数字电路(第一章逻辑代数基础)

合集下载

数字电路与逻辑设计教程-第1章

数字电路与逻辑设计教程-第1章
上一页 下一页 返回
1.2 数制和码制
【例1-4】求十进制数(26)10所对应的二进制数。
因此(26)10=(11010)2。
上一页 下一页 返回
1.2 数制和码制
【例1-5】求十进制数(357 ) 10所对应的八进制数。 解
因此(357 )10=(545)8。
上一页 下一页 返回
1.2 数制和码制
上一节介绍了数字信号的两种取值,实际生活中的数字表示 大多采用进位计数制。
下一页 返回
1.2 数制和码制
1.2.1 进位计数制与常用计数制
用数字量表示物理量大小时,仅用一位数码往往不够用,经 常需要用进位计数的方法组成多位数码表示。把多位数码中 每一位的构成方法以及从低位到高位的进位规则称为计数制 。在生产实践中除了人们最熟悉的十进制以外,还大量使用 各种不同的进位计数制,如八进制、十六进制等。在数字设 备中,机器只认识二进制代码,由于二进制代码书写长,所 以在数字设备中又常采用八进制代码或十六进制代码。
上一页 下一页 返回
1.2 数制和码制
任何进制数的值都可以表示为该进制数中各位数字符号值与 相应权乘积的累加和形式,该形式称为按权展开的多项式之 和。一个J进制数(N为按权展开的多项式的普遍形式可表示为 :
式中,K为任意进制数中第i位的系数,可以为0~ (J-1)数码中 的任何一个;i是数字符号所处位置的序号;m和n为整数,m为 小数部分位数(取负整数),n为整数部分位数(取正整数);.J为 进位基数,Ji为第i位的权值。例如,十进制数(123.75 )10表示 为:
第1章 微型计算机系统概述
1.1 数字电路概述 1.2 数制和码制 1.3 逻辑代数基础 本章小结
1.1 数字电路概述

数字电路逻辑功能的基本公式和定理

数字电路逻辑功能的基本公式和定理

第一章逻辑代数基础【本章主要内容】本章介绍分析数字电路逻辑功能的数学方法。

内容包括:逻辑代数的基本公式和定理;逻辑函数及其表示方法;逻辑函数的化简和变换。

【本章学时分配】本章分为4讲,每讲2学时第一讲绪论和逻辑代数的基本运算一、主要内容1、绪论1)电子电路的分类:2)数字电路的基本特点;3)数字电路的基本应用;4)本课程的主要内容a. 逻辑代数基础;b. 逻辑门电路;c. 组合逻辑电路;d. 触发器;e. 时序逻辑电路;f. 半导体存储器;g. 可编程逻辑器件;h. 脉冲波形的产生和整形;i. D/A和A/D转换。

5)本课程的学习方法和对学生的基本要求。

2、基本逻辑运算和复合逻辑运算1)与、或、非运算是逻辑代数的基本运算,它们分别实现与、或和非的逻辑关系。

设A,B表示输入逻辑变量,Y表示输出逻辑变量,三种运算的表达式如下:与运算:Y=A•B或运算:Y=A+B非运算:Y=A它们的运算规则见P2的表1.1~表1.3,其逻辑符号见P2的图1.1~图1.3。

2)以三种基本运算为基础,还可以形成其他复合运算,常用的是与非、或非、与或非、异或、同或运算,它们的运算规则见P3~P4的表1.4~表1.8,而符号和表达式见P4的图1.4。

.二、本讲重点1、绪论:重点讲述数字电路的基本特点、应用状况和课程主要内容。

2、逻辑代数的基本运算:重点讲述各种运算的运算规则、符号和表达式。

三、本讲难点绪论:注意内容和时间的把握,做到深入浅出。

四、教学组织过程绪论部分采用多媒体教学,逻辑代数部分采用课堂讲授。

第二讲逻辑代数的基本公式与定理、逻辑函数的表示方法一、主要内容1、基本公式基本公式是逻辑运算的基础,它们是根据逻辑运算的规则而导出,其正确性可以用列真值表的方法加以验证。

