角的平分线教学设计

合集下载

人教版八年级上册12.3角的平分线的性质2)教学设计

人教版八年级上册12.3角的平分线的性质2)教学设计
-学生尝试回答,教师引导学生通过折叠纸张来直观感受角的平分。
3.引入新课,明确学习目标。
-介绍本节课将学习角的平分线的性质及其应用。
-强调掌握这一性质对于解决几何问题的重要性。
(二)讲授新知
1.系统讲解角的平分线的定义。
-解释角的平分线是“将一个角平均分成两个相等的角的线段”。
-通过动态演示,让学生直观理解角的平分线的概念。
2.能够运用数学符号和语言表达角的平分线性质,形成严密的逻辑推理能力。
-学生能够用数学语言描述角的平分线性质,如“角的平分线上的任意一点到角的两边的距离相等”。
-学生能够通过几何证明,运用逻辑推理证明角的平分线性质的准确性。
3.能够在综合问题中,灵活运用角的平分线性质,解决多步骤几何问题。
-学生能够将角的平分线性质与其他几何知识综合应用,解决复合几何问题。
-对于基础较好的学生,设计具有挑战性的问题和证明任务,提高他们的逻辑推理能力。
3.探索实践,促进深度学习。
-组织学生进行小组讨论和合作探究,共同解决角的平分线性质的相关问题。
-鼓励学生动手实践,通过尺规作图等方式,加深对性质的理解。
4.精讲精练,提高教学效率。
-教学过程中,教师应精讲性质的本质和证明的关键步骤,避免冗长的解释。
-将学生分成小组,针对角的平分线性质进行讨论。
-鼓励学生提出问题,分享解题思路,共同解决疑惑。
2.教师巡回指导,给予反馈。
-在小组讨论过程中,教师观察学生的讨论情况,适时给予指导和鼓励。
-针对不同层次的学生,提出不同难度的问题,引导他们深入思考。
3.小组汇报,分享成果。
-每个小组选派代表汇报讨论成果,展示解题过程。
-通过展示几何图形的美,让学生体会数学的和谐与对称美。

七年级数学上册《角平分线》教案、教学设计

七年级数学上册《角平分线》教案、教学设计
(二)讲授新知
1.概念讲解:介绍角平分线的定义。
教师讲解:“角平分线是指从一个角的顶点出发,将这个角分成两个相等角的线段。”
2.尺规作图:演示和讲解如何用尺规作图方法作出角的平分线。
教师演示并讲解:“首先,画出角的两边;然后,在角的顶点处分别作两条射线,使这两条射线分别与角的两边相交;最后,连接这两个交点,即可得到角的平分线。”
5.自主学习能力:鼓励学生在课后进行拓展学习,提高对角平分线知识的理解和应用。
(三)情感态度与价值观
1.培养学生的几何审美观念,让他们感受到几何图形的美;
2.培养学生勇于探索、积极思考的学习态度,激发学生对数学学科的兴趣;
3.培养学生严谨、踏实的科学态度,让他们认识到数学知识的严密性和逻辑性;
4.培养学生的创新意识,鼓励他们在解决问题时尝试不同的方法和思路;
3.教师点评:对学生的讨论成果给予肯定和指导。
(四)课堂练习
1.设计练习题:针对本节课所学内容,设计具有梯度性的练习题。
练习题包括:基本概念题、尺规作图题、性质应用题等。
2.学生独立完成练习题,教师巡回指导。
3.选取部分学生进行板演,展示解题过程。
4.针对学生的解答,教师进行点评和讲解。
(五)总结归纳
2.教学策略:
(1)情境创设:以实际问题为背景,创设教学情境,让学生感受角平分线的应用;
(2)逐步引导:从简单的例子入手,逐步引导学生理解和掌握角平分线的性质;
(3)分层教学:针对不同学生的学习水平,设计不同难度的题目,使每个学生都能在原有基础上得到提高;
(4)总结反思:在课后组织学生进行总结反思,巩固所学知识,提高学生的自主学习能力。
2.创设情境:以校园环境为背景,提出实际问题。

