微观粒子波粒二象性的物理本质

微观粒子波粒二象性的物理本质
微观粒子波粒二象性的物理本质

微观粒子波粒二象性的物理本质

——剖析光子的静止质量与不等于零的实验结果

(作者:夏烆光, 江 欣)

【提 要】:本文从普朗克长度和普朗克时间的定义出发,用《广义时空相对论》给出的光子静止质量计算公式,并结合多位物理学家的实验结果,系统地讨论了光子的静止质量,以及静止质量不等于零的物理意义;进而指出了量子力学波函数的叠加原理与微观粒子波粒二象性的物理本质。坦率地说,这些学术观点对于正确认识狭义相对论、量子力学态的叠加原理与波粒二象性的物理本质,具有重要的学术价值。

【关键词】:普朗克长度 普朗克时间 波粒二象性 广义时空相对论 狭义相对论 光子的静止质量 质量单

元 康普顿波长 机率波动频率 态的叠加原理

引 言

普朗克质量的意义,大约是一个“史瓦西半径”等同于“康普顿波长”的“黑洞”所包含的质量。这个黑洞的半径就是一个普朗克长度。透过思想实验指出(请注意,思想实验是建立在传播速度为无穷大的绝对主义时空观念之上!):想像要测量一个物体的位置,需要用投射到该物体之上的反射光。如果要求提高位置的测量精度,必须使用更短波长的光子。这就意味着光子的能量要更高。如果光子的能量高到一定程度,它们撞到物体时会产生黑洞。这个黑洞可以“吞噬”光子而导致实验失败。通过“量纲分析计算”可以发现,当测量物体位置的精度达到普朗克长度以下时,便会发生上述问题(参见【1】)。

这个思想实验涉及到广义相对论和量子力学的“海森堡测不准原理”。即是说,我们无法对空间位置做出比普朗克长度还要小的精确测量。因此说,在广义相对论的引力理论和量子力学中,若在时间短于普朗克时间、空间小于普朗克空间时,传统意义上的空间与时间的概念都失去了物理意义。

这一结论告诉我们:在微观领域中,空间和时间也具有量子化的物理特征。虽然在宏观领域中,我们不必考虑这个不连续的问题。不过,在对引力理论求解的过程中发现,在普朗克长度的范围,即使是重力,也将展现出它的量子效应。所有微观物理量的量子化特征,都是基于普朗克常数本身的量子化特征。由普朗克常数确定出普朗克空间的尺度约为3310-厘米;确定出普朗克时间的尺度约为4410-秒。

本文从普朗克空间和普朗克时间出发,利用《广义时空相对论》所导出的“光子静止质量计算公式”,以及此前对于此类问题的讨论,并结合多位实验物理学家对光子静止质量的实验检测结果,透过系统地分析和讨论,进而揭示了微观粒子“波粒二象性”的物理本质。

1、 普朗克时间。现代物理学把可观察事件发生的最短时间过程定义为普朗克时间。比普朗克时间更短的“时间过程”是不可观测的。普朗克时间可以表示为(参见【2】,第972页)

[]s c

Gh t p 4451039056.5-?==,………………………………………………(1) 2、 普朗克空间。同样的道理,可观测事件所占据的最小空间尺度定义为普朗克长度。如果一个可观测事件的空间尺度小于这个普朗克长度时,这个事件也是不可观测的。普朗克长度表示为

[]cm c

Gh l p 3331061605.1-?==,……………………………………………(2) 以上概念表明:在微观领域中,物理空间和物理时间,以及能量本身的不连续特征。广义相对论和它的引力理论则认为,一个普朗克长度就是一个普朗克质量坍缩成一个“微型黑洞”时的空间尺度。——不管这

种观点是否正确?在微观领域中,物理空间和物理时间都是不连续的这一点,是一个基本的物理事实。

3、光子的极限速度和极限加速度。用普朗克空间p l 除以普朗克时间p t 就是光速(c ),即

[]

11044335310997926.21039056.51061605.1---??=??===s cm c c Gh c Gh t l p p ,…………(3) 因为普朗克空间和普朗克时间是固定的,所以二者的比值(光速)必然是恒定的。但是,由于光子的加速度是量子化的,所以从微观上看,在普朗克空间和普朗克时间的限制下,光子在传播的过程中,其速度和加速度都必然地表现为从c c →→→00,如此不停地、间断地、脉冲式地振荡前进。这样,只有这样,才会有光的“加速度”这一物理概念存在(参见【3】)。否则,如果坚持认为光速是恒定的,那就根本没有“光的加速度”这个概念。正因为微观领域中的物理空间和物理时间都是量子化的,所以光的“加速度”也必然是量子化的,并可以写成

()[]

25324433

210561437.51039056.51061605.1---??=??==s cm t l a p p

,…………………(4) 不难想象,既然光子存在着加速度的概念,这就表明光子在传播的过程中,必定是跳跃式的、一步一步地向前迈进。每跳跃“一步”,就是光子的一个脉冲波动的“波长”。不过,这个波长并不是我们日常经验中所见到的横向振动的光波所具有的波长,而是一种脉冲前进的“步幅”。这里,问题的关键在于:小于一个普朗克长度的空间和时间尺度都已经不存在。因此,我们可以把普朗克长度定义为光子随机波动的“机率波的波长”。自然,光速与这个“波长”之间的比值,就是光子跳跃式前进时的脉冲振荡频率。 在量子力学中,基于哥本哈根学派的正统解释,波函数是一种单纯的机率波动。它的绝对值的平方代表着一个粒子态在指定位置出现的几率。所以我们把这种脉冲振荡频率定义为“机率波动频率”。 机率波动是一种非定域的物理理论。机率波动的存在,说明在量子力学领域中,我们不能确定某个时刻微观粒子会出现在某个指定的空间位置之上,而只能确定它落到这个空间位置附近的几率。

4、光子机率波动的极限频率。实验表明,光波和其它微观粒子的“物质波”都必须用波函数来表示它们的物理特征。机率波动的突出特征,是它满足“态的叠加原理”。通过上述分析,我们可以给出“机率波动的极限频率”为

[]

1434410855095.11039056.511--?=?==?==s t t l l l c p p p p p ξ,……………(5) 须指出,这个振荡频率不同于德布罗意波的频率。德布罗意波的频率是微观粒子在均匀引力场中公转振动频率,即

h c m c

20==λν德, ………………………………………………………………(6) 其中,p h =λ是德布罗意波的波长。根据广义时空相对论质能关系式给出的德布罗意波物质波的频率

h

c m 2

02=广ν,…………………………………………………………………(7) 故有德广νν2=。——这是广义时空相对论与狭义相对论在质能关系式上存在差别的原因。

因为光速是物质运动的极限速度,所以上面求出的机率波动频率,应该是一切微观粒子机率波动的极限频率。任何其它微观粒子,其机率波动频率都不可能超过这个数值。——在现代物理学中,这是一个新导出来的物理常数。乍看起来,光子存在着加速度的观点,似乎同光速不变原理发生了根本对立。不过,上述计算结果表明,光子跳跃式前进的机率波动的频率非常之高。所以,从宏观上看,光的运动速度依然是均匀而又恒定的;而从微观上看,却是完全符合逻辑的。这里必须指出,光子的机率波动频率,并不是光波的横向振动频率。光波的横向振动频率乃是“波包”公转振动的频率(参见【4】和后面的第9节)。

5、光子的极限能量。根据牛顿力学理论,运动物体蕴含的能量同它的质量、加速度、以及沿受力方向移动的空间距离有关,即:能量=力x 距离=质量x 加速度x 距离。用物理符号表示就是:

l a m L F E ??=?=, (8)

其中,E 代表物体的能量,F 代表物体所受的外力,L 代表物体在受力方向上移动的空间距离。针对一个光子的“极限能量”,为了方便区别和理解,这里用牛ε代表光子的能量单元,用m 代表光子的质量,用a 代表“光子的加速度”——这里不妨用p a 来代表,并暂时称为普朗克加速度。另用p l 代表光子在受力方向上移动的空间距离,即普朗克长度。于是,根据牛顿力学理论则有

p p l a m l a m ??∝??=0牛ε, (9)

——在牛顿力学中,质量单元(0m )的物理概念,暂时尚未明确的定义,所以我们先用“成比例”的数学形式,来表示光子的质能关系式,随后再来分析和讨论质量单元的物理意义。

鉴于微观粒子的能量、空间、时间,都是不连续的和量子化的,且最小空间和最小时间就是上述讨论的普朗克空间和普朗克时间(参见【3】)。因此,根据牛顿力学的理论结果,可以写出:

202

200c m t l m l a m l a m p p

p p =?=∝??=牛ε, (10)

根据量子力学的理论结果,我们可以写出一个“线性谐振子”的能量本征值

n n n ωε ???