基本公式包括18个,见P12表1.3.1,可分为若干组。

常量与变量公式:0•A=0;1+A=11•A=A;0+A=A同一律:A•A=A;A+A=A互补律:A•A=0;A+A=1交换律:A•B=B•A;A+B=B+A结合律:A•(B•C)=(A•B)•C;A+(B+C)=(A+B)+C分配律:A•(B+C)=A•B+A•C;A+B•C=(A+B)•(A+C)反演律:BB+A=A⋅ABA+⋅;B=还原律:AA=2、常用公式常用公式是利用基本公式导出的,可用基本公式加以证明,它们主要用于化简逻辑函数,若干常用公式见P5~6。

数电1逻辑代数基础

数电1逻辑代数基础
例:事件为F,条件为S1,S2, 两个条件都具备(为1或真)时
_+ S1
S2 F
事件才发生(为1或真)。
表1-5 逻辑与的真值表
表示为:F= S1·S2 或 F= S1S2
逻辑真值表
S1 S2 F 000
逻辑变量所有的取值组合及对
010
应函数值的表格(P14)
100
111
数字电路-前言@刘静
下标2或者B,例:101.12,1101B 101.1B 1 231 0 221 1 20 1 2-1
数字电路-前言@刘静
其他进制
八进制(Octal)
基数:R=8 有效数字:0、1、2、3、4、5、6、7 表示方法:下标8或O
十六进制(Hexadecimal)
在连续范围内取任意数值 如温度、压力、距离和时间等的实际值
数字量:离散变化的物理量
在离散的点上取值 如:零件数,台阶的阶数。
数字电路-前言@刘静
模拟信பைடு நூலகம்和模拟电路
模拟信号
表示模拟量的电信号

如:话筒上的电流信号随声音强度的变化

模拟电路
处理模拟信号的电路 O
t
模拟电路的例子:音响
下标10或者D,例:199.9D,200810 199.9D 11031 9 1021 9 100 9 10-1
数字电路-前言@刘静
二进制(Binary)
基数:R=2 有效数码:
只有2个,即0和1 (其他数字都是无效的)
运算规则:逢二进一,借一为二 表示方法
表示为: F S
S
+_
F
表1-7 逻辑非的真值表

逻辑代数基础

逻辑代数基础

第一章逻辑代数基础1.1概述1.1.1模拟信号和数字信号电子电路中的信号可以分为两大类:模拟信号和数字信号。

模拟信号——时间连续、数值也连续的信号。

数字信号——时间上和数值上均是离散的信号。

(如电子表的秒信号、生产流水线上记录零件个数的计数信号等。

这些信号的变化发生在一系列离散的瞬间,其值也是离散的。

)数字信号只有两个离散值,常用数字0和1来表示,注意,这里的0和1没有大小之分,只代表两种对立的状态,称为逻辑0和逻辑1,也称为二值数字逻辑。

数字电路的特点和分类传递与处理数字信号的电子电路称为数字电路。

1、数字电路的特点数字电路与模拟电路相比主要有下列优点:(1)由于数字电路是以二值数字逻辑为基础的,只有0和1两个基本数字,易于用电路来实现,比如可用二极管、三极管的导通与截止这两个对立的状态来表示数字信号的逻辑0和逻辑1。

(2)由数字电路组成的数字系统工作可靠,精度较高,抗干扰能力强。

它可以通过整形很方便地去除叠加于传输信号上的噪声与干扰,还可利用差错控制技术对传输信号进行查错和纠错。

(3)数字电路不仅能完成数值运算,而且能进行逻辑判断和运算,这在控制系统中是不可缺少的。

(4)数字信息便于长期保存,比如可将数字信息存入磁盘、光盘等长期保存。

(5)数字集成电路产品系列多、通用性强、成本低。

由于具有一系列优点,数字电路在电子设备或电子系统中得到了越来越广泛的应用,计算机、计算器、电视机、音响系统、视频记录设备、光碟、长途电信及卫星系统等,无一不采用了数字系统。

2、数字电路的分类按集成度分类:数字电路可分为小规模(SSI,每片数十器件)、中规模(MSI,每片数百器件)、大规模(LSI,每片数千器件)和超大规模(VLSI,每片器件数目大于1万)数字集成电路。