人教版数学八年级上册教学设计12.3《角的平分线的性质》

人教版数学八年级上册教学设计12.3《角的平分线的性质》

人教版数学八年级上册教学设计12.3《角的平分线的性质》一. 教材分析《角的平分线的性质》是人教版数学八年级上册的教学内容。

本节课主要让学生掌握角的平分线的性质,即角的平分线上的点到角的两边的距离相等。

这一性质是几何中的基本概念,对于学生理解和掌握几何知识体系具有重要意义。

教材通过引入角的平分线,引导学生探究角的平分线的性质,从而培养学生的观察能力、推理能力和解决问题的能力。

二. 学情分析学生在学习本节课之前,已经掌握了角的概念、线段的概念以及一些基本的几何性质。

但是,对于角的平分线的性质,学生可能较为陌生。

因此,在教学过程中,教师需要从学生的实际出发,通过引导、探究、实践等方式,帮助学生理解和掌握角的平分线的性质。

三. 教学目标1.知识与技能:使学生理解和掌握角的平分线的性质,能够运用角的平分线的性质解决一些简单的问题。

2.过程与方法:通过观察、操作、探究等方法,培养学生的几何思维能力和解决问题的能力。

3.情感态度与价值观:激发学生学习几何的兴趣,培养学生的团队合作意识和自主学习能力。

四. 教学重难点1.重点:角的平分线的性质。

2.难点:如何运用角的平分线的性质解决实际问题。

五. 教学方法1.引导法:教师通过提问、设疑等方式,引导学生思考和探究角的平分线的性质。

2.实践操作法:学生通过实际操作,观察和总结角的平分线的性质。

3.合作交流法:学生分组讨论,共同解决问题,培养团队合作意识。

六. 教学准备1.教师准备:教材、PPT、几何模型等教学资源。

2.学生准备:笔记本、尺子、圆规等学习工具。

七. 教学过程1.导入(5分钟)教师通过一个实际问题引入本的课题,如:“在平面上有两个点A和B,如何找到一点C,使得AC=BC?”引导学生思考和探讨。

2.呈现(10分钟)教师通过PPT展示角的平分线的性质,引导学生观察和总结。

同时,教师可以通过实际操作,让学生直观地感受角的平分线的性质。

3.操练(10分钟)学生分组讨论,运用角的平分线的性质解决实际问题。

角的平分线的性质优秀教学设计

角的平分线的性质优秀教学设计

角的平分线的性质优秀教学设计教学设计:角的平分线的性质教学目标:1.了解角的平分线的概念;2.掌握角的平分线的性质;3.能够应用角的平分线的性质解决相关问题。

教学准备:1.教学课件、教学板书;2.角规、直尺、铅笔等绘图工具;3.《数学课程标准》中关于角的知识点。

教学步骤:第一步:引入知识(时间:10分钟)1.利用实物或图片引入角的概念,让学生了解角的组成元素和名称。

2.引导学生思考:如果一条直线能够将一个角平分成两个角,这条直线是什么?这个性质有什么特点?3.引入角的平分线的概念,并提示学生,我们将要研究角的平分线的性质。

第二步:探究角的平分线的性质(时间:30分钟)1.在教师引导下,学生边观察边探究角的平分线的性质。

2.学生利用角规和直尺,绘制不同角度的角,并将其角度平分,观察平分线的特点。

3.教师通过示范,引导学生观察和总结,整理角的平分线的性质。

第三步:总结角的平分线的性质(时间:15分钟)1.学生与教师一起总结和讨论角的平分线的性质。

2.教师将角的平分线的性质整理成教学板书,并与学生一起进行强化记忆。

