增大基圆半径 偏置从动件
三、凸轮基圆半径的确定
r0
第四章-凸轮机构解读
首先,作出理论廓线
B
o
理论廓线与实际廓 线是两条平行线
o
B T
滚子与实际廓线的接 触点T不一定在滚子中 心与导路的方向线上。
所以不能用理论廓 线的各点向径OB减
o 去滚子半径rT,求实
际廓线.
n
B
d
T
3、平底从动件
(1)取平底与导路的交点B0为参考点 (2)把B0看作尖底,运用上述方法找到B1、B2… (3)过B1、B2…点作出一系列平底,得到一直线族。 作出直线族的包络线,便得到凸轮实际轮廓曲线。
s) cos s)sin
式2
(2)摆动从动件盘形凸轮机构
摆动滚子从动件盘形凸轮机构。仍用反转法使凸轮固定不动,而
从动件沿-ω方向转过角度,滚子中心将位于B点。B点的坐标,
亦即理论廓线的方程为:
x y
a cos a sin
l l
cos( sin(
0 0
3、还有5次多项式等其他的多项式运动规律,但多项式的次数 一般不超过7次。
4、为了获得更好的运动特征,可以把上述几种运动规律组合 起来应用。组合时,两条曲线在拼接处必须保持连续。
§4-3 凸轮轮廓的设计
设计方法:作图法,解析法
已知 0 , e, S , 转向。作图法设计凸轮轮廓
一、直动从动件盘形凸轮机构反转法
缺点
(1) 高副接触,传力小,易磨损。 (2) 不易保持高副接触。 (3) 加工较困难。 (4) 从动件的行程不能过大。
返回节目录
凸轮机构的设计任务
为满足凸轮机构的输出件提出的运动要求、动力 要求等,凸轮机构的设计大致可分成以下四步:
第4章凸轮机构
第4章凸轮机在各种机器中,尤其是自动化机器中,为实现各种复杂的运动要求,常采用凸轮机构,其设计比较简便。
只要将凸轮的轮廓曲线按照从动件的运规律设计出来,从动件就能较准确的实现预定的运动规律。
本章将着重研究盘状凸轮轮廓曲线绘制的基本方法和凸轮设计中的相关问题。
4—1 凸轮机构的应用与分类一、凸轮机构的应用图所示为内燃机配气凸轮机构。
当具有一定曲线轮廓的凸轮1以等角速度回转时,它的轮廓迫使从动作2(阀杆)按内燃机工作循环的要求启闭阀门。
凸轮一般作连续等速转动,从动件可作连续或间歇的往复运动或摆动。
凸轮机构广泛用于自动化和半自动化机械中作为控制机构。
但凸轮轮廓与从动件间为点、线接触而易磨损,所以不宜承受重载或冲击载荷。
二、凸轮机构的分类凸轮机构的类型很多,通常按凸轮和从动件的形状、运动形式分类。
⒈按凸轮的形状分类(1)盘形凸轮它是凸轮的最基本型式。
这种凸轮是一个绕固定轴转动并且具有变化半径的盘形零件。
(2)移动凸轮当盘形凸轮的回转中心趋于无穷远时,凸轮相对机架作直线运动,这种凸轮称为移动凸轮。
(3)圆柱凸轮将移动凸轮卷成圆柱体即成为圆柱凸轮。
⒉按从动件形状分类(1)尖顶从动件尖顶能与任意复杂的凸轮轮廓保持接触,因而能实现任意预期的运动规律。
但因为尖顶磨损快,所以只宜用于受力不大的低速凸轮机构中。
(2)滚子从动件所示。
在从动件的尖顶处安装一个滚子从动件,可以克服尖顶从动件易磨损的缺点。
滚子从动件耐磨损,可以承受较大载荷,是最常用的一种从动件型式。
(3)平底从动件这种从动件与凸轮轮廓表面接触的端面为一平面,所以它不能与凹陷的凸轮轮廓相接触。