? ??+=21,??=,2,1,0n , (11)

式中,[]s erg ??=-271005457266.1 ,圆频率πνω2=,ν是振动频率, π2=h 是普朗克常数。不难理解,一个物体系统的最低能量状态,是其不向外辐射任何光子的零点振动态(基态),即0=n 的能量状态。用0ω代表该物体系统零点振动的圆频率,那么,该物体系统基态时的能量本证值 002

1ωε?= , (12)

6、光子静止质量的上限。根据(10)和(12)式,可以写出光子静止质量估算值约为 []s g a l m p ???????=???≈--53

350270010561437.51061605.1210054572.12ωω ,……………(13) 上式中有两个未知的参量:一个是光子的静止质量(0m );另一个是体系的零点振动圆频率(0ω)。如何处理呢?这里不妨借助于物理实验先求出其中任何一个未知参量。我们已经知道,光子静止质量的实验结

果颇多。其中有华中科技大学范淑华教授等人,通过火星回波延迟的实验数据给出了“光子静止质量”的上限值为[]kg m 460102.2-?≤;还有罗俊教授和涂良成,于2002年在检验宇宙磁势造成的影响时,用精密扭秤测得光子静止质量的上限值[]kg m 510102.1-?≤,尔后又于2005年,把这个实验结果修正为

[]kg m 550105.1-?≤(参见【5】

)。修正结果比原先结果低4个数量级以下,并与范淑华等人的实验结果相差9个数量级。另外,早在1971年,歌德哈伯等人利用光的“色散效应”实验证明:光子静止质量的上限值[]kg m 450106.5-?≤(参见【6】第155页)。到底哪个结果正确?目前尚无定论。

针对上述问题,我们这里只想说:不管谁的实验结果更正确一些,但是,光子“静止质量不等于零”的结论,是一个无可争辩的物理事实!由此而论,爱因斯坦狭义相对论关于“光子静止质量等于零”的结论是错误的!以及,由狭义相对论导出的“质量与相对速度的依赖关系”也是错误的。其实,关于这个物理问题,我国的科技工作者季灏先生,在几年前,就已经用物理实验做出了具体的实验证明。只不过,学术界的主流派学者们,对于这个实验结果不以为然罢了(参见【7】)。

7、三种质能关系式的相互关系。为了方便区分,我们把广义时空相对论质能关系式中的能量写成

220υε+=c c m 广, (14)

把牛顿力学质能关系式中的能量写成p al m 0∝牛ε;把爱因斯坦质能关系式中的能量写成

20c m =爱ε, (15)

下面,我们来讨论三种质能关系式之间的区别与联系。通过关系式(10)和(15)式可以看出:

牛爱εε==20c m ,…………………………………………………………………(15’)

显然,狭义相对论的质能关系式20c m =爱ε只能做为光源中的部分“内能”来理解,而不能作为“光子的能量”来对待。因为这些“能量”目前还只能作为一个“光子”理应具有的“能量”,孕育在光源中的“轨道电子体内”,而不能作为真正意义上的光子来看待。也只有在这种情况下,孕育在轨道电子体内的光子,相对于光源运动的绝度速度才有0=υ。基于上述原因,我们根据广义时空相对论的质能关系式得出

牛爱广εεε===20c m , (16)

可是,一旦孕育在光源轨道电子中的这份“内能”作为一个真正的“光子”而诞生,那么,这个“光子”相对于光源运动的绝对速度就是c =υ,所以有

牛爱广εεε==>=20202c m c m ,……………………………………………(16’) 显然,只有202c m =广ε才是已经诞生的光子所拥有的“全部能量”,即ωε =广。这其中的能量差额

()

2012c m ?-=-=?爱广εεε,………………………………………………(17) 是光子从轨道电子体内诞生时额外携带的能量(约41.42%)。这里的全部能量也可看作是光子的总动能。

在《广义时空相对论》中,我们根据它的质能关系式导出光子静止质量的计算公式为

02002νην?==

c h m ,……………………………………………………………(17’)

式中,[][]s kg s g .102123.5102123.55148--?=??=η是个比例常数(参见【8】)。这个数值与罗俊和涂良成给出的第一个实验结果处于同一个数量级。因为光子相对于光源的“绝对速度”c ≡υ,所以只有光子孕育在轨道电子的体内时,才真正有光子的绝对速度0=υ的情况存在。不过在这种意义上,“光子”的能量只能作为光源的“内能”存在于轨道电子之中,而不能构成真正意义的“光子”独立存在。当然了,如果仅从相对运动的物理概念考虑,对于某个与给定“光子”保持“相对静止”的观测者而言,也可以认为这个光子与观测者之间处于“相对静止”的状态。这也就是说,观测者与光源的绝对速度也是c =υ,那么,这一质量也可以叫做相对静止质量。不过,在现有的物理观念中,人们都是把光子与光源之间的绝对速度c =υ时所具有的质量称为“光子的静止质量”。因此,我们也是从这种意义上来讨论光子静止质量的物理内涵,而不是把孕育在轨道电子中的“胎儿”具有的质量定义为光子的静止质量。

下面,我们先用光子静止质量的实验值[]kg m 460102.2-?≤和[]kg m 550105.1-?≤分别代入上式,求出零点振动频率[]130********.3-?≈s ω和[]

16010556742.2--?≈s ω的实验估算值。然后再利用这两个实验估算值,来反推光子静止质量的理论估算值,即 ()[]

??

????==?????==≈--kg c

c h m 482023

272020010111273.310997926.2414213.110749888.31005457266.122ων ,………(18) 以及 ()[]

??????==?????==≈---kg c c h m 572026272020010121323.210997926.2414213.110556742.21005457266.122ων , (19)

显然,用广义时空相对论关于光子静止质量的计算公式,反推出来的光子静止质量理论估算值,比范淑华教授和罗俊教授等人给出的实验值均低两个数量级以上。

8、光子的质量单元。上述关于光子静止质量的计算公式表明:光子静止质量仅与光波的振动频率成正比,且二者之间是一种单调的线性关系。有鉴于此,我们把频率为一个[赫兹]的光子所具有的静止质量

[]kg m 510102123.5-?=定义为光子的“质量单元”

。由此而来,“质量单元”的物理意义便是:一个“线性谐振子”所含有的上限静止质量(参见【9】)。从光子的静止质量与频率间的线性关系出发,我们不难想到:正是由于多个线性谐振子之间的谐振(共振),从而导致多个质量单元“凝聚”到一起,构成一个较大质量的“波包”。这样一来,光子质量单元的物理意义便可以理解为:质量小于一个质量单元的线性谐振子,是没有能力向外辐射任何质量单元和能量单元的。

9、广义时空相对论导出的微观粒子的运动特征。根据广义时空相对论,我们推导出一组关于微观粒子运动规律的物理方程如下

()[]????

??????-?++?=?-?+?=?+?=?=****τυμυυβζυτυμυβζυμυττυ323333233223;3;k ak ds dk k d k ak k d k a d …………………(20) 式中,υ是粒子绕着前进方向公转运动的绝对线速度,a 是粒子公转运动的向心加速度,k 是粒子公转运

动的曲率(ρ1=k )

,ρ是微观粒子公转运动的曲率半径,ζ则是粒子自旋运动的挠率(参见【4】)。这里的时空变量依然是定域的和连续的。——连续性的要求,是微积分学成立的前提。 上式中的第三个方程表明:微观粒子在均匀引力场中前进的同时,

不仅存在着沿切线方向的“公转”运动,而且还存在着以副法线为旋转

轴的“自旋”运动。再加上它沿着时间轴、以光速的直线前进运动,这

三种运动状态的叠加结果,使微观粒子的“运动轨迹”成为一条直线前

进的螺旋线。这一理论结果表明:在宏观上,微观粒子的运动轨迹是连

续的、等距的、正弦波动前进的螺旋线。参见右图。这其中的第一个图

为三维的立体示意图,第二个图为粒子的正弦公转波动的示意图。

粒子的振动频率,是它每秒钟的公转运动次数,每一个公转运动的

螺距是正弦波动的一个波长(λ)。c 是光子的直线传播速度。显然,振动的圆频率(ω)越高,迴转螺距(λ)就越短,光子所包含的能量与质量也就越大。上述运动方程

还表明,在不同引力场中运动的粒子,受引力势的制约,其公转半径

(ρ)是不一样的。该式中的μυ?ak 3这一项,是粒子的法向加速度

项,它与引力场的存在密切相关。顺便说一句,上述方程组中的第四

个方程的物理意义,我已经在参考文件【4】之中做了深入地讨论。限

于篇幅,这里不作介绍。综合上述讨论,振动频率越高,光子的静止质量就越大,所容纳的“线性谐振子”

的数目也就越多。线性谐振子的数目越多,所形成的“波包”的质量

和能量也就相应地增加。那么,“波包”与微观粒子的“波粒二象性”

物理本质究竟有何关联呢?