第四步:应用角的平分线的性质解决问题(时间:30分钟)1.学生在教师的指导下,通过绘制图形和应用角的平分线的性质解决相关问题。

2.分组活动:每个小组设计一道角的平分线的问题,并交换进行解答,加深对角的平分线性质的理解和应用能力。

第五步:课堂练习(时间:15分钟)1.教师提供一些练习题,让学生在课堂上进行练习,巩固所学的知识点。

2.教师布置一些作业题,让学生完成,并要求学生在下节课上检查和讨论解题过程。

第六步:课堂总结(时间:10分钟)1.教师与学生一起进行课堂总结,巩固角的平分线的性质。

2.学生回答教师提问,对所学知识进行总结和归纳。

教学评价:1.通过观察学生的参与度和答题情况,评价学生对角的平分线的性质的理解和应用能力;2.检查学生完成的作业题,评价学生课后的复习和自主学习的情况。

教学延伸:1.引导学生分组设计更复杂的角平分线问题,并互相交换解答,促使学生深入理解和应用角的平分线的性质。

角的平分线的性质教学设计

角的平分线的性质教学设计

人教版八年级数学(上册)第十二章全等三角形12.3角的平分线的性质(1)教学设计第十二章全等三角形12.3角的平分线的性质(1)A一、教学分析1教学内容分析本节课是人教版教材《数学》八年级上册12.3第一课时内容,是在学习了角平分线的概念和前面刚学完三角形全等的判定基础上进行教学的•内容包括角平分线的作法、角平分线的性质及初步应用•作角的平分线是基本作图,角平分线的性质为证明线段或角相等开辟了新的途径,体现了数学的简洁美,同时也是全等三角形知识的延续,又为后面角平分线的判定定理的学习奠定了基础•因此,本节内容在数学知识体系中起到了承上启下的作用.2.教学对象分析刚进入初中八年级的学生观察、操作、猜想能力较强,但归纳、运用数学思想的意识比较薄弱,思维的广阔性、敏捷性比较欠缺,需要在课堂教学中进一步加强引导.根据学生的认知特点和接受水平,我把第一课时的教学任务定为:掌握角平分线的画法及角平分线的性质的探索与运用•3.教学环境分析根据本节课的实际教学需要,我选择用电子白板环境课堂环境辅助教学,借助几何画板教学软件,将平分角的仪器的工作原理、角平分线的作法动态地演示,带来“出示图形更灵活,展现的图形更丰富”,而且具有规范、直观等好处;将角平分线的性质用用数形结合的方式展示出来,为验证问题和揭示问题本质的技术平台;将角平分线的运用进行一题多解及一题多变研究,更好的拓展学生解题思路及形成知识运用能力.二、教学目标1.知识与技能:(1)掌握用尺规作已知角的平分线的方法并知道作法的合理性;(2)理解角的平分线的性质并能初步运用.2.数学思考:通过让学生经历观察演示,动手操作,合作交流,自主探究等过程,培养学生用数学知识解决问题的能力.3.解决问题:(1)初步了解角的平分线的性质在生产、生活中的应用.(2)培养学生的数学建模能力.4.情感与态度:充分利用多媒体教学优势,培养学生探究问题的兴趣,增强解决问题的信心,获得解决问题的成功体验,激发学生应用数学的热情.三、教学重、难点重点:掌握角平分线的尺规作图,理解角的平分线的性质并能初步运用.难点:角的平分线的性质探索和运用.四、教学流程设计情境引入,提出问题一观察发现,掌握作法一操作探究,发现性质一推理验证,理解性质一性质应用,变题深化一评价反思,课后提高五、教学过程问题1为了促进当地旅游发展,某地要在三 条公路围成的一块平地上修建一个度假村 .要使这个度假村到三条公路的距离相等,应在何处修结合实际需要提岀 问题,容易引起学习 的积极性。