这种从动件的优点是:当不考虑摩擦是,凸轮与从动件之间的作用力始终与从动件的平底相垂直,传动效率较高,且接触面易于形成油膜,利于润滑,故常用于高速凸轮机构。
⒊按从动件运动形式可分为直动从动件(对心直动从动件和偏置直动从动件)和摆动从动件两种。
凸轮机构中,采用重力、弹簧力使从动件端部与凸轮始终相接触的方式称为力锁合;采用特殊几何形状实现从动件端部与凸轮相接触的方式称为形锁合。
机械设计基础第4章
如图4-25a所示,已知某对心直动尖顶从动件盘形凸轮机构的基圆
半径为r0,凸轮以角速度沿逆时针方向转动,行程为h,推程运
动角=〖120°〗^,远休止角s = 60°,回程运动角′=90°,
近休止角s′=90°,凸轮的位移曲线如图4-25b所示。下面用作
图法求凸轮轮廓。
高副接触的实例,用凸轮来控制进、排气阀门的启闭。
• 3.利用几何形状来维持接触
(1)槽凸轮机构:如图4-8a所示,凸轮轮廓曲线做成凹槽,从动件的
滚子置于凹槽中,依靠凹槽两侧的轮廓曲线使从动件与凸轮在运动过
程中始终保持接触。
(2)等宽凸轮机构:如图4-8b所示,从动件做成矩形框架形状,而凸
轮廓线上任意两条平行切线间的距离都等于框架上下两侧的宽度,因
(1)直动从动件
如图4-5所示,从动件作往复直线移动。
(2)摆动从动件
如图4-6所示,从动件作往复摆动。
• 三、凸轮与从动件维持高副接触的方式
• 1.利用重力维持接触
利用重力使从动件与凸轮轮廓始终保持接触的凸轮机构,又称为
力封闭型凸轮机构。
• 2.利用弹簧力维持接触
如图4-7所示发动机凸轮机构的基本形式,它是利用弹簧力来维持
(2)滚子从动件
如图4-5b所示,示为平底从动件,从动件与凸轮轮廓
之间为线接触,接触处易形成油膜,润滑状况好。
(4)球面从动件
如图4-5d所示,从动件为一球面。球面从动件
克服了尖底从动件的尖底易磨损的缺点。在工程中的应用也较多。
• 3.按从动件的运动形式分类
第四章
凸轮机构
第一节 凸轮机构概述
• 一、凸轮机构的组成和特点
• 1. 凸轮机构的组成
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
低速、轻载
中速、轻载 中低速、中 载或重载
4.3 反转法绘制盘形凸轮轮廓曲线
1. 反转法原理
4.3 反转法绘制盘形凸轮轮廓曲线
反转法
加角速度-ω(与凸轮角速度大小相等、方向相反)
凸轮静止不动
从动件与导路以-ω角速度绕凸轮转动
从动件相对导路移动
从动件尖顶的运动轨迹就是凸轮轮廓曲线
对于滚子从动件,则滚子中心可看作是从动件的尖顶,其运动轨迹就 是凸轮的理论轮廓曲线,凸轮的实际轮廓曲线是与理论轮廓曲线相距
第4章 凸轮机构
第4章 凸轮机构
§4.1 凸轮机构的类型及应用 §4.2 凸轮机构的从动件常用运动规律 §4.3 反转法绘制盘形凸轮轮廓曲线 实训5 设计对心移动滚子从动件盘形凸轮机构 §4.4 凸轮机构基本尺寸的确定
第4章 凸轮机构
基本要求 1、了解凸轮机构的类型和应用: 2、掌握从动件常用运动规律及其选择时应考虑的因素: 3、能应用反转法对凸轮机构的运动过程进行分析; 4、能根据给定的运动规律,应用反转法绘制出各种从
来求得,为什么? 4、凸轮机构的压力角是如何定义的?为什么要规定许
用压力角? 5、你所学过的三种基本运动规律各有何特点,适用于
何种场合?什么是刚性冲击和柔性冲击,如何避免?