现代物理学对这个问题一直没能做出令人满意的公认解答。由这

个问题出发,还在量子力学的物理解释上,形成了好多相互对立的学术派别。概括地说,这些学派大致地可以归结为“定域论的”和“非定域论的”两个典型的学术派别。——这两个学派的代表人物分别是著名的物理学家阿尔伯特·爱因斯坦和路易·德布罗意,以及沃纳·海森堡和尼尔斯·玻尔等一大批在世界上享有盛名的物理学家。

10、波粒二象性的统一解释。传统的理论认为:假如光子是单纯的“波包”,那么,一旦波包的群速度不等于它的相速度时,就会造成波包在传播过程中的扩散,这就意味着光子会在运动的过程中自动地解体,从而否定了光子就是波包的传统解释。

而我的观点认为:否定上述传统解释的理

由并不充分!因为,只要假设大量的“质

量单元”是一些相速度非常接近的线性谐

振子的谐振(共振)态,则“波包”就是

十分稳定的,就不会在以光速前进的过程

中轻易的解体。再反过来推敲,假如光子

的波动仅仅是一种非定域的、纯粹的机率

波动,那么,这个光子任何时刻、在任意方位上出现的几率必定完全相同。如果情况果真如此的话,那么,一个光子或微观粒子,就不可能始终如一地沿着一个既定的传播方向直线前进、而且也不可能同时表现为某种横波振动的物理特征,而理应是一种毫无规则的“布朗运动”。

由此而论,这里一定还有隐藏得更为深刻的物理原因,在同时地决定着微观粒子——波包——的运动状态。基于波包自身的结构原因,加上引力势的作用,以及上面所揭示的普朗克空间和时间的量子化这一深层的物理原因等等,多种因素的集体作用,导致微观粒子在机率波动的同时,还表现出螺旋式的横向波动与定向前进的运动特征。参见右图。进一步地说,在波包的内部,所有质量单元始终存在着以普朗克长

度为“波长”,以机率波动频率为振荡频率,脉冲式前进的矩形波动。由于这个脉冲振动频率非常之高,即[]

14310855095.1-?=s ξ,所以在宏观上,我们只能观察到一种螺旋式前进的平面波动,而根本观察不到粒子内部另外还存在着一种超高频的脉冲振荡真实的存在。

波包完全可以被诠释为粒子的机率波动。因为在任何位置,任何时间,机率波动波幅绝对值的平方,就是在那个位置,那个时间,找到粒子的几率密度。在这方面,经典力学中关于“波包”的功能,完全类似于量子力学中“波函数”的功能。例如,在量子力学里,应用薛定谔方程,我们可以追溯一个量子系统随着时间的演化规律。在某些区域内,波包所囊括面积的平方,完全可

以诠释为找到某个对应粒子处在于该区域内的几率密度。由此而论,量

子力学中的“叠加原理”,既不是薛定谔的“死猫态与活猫态的叠加”,

也不是上帝掷骰子时“大与小的叠加”。而是的确同时存在着“波态”

与“粒态”两种真实状态的叠加。至于“叠加原理坍缩”之说,纯粹是把量子力学当作单纯的机率波动所致。

概括地说,机率波动的真正原因在于:空间和时间尺度本身的间断

性与量子化,导致微观粒子机率波动的真实存在;再加上,所有微观粒

子在引力场中沿着前进方向的“公转”所表现的平面波动,从而导致两种波动状态的叠加。于是便产生了“定域波动”与“非定域波动”的同时存在。——上图是2015年3月15日,科学家们借助于实验捕获到的光的粒态与波态同时存在的场景(参见【10】)。由此而论,光子和其它一切微观粒子都具有这种“亦波亦粒,非波非粒”的“波粒二象性”的物理特征。不难看出,这一观点同“隐变量理论”的基本观点有点相似。只不过,现有的“隐变量理论”并没有明确地指出“隐变量”本身的物理机制究竟是什么?也正因为这样,所以哥本哈根学派的代表人物玻尔才敢大胆地说:“在粒子世界所谓的定域性是不存在的,而实在性从物理学角度也是无法确定的”,结果把量子力学理论直接引入到纯粹“非定域论”的思想泥潭之中。“上帝不会掷骰子”的名言,正是爱因斯坦对这种“非定域论”物理观念所进行的幽默反驳。

结 论

总之,不仅光子的静止质量不等于零,而且它的上限值就是光子的质量单元。小于这个质量单元的线性谐振子,是不能向外辐射光子的。再者,微观粒子的“波粒二象性”,则是数目等于正弦波动频率数的质量单元所构成的“波包”,在引力场中以光速向外传播的同时,不仅存在着螺旋前进的平面正弦波动,而且在波包的内部,还存在着脉冲振荡频率极高的机率波动。正是这两种波动状态的线性叠加,构成了量子力学波函数的“叠加原理”,以及微观粒子的“波粒二象性”特征的物理本质。

【参考文献】:

【1】撕皮儿剥壳,普朗克时间是怎么计算出来的? 链接地址:https://www.360docs.net/doc/174167458.html,/b/13119761.html

【2】徐龙道等编著,《物理学词典》北京:科学出版社 2004年,第一版。

【3】作者:夏烆光,用超弦理论构建大统一理论的做法有待商榷,https://www.360docs.net/doc/174167458.html,/user/mydocs

【4】作者:夏烆光,广义时空相对论的引力理论,[J]产业与科技论坛,2015.03。

【5】作者:范淑华,杨然,贝晓敏《华中科技大学学报(自然科学版)》,2007.35(3) .22-24。

https://www.360docs.net/doc/174167458.html,/s?wd=paperuri%3A(ef2c7c16bff1ea73ed1e980cbf6c7885)&filter=sc_long_sign&tn

【6】赵常德著,《物理论文集》,成都,电子科技大学出版社,2012年,7月。

【7】作者:夏烆光,用广义时空相对论推导康普顿散射公式,[J]产业与科技论坛,2014.23。

【8】夏烆光著,《广义时空相对论》北京:人民交通出版社,2003年,第一版。

【9】作者:夏烆光,任何光子都具有不等于零的静止质量,

https://www.360docs.net/doc/174167458.html,/view/6e40d8c816fc700aba68fc40

【10】科技组图:科学家捕获光的波粒二象性,链接地址:https://www.360docs.net/doc/174167458.html,/a/20150310/015805.htm?

大学物理期末试卷(带答案)

大学物理期末试卷(A) (2012年6月29日 9: 00-11: 30) 专业 ____组 学号 姓名 成绩 (闭卷) 一、 选择题(40%) 1.对室温下定体摩尔热容m V C ,=2.5R 的理想气体,在等压膨胀情况下,系统对外所做的功与系统从外界吸收的热量之比W/Q 等于: 【 D 】 (A ) 1/3; (B)1/4; (C)2/5; (D)2/7 。 2. 如图所示,一定量的理想气体从体积V 1膨胀到体积V 2分别经历的过程是:A B 等压过程; A C 等温过程; A D 绝热过程 . 其中吸热最多的 过程 【 A 】 (A) 是A B. (B) 是A C. (C) 是A D. (D) 既是A B,也是A C ,两者一样多. 3.用公式E =νC V T (式中C V 为定容摩尔热容量,ν为气体摩尔数)计算理想气体内能 增 量 时 , 此 式 : 【 B 】 (A) 只适用于准静态的等容过程. (B) 只适用于一切等容过程. (C) 只适用于一切准静态过程. (D) 适用于一切始末态为平衡态的过程. 4气缸中有一定量的氦气(视为理想气体),经过绝热压缩,体积变为原来的一半,问气体 分 子 的 平 均 速 率 变 为 原 来 的 几 倍 ? p V V 1 V 2 A B C D . 题2图