角的平分线的判定 教学设计 2024-2025学年人教版数学八年级上册

角的平分线的判定 教学设计 2024-2025学年人教版数学八年级上册

第2课时角的平分线的判定1.探究并证明角的平分线的判定定理.(难点)2.会判断一个点是否在一个角的平分线上.(重点)一、新课导入【情境导入】如图,要在S区建一个集贸市场,使它到公路、铁路的距离相等,并且离公路与铁路的交叉处500m.这个集贸市场应建于何处?(在图上标出它的位置,比例尺为1∶20000)学习了今天的内容,我们就能很快地解决这个问题了.二、新知探究知识点1角的平分线的判定【提出问题】我们知道,角的平分线上的点到角的两边的距离相等.到角的两边的距离相等的点是否在角的平分线上呢?【学生猜想】到角的两边的距离相等的点在角的平分线上.(也有一部分学生得不到准确答案)教师鼓励学生按照上节课学过的证明命题的步骤,验证一下他的猜想!【学生思考】给学生思考的时间,可同桌之间讨论.提醒应将文字语言转化为数学语言,同时画出图形,找准“已知”和“求证”,并写出证明过程.之后点名一位学生上台板演,对于错误和不完整的地方,其他学生纠正或补充.教师利用多媒体展示如下验证过程:如图,P是∠AOB内的一点,PD⊥OA,PE⊥OB,垂足分别为D,E,且PD=PE.求证:点P在∠AOB的平分线OC上.证明:∵PD⊥OA,PE⊥OB,∴∠PDO=∠PEO=90°.在Rt△PDO和Rt△PEO中,{PD=PE,PO=PO,∴Rt△PDO≌Rt△PEO(HL).∴∠AOC=∠BOC.∴点P在∠AOB的平分线OC上.学生有异议的,及时提出,教师予以纠正.【归纳总结】角平分线的判定定理:角的内部到角的两边的距离相等的点在角的平分线上.该性质定理的几何语言:∵P是∠AOB内的一点,PD⊥OA,PE⊥OB,垂足分别为D,E,且PD=PE,∴点P在∠AOB的平分线OC上.提醒学生:(1)前提条件:使用该判定定理的前提是这个点必须在角的内部,且该点到角两边的距离相等;(2)定理的作用:角的平分线的判定定理是证明两角相等的重要办法.【提出问题】现在你能解决集贸市场的问题了吗?【学生回答】教师点名一位学生回答解题过程及依据.教师利用多媒体展示如下作图过程:解:如图,作出公路和铁路相交的角的平分线OC,按照比例尺的比例,在OC上截取OD=2.5cm.点D的位置即为建集贸市场的位置.知识点2三角形的内角平分线【提出问题】我们知道三角形有三条内角平分线,你会画出它的三条内角平分线吗?动手试一试吧?【实际操作】学生在已经剪好的锐角、直角和钝角三角形卡纸上分别画出它们的三个内角的平分线.之后我们发现:三角形三个内角的平分线交于一点,该交点位于三角形的内部.【提出问题】那么三角形的三条内角平分线的交点到三角形三边的距离有什么特点呢?【实际操作】学生继续在锐角、直角和钝角三角形卡纸上过交点分别作这三个三角形三边的垂线,并测量每一组垂线段的长度.我们发现:过交点作三角形三边的垂线段相等.【提出问题】由于作图和测量存在误差,我们仍需来证明一下我们的猜想.教师利用多媒体展示如下验证猜想的题目.例如图,△ABC的角平分线BM,CN相交于点P.求证:点P到三边AB,BC,CA的距离相等.证明:过点P作PD,PE,PF分别垂直于AB,BC,CA,垂足分别为D,E,F.∵BM是△ABC的角平分线,点P在BM上,∴PD=PE.同理PE=PF.∴PD=PE=PF.即点P到三边AB,BC,CA的距离相等.【提出问题】点P在∠A的平分线上吗?这说明三角形的三条角平分线有什么关系?【学生回答】学生集体回答.(由PD=PF可知,点P在∠A的平分线上.从而也验证了“三角形的三条角平分线交于一点”这一结论.)知识点3角的平分线的性质定理与判定定理的关系教师利用多媒体展示表格,学生根据表格中的内容,集体回答;教师引导学生观察所填内容,由不同颜色标注的内容可知角平分线的性质定理中的“已知”变成了角平分线的判定定理中的“结论”.角的平分线的性质 角的平分线的判定 图形已知条件∠1=∠2 PD ⊥OA ,PE ⊥OB PD ⊥OA ,PE ⊥OB PD =PE 结论PD =PE ∠1=∠2 【归纳总结】点在角的平分线上(角的内部)点到角的 两边的距离相等正确理解两个定理的条件和结论,性质定理和判定定理的条件和结论是相反的,性质定理是证明两条线段相等的依据,判定定理是证明两个角相等的依据.【跟踪训练】判断,不正确的请说明原因.①如图,若PD =PE ,则OC 平分∠AOB .( ✕ )因为PD 不垂直OA ,PE 不垂直OB ,即PD ,PE 均不是角平分线上的点到角两边的距离.②如图,若点P 在OC 上,PD ⊥OA ,PE ⊥OB ,垂足分别为D ,E ,则OC 平分∠AOB .( ✕ )因为没有说明PD 与PE 的等量关系,只有PD =PE 时,OC 才平分∠AOB .三、课堂小结角的平分线的判定{ 判定定理{内容➡角的内部到角的两边的距离相等的点在角的平分线上作用➡判定点在平分线上(判定两角相等)三角形的三条角平分线➡交于一点,且该点到三角形三边的距离相等角平分线的性质定理与判定定理的关系四、课堂训练1.如图,P 是△ABC 外部一点,PD ⊥AB ,交AB 的延长线于点D ,PE ⊥AC ,交AC的延长线于点E ,PF ⊥BC 于点F ,且PD =PE =PF .关于点P 有下列三种说法:①点P 在∠DBC 的平分线上;②点P 在∠BCE 的平分线上;③点P 在∠BAC 的平分线上.其中说法正确的个数为( D )A.0B.1C.2D.32.如图, 已知D ,E ,F 分别是△ABC 三边上的点,CE =BF ,且△DCE 的面积与△DBF 的面积相等.求证:AD 平分∠BAC .解:如图,过点D 作DM ⊥AB 于点M ,DN ⊥AC 于点N .∵△DCE 的面积与△DBF的面积相等,∴12BF ·DM =12CE ·DN .又CE =BF ,∴DM =DN .∴AD 平分∠BAC .。