第4章 凸轮机构
6、盘形凸轮基圆半径的选择与哪些因素有关? 7、通常采用什么方法使凸轮与从动件之间保持接触? 8、如果两个凸轮的实际轮廓线相同,则从动件的运
4.3 反转法绘制盘形凸轮轮廓曲线
5、偏置直动尖顶从动件盘形凸轮机构 已知条件:已知凸轮的基圆半径为r0,凸轮沿逆时针方向等速回转。而推杆 的运动规律已知,已知偏距e。试设计。
实训5设计对心移动滚子从动件盘形凸轮机构
试设计一对心移动滚子从动件盘形凸轮。已知凸轮按顺时针
方向转动,其基圆半径 ro 100mm。滚子半径 rT =5mm。
难点 1、相对运动原理 2、凸轮机构压力角与机构基本尺寸的关系。
第4章 凸轮机构
思考题
1、试比较尖顶、滚子和平底从动件的优缺点,并说明 它们的适用场合。
2、在用反转法设计盘型凸轮轮廓曲线的各个步骤中, 应注意哪些问题?各类凸轮设计方法有何特点?
3、凸轮理论轮廓线与实际轮廓线有何区别与联系?当 已知盘型凸轮的理论轮廓线,欲求实际轮廓线时, 能否直接由理论轮廓线上各点的向径减去滚子半径
sin
0
a
2 h 2 0
2
cos
0
s
h 2
1
cos
0
h 2 0
sin
0
a
2 h 2 2 0
cos
0
4.2 凸轮机构的从动件常用运动规律
2
4h1 02
(0
)
4h12
2 0
0 ≤
2
≤
0
4.2 凸轮机构的从动件常用运动规律
等加速—等减速运动规律的位移线图作法
4.2 凸轮机构的从动件常用运动规律
等加速—等减速运动规律作法
4.2 凸轮机构的从动件常用运动规律
4.2 凸轮机构的从动件常用运动规律
3.简谐运动规律 质点在圆周上作等速运动时, 它在这个圆的直径上的投影所 构成的运动。
动件盘形凸轮的轮廓曲线; 5、了解凸轮廓线方程的建立过程,会进行盘形凸轮轮
廓的设计计算; 6、掌握压力角与自锁的关系、基圆半径对压力角的影
响以及滚子半径选择的原则;
第4章 凸轮机构
重点 1、从动件常用运动规律及其选择原则; 2、凸轮机构运动过程的分析; 3、凸轮轮廓曲线的设计; 4、凸轮机构压力角与机构基本尺寸的关系。
动件的高副接触,在运动时可以使从动件获得连续或不连 续的任意预期运动。
凸轮机构由凸轮、从动件和机架三部分组成。
凸轮机构是高副机构,易于磨损,因此只适用于传递动力 不大的场合。
4.1 凸轮机构的类型及应用
凸轮机构的分类方法
(1)按凸轮的形状分类
盘形凸轮
移动凸轮
圆柱凸轮
4.1 凸轮机构的类型及应用
(2)按从动件的端部结构形式分类
实训5设计对心移动滚子从动件盘形凸轮机构
(2)用反转法绘制凸轮理论轮廓曲线 1)以为圆心以为半径作出基圆,确定滚子从动件上滚子中心 的最低位置。过作滚子中心的运动导路。 2)利用反转法将基圆圆周分成与从动件位移曲线图中横坐标 轴对应的等份,代表机构反转时各相应位置的导路线。 3)自基圆圆周沿以上导路线截取对应位移量,它们便是机构 反转时从动件滚子中心的一系列位置。最后连成平滑曲线, 即为凸轮理论轮廓曲线。 (3)绘制凸轮实际轮廓曲线 以凸轮理论轮廓曲线上各点为圆心,以滚子半径为半径画一 系列滚子圆,作该系列滚子圆的内包络线,即为滚子从动件 凸轮的实际轮廓曲线,如图(b)所示。
简谐运动规律作法
4.2 凸轮机构的从动件常用运动规律
常用从动件运动规律的比较
运动规律
最大速度
最大加速 冲击性质
适用范围 (推荐)
等速 等加速等减速 简谐运动
1.00
h
0
1
刚性冲击
h 2.00
0
1
4.00 h
2 0
12
柔性冲击
1.57
h
0
1
4.93
h
2 0
1
柔性冲击
4.3 反转法绘制盘形凸轮轮廓曲线
4.3 反转法绘制盘形凸轮轮廓曲线