【 B 】 (A)2 2 / 5 (B)2 1 / 5 (C)2 1 / 3 (D) 2 2 / 3 5.根据热力学第二定律可知: 【 D 】 (A )功可以全部转化为热, 但热不能全部转化为功。 (B )热可以由高温物体传到低温物体,但不能由低温物体传到高温物体。 (C )不可逆过程就是不能向相反方向进行的过程。 (D )一切自发过程都是不可逆。 6. 如图所示,用波长600=λnm 的单色光做杨氏双缝实验,在光屏P 处产生第五级明纹极大,现将折射率n =1.5的薄透明玻璃片盖在其中一条缝上,此时P 处变成中央 明纹极大的位置,则此玻璃片厚度为: 【 B 】 (A) 5.0×10-4 cm (B) 6.0×10-4cm (C) 7.0×10-4cm (D) 8.0×10-4cm 7.下列论述错误..的是: 【 D 】 (A) 当波从波疏媒质( u 较小)向波密媒质(u 较大)传播,在界面上反射时,反射 波中产生半波损失,其实质是位相突变。 (B) 机械波相干加强与减弱的条件是:加强 π?2k =?;π?1)2k (+=?。 (C) 惠更斯原理:任何时刻波面上的每一点都可作为次波的波源,各自发出球面次波;在以后的任何时刻,所有这些次波面的包络面形成整个波在该时刻的新波面 (D) 真空中波长为500nm 绿光在折射率为1.5的介质中从A 点传播到B 点时,相位改变了5π,则光从A 点传到B 点经过的实际路程为1250nm 。 8. 在照相机镜头的玻璃片上均匀镀有一层折射率n 小于玻璃的介质薄膜,以增强某一波长 的透射光能量。假设光线垂直入射,则介质膜的最小厚度应为: 【 D 】 (A)/n λ (B)/2n λ (C)/3n λ (D)/4n λ P O 1 S 2 S 6. 题图

高三物理实物粒子的波粒二象性

第三节 实物粒子的波粒二象性 三维教学目标 1、知识与技能 (1)了解光既具有波动性,又具有粒子性; (2)知道实物粒子和光子一样具有波粒二象性; (3)知道德布罗意波的波长和粒子动量关系。 (4)了解不确定关系的概念和相关计算; 2、过程与方法 (1)了解物理真知形成的历史过程; (2)了解物理学研究的基础是实验事实以及实验对于物理研究的重要性; (3)知道某一物质在不同环境下所表现的不同规律特性。 3、情感、态度与价值观 (1)通过学生阅读和教师介绍讲解,使学生了解科学真知的得到并非一蹴而就,需要经过一个较长的历史发展过程,不断得到纠正与修正; (2)通过相关理论的实验验证,使学生逐步形成严谨求实的科学态度; (3)通过了解电子衍射实验,使学生了解创造条件来进行有关物理实验的方法。 教学重点:实物粒子和光子一样具有波粒二象性,德布罗意波长和粒子动量关系。 教学难点:实物粒子的波动性的理解。 教学方法:学生阅读-讨论交流-教师讲解-归纳总结。 教学用具:课件:PP 演示文稿(科学家介绍,本节知识结构)。多媒体教学设备 (一)引入新课 提问:前面我们学习了有关光的一些特性和相应的事实表现,那么我们究竟怎样来认识光的本质和把握其特性呢?(光是一种物质,它既具有粒子性,又具有波动性。在不同条件下表现出不同特性,分别举出有关光的干涉衍射和光电效应等实验事实)。 我们不能片面地认识事物,能举出本学科或其他学科或生活中类似的事或物吗? (二)进行新课 1、光的波粒二象性 讲述光的波粒二象性,进行归纳整理。 (1)我们所学的大量事实说明:光是一种波,同时也是一种粒子,光具有波粒二象性。光的分立性和连续性是相对的,是不同条件下的表现,光子的行为服从统计规律。 (2)光子在空间各点出现的概率遵从波动规律,物理学中把光波叫做概率波。 2、光子的能量与频率以及动量与波长的关系。 hv =ε λ/h p = λ/h p ==c v hv //ελ= 提问:作为物质的实物粒子(如电子、原子、分子等)是否也具有波动性呢? 3、粒子的波动性 提问:谁大胆地将光的波粒二象性推广到实物粒子?只是因为他大胆吗?(法国科学家德布罗意考虑到普朗克能量子和爱因斯坦光子理论的成功,大胆地把光的波粒二象性推广到实物粒子。) (1)德布罗意波:实物粒子也具有波动性,这种波称之为物质波,也叫德布罗意波。

(完整版)波粒二象性

关于波粒二象性的理解与展望 摘要:本文从光电效应出发,阐述了波粒二象性的提出及近些年来对波粒二象性的一些实验等方面进行叙述,以求对波粒二象性的认识。 关键词:波粒二象性 Which—Way实验波粒二象性的同时观察 正文: 光学是一门古老的基础学科,人们对光本性的认识经历了漫长而曲折的过程。一方而人们通过光的衍射、干涉等现象认识到光具有波动性,另一方而人们在对光电效应及黑体辐射等实验现象的解释中发现又必需把光当成一种粒子。从经典物理的角度来看,光的这两种不同的特性属于两个完全不同的概念。然而,爱因斯坦却把光的波动性和粒子性统一了起来,提出了光的波粒二象性。 1.波粒二象性的提出 1887年,光电效应被德国物理学家赫兹发现,这种特殊的光效应令波动说与粒子说都陷入了一种尴尬的境地。首先,虽然光的波动说在当时已经成为主流,但波动说完全无法解释光电效应现象。另一方面,一直以来都能解释波动说无法解释的光学现象的粒子说也只能对光电效应做出部分解释,虽然根据粒子说理论,可以认为光电效应中的电子是被光的粒子撞击出去的,但为什么蓝光可以引发光电效应而红光不能,这点连粒子说也无法解释。可以说,光电效应令两派学说同时面临瓶颈。 1905年为了解释光电效应,爱因斯坦受到普朗克能量子假说的启发,提出了光量子的假说。他在著名论文《关于光的产生和转化的一个试探性的观点》一文中总结分析了在光学发展中“微粒说”和“波动说”长期争论的历史,指出了经典理论存在的困难,他认为只有把光的能量也看成是不连续分布,而是一份一份地集中在一起,就能对光电效应做出合理的解释说明。这样爱因斯坦发展了普朗克的能量子的概念,创造性地提出了光量子(即光子)的概念,并把它用之于光的发射和转化上,光子的能量为E=hν,其中ν为光的频率,这样能很合理地解释光电效应等现象。 在1917年,爱因斯坦又指出光子不仅有能量,而且还具有动量,其中动量 p=h 或者p=hk 式中波矢k=2π λ ,这样就把标志波动性质的频率ν和波长λ通过一个普适常量——

高考物理最新近代物理知识点之波粒二象性真题汇编附答案解析(3)

高考物理最新近代物理知识点之波粒二象性真题汇编附答案解析(3) 一、选择题 1.氢原子能级关系如图,下列是有关氢原子跃迁的说法,正确的是 A.大量处于n=3能级的氢原子,跃迁时能辐射出2种频率的光子 B.用n=2能级跃迁到n=1能级辐射出的光子照射逸出功为4.54eV的金属钨能发生光电效应 C.用能量为10.3eV的光子照射,可使处于基态的氢原子跃迁到n=2能级 D.氢原子从n=3能级向基态跃迁时,辐射出的光子能量为1.51eV 2.如图所示为光电管的示意图,光照时两极间可产生的最大电压为0.5V。若光的波长约为6×10-7m,普朗克常量为h,光在真空中的传播速度为c,取hc=2×10-25J·m,电子的电荷量为1.6×10-19C,则下列判断正确的是 A.该光电管K极的逸出功大约为2.53×10-19J B.当光照强度增大时,极板间的电压会增大 C.当光照强度增大时,光电管的逸出功会减小 D.若改用频率更大、强度很弱的光照射时,两极板间的最大电压可能会减小 3.下表是按照密立根的方法进行光电效应实验时得到的某金属的遏止电压U c和入射光的频率ν的几组数据. U c/V0.5410.6370.7140.809 0.878 ν/1014Hz 5.644 5.888 6.098 6.303 6.501 由以上数据应用Execl描点连线,可得直线方程,如图所示.