集成电路从应用的角度又可分为通用型和专用型两大类型。

1.1.2 数制与码制1. 数制一.几种常用的计数体制1、十进制(Decimal)数码为:0~9;基数是10。

逻辑代数基础数字电子技术基础课件

逻辑代数基础数字电子技术基础课件

二进制数 自然码 8421码 5211码 2421码 余三码
0000 0001
0010 0011 0100 0101 0110 0111 1000 1001
1010 1011 1100 1101 1110 1111
0 00
1 11
22
33
4 42
5 53
66
7 74 8 85
996
10
11
12
7
13
0. 654 ×2
1.308 0.308 ×2
0.616
0.616 ×2
1.232
取整数 1 … K-1 取整数 0 … K-2 取整数 1 … K-3
0. 232 ×2
0.464 0.464 ×2
0.928
0.928 ×2
1. 856
取整数 0 … K-4 取整数 0 … K-5 取整数 1 … K-6
( A 5 9 . 3 F )H =
1010 0101 1001 . 0011 1111
二——十转
按换权展开法
十——二转
整换数除2取余倒序法 小数乘2取整顺序法
二——十六转 小数换点左、右四位一组
分组,取每一组等值旳 十六进制数
十六——二转 每一换位十六进制数用相
应旳四位二进制数替代
1.1.3 码制
【 】 内容 回忆
二——十
按权展开相加法
十——二
整数部分除2取余倒序法 小数部分乘2ቤተ መጻሕፍቲ ባይዱ整顺序法
【 】 内容 回忆 二——十 六 小数点左、右四位一组分组, 取每一组等值旳十六进制数
十六——二
每一位十六进制数用相应旳四 位二进制数替代
1.1.3 码制 1、原码

第1章 逻辑代数基础

第1章  逻辑代数基础
5、三个重要运算规则
①代入规则:任何一个含有变量 A 的等式,如果将所有出现 A 的位置都用
同一个逻辑函数代替,则等式仍然成立。这个规则称为代入规则。 例如,已知等式 AB A B ,用函数 Y=AC 代替等式中的 A,
根据代入规则,等式仍然成立,即有:
( AC) B AC B A B C
A
E
B Y
4
第1章 逻辑代数基础---三种基本运算
功能归纳:
真值表:
开关 A 开关 B 断开 断开 闭合 闭合 断开 闭合 断开 闭合
灯Y 灭 灭 灭 亮
A 0 0 1 1
B 0 1 0 1
Y 0 0 0 1
将开关接通记作1,断开记作0;灯亮记作1,灯灭记作0。可以作出如
上表格来描述与逻辑关系,这种把所有可能的条件组合及其对应结果一一列
的逻辑函数, 并记为:
F f ( A, B, C , )
3
第1章 逻辑代数基础---三种基本运算
②三种基本运算
a.与逻辑(与运算)
定义:仅当决定事件(Y)发生的所有条件(A,B,C,…)均满足 时,事件(Y)才能发生。表达式为:
Y=A· C· B· …=ABC…
描述:开关A,B串联控制灯泡Y
法进行描述。每种方法各具特点,可以相互转换。 ①真值表
将输入变量的各种可能取值和相应的函数值排列在一起而组成的表格。
真值表列写方法:每一个变量均有0、1两种取值,n个变量共有2n种不 同的取值,将这2n种不同的取值按顺序(一般按二进制递增规律)排列起
来,同时在相应位置上填入函数的值,便可得到逻辑函数的真值表。
原式左边
AB A C ( A A ) BC

数电简明教程第一章 逻辑代数基础知识

数电简明教程第一章 逻辑代数基础知识

10
第六章 脉冲产生与整形电路
概述 6.1 施密特触发器
11
12
概 述
一、逻辑代数(布尔代数、开关代数) 逻辑: 事物因果关系的规律 逻辑函数: 逻辑自变量和逻辑结果的关系
Z f ( A, B, C )
逻辑变量取值:0、1 分别代表两种对立的状态 一种状态 另一状态 高电平 真 低电平 假 是 非 有 无 … … 1 0 0 1
概述 3.1 3.2 3.3 3.4 3.5 组合电路的分析方法和设计方法 加法器和数值比较器 编码器和译码器 数据选择器和分配器 用 MSI 实现组合逻辑函数
8
第四章
概述
触发器
4.1 基本触发器 4.2 同步触发器 4.3 边沿触发器 4.4 触发器的电气特性
9
第五章
时序逻辑电路
概述 5.1 时序电路的基本分析和设计方法 5.2 计数器 5.3 寄存器和读/写存储器
( 26 )10 = 16 + 8 + 2 = 24 +23 + 21 = ( 1 1 0 1 0 )2
16 8 4 2 1
20
(3) 二-八转换: 每 3 位二进制数相当一位 8 进制数
( 0 10 101 111 ) 2 ( 257 )8
2 5 7
( 0 1 0 0 1 1 1 0 0 0 0 1. 0 0 0 1 1 0 )2 ( 2 3 4 1 . 0 6 )8
(4) 八-二转换: 每位 8 进制数转换为相应 3 位二进制数
( 31. 47 )8 ( 011 001 . 100 111
)2
)2
( 375.64 )8 ( 011 111 101 . 110 100