角平分线的性质—教学设计【教学参考】

角平分线的性质—教学设计【教学参考】

角平分线的性质—教学设计【教学参考】12.3 角的平分线的性质一、教学目标(一)知识与技能1.会作已知角的平分线;2.了解角的平分线的性质,能利用三角形全等证明角的平分线的性质;3.会利用角的平分线的性质进行证明与计算. (二)过程与方法在探究作角的平分线的方法及角的平分线的性质的过程中,进一步发展学生的推理证明意识和能力.角的平分线性质(三)情感、态度与价值观在探究作角的平分线的方法及角的平分线的性质的过程中,培养学生探究问题的兴趣、合作交流的意识、动手操作的能力与探索精神,增强解决问题的信心,获得解决问题的成功体验.二、教学重点、难点重点:角的平分线的性质的证明及应用;难点:角的平分线的性质的探究.三、教法学法三步导学的教学模式;自主探索,合作交流的学习方式.四、教与学互动设计(一)激情导课由商丘的万达旁的两条路引入,大型游乐场建造的位置,使其到两条路的距离相等,引入本节课的课题——角的平分线的性质(二)民主导学1、探究一:角的平分线的作法Ⅰ、议一议问题1请你拿出准备好的角,用你自己的方法画出它的角平分线.问题2如图是一个平分角的仪器,其中AB=AD,BC=DC.将点A放在角的顶点,AB和AD沿着角的两边放下,画一条射线AE,AE 就是∠DAB的平分线.你能说明它的道理吗?问题3通过上面的探究,你有什么启发?你能用尺规作图作已知角的平分线吗?请你试着做一做,并与同伴交流.已知:∠MAN求作:∠MAN的角平分线.作法:(1)以A为圆心,适当长为半径画弧,交AM于B,交AN于D.(2)分别以B、D为圆心,大于的长为半径画弧,两弧在∠MAN的内部交于点C.(3)画射线AC.射线AC即为所求.2、探究二:角的平分线的性质如图,任意作一个角∠AOB,作出∠AOB的平分线OC.在OC 上任取一点P,过点P画出OA,OB的垂线,分别记垂足为D、E,测量PD,PE并作比较,你得到什么结论?在OC上再取几个点试一试.猜想:角的平分线上的点到角的两边的距离相等证明猜想的步骤:①明确命题中的已知和求证;已知:一个点在一个角的平分线上.结论:这个点到这个角两边的距离相等.②M根据题意,画出图形,并用数学符号表示已知和求证;已知:如图,∠AOC=∠BOC,点P在OC上,PD⊥OA,PE ⊥OB,垂足分别为点D、E.求证: PD=PE.③M经过分析,找出由已知推出求证的途径,写出证明过程.证明:∵ PD⊥OA,PE⊥ OB (已知)∴∠PDO= ∠PEO=90°(垂直的定义)在△PDO和△PEO中∠PDO= ∠PEO(已证)∠AOC= ∠BOC (已证)OP=OP (公共边)∴△PDO ≌△PEO(AAS)∴ PD=PE(全等三角形的对应边相等)角的平分线的性质:角的平分线上的点到角的两边的距离相等符号语言:∵∠AOC=∠BOC, PD⊥OA,PE⊥OB,垂足分别为点D、E.(已知)∴ PD=PE(角的平分线上的点到角的两边的距离相等)B POAC EDC D ABDEP A OBC3、角的平分线性质的应用(1)如图,△ABC 中,∠C =90°,BD 平分∠ABC ,CD =3cm ,则点D 到AB 的距离为 cm .(三)检测导结1、目标检测 (本测试题共三道题,相信大家一定会做得非常棒!)(1)如图,OC 是∠AOB 的平分线,点P 在OC 上,PD ⊥OA ,PE ⊥OB ,垂足分别是D 、E ,PD=4cm ,则PE=_____cm.(第1题图) (第2题图)(2)已知:如图,在△ABC 中,AD 是它的角平分线,且BD=CD ,DE ⊥AB ,DF ⊥AC ,垂足分别是E 、F.求证:EB=FC.2、请你谈谈学习这节课的收获.(四)布置作业1.必做题:习题 (五)结束寄语严格性之于数学家,犹如道德之于人.条理清晰,因果相应,言必有据,是学习者谨记和遵循的原则.希望每一个同学都能用聪明和智慧编织出更加精彩的人生!五、板书设计第1课时 角的平分线的性质1. 角的平分线的作法2. 角的平分线的性质:角的平分线上的点到角的两边的距离相等.3.应用已知:∠MAN 已知:如图,∠AOC=∠BOC ,点P 在OC 上,PD ⊥OA ,PE ⊥OB ,求作:∠MAN 的角平分线 垂足分别为点D 、E.求证: PD=PE.∴ 射线AC 即为所求. 符号语言:∵∠AOC=∠BOC, PD ⊥OA ,PE ⊥OB ,垂足分别为点D 、E.∴ PD=PEBP OAC ED。