4.3 反转法绘制盘形凸轮轮廓曲线
4.对心直动平底从动件盘形凸轮轮廓的画法 已知条件: 凸轮的基圆半径为r0,凸轮沿逆时针方向等速回转。推杆的运动 规律如图所示。试设计对心直动平底从动件盘形凸轮机构的凸轮廓线。
4.3 反转法绘制盘形凸轮轮廓曲线
推程、推程运动角: o
远休、远休止角:
s
回程、回程运动角: h
近休、近休止角: j
行程:
h
位移:
s r r0
从动件的运动规律:是指推杆在运动过程中,其位移、速度和
加速度随时间变化(凸轮转角θ变化)的规律。
4.2 凸轮机构的从动件常用运动规律
4.2 凸轮机构的从动件常用运动规律
在运动起始和终止位置,加速度曲 线不连续,存在柔性冲击。
从动件位移方程
s
h 2
1
cos
0
4.2 凸轮机构的从动件常用运动规律
从动件推程运动方程式
从动件回程运动方程式
s
h 2 1 cos 0
h 2 0
从动件的行程 h 50 mm,运动规律如下:
凸轮
转角 00~1200
从动件运 等加速等减速 动规律 上升50mm
1200~1800 1800 ~2700
停止不动
等加速等减速下 降至原来位置
2700 ~3600
停止不动
实训5设计对心移动滚子从动件盘形凸轮机构
(1)选取适合的比例尺μL、μ θ,作从动件位移曲线 取长度比例尺μL=2mm/mm 、角度比例尺μθ =6°/mm。将已知 的从动件的位移曲线的推程、回程和从动件的位移曲线分成 相同等份,作出从动件位移曲线,如图(a)所示。
滚子半径rT的一条等距曲线。
4.3 反转法绘制盘形凸轮轮廓曲线
反转法原理求位移线图
4.3 反转法绘制盘形凸轮轮廓曲线
2.对心尖顶直动从动件盘形凸轮轮廓曲线的画法
设计要求:已知凸轮的基圆半径为r0,凸轮沿逆时针方向等速回转。而
推杆的运动规律如图所示。 试设计该对心直动尖顶从动件盘形凸轮机构的凸轮廓线。
从动件的位移s与凸轮转角θ的关系可以用从动件的位移线图 来表示,如图所示。
图为对心尖顶从动件盘形凸轮机构,凸轮回转时,从动件重复 升—停—降—停的运动循环。
4.1 凸轮机构的类型及应用
从动件的运动取决于凸轮轮廓曲线的形状,即凸轮轮廓决定了从动 件的运动规律。
4.2 凸轮机构的从动件常用运动规律
4.2.2 从动件的常用运动规律
4.4 凸轮机构基本尺寸的确定
4.4.1 滚子半径的确定 凸轮轮廓曲线形状与滚子半径的关系
当理论廓线内凹时ρa= ρmin+rT 此时,无论滚子半径大小,凸轮工作轮廓总是光滑曲线(如图a)
4.4 凸轮机构基本尺寸的确定
当理论廓线外凸时(可分为三种情况) ρa= ρmin-rT 1) ρmin > rT时 ρa > 0,这时所得的凸轮实际轮廓为光滑的曲线 2) ρmin = rT 时ρa = 0,实际轮廓线变尖,极易磨损,不能使用 3) ρmin < rT时ρa < 0,即实际曲线出现交叉会出现失真
4.4 凸轮机构基本尺寸的确定
结论:外凸的凸轮轮廓曲线, 应使rT <ρmin,通常取rT≤0.8 ρmin同时ρa≥3~5mm,
另外滚子半径还受强度、结构等的限制,因而也不能做得太小,通常取滚子半 径rT=(0.1~ 0.15)r0。
4.4 凸轮机构基本尺寸的确定
4.4.2 压力角的确定 从动件的运动方向和凸轮
动规律是否一定相同,为什么? 9、如果两个凸轮的理论轮廓线相同,则从动件的运
动规律是否一定相同,为什么? 10、滚子从动件凸轮机构的滚子损坏后用一半径不
同的滚子替换是否可行,为什么? 11、在什么情况下凸轮实际轮廓线会出现尖点或过
切现象,如何避免?
4.1 凸轮机构的类型及应用
4.1.1 凸轮机构的组成与类型 凸轮是一种具有曲线轮廓或凹槽的构件,他通过与从