数字电路各章的重点、难点和教学要求

数字电路各章的重点、难点和教学要求

一、各章的重点、难点和教学要求(这里所的难点内容中的难点,不包括非重点内容中的难点。

)第一章逻辑代数基础逻辑代数是本书中分析和和设计数字逻辑电路时使用的主要数学工具,所以把它安排在第一章。

本章重点内容有:1、逻辑代数的基本公式和常用公式:2、逻辑代数的基本定理;3、逻辑函数的各种表示方法及相互转换;4、逻辑函数的化简方法;5、约束项、任意项、无关项的概念以及无关项在化简逻辑函数中的应用。

“最小项”和“任何一个逻辑函数式都可以化为最小项之和形式”是两个非常重要的概念,在逻辑函数的化简和变换中经常用到。

而“最大项”用得很少,不是本章的重点内容。

第一章里没有太难掌握的内容。

稍微难理解一点的是约束项、任意项、无关项这几个概念。

建议讲授过程中多举几个例子,这样可加深对这几个概念的理解。

第二章门电路虽然这章讨论的只是门电路铁外特性,但无论集成电路内部电路多么复杂,只要它们和这一章所讲的门电路具有相同的输入、输出电路结构,则这里对输入、输出特性的分析对它们也同样适同。

因此,这一章是全书对电路进行分析的基础。

本章的重点内容包括以下三个方面:1、半导体二极管三极管(包括双极型和MOS型)开关装态下的等效电路和外特性;2、TTL电路的外特性及其应用;3、CMOS电路的外特性及应用。

为了正确理解和运用这些外特性,需要了解TTL电路和CMOS电路的输入电路和输出电路结构及它们的工作原理。

内部的电路结构不是重点内容。

鉴于CMOS电路在数字集成电路中所占的比重已远远超过了TTL电路,建议在讲授时适当加大C MOS电路的比重,并相应压缩TTL电路的内容。

其他类型的双极型数字集成电路属于扩展知识面的内容。

第2.8节两种集成电路的接口问题可以作为学生自学时的阅读材料。

TTL电路的外特性是本章的一个难点,同时也是一个重点。

尤其是输入端采用多发射极三极管结构时,对输入特性的全面分析比较复杂。

从实用的角度出发,只要弄清输入为高/低时输入电流的实际方向和数值的近似计算就可以了。

数电期末总结基础知识要点

数电期末总结基础知识要点

数电期末总结基础知识要点数字电路各章知识点第1章逻辑代数基础⼀、数制和码制1.⼆进制和⼗进制、⼗六进制的相互转换 2.补码的表⽰和计算 3.8421码表⽰⼆、逻辑代数的运算规则1.逻辑代数的三种基本运算:与、或、⾮ 2.逻辑代数的基本公式和常⽤公式逻辑代数的基本公式(P10)逻辑代数常⽤公式:吸收律:A AB A =+消去律:AB B A A =+ A B A AB =+ 多余项定律:C A AB BC C A AB +=++ 反演定律:B A AB += B A B A ?=+ B A AB B A B A +=+ 三、逻辑函数的三种表⽰⽅法及其互相转换★逻辑函数的三种表⽰⽅法为:真值表、函数式、逻辑图会从这三种中任⼀种推出其它⼆种,详见例1-6、例1-7 逻辑函数的最⼩项表⽰法四、逻辑函数的化简:★1、利⽤公式法对逻辑函数进⾏化简2、利⽤卡诺图队逻辑函数化简3、具有约束条件的逻辑函数化简例1.1利⽤公式法化简 BD C D A B A C B A ABCD F ++++=)(解:BD C D A B A C B A ABCD F ++++=)(BD C D A B A B A ++++= )(C B A C C B A +=+ BD C D A B +++= )(B B A B A =+ C D A D B +++= )(D B BD B +=+ C D B ++= )(D D A D =+ 例1.2 利⽤卡诺图化简逻辑函数 ∑=)107653()(、、、、m ABCD Y 约束条件为∑8)4210(、、、、m 解:函数Y 的卡诺图如下:00 01 11 1000011110AB CD111×11××××D B A Y +=第2章集成门电路⼀、三极管如开、关状态 1、饱和、截⽌条件:截⽌:beT VV < 饱和:CSBSB Ii Iβ>=2、反相器饱和、截⽌判断⼆、基本门电路及其逻辑符号★与门、或⾮门、⾮门、与⾮门、OC 门、三态门、异或、传输门(详见附表:电⽓图⽤图形符号 P321 )⼆、门电路的外特性★1、电阻特性:对TTL 门电路⽽⾔,输⼊端接电阻时,由于输⼊电流流过该电阻,会在电阻上产⽣压降,当电阻⼤于开门电阻时,相当于逻辑⾼电平。