则这种金属的截止频率约为 A .3.5× 1014Hz B .4.3× 1014Hz C .5.5× 1014Hz D .6.0× 1014Hz 4.如图为氢原子能级图,氢原子中的电子从n=5能级跃迁到n=2能级可产生a 光,从n=4能级跃迁到n=2能级可产生b 光,a 、b 光照射到逸出功为2. 29eV 的金属钠表面均可产生光电效应,则( ) A .a 光的频率小于b 光的频率 B .a 光的波长大于b 光的波长 C .a 光照射所产生的光电子最大初动能0.57k E eV = D .b 光照射所产生的光电子最大初动能0.34k E eV = 5.用一定频率的入射光照射锌板来研究光电效应,如图,则 A .任意光照射锌板都有光电子逸出

波粒二象性知识点教学教材

波粒二象性知识点总结 一:黑体与黑体辐射 1.热辐射 (1)定义:我们周围的一切物体都在辐射电磁波,这种辐射与物体的温度有关,所以叫热辐射。 (2)特点:热辐射强度按波长的分布情况随物体的温度而有所不同。 2.黑体 (1)定义:在热辐射的同时,物体表面还会吸收和反射外界射来的电磁波。如果一些物体能够完全吸收投射到其表面的各种波长的电磁波而不发生反射,这种物 体就是绝对黑体,简称黑体。 (2)黑体辐射特点:黑体辐射电磁波的强度按波长的分布只与黑 体的温度有关。 注意:一般物体的热辐射除与温度有关外,还与材料的种类及 表面状况有关。 二:黑体辐射的实验规律 如图所示,随着温度的升高,一方面,各种波长的辐射强度都 有增加;另—方面,辐射强度的极大值向波长较短的方向移动。 三:能量子 1.能量子:带电微粒辐射或吸收能量时,只能是辐射或吸收某 个最小能量值的整数倍,这个不可再分的最小能量值E叫做能量子。 2.大小:E=hν。 其中ν是电磁波的频率,h称为普朗克常量,h=6.626x10—34J·s(—般h=6.63x10—34J·s)。四:拓展: 1、对热辐射的理解 (1).在任何温度下,任何物体都会发射电磁波,并且其辐射强度按波长的分布情况随物体的温度而有所不同,这是热辐射的一种特性。 在室温下,大多数物体辐射不可见的红外光;但当物体被加热到5000C左右时,开始发出暗红色的可见光。随着温度的不断上升,辉光逐渐亮起来,而且波长较短的辐射越来越 多,大约在1 5000C时变成明亮的白炽光。这说明同一物体在一定温度下所辐射的能量在不同光谱区域的分布是不均匀的,而且温度越高光谱中与能量最大的辐射相对应的频率也越高。(2).在一定温度下,不同物体所辐射的光谱成分有显著的不同。例如,将钢加热到约800℃时,就可观察到明亮的红色光,但在同一温度下,熔化的水晶却不辐射可见光。 (3)热辐射不需要高温,任何温度下物体都会发出一定的热辐射,只是温度低时辐射弱,温度高时辐射强。2、2.什么样的物体可以看做黑体 (1).黑体是一个理想化的物理模型。 (2).如图所示,如果在一个空腔壁上开—个很小的孔,那么射人 小孔的电磁波在空腔内表面会发生多次反射和吸收,最终不能从空腔 射出。这个空腔近似看成一个绝对黑体。 注意:黑体看上去不一定是黑色的,有些可看做黑体的物体由于 自身有较强的辐射,看起来还会很明亮。如炼钢炉口上的小孔。 3、普朗克能量量子化假说 (1).如图所示,假设与实验结果“令人满意地相符”, 图中小圆点表示实验值,曲线是根据普朗克公式作出的。 (2).能量子假说的意义 普朗克的能量子假说,使人类对微观世界的本质有了全 新的认识,对现代物理学的发展产生了革命性的影响。普朗 克常量h是自然界最基本的常量之一,它体现了微观世界的

高中物理波粒二象性

科学的历史不仅仅是一连 串事实、规则和随之而来的数 学描述,它也是一部概念的历 史。当我们进入一个新的领域 时,常常需要新的概念。 ——普朗克第十七章波粒二象性 DESIGNER:范鸿飞 TEL:010-********-1 EMAIL:fanhongfei2002@https://www.360docs.net/doc/174167458.html,

物理学大厦业已建成? 物理学发展到19世纪末期,可以说是达到相当完美、相当成熟的程度。以经典力学、经典电磁场理论和经典统计力学为三大支柱的经典物理大厦已经建成,而且基础牢固,宏伟壮观!一切物理现象似乎都能够从相应的理论中得到满意的回答。 在这种形势下,物理学家会感到陶醉,会感到物理学已大功告成,因而断言往后难有作为了。这种思想当 时在物理界不但普遍存在,而且由来已久。经典物理学大厦日臻完美

天边的两朵乌云…… 19世纪的最后一天,欧洲著 名的科学家欢聚一堂。会上,英 国著名物理学家W·汤姆生(即 开尔文男爵)发表了新年祝词。 他在回顾物理学所取得的伟大成 就时说,物理大厦已经落成,所 剩只是一些修饰工作。同时,他 在展望20世纪物理学前景时,却 若有所思地讲道:“动力理论肯 定了热和光是运动的两种方式, 现在,它的美丽而晴朗的天空却 晴朗天空中的两朵乌云被两朵乌云笼罩了……”

1.物理学的新纪元:能量量子化

物体的热辐射 一切物体都在不断地向外辐射电磁波。这种电磁辐射是由于物体内分子在不停地做热运动而产生的。 在室温条件下:辐射波长较长的电磁波(红外线); 在高温条件下:辐射波长较短的电磁波成分较多。 在温度升高过程中,物体颜色发生变化。 *固体在温度升高时颜色的变化 800K1000K1200K 1400K 注:“K”是开氏温标(T)的单位。与摄氏温标(t)的换算方法是:T=t+273

人教版高中物理选修3-5章总结复习素材:第17章 波粒二象性知识点

选修3-5知识点 第十七章波粒二象性 17.1能量量子化 一、黑体与黑体辐射 1、热辐射:一切物体都 在辐射电磁波,这种辐 射与物体的温度有关。 物体在室温时,热辐射的主要成分是波长较长的电磁波,不能引起人的視觉。当温度升高时,热辐射中较短波长的成分越来越强。 2、热辐射的特性:辐射强度按波长的分布情况随物体的温度而有所不同。 3、黑体:物体表面能够完全吸收入射的各种波长的电磁波而不发生反射。 除了热辐射之外,物体表面还会吸收和反射外界射来的电磁波。常温下我们看到的物体的颜色就是反射光所致。一些物体在光线照射下看起来比较黑,那是因为它吸收电磁波的能力较强,而反射电磁波的能力较弱。 4、黑体辐射:辐射电磁波的强度按波长的分布只与黑体的温度有关。 二、黑体辐射的实验规律

1、从中可以看出,随着温度的升高,一方面,各种波长的强度有所增加,另一方面,辐射强度的极大值向波长较短的方向移动。 2、维恩公式在短波区与实验非常接近,在长波区则与实验偏离很大。 3、瑞利公式在长波区与实実验基本一致,但 在短波区与实验严重不符,不但不符,而且 当趋于0时,辐射强度竟变成无穷大,这显 然是荒谬。 三、能量子 1、ε叫能量子,简称量子,能量是量子化的,只能一份一份地按不连续方式辐射或吸收能量。 2、普朗克常量:对于频率为ν的能量子最小能量: ε=hν h=6.62610-34J/s。——普朗克常量 17.2光的粒子性 光是电磁波:光的干涉、衍射现象说明光是波。 一、光电效应的实验规律 1、光电效应:即照射到金属表面的光,能使金属中的电子从表面逸出,发射出来的电子叫光电子。

2、研究光电效应的电路图:①K在受到光照时能够发射光电子汗,②光电子在UAK电场作用下形成光电流,③阳极A吸收阴极K发出的光电子。 3、存在着饱和电流:入射光越强,单位时间内发射的光电子数越多。 4、存在着遏止电压和截止频率 ①使光电流减少到0的反向电压称为遏止电压。遏止电压的存在意味着光电子具有一定的初速度。 ②入射光的频率低于截止频率时不发生光电效应。 ③入射光强度决定着:单位时间内发射出来的电子数(光电子)。 ④入射光的频率(颜色)决定着能否发生光电效应和发生光电效应时光电子的最大初动能。 ⑤光电子的能量只与入射光的频率有关,而与入射光的强弱无关。 5、光电效应具有瞬时性。 二、光电效应解释中的疑难 1、逸出功W0:使电子脱离某种金属所做功的最小值。 ①金属表面层内存在一种力,阻碍电子的逃逸。 2、光越强,逸出的电子数越多,光电流也就越大。 3、经典理论无法解释光电效应的实验结果 三、爱因斯坦的光电效应方程 1、爱因斯坦的光量子假设:在空间传播的光也不是连续的,光不仅在发射和吸收时能量是一份一份的,而且光本身就是由一个个不可分割的能量子

实物粒子的波粒二象性

实物粒子波粒二象性的介绍 今年十月份,在西安召开的物理创新大会上,有幸结识了熊承坤先生。熊老先生给我看了一张照片,照片上是气泡在水中上升的轨迹,是一个非常漂亮的波浪线。这充分说明了实物粒子具有波动性。 回来后我购置了实验器材,亲自做了这方面的实验,发现实验效果非常直观、明显。 下面我简要把气泡的运动特点介绍一下: 1)气泡从针孔中刚冒出时,要经历一小段直线加速过程,当速度达到一定值时开始做规则的波动。这时速度趋于恒定。 2)气泡越大,波长越短;气泡越小,波长越长。当气泡过于小时,它在水中上升的速度一直很小,形成不了波动,在水中直线上升。 3)气泡形成波动时,虽然波长不同,但对应的速度几乎相等。 4)一个气泡的波动轨迹并不在同一平面内,是螺旋上升的;俯视,其为椭圆。 这是实物粒子具有波粒二象性最直观、明显的例子。