人教版数学八年级上册12.3角的平分线的判定教学设计

人教版数学八年级上册12.3角的平分线的判定教学设计
4.能够运用角的平分线性质解决相关问题,如求角的度数、证明线段相等或比例关系等。
(二)过程与方法
1.采用探究式教学方法,引导学生从实际操作中发现角的平分线的判定定理,培养学生的观察能力和逻辑思维能力。
2.通过小组合作、讨论交流等形式,让学生在合作中学习,提高解决问题的能力和团队协作精神。
3.设计具有梯度性的练习题,使学生在巩固基础知识的同时,逐步提高解题能力,培养良好的学习习惯。
(三)学生小组讨论
1.教学活动:教师给出几个实例,让学生分组讨论如何找出这些角的平分线。
2.小组讨论:学生在小组内分享自己的思考过程,讨论如何运用角的平分线判定定理解决问题。
3.教师指导:教师巡回指导,对学生的疑问进行解答,引导学生运用角的平分线性质解决问题。
(四)课堂练习
1.教学内容:教师布置以下练习题,让学生独立完成。
a.判断题:判断下列各题中,哪个是角的平分线。
b.解答题:已知一个角的度数,求这个角的平分线。
c.应用题:运用角的平分线性质解决实际问题。
2.解答与讲解:教师选取部分学生的答案进行展示和讲解,指出解题过程中的关键步骤和注意事项。
(五)总结归纳
1.教学内容:教师引导学生回顾本节课所学内容,总结角的平分线的定义、性质和判定定理。
1.学生在空间想象力方面的发展水平,引导他们通过实际操作,将抽象的角的平分线概念具体化、形象化。
2.学生在逻辑推理能力上的差异,针对不同水平的学生设计不同难度的问题,使他们在解决问题的过程中逐步提高推理能力。
3.学生在团队合作中的表现,鼓励他们积极参与讨论,学会倾听他人意见,提高沟通能力和团队协作精神。
4.培养学生的创新意识,鼓励他们敢于尝试、勇于探索,形成独立思考的能力。

角的平分线教案

角的平分线教案

角的平分线教案角的平分线教案角的平分线教案1教学目标1.掌握角的平分线的性质定理和它的逆定理的内容、证明及应用.2.理解原命题和逆命题的概念和关系,会找一个简单命题的逆命题.3.渗透角平分线是满足特定条件的点的集合的思想。

教学重点和难点角平分线的性质定理和逆定理的应用是重点.性质定理和判定定理的区别和灵活运用是难点.教学过程设计一、角平分钱的性质定理与判定定理的探求与证明1,复习引入课题.(1)提问关于直角三角形全等的判定定理.(2)让学生用量角器画出图3-86中的∠AOB的角平分线OC.2.画图探索角平分线的性质并证明之.(1)在图3-86中,让学生在角平分线OC上任取一点P,并分别作出表示P点到∠AOB两边的距离的线段PD,PE.(2)这两个距离的大小之间有什么关系?为什么?学生度量后得出猜想,并用直角三角形全等的知识进行证明,得出定理.(3)引导学生叙述角平分线的性质定理(定理1),分析定理的条件、结论,并根据相应图形写出表达式.3.逆向思维探求角平分线的判定定理.(1)让学生将定理1的条件、结论进行交换,并思考所得命题是否成立?如何证明?请一位同学叙述证明过程,得出定理2——角平分线的判定定理.(2)教师随后强调定理1与定理2的区别:已知角平分线用性质为定理1,由所给条件判定出角平分线是定理2.(3)教师指出:直接使用两个定理不用再证全等,可简化解题过程.4.理解角平分线是到角的两边距离都相等的点的集合.(1)角平分线上任意一点(运动显示)到角的两边的距离都相等(渗透集合的纯粹性).(2)在角的内部,到角的两边距离相等的点(运动显示)都在这个角的平分线上(而不在其它位置,渗透集合的完备性).由此得出结论:角的平分线是到角的两边距离相等的所有点的集合.二、应用举例、变式练习练习1填空:如图3-86(1)∵OC平分∠AOB,点P在射线OC上,PD⊥OA 于DPE⊥OB于E.∴---------(角平分线的性质定理).(2)∵PD⊥OA,PE⊥OB,----------∴OP平分∠AOB(-------------)例1已知:如图3-87(a),ABC的角平分线BD和CE交于F.(l)求证:F到AB,BC和AC边的距离相等;(2)求证:AF平分∠BAC;(3)求证:三角形中三条内角的平分线交于一点,而且这点到三角形三边的距离相等;(4)怎样找△ABC内到三边距离相等的点?(5)若将“两内角平分线BD,CE交于F”改为“△ABC的两个外角平分线BD,CE交于F,如图3-87(b),那么(1)~(3)题的结论是否会改变?怎样找△ABC外到三边所在直线距离相等的点?共有多少个?说明:(1)通过此题达到巩固角平分线的性质定理(第(1)题)和判定定理(第(2)题)的目的.(2)此题提供了证明“三线共点”的一种常用方法:先确定两条直线交于某一点,再证明这点在第三条直线上。