逻辑代数基础(课件)

逻辑代数基础(课件)

图形符号
A
L
B
23
2. 或逻辑
逻辑表达式 L= A + B
只有决定某一事件的原因有一个或 一个以上具备,这一事件才能发生
AB L 00 0 01 1 10 1 11 1 或逻辑真值表
图形符号
A 1
L
B
24
3. 非逻辑
当决定某一事件的条件满足时,事 件不发生;反之事件发生
非逻辑真值表
AL
图形符号
0
1
1
0
逻辑表达式 F= A
A
1
L
25
1.3.2 常用复合逻辑运算
与非逻辑运算
或非逻辑运算
L=AB
L=A+B
L
L
与或非逻辑运算 L=AB+CD
L
26
异或运算
AB 00 01 10 11
L 0 1
1 0
逻辑表达式
L=AB=AB+ AB
图A 形符号=1
B
L
同或运算
AB 00 01 10
L 1 0
0
逻辑表达式 L=A B= AB
利用真值表
用真值表证明反演律
A B AB A+ B A• B A+B
00 1
1
1
1
01 1
1
0
0
10 1
1
0
0
11 0
0
0
0
A• B= A+B A+ B=AB
31
1.4.2 逻辑代数中的基本规则
1. 代入规则
任何一个含有某变量的等式,如果等式中 所有出现此变量的位置均代之以一个逻辑函数 式,则此等式依然成立。

数电 第一章 逻辑代数基础

数电 第一章 逻辑代数基础

文字、数值信息
十进制数的二进制编码 常用十进制数码
十进制数 8421码
0 1 2 3 4 5 6 7 8 9
0000 0001 0010 0011 0100 0101 0110 0111 1000 1001
2421码 0000 0001 0010 0011 0100 1011 1100 1101 1110 1111 有权码
N
B

d 2
i
i
i
0
1
1 1
0 0
1 0
0 1
【例如】 (101.101)2=1×22十0×21十1×20十1×2-1十0×2-2十1×2-3
3.八进制(O)
以8为基数的计数体制,有0、1、2、3、4、5、6、 7共8个数码,逢八进一。
位置计数法 以权展开式
例:741 O
306O
i i
N
O
5211码 0000 0001 0011 0101 0111 1000 1001 1100 1101 1111
余3码 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100
格雷码 0000 0001 0011 0010 0110 1110 1010 1000 1100 0100
课程考核
平时成绩占30% :考勤、作业、实验; 期末成绩占70% :期末考试卷面分。
课外作业 为了让大家学完本课程有较大的收获,有以下两 个作业: (1)查询资料,有关自己所学专业和电子技术方面 的新技术、新方法,学习科技小论文的撰写方法,查 询有关资料。 (2)利用计算机,学习电子技术仿真软件的应用— —Multisim
课程设计
利用自己所学的电子技术基本理论知识,综 合设计电子实际应用电路,培养综合设计能力.