为什么在空气中运动的子弹、小球等不会有明显的波动性呢? 为什么在水中运动的气泡会有的波动性呢? 这恰恰说明实物粒子之所以具有波动性,是当它们运动时,受其周围介 质作用的结果。 在空气中运动的子弹、小球等之所以不会有明显的波动性,是因为空气 的密度较小,而子弹、小球的质量较大,空气对子弹、小球的作用很难体现。 在水中运动的气泡之所以有明显的波动性,是因为水的密度较大,而气泡的质量较小,水对运动的气泡的作用使气泡产生了明显的波动。 为什么在真空中高速运动的电子、中子等会具有的波动性呢? 这恰恰说明真空不是空的,真空中有某种物质存在。这种物质对运动的电子、中子作用使它们产生波动。 在此,我们应把波动分类: 1)像我们常见的在绳子上传播的绳波,在水中传播的水波等,这些波传播的是振动,媒质并没随波动传播。例如,绳子也好、水也好它们本身并没有随波动传播出去。 2)另一类就完全不同,像水中运动的气泡,像高速运动的电子、中子等,它们是实实在在的粒子在运动,由于与介质的作用,使它们的运动呈现出波动性。 了解了波动的不同分类,我们就容易认清光的本质了。 从光电效应、康普顿效应等可以看出,光具有明显的粒子性,所以说光子是实实在在的粒子。 光子在影子物质空间中高速运动,使其具有了波动。 光子质量越大,所对应的波长越短,频率越大。 在此我强调一下,光子是有质量的,光子质量为: 2c h m γ=

我对波粒二象性的理解

我对波粒二象性的理解 基本介绍:波粒二象性是指某物质同时具备波的特质及粒子的特质。波粒二象性是量子力学中的一个重要概念。 在经典力学中,研究对象总是被明确区分为两类:波和粒子。前者的典型例子是光,后者则组成了人们常说的“物质”。1905年,爱因斯坦提出了光电效应的光量子解释,人们开始意识到光波同时具有波和粒子的双重性质。 1924年,德布罗意提出“物质波”假说,认为和光一样,一切物质都具有波粒二象性。 发展历史:人们认为大多数的物质是由粒子所组成。而与此同时,波被认为是物质的另一种存在方式。波动理论已经被相当深入地研究,包括干涉和衍射等现象。由于光在托马斯·杨的双缝干涉实验中,以及夫琅和费衍射中所展现的特性,明显地说明它是一种波动。 不过在二十世纪来临之时,这个观点面临了一些挑战。1905年由阿尔伯特·爱因斯坦研究的光电效应展示了光粒子性的一面。随后,电子衍射被预言和证实了。这又展现了原来被认为是粒子的电子波动性的一面。 这个波与粒子的困扰终于在二十世纪初由量子力学的建立所解决,即所谓波粒二象性。它提供了一个理论框架,使得任何物质在一定的环境下都能够表现出这两种性质。量子力学认为自然界所有的粒子,如光子、电子或是原子,都能用一个微分方程,如薛定谔方程来

描述。这个方程的解即为波函数,它描述了粒子的状态。波函数具有叠加性,即,它们能够像波一样互相干涉和衍射。同时,波函数也被解释为描述粒子出现在特定位置的几率幅。这样,粒子性和波动性就统一在同一个解释中。 早期理论:最早的综合光理论是由惠更斯所发展的,他提出减了一个光的波动理论,解释了光波如何形成波前,直线传播。该理论也能很好地解释折射现象。但是,该理论在另一些方面遇见了困难。因而它很快就被牛顿的粒子理论所超越。牛顿认为光是由微小粒子所组成,这样他能够很自然地解释反射现象。并且,他也能稍显麻烦地解释透镜的折射现象,以及通过三棱镜将阳光分解为彩虹。 由于牛顿无与伦比的学术地位,他的理论在一个多世纪内无人敢于挑战,而惠更斯的理论则渐渐为人淡忘。直到十九世纪初衍射现象被发现,光的波动理论才重新得到承认。而光的波动性与粒子性的争论从未平息。 效应方程:由于E=hv,这光照射到原子上,其中电子吸收一份能量,从而克服逸出功,逃出原子。电子所具有的动能Ek=hv-Wo,Wo为电子逃出原子所需的逸出功。这就是爱因斯坦的光电效应方程。 德布罗意假设:λ=h/p=h/mv (m:质量v:速度h:普朗克常数)这是对爱因斯坦等式的一般化,因为光子的动量为p = E / c(c为真空中的光速),而λ = c / ν。 德布罗意的方程三年后通过两个独立的电子散射实验被证实。根据微观粒子波动性发展起来的电子显微镜、电子衍射技术和中子衍射

高考物理近代物理知识点之波粒二象性难题汇编附解析(4)

高考物理近代物理知识点之波粒二象性难题汇编附解析(4) 一、选择题 1.关于近代物理,下列说法正确的是() A.射线是高速运动的氦原子 B.核聚变反应方程,表示质子 C.从金属表面逸出的光电子的最大初动能与照射光的频率成正比 D.玻尔将量子观念引入原子领域,其理论能够解释氦原子光谱的特征 2.已知钙和钾的截止频率分别为7.73×1014Hz和5.44×1014Hz,在某种单色光的照射下两种金属均发生光电效应,下列说法正确的是() A.钾的逸出功大于钙的逸出功 B.钙逸出的电子的最大初动能大于钾逸出的电子的最大初动能 C.比较它们表面逸出的具有最大初动能的光电子,钙逸出的光电子具有较大的波长D.比较它们表面逸出的具有最大初动能的光电子,钙逸出的光电子具有较大的动量 3.在光电效应实验中,用同一光电管在不同实验条件下得到了甲、乙、丙三条光电流与电压之间的关系曲线.下列判断正确的是() A.甲光的频率大于乙光的频率 B.乙光的波长小于丙光的波长 C.乙光的强度低于甲光的强度 D.甲光对应的光电子最大初动能大于丙光的光电子最大初动能 4.用大量处于n=4能级的氢原子向低能级跃迁释放的光子,照射某种金属,结果有两种频率的光子能使该金属发生光电效应。已知氢原子处在n=1、2、3、4能级时的能量分别为E1、E2、E3、E4,能级图如图所示。普朗克常量为h,则下列判断正确的是() A.这些氢原子共发出8种不同频率的光子 B.氢原子从n=4能级跃迁到n=1能级释放光子,氢原子核外电子的动能减小 C.能使金属发生光电效应的两种光子的能量分别为E4﹣E3、E4﹣E2 D.金属的逸出功W0一定满足关系:E2﹣E1<W0<E3﹣E1 5.下列说法正确的是()

大学物理2答案

一、选择题(在下列各题的四个选项中,只有一个选项是最符合题目要求的, 请你把正确的答案填写在括号内。每小题2分,共20分) 1、一平面简谐波在弹性媒质中传播时,某一时刻在传播方向上媒质中某质元在负的最大位移处,则它的能量是 【 B 】 A.动能为零,势能最大; B.动能为零,势能为零; C.动能最大,势能最大; D.动能最大,势能为零。 2、1mol 刚性双原子分子理想气体,当温度为T 时,其内能为: 【 C 】 (式中R 为摩尔气体常数,k 为玻耳兹曼常数)。 3、一束白光垂直照射在一光栅上,在形成的同一级光栅光谱中,偏离中央明纹最远的是:【 D 】 A. 紫光; B. 绿光; C. 黄光; D. 红光。 4、频率为100Hz ,传播速度为300m/s 的平面简谐波 ,波线上两点振动的相位差为2/3π,则此两点相距: 【 A 】 A. 1m ; B. 2.19m ; (C) 0.5m ; (D) 28.6m 。 5、自然光以600 的入射角照射到某两介质交界面时,反射光恰为线偏振光,则折射光为:【 B 】 A.线偏振光且折射角是300; B.部分偏振光且折射角是300; C.部分偏振光,但须知两种介质的折射率才能确定折射角; D.部分偏振光且只在该光由真空入射到折射率为3的介质时,折射角是300。 6、平衡状态下,可由麦克斯韦速率分布律导出气体的三种特征速率,这三种速率与温度及分子质量间的关系及它们之间的关系分别是 【 B 】 A.这三种速率随着温度的升高而线性增加; B. p v v <<; C. 这三种速率均与单个分子的质量成反比; D. p v v <<。 7、两个卡诺热机的循环曲线如图所示。一个工作在温度为T 1和T 3的两个热源之间,另一个工作在温度为T 2和T 3的两个热源之间,已知这两个循环曲线所围的面积相等,由此可知:【 D 】 A.两热机的效率一定相等; B.两热机从高温热源所吸收的热量一定相等; C.两热机向低温热源所放出的热量一定相等; D.两热机吸收的热量与放出的热量(绝对值) 的差值一定相等。 8、反映微观粒子运动的基本方程是 【 C 】