及反思人教版数学八年级上册12.3角的平分线的性质教学设计

及反思人教版数学八年级上册12.3角的平分线的性质教学设计
-让学生尝试用自己的话解释角的平分线性质,并将其应用于解决实际问题,提高学生的几何直观和逻辑推理能力。
3.拓展作业:
-设计一道探索性问题,如“在等腰三角形中,角的平分线与其他线段有何关系?”鼓励学生进行深入探究,培养他们的创新意识和探究精神。
-要求学生查阅资料,了解角的平分线在生活中的应用,例如在建筑、艺术等领域中的应用,并在课堂上分享。
及反思人教版数学八年级上册12.3角的平分线的性质教学设计
教学设计:
一、教学目标
(一)知识与技能
1.理解角的平分线的概念,掌握角的平分线的表示方法。
2.掌握角的平分线的性质,能够运用性质解决相关问题。
3.能够运用角的平分线性质进行图形的折叠、剪切等操作,培养空间想象能力和动手操作能力。
(二)过程与方法
(二)过程与方法
1.通过实际操作和几何画板的演示,观察角的平分线的特点,培养观察力和直觉思维。
2.与同伴合作,通过讨论和论证来探究角的平分线的性质,锻炼逻辑推理和数学表达能力。
3.运用角的平分线性质解决一系列问题,学会运用几何直观和逻辑推理相结合的方法。
(三)情感态度与价值观
本章节的教学旨在激发学生的:
4.小组合作作业:
-分成小组,共同探讨和研究一个与角的平分线相关的问题,如“如何利用角的平分线构造特殊的几何图形?”要求小组提交一份研究报告,并在课堂上进行展示。
在布置作业时,要注意以下几点:
1.作业难度要适中,既要保证基础知识的巩固,又要激发学生的思考。
2.作业形式要多样化,既要注重学生的动手操作,又要培养他们的逻辑思维和创新能力。
3.鼓励学生在完成作业过程中相互讨论、交流,提高合作能力。
4.及时批改和反馈作业,了解学生的学习情况,为下一步教学提供参考。

角的平分线的性质的教学设计

角的平分线的性质的教学设计

角的平分线的性质的教学设计角的平分线的性质的教学设计1教材分析1、本节课是11、3角分线的性质第一课时内容包括角平分线的作法、角平分线的性质有及初步应用;2、本节课是在学完11、2三角形全等的判定的基础上进行教学的,作角的平分线是基本作图,角的平分线性质为证明线段和角的相等开辟了新的途径,同时为后面角的平分线的判定定理的学习奠定了基础。