第1章 逻辑代数基础(数字电路)

第1章 逻辑代数基础(数字电路)

Y=A+ Y=A+B
19:41
功能表
开关 A 断开 断开 闭合 闭合 开关 B 断开 闭合 断开 闭合 灯Y 灭 亮 亮 亮
真值表
A 0 0 1 1
B 0 1 0 1
逻辑符号
Y 0 1 1 1
实现或逻辑的电 路称为或门。或 门的逻辑符号:
逻辑代数基础
A B
9
≥1
Y=A+B
19:41
3、非逻辑(非运算) 非逻辑(非运算) 非逻辑指的是逻辑的否定。当决定事件 (Y)发生的条件(A)满足时,事件不发 生;条件不满足,事件反而发生。表达式为: Y=A 开关A控制灯泡Y
数字电子技术基础
逻辑代数基础
1
19:41

参考书: 组、阎石,高等教育出版社。
1. 数字电子技术基础,清华大学电子学教研 2. 电子技术基础(数字电路部分),康华光, 高等教育出版社
逻辑代数基础
2
19:41
• 课程要求: 1. 掌握数字电路的基本概念、基本原理、基 本分析方法以及一些典型的电路。 2. 课堂练习与课后练习结合,每周交一次。 3. 进行期中测试,总评成绩:期末60%,期 中20%,作业10%,实验10% 。
逻辑符号
实现与逻辑的电路 称为与门。与门的 逻辑符号:
A
6
&
逻辑代数基础
B
Y=AB
19:41
Y
2、或逻辑(或运算) 或逻辑(或运算) 或逻辑的定义:当决定事件(Y)发生的各 种条件(A,B,C,…)中,只要有一个或多个 条件具备,事件(Y)就发生。表达式为: Y=A+B+C+… Y=A+B+C+… 开关A,B并联控制灯泡Y
A

数字电路 第1章 逻辑代数基础

数字电路 第1章 逻辑代数基础

二、基本公式
① 0-1律 A· 0=0 ; A+1=1
②自等律
③重迭律 ④互补律 ⑤交换律 ⑥结合律 ⑦分配律 ⑧反演律 ⑨还原律
A· 1=A
A· A=A A· A=0 A· B· B= A A(BC)=(AB)C ;
;
; ; ;
A+0=A
A+A=A A+A=1 A+B=B+A A+(B+C)=(A+B)+C A+BC=(A+B)(A+C) ; AB=A + B
特点: (1)便于运算; (2)便于用逻辑图实现; (3)缺乏直观。
3、逻辑图:由各种逻辑门符号所构成的电路图.
A B C &
≥1
Y
特点: 接近工程实际。
4、不同表示方法之间的相互转换
(1)已知逻辑函数式求真值表: A B C Y
把输入逻辑变量所有可能的取 值组合代入对应函数式,算出其 函数值。
由“或”运算的真值表可知 “或”运算法则为: 0+0 = 0 1+0 = 1 0+1 = 1 1+1 = 1
有1出 1 全0为 0
⒊ 表达式 逻辑代数中“或”逻辑关系用“或”运算 描述。“或”运算又称逻辑加,其运算符为 “+”或“ ”。两变量的“或”运算可表示 为:Y=A+B 或者 Y=A B 读作:Y等于 A 或 B
A+AB=A+B
A+AB=(A+A)(A+B)=1•(A+B) =A+B
(4)包含律 证明:
对偶关系
A(A+B)=AB
AB+AC+BC=AB+AC

数电 第1章 数字逻辑电路基础

数电 第1章 数字逻辑电路基础

关系。
A
或逻辑真值表
AB
F=A+ B
E
B
F
或逻辑电路
00
0
01
1
10
1
11
1
A
≥1
B
或门逻辑符号
F=A+B
或门的逻辑功能概括为: 1) 有“1”出“1”; 2) 全“0” 出“0”.
3. 非逻辑运算 定义:假定事件F成立与否同条件A的具备与否有关,
若A具备,则F不成立;若A不具备,则F成立.F和A之间的这 种因果关系称为“非”逻辑关系.
才成立;如果有一个或一个以上条件不具备,则这件事就 不成立。这样的因果关系称为“与”逻辑关系。
AB
E
F
与逻辑电路
与逻辑电路状态表
开关A状态 开关 B状态 灯F状态












