专题45 以矩形为基础的图形的旋转变换问题(原卷版)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题45 以矩形为基础的图形的旋转变换问题
【例题精讲】
两个长为2cm,宽为1cm的长方形,摆放在直线l上(如图①),CE=2cm,将长方形ABCD绕着点C顺时针旋转α角,将长方形EFGH绕着点E逆时针旋转相同的角度.
(1)当旋转到顶点D、H重合时,连接AE、CG,求证:△AED≌△GCD(如图②).
(2)当α=45°时(如图③),求证:四边形MHND为正方形.
【针对训练】
1、如图,有一矩形纸片ABCD,AB=6,AD=8,如图1,将纸片折叠使AB落在AD边上,B的对应点为B′,
折痕为AE.如图2,再将△AB'E以B'E为折痕向右折叠,AE与CD交于点F.
(1)求的值;
(2)四边形EFDB′的面积为;
(3)如图3,将△A′DF绕点D旋转得到△MDN,点N刚好落在B′E上,A′的对应点为M,F的对应点为N,求点A'到达点M所经过的距离.
2、已知线段AB,如果将线段AB绕点A逆时针旋转90°得到线段AC,则称点C为线段AB关于点A的逆
转点.点C为线段AB关于点A的逆转点的示意图如图1:
(1)如图2,在正方形ABCD中,点为线段BC关于点B的逆转点;
(2)如图3,在平面直角坐标系xOy中,点P的坐标为(x,0),且x>0,点E是y轴上一点,点F 是线段EO关于点E的逆转点,点G是线段EP关于点E的逆转点,过逆转点G,F的直线与x轴交于点H.
①补全图;
②判断过逆转点G,F的直线与x轴的位置关系并证明;
③若点E的坐标为(0,5),连接PF、PG,设△PFG的面积为y,直接写出y与x之间的函数关系式,
并写出自变量x的取值范围.
3、如图,△ABC是等腰直角三角形,∠ACB=90°,D为AC延长线上一点,连接DB,将DB绕点D逆时
针旋转90°,得到线段DE,连接AE.
(1)如图①,当CD=AC时,线段AB、AE、AD三者之间的数量关系式是AB+AE=AD.(2)如图②,当CD≠AC时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由.(3)当点D在射线CA上时,其他条件不变,(1)中结论是否成立?若成立,请说明理由;若不成立,请直接写出线段AB、AE、AD三者之间的数量关系
式.
4、如图,将△ABC绕点A逆时针旋转90°得到△ADE,将BC绕点C顺时针旋转90°得CG,DG交EC于O
点
(1)求证:DO=OG;
(2)若∠ABC=135°,AC=2,求DG的长;
(3)若∠ABC=90°,BC>AB,且=时,直接写出的值.
5、如图乙,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,点P为射线BD,CE
的交点.
(1)如图甲,将△ADE绕点A旋转,当C、D、E在同一条直线上时,连接BD、BE,则下列给出的四个结论中,其中正确的是哪几个.(回答直接写序号)
①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE2=2(AD2+AB2)
(2)若AB=6,AD=3,把△ADE绕点A旋转:
①当∠CAE=90°时,求PB的长;
②直接写出旋转过程中线段PB长的最大值和最小值.
6、如图1,在等腰直角△ABC中,∠A=90°,AB=AC=3,在边AB上取一点D(点D不与点A,B重合),
在边AC上取一点E,使AE=AD,连接DE.把△ADE绕点A逆时针方向旋转α(0°<α<360°),如图2.
(1)请你在图2中,连接CE和BD,判断线段CE和BD的数量关系,并说明理由;
(2)请你在图3中,画出当α=45°时的图形,连接CE和BE,求出此时△CBE的面积;
(3)若AD=1,点M是CD的中点,在△ADE绕点A逆时针方向旋转的过程中,线段AM的最小值是.
7、综合与实践
问题情境
数学活动课上,老师让同学们以“三角形的旋转”为主题开展数学活动,△ABC和△DEC是两个全等的直角三角形纸片,其中∠ACB=∠DCE=90°,∠B=∠E=30°,AB=DE=4.
解决问题
(1)如图①,智慧小组将△DEC绕点C顺时针旋转,发现当点D恰好落在AB边上时,DE∥AC,请你帮他们证明这个结论;
(2)缜密小组在智慧小组的基础上继续探究,连接AE、AD、BD,当△DEC绕点C继续旋转到如图②所示的位置时,他们提出S△BDC=S△AEC,请你帮他们验证这一结论是否正确,并说明理由;
探索发现
(3)如图③,勤奋小组在前两个小组的启发下,继续旋转△DEC,当B、A、E三点共线时,求BD的长;
(4)在图①的基础上,写出一个边长比为1::2的三角形(可添加字母)
8、已知△ABC和△BDE都是等腰直角三角形,∠ACB=∠BED=90°,AB=2BD,连接CE.
(1)如图1,若点D在AB边上,点F是CE的中点,连接BF.当AC=4时,求BF的长;
(2)如图2,将图1中的△BDE绕点B按顺时针方向旋转,使点D在△ABC的内部,连接AD,取AD
的中点M,连接EM并延长至点N,使MN=EM,连接CN.求证:CN⊥CE.
9、如图,已知点A(0,8),B(16,0),点P是x轴上的一个动点(不与原点O重合),连结AP,
把△OAP沿着AP折叠后,点O落在点C处,连结PC,BC,设P(t,0).
(1)如图1,当AP∥BC时,试判断△BCP的形状,并说明理由.
(2)在点P的运动过程中,当∠PCB=90°时,求t的值.
(3)如图2,过点B作BH⊥直线CP,垂足为点H,连结AH,在点P的运动过程中,是否存在AH=BC?若存在,求出t的值:若不存在,请说明理由.