实物粒子的波粒二象性

3光的波粒二象性 4实物粒子的波粒二象性 (时间:60分钟) 知识点一康普顿效应 1.白天的天空各处都是亮的,是大气分子对太阳光散射的结果.美国物理学家康普顿由于在这方面的研究而荣获了1927年的诺贝尔物理学奖,假设一个运动的光子和一个静止的自由电子碰撞以后,电子向某一个方向运动,光子沿另一方向散射出去,则这个散射光子跟原来的光子相比 (). A. 频率变大B.速度变小 C.光子能量变大 D. 波长变长 解析光子与自由电子碰撞时,遵守动量守恒和能量守恒,自由电子碰撞前 静止,碰撞后动量、能量增加,所以光子的动量、能量减小,由λ=h p,ε=hν 可知光子频率变小,波长变长,故D正确,由于光子速度是不变的,故B错误. 答案 D 2.科学研究证明,光子有能量也有动量,当光子与电子碰撞时,光子的一些能量转移给了电子.假设光子与电子碰撞前的波长为λ,碰撞后的波长为λ′,

则碰撞过程中 ().A.能量守恒,动量守恒,且λ=λ′ B.能量不守恒,动量不守恒,且λ=λ′ C.能量守恒,动量守恒,且λ<λ′ D.能量守恒,动量守恒,且λ>λ′ 解析能量守恒和动量守恒是自然界的普遍规律,适用于宏观世界也适用于微观世界.光子与电子碰撞时遵循这两个守恒定律.光子与电子碰撞前光子 的能量E=hν=h c λ,当光子与电子碰撞时,光子的一些能量转移给了电子, 光子的能量E′=hν′=h c λ′,由E>E′,可知λ<λ′,选项C正确. 答案 C 3.频率为ν的光子,具有的动量为hν c,将这个光子打在处于静止状态的电子上, 光子将偏离原来的运动方向,这种现象称为光的散射.散射后的光子 ().A.虽改变原来的运动方向,但频率保持不变 B.光子将从电子处获得能量,因而频率将增大 C.散射后光子的能量减小,因而光子的速度减小 D.由于电子受到碰撞,散射后的光子频率低于入射光的频率 解析由动量公式p=h λ,在康普顿效应中,当入射光子与电子碰撞时,要把 一部分动量转移给电子,因而光子动量变小,波长变长,频率变小.而光的传播速度不变. 答案 D 知识点二光的波粒二象性 4.物理学家做了一个有趣的实验:如图4-3、4-2所示,在双缝干涉实验中,在光屏处放上照相底片,若减弱光的强度,使光子只能一个一个地通过狭缝,实验结果表明,如果曝光时间不太长,底片上只出现一些不规则的点;如果

对波粒二象性的理解

量子力学 题目: 专题理解:波粒二象性 学生姓名 专业 学号 班级 指导教师 成绩 工程技术学院 2016 年 1 月

专题理解:波粒二象性 前言: 波粒二象性(wave-particle duality)是指某物质同时具备波的特质及粒子的特质。波粒二象性是量子力学中的一个重要概念。在量子力学里,微观粒子有时会显示出波动性(这时粒子性较不显著),有时又会显示出粒子性(这时波动性较不显著),在不同条件下分别表现出波动或粒子的性质。这种量子行为称为波粒二象性,是微观粒子的基本属性之一。但从经典物理学的观点来看,“微粒”和“波”是相互排斥的概念,或者说“波”与“微粒”是两种截然对立的存在。一个东西要么是波,要么是微粒,即“非此即彼”。那么究竟自由理解波粒二象性呢?通过对量子力学课程的学习以及查阅相关资料,我对其有了更深的理解并做了以下整理与总结。 一、波粒二象性理论的发展简述 较为完全的光理论最早是由克里斯蒂安·惠更斯发展成型,他提出了一种光波动说。稍后,艾萨克·牛顿提出了光微粒说。光的波动性与粒子性的争论从未平息。十九世纪早期,托马斯·杨完成的双缝实验确切地证实了光的波动性质。到了十九世纪中期,光波动说开始主导科学思潮,因为它能够说明偏振现象的机制,这是光微粒说所不能够的。同世纪后期,詹姆斯·麦克斯韦将电磁学的理论加以整合,提出麦克斯韦方程组。应用电磁波方程计算获得的电磁波波速等于做实验测量到的光波速度。麦克斯韦于是猜测光波就是电磁波。1888年,海因里希·赫兹做实验发射并接收到麦克斯韦预言的电磁波,证实麦克斯韦的猜测正确无误。从这时,光波动说开始被广泛认可。 为了产生光电效应,光频率必须超过金属物质的特征频率,称为其“极限频率”。根据光波动说,光波的辐照度或波幅对应于所携带的能量,因而辐照度很强烈的光束一定能提供更多能量将电子逐出。然而事实与经典理论预期恰巧相反。1905年,爱因斯坦对于光电效应给出解释。他将光束描述为一群离散的量子,现称为光子,而不是连续性波动。从普朗克黑体辐射定律,爱因斯坦推论,组成光束的每一个光子所拥有的能量等于频率乘以一个常数,即普朗克常数,他提出了“爱因斯坦光电效应方程”。1916年,美国物理学者罗伯特·密立根做实验证实了爱因斯坦关于光电效应的理论。物理学者被迫承认,除了波动性质以外,光也具有粒子性质。 在光具有波粒二象性的启发下,法国物理学家德布罗意在1924年提出一个“物质波”假说,指出波粒二象性不只是光子才有,一切微观粒子,包括电子和质子、中子,都有波粒二象性。他把光子的动量与波长的关系式p=h/λ推广到一切微观粒子上,指出:具有质量m 和速度v 的运动粒子也具有波动性,这种波的波长等于普朗克恒量h 跟粒子动量mv 的比,即λ= h/(mv)。这个关系式后来就叫做德布罗意公式。根据德布罗意假说,电子是应该会具有干涉和衍射等波动现象。1927年,克林顿·戴维森与雷斯特·革末设计与完成的戴维森-革末实验成功证实了德布罗意假说。 2015年瑞士洛桑联邦理工学院科学家成功拍摄出光同时表现波粒二象性的照片。

高中物理-波粒二象性测试题

高中物理-波粒二象性测试题 一、选择题 1、入射光照射到金属表面上发生了光电效应,若入射光的强度减弱,但频率保持不变,那么以下说法正确的是() A.从光照射到金属表面到发射出光电子之间的时间间隔明显增加 B.逸出的光电子的最大初动能减小 C.单位时间内从金属表面逸出的光电子的数目减少 D.有可能不再产生光电效应 2、爱因斯坦由光电效应的实验规律,猜测光具有粒子性,从而提出光子说。从科学研究的方法来说这属于() A.等效代替B.控制变量 C.科学假说D.数学归纳 3、如图1所示,画出了四种温度下黑体辐射的强度与波长的关系图象,从图象可以看出,随着温度的升高,则() A.各种波长的辐射强度都有增加 B.只有波长短的辐射强度增加 C.辐射强度的极大值向波长较短的方向移动 D.辐射电磁波的波长先增大后减小 4、对光的认识,以下说法正确的是() 图1 A.个别光子的行为表现为粒子性,大量光子的行为表现为波动性 B.光的波动性是光子本身的一种属性,不是光子之间的相互作用引起的 C.光表现出波动性时,不具有粒子性;光表现出粒子性时,不具有波动性D.光的波粒二象性应理解为:在某些场合下光的波动性表现明显,在另外一些场合下,光的粒子性表现明显 5、光子打在处于静止状态的电子上,光子将偏离原来的方向而发生散射,康普顿对散射的解释为() A.虽然改变原来的运动方向,但频率保持不变 B.光子从电子处获得能量,因而频率增大 C.入射光引起物质内电子做受迫振动,而从入射光中吸收能量后再释放,释

放出的散射光频率不变 D .由于电子受碰撞后得到动量,散射后的光子频率低于入射光的频率 6、一束绿光照射某金属发生了光电效应,则下列说法正确的是( ) A .若增加绿光的照射强度,则逸出的光电子数增加 B .若增加绿光的照射强度,则逸出的光电子最大初动能增加 C .若改用紫光照射,则可能不会发生光电效应 D .若改用紫光照射,则逸出的光电子的最大初动能增加 7、用波长为λ1和λ2的单色光1和2分别照射金属1和2的表面。色光1照射 金属1和2的表面时都有光电子射出,色光2照射金属1时有光电子射出,照射金属2时没有光电子射出。设金属1和2的逸出功为W 1和W 2,则有( ) A .λ1>λ2,W 1>W 2 B .λ1>λ2,W 1W 2 D .λ1<λ2,W 1