若将开关断开和灯的熄灭状态用逻辑量“0”表示;将开关 合上和灯亮的状态用逻辑量“1”表示,则上述状态表可表 示为:
73.5
0111 0011 . 0101
故 (73.5)10 =(01110011.0101)8421BCD码
2. 格雷码(Gray码)
格雷码为无权码,特点为:相邻两个代码之间仅有一位 不同,其余各位均相同.
格雷码和四位二进制码之间的关系:
设四位二进制码为B3B2B1B0,格雷码为R3R2R1R0,
George Boole在1847年提出的,逻辑代数也称布尔代数.
1.3.1 基本逻辑运算
在逻辑代数中,变量常用字母A,B,C,……Y,Z, a,b, c,……x.y.z等表示,变量的取值只能是“0”或“1”.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字电路技术基础
东南大学计算机系
电话: 025-3792757 Email:qqliu@
刘其奇
1
第一章 逻辑代数基础
1-1 概述
1-1-1 数字量和模拟量
自然界中物理量分为两大类:
数字量:它们的变化在时间上和数量上都是离散的; 在时间上不连续。
模拟量:它们的变化在时间上或数值上是连续的。 数字信号:表示数字量的信号,是在两个稳定状态之 间作阶跃式变化的信号。 脉冲:是一个突然变化的电压或电流信号。
11
有权码
常用BCD码 十进制数
0 1 2 3 4 5 6 7 8 9
无权码
8421BCD
0000 0001 0010 0011 0100 0101 0110 0111 1000 1001
5421BCD
0000 0001 0010 0011 0100 1000 1001 1010 1011 1100
22
2)变量常量关系定律
0、 1律:A • 1 = A; (2 )
A • 0 = 0;(1)
A + 1 = 1; (11) A + 0 = A(12) ;
互补律:A • A = 0; ) A + A = 1;(14) (4
3)逻辑代数的特殊定律
重叠律:A • A = A; ) A + A = A; (13) (3
Y = A + A BC( A + BC + D) + BC = A + ( A + BC)( A + BC + D) + BC = A + A ( A + BC + D) + BC( A + BC + D) + BC = A + BC
26
2)A + A • B = A + B (22)
证明 : A + A • B = ( A + A ) • ( A + B) = A + B
13
BCD码不是二进制计数体制
BCD码:4位二进制数表示一位十进制数。 以8421码为例: 表示一位十进制数,和二进制计数体制一致。
(79)10 =(1001111)2
按权相加:64+8+4+2+1 = 79
用8421码表示: (79)10=(0111 1001)BCD
14
编码的可靠性
01111000
交换律:AB = BA(5) ;
A + B = B + A(15) ;
; 结合律:A (BC) = ( AB)C(6) A + (B + C) = ( A + B) + C(16) ;
分配律:A (B + C) = AB + AC(7) ;
与对或的分配
A + BC = ( A + B)( A + C); ) 或对与的分配 (17
28
4)A • ( A + B) = A
(24)
证明:A • ( A + B) = A • A + A • B = A + A • B = A
(21)式
同(21)吸收法,消去和式
29
5)A • B + A • C + B • C = A • B + A • C (25)
证明:A • B + A • C + B • C
余3BCD
0011 0100 0101 0110 0111 1000 1001 1010 1011 1100
12
有权码:8421码、5421码、2421码 四位二进制数各有相应的权。每一位的1在不同代码中代 表固定的数值。
无权码:余3BCD码,也有四位。与8421码比较,对应于 相同的十进制数,余3码比相应的8421码多出0011(3)。 每一位的1在不同代码中不代表固定的数值。
2 13 2 2 2 6 3 1 0 余数 1 0 1 1
7
因此:(13)10=(1101)2
十进制净小数用 乘2取整法 例: 将十进制纯小数0.562转换成误差不大于2-6的二进制数
0.562×2=1.124 0.124×2=0.248 0.248×2=0.496 0.496×2=0.992
1 0 0 0
A B
=
Y
同或真值表
A 0 0 1 1 B 0 1 0 1 Y 1 0 0 1
Y = A⊙ B = A • B + A • B
异或逻辑与同或逻辑互为反运算
A ⊕B = A ⊙ B A ⊙ B = A ⊕B
21
1-3
逻辑代数的基本公式和常用公式
1-3-1 逻辑代数的基本公式
三大类,八条基本定律 1)与普通代数相似的定律
如果用触发器表示计数器的状态,则4个触发器要同 时发生状态变化。 由于触发器电气、工艺方面的差别,其翻转的速度不 完全一致。可能出现瞬间误码。 011100001000
瞬间误码
15
可靠性编码 代码本身具有一种特性和能力,在代码形成过程中不易出 错,或者说代码出错容易发现。 1)格雷码(Gray) 格雷码是这样一种编码:任意两个相邻的数,它们的格雷 码表示形式中仅有一位不同。 因此按格雷码接成计数器形式,每次状态转换过程只有一 个计数器翻转。避免发生竞争—冒险现象。
&
Y A B
Y
≥1 Y = A +B
A
1
Y=A
Y
Y = A•B
复合逻辑运算
&
≥1
Y = A+B
& &
≥1
Y = A•B
Y = A • B+C • D
19
异或逻辑
A B
=1
Y
Y = A ⊕B = A • B + A • B
异或真值表 A 0 0 1 1 B 0 1 0 1 Y 0 1 1 0
20
同或逻辑
6
常用二进制的权
-4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12
0.0625 0.125 0.25 0.5 1 2 4 8 16 32 64 128 256 512 1024 2048 4096
2) 十进制转换成二进制 十进制整数用 除2取余法 例:将十进制13转换成二进制形式
A • A • B = A • ( A + B) = A • B
当A和一个乘积项的非相乘时,而且A为乘积项的因子 时,则A这个因子可以消去。消去因子
证明:( - 2) 26 A • A • B = A • ( A + B) = A • A + A • B = A • (1 + B) = A
当A和一个乘积项的非相乘时,而且A为乘积项的因子 时,结果就是A 。消去因子
10
(三)码制
代码:以数字形式出现,已经没有数量的含义,而 是用来表示不同事物的特征。这些数码称为代码。 遵循一定的规则编制代码,这些规则称为码制。
BCD码:十进制数的代码表示。具有二进制形式,却 有十进制数特点。是一种以二进制形式编码的十进制 数码(Binary Coded Decimals)。简称BCD码。 0—9数字,必须用四位二进制数表示。
B A +BA +B A 1 1 0 0
1 0 1 1 1 1 0 0 0 1 0 0
0 1 1
相等
相等
24
1-3-2 逻辑代数的常用公式及公式化简
与—或逻辑表达式:若干乘积项相加的形式。(积之和)
Y = ABC + BC + ACD Y = AC + BC
在与—或逻辑函数式中,若其中包含的乘积项已经最少, 而且每个乘积项里的因子也不能再减少时,则称此逻辑 函数式为最简形式。 逻辑函数式除了与—或形式外,还有与—非、或—非、与 或非形式,根据具体的逻辑器件来决定。
注意:相邻两组代码,彼 此只有一个元素不相同
17Biblioteka 2) 奇偶校验码 奇偶校验代码包含两部分:信息位和奇偶校验位。
两种编码形式:
奇校验:使得一个代码组中信息位和校验位中“1” 的总和为奇数。
偶校验:使得一个代码组中信息位和校验位中“1” 的总和为偶数。
18
1-2
逻辑代数中的三种基本运算
基本逻辑运算
A B
(K-1) (K-2) (K-3) (K-4)
0.992×2=1.984
所以
1
(K-5)
最后余小数0.984>0.5,四舍五入K-6=1。 (0.562)10=(0.100011)2
8
3)十、二、十六进制的相互转换
二进制转换成十六进制
从最低位开始,四位二进制合成一位十六进制,不足四位, 高位补零。
2
V
t
3
模拟电子技术:对模拟信号进行产生、放大、应用 的电路
数字电子技术:专门研究数字信号的产生、整型、 运算、 编码等
数字电路:工作在数字信号下的电子电路称为数字 电路。 数字电路包括脉冲电路和数字逻辑电路
脉冲电路:研究脉冲的产生、变换以及脉冲的测量 等。
4
1-1-2
数制和码制
(一)数制:数字量的计数方法
日常生活中计数体制是十进制;
数字电路中使用的数制是二进制和十六进制。
5
(二)不同数制之间的转换:
1)二进制转换成十进制
按权相加法:将各位二进制数的权值乘上系数,相加。
例:求二进制数11010.101相应的十进制数。 (11010.101)=124+123+022+121+020+12-1+02-2+12-3 =16+8+0+2+0+0.5+0+0.125=(26.625)10
相关文档
最新文档