大学物理2答案

如有你有帮助,请购买下载,谢谢! 一、选择题(在下列各题的四个选项中,只有一个选项是最符合题目要求的, 请你把正确的答案填写在括号内。每小题2分,共20分) 1、一平面简谐波在弹性媒质中传播时,某一时刻在传播方向上媒质中某质元在负的最大位移处,则它的能量是 【 B 】 A.动能为零,势能最大; B.动能为零,势能为零; C.动能最大,势能最大; D.动能最大,势能为零。 2、1mol 刚性双原子分子理想气体,当温度为T 时,其内能为: 【 C 】 (式中R 为摩尔气体常数,k 为玻耳兹曼常数)。 3、一束白光垂直照射在一光栅上,在形成的同一级光栅光谱中,偏离中央明纹最远的是:【 D 】 A. 紫光; B. 绿光; C. 黄光; D. 红光。 4、频率为100Hz ,传播速度为300m/s 的平面简谐波 ,波线上两点振动的相位差为2/3π,则此两点相距: 【 A 】 A. 1m ; B. 2.19m ; (C) 0.5m ; (D) 28.6m 。 5、自然光以600 的入射角照射到某两介质交界面时,反射光恰为线偏振光,则折射光为:【 B 】 A.线偏振光且折射角是300; B.部分偏振光且折射角是300; C.部分偏振光,但须知两种介质的折射率才能确定折射角; D.部分偏振光且只在该光由真空入射到折射率为3的介质时,折射角是300。 6、平衡状态下,可由麦克斯韦速率分布律导出气体的三种特征速率,这三种速率与温度及分子质量间的关系及它们之间的关系分别是 【 B 】 A.这三种速率随着温度的升高而线性增加; B. p v v <<; C. 这三种速率均与单个分子的质量成反比; D. p v v <<。 7、两个卡诺热机的循环曲线如图所示。一个工作在温度为T 1和T 3的两个热源之间,另一个工作在温度为T 2和T 3的两个热源之间,已知这两个循环曲线所围的面积相等,由此可知:【 D 】 A.两热机的效率一定相等; B.两热机从高温热源所吸收的热量一定相等; C.两热机向低温热源所放出的热量一定相等; D.两热机吸收的热量与放出的热量(绝对值) 的差值一定相等。 8、反映微观粒子运动的基本方程是 【 C 】

对波粒二象性的理解和认识

对波粒二象性的理解与认识 摘要:光的波粒二象性被发现之后,德布罗意由此得到启发,大胆地把这二象性推广 到物质客体上去,提出了实物粒子也具有波粒二象性的理论。本文结合所学知识,通过对波粒二象性发展的简单梳理,阐述了目前自己对其的理解与认识。 引言 量子论和相对论是近代物理学的两大支柱, 两者都改变了人们对物质世界的根 本认识并对20世纪的科学技术、生产实践起到了决定性的推动作用。相对论以相对时空观取代源于常识的绝对空观, 量子力学则用以物质粒子的波粒二象性为基础的 概率来描述物质粒子的行为, 使物质粒子的行为具有了神秘的不确定性。经过课本 上的知识的学习,我进行了进一步的了解总结与思考。 1.光的波粒二象性 光究竟是粒子还是波?这个问题涉及对光的本性的不同认识。1672年,牛顿向英国皇家学会递交了一篇《关于光和色的新理论》的论文。他认为光是由许多机械微粒组成的,提出了光的微粒说。19世纪托马斯·扬和其他一些人决定性的证明了, 光的粒子理论是错误的。他们认为,光更应该是一种波。关于波,我们熟悉的一种特性是,干涉。托马斯·扬利用他的著名的双缝实验装置制造出两个光波源, 并观察到光也 有类似的干涉图案。这样,在19世纪下半叶,光的波动说占了统治地位。 但是,没有过多久,19世纪末进行的一些实验,发现了一些新的实验现象,不能用光 的波动理论解释。这些实验里面最著名的就是光电效应和康普顿效应,。而爱因斯坦在普朗克的量子假说基础上提出的光量子假说,对光电效应成功地解释,又复兴了以前的光的粒子论。但这一次并没有否定波动说, 而是由此得出了光的波粒二象性的 结论。 2.物质波 1923 年, 德布罗意在光有波粒二象性的启示下, 提出实物粒子也具有波动性的 假说。德布罗意认为, 任何运动着的物体都伴随着一种波动, 而且不可能将物体的运动和波的传播分开, 这种波称为相位波。存在相位波是物体的能量和动量同时满足 量子条件和相对论关系的必然结果。后来薛定愕解释波函数的物理意义时称为,物 质波,。 德布罗意的物质波理论是在没有得到任何已知事实支持的情况下提出来的, 所 以还只能是一种假说。1 927 年初, 戴维孙和革末通过电子束在镍单晶体表面上散射的实验,观察到了和X射线衍射类似的电子衍射图像,首先证实了德布罗意假说的正确性。同年G. P. 汤姆逊用多晶体薄膜做电子衍射实验,也观察到了和X射线衍射类似的电子衍射图像,实验观测和由德布罗意理论得到的结果非常一致, 这充分证明 了电子具有波动性, 再一次用无可辩驳的事实向人们展示了德布罗意理论是正确的。 以后, 人们通过实验又观察到原子、分子等微观粒子都具有波动性。实验证明了物质具有波粒二象性, 不仅使人们认识到德布罗意的物质波理论是正确的, 而且为

高考物理近代物理知识点之波粒二象性图文答案(4)

高考物理近代物理知识点之波粒二象性图文答案(4) 一、选择题 1.下图为氢原子的能级图.现有两束光,a 光由图中跃迁①发出的光子组成,b 光由图中跃迁②发出的光子组成,已知a 光照射x 金属时刚好能发生光电效应,则下列说法正确的是 A .x 金属的逸出功为2.86 eV B .a 光的频率大于b 光的频率 C .氢原子发生跃迁①后,原子的能量将减小3.4 eV D .用b 光照射x 金属,打出的光电子的最大初动能为10.2 eV 2.三束单色光1、2和3的频率分别为1v 、2v 和3123()v v v v >>。分别用这三束光照射同一种金属,已知用光束2照射时,恰能产生光电效应。下列说法正确的是( ) A .用光束1照射时,一定不能产生光电效应 B .用光束3照射时,一定能产生光电效应 C .用光束3照射时,只要光强足够强,照射时间足够长,照样能产生光电效应 D .用光束1照射时,无论光强怎样,产生的光电子的最大初动能都相同 3.下列说法中正确的是 A .阳光下肥皂泡上的彩色条纹和雨后彩虹的形成原理是相同的 B .只有大量光子才具有波动性,少量光子只具有粒子性 C .电子的衍射现象说明其具有波动性,这种波不同于机械波,它属于概率波 D .电子显微镜比光学显微镜的分辨率更高,是因为电子穿过样品时发生了更明显的衍射 4.如图是 a 、b 两光分别经过同一双缝干涉装置后在屏上形成的干涉图样,则 A .从同种介质射入真空发生全反射是 b 光临界角大

B.在同种均匀介质中,a 光的传播速度比 b 光的大 C.照射在同一金属板上发生光电效应时,a 光的饱和电流大 D.若两光均由氢原子能级跃迁发生,产生 a 光的能级能量差小 5.如图所示,当氢原子从n=4能级跃迁到n=2的能级和从n=3能级跃迁到n=1的能级时,分别辐射出光子a和光子b,则 A.由于辐射出光子,原子的能量增加 B.光子a的能量小于光子b的能量 C.光子a的波长小于光子b的波长 D.若光子a能使某金属发生光电效应,则光子b不一定能使该金属发生光电效应 6.用如图甲所示的装置研究光电效应现象.用频率为ν的光照射光电管时发生了光电效应.图乙是该光电管发生光电效应时光电子的最大初动能E k与入射光频率ν的关系图象,图线与横轴的交点坐标为(a,0),与纵轴的交点坐标为(0,-b),下列说法中正确的是() A.普朗克常量为h=b a B.仅增加照射光的强度,光电子的最大初动能将增大 C.保持照射光强度不变,仅提高照射光频率,电流表G的示数保持不变D.保持照射光强度不变,仅提高照射光频率,电流表G的示数增大7.关于光电效应,下列说法正确的是 A.光电子的最大初动能与入射光的频率成正比 B.光的频率一定时,入射光越强,饱和电流越大 C.光的频率一定时,入射光越强,遏止电压越大 D.光子能量与光的速度成正比 8.下列说法中正确的是 A.根据爱因斯坦的“光子说”可知,光的波长越大,光子的能量越小

相关文档
最新文档