所以本节内容在初中数学知识体系中起到承上启下的作用。

学情分析1、学生在学习了11、2三角形全等的判定定理后已掌握了证明线段相等的方法,但学生的动手操作能力、猜想能力、总结归纳能力、对定理的灵活运用能力比较欠缺。

2、根据学生认知特点和接受水平,把本节课的教学任务定为:掌握角平分线的画法及角平分线的性质定理的证明和运用性质定理证明线段相等。

3、学生对角平分线的尺规作图作法及运用性质定理证明线段相等教学目标1、知识与技能:角平分线定理及定理的证明及应用。

2、过程与方法:培养学生探索知识和分析问题、解决问题的能力。

3、情感、态度与价值观:通过自主学习的`发展体验获取数学知识的感受。

教学重点和难点教学重点:角平分线的性质定理的探究、证明、运用。

教学难点:角平分线的作图方法、角平分线的性质的运用。

角的平分线的性质的教学设计2【教学目标】1.使学生掌握角平分线的性质定理和判定定理,并会用两个定理解决有关简单问题.2.通过引导学生参与实验、观察、比较、猜想、论证的过程,使学生体验定理的发现及证明的过程,提高思维能力.3.通过师生互动以及交互性多媒体教学课件的使用,培养学生学习的自觉性,丰富想象力,激发学生探究新知的热情.【教学重点】角平分线的性质定理和判定定理的探索与应用.【教学难点】理解运用在角平分线上任意选取一点的方法证明角平分线性质定理以及两个定理的区别与联系.【教学方法】启发探究式.【教学手段】多媒体(投影仪,计算机).【教学过程】一、复习引入:1.角平分线的定义:一条射线把一个角分成两个相等的角,这条射线叫这个角的平分线.表达方式:如图1,∵OC是∠AOB的平分线,∴∠1=∠2(或∠AOB=2∠1=2∠2或∠1=∠2=∠AOB).2.角平分线的画法:你能用什么方法作出∠AOB的平分线OC?(可由学生任选方法画出OC).可以用尺规作图,可以用折纸的方法,可以用TI图形计算器.3.创设探究角平分线性质的情境:用两个全等的30的直角三角板拼出一个图形,使这个图形中出现角平分线,并且平分出的两个角都是30.学生可能拼出的图形是:(拼法1)(拼法2)(拼法3)选择第三种拼法(如图2)提出问题:(1)P是∠DOE平分线上一点,PD、PE与∠DOE的边有怎样的位置关系?(2)点P到∠DOE两边的距离可以用哪些线段来表示?(3)PD、PE有怎样的数量关系?(投影)二、探究新知:(一)探索并证明角平分线的性质定理:1.实验与猜想:引导学生任意画出一个角的平分线,并在角平分线上任取一点,作出到角两边的'距离.通过度量、观察并比较,猜想它们有怎样的数量关系?用TI图形计算器实验的结果:(教师用计算机演示:点P在角平分线上运动及改变∠AOB大小,引导学生观察PD与PE的数量关系).引导学生用语言阐述自己的观点,得出猜想:命题1在角平分线上的点,到这个角的两边的距离相等.2.证明与应用:(学生写在笔记本上)已知:如图3,OC是∠AOB的平分线,P为OC上任意一点,PD⊥OA于D,PE⊥OB于E.求证:PD=PE.(投影)证明:∵OC是∠AOB的平分线,∴∠1=∠2.∵PD⊥OA于D,PE⊥OB于E,∴∠ODP=∠OEP=90.又∵OP=OP,∴△ODP≌△OEP(AAS).∴PD=PE三、作业设计反思:一、重视情境创设,让学生经历求知过程。

《角平分线的性质》教学设计

《角平分线的性质》教学设计

角的平分线的性质教学设计一、教学分析1.教学内容分析本节课是新人教版教材《数学》八年级上册第12.3节第一课时内容,是在七年级学习了角平分线的概念和前面刚学完证明直角三角形全等的基础上进行教学的.内容包括角平分线的作法、角平分线的性质及初步应用.作角的平分线是基本作图,角平分线的性质为证明线段或角相等开辟了新的途径,体现了数学的简洁美,同时也是全等三角形知识的延续,又为后面角平分线的判定定理的学习奠定了基础.因此,本节内容在数学知识体系中起到了承上启下的作用.同时教材的安排由浅入深、由易到难、知识结构合理,符合学生的心理特点和认知规律.2.教学对象分析刚进入八年级的学生观察、操作、猜想能力较强,但归纳、运用数学意识的思想比较薄弱,思维的广阔性、敏捷性、灵活性比较欠缺,需要在课堂教学中进一步加强引导.根据学生的认知特点和接受水平,我把第一课时的教学任务定为:掌握角平分线的画法及会用角平分线的性质定理解题,同时为下节判定定理的学习打好基础.3.教学环境分析利用多媒体技术可以方便地创设、改变和探索某种数学情境,在这种情境下,通过思考和操作活动,研究数学现象的本质和发现数学规律.根据如今各学校实际教学环境及本节课的实际教学需要,我选择多媒体教学系统辅助教学,将有关教学内容用动态的方式展示出来,让学生能够进行直观地观察,并留下清晰的印象,从而发现变化之中的不变.这样,吸引了学生的注意力,激发了学生学习数学的兴趣,有利于学生对知识点的理解和掌握.二、教学目标1、知识与技能:(1)掌握用尺规作已知角的平分线的方法.(2)理解角的平分线的性质并能初步运用.2、过程与方法:通过让学生经历观察演示,动手操作,合作交流,自主探究等过程,培养学生用数学知识解决问题的能力.3、情感态度价值观:充分利用多媒体教学及学生手工操作,培养学生探究问题的兴趣,增强解决问题的信心,获得解决问题的成功体验,激发学生应用数学的热情.三、教学重点、难点重点:掌握角平分线的尺规作图,理解角的平分线的性质并能初步运用.难点:(1)对角平分线性质定理中点到角两边的距离的正确理解;(2)对于性质定理的运用(学生习惯找三角形全等的方法解决问题而不注重利用刚学过的定理来解决,结果相当于对定理的重复证明)教学难点突破方法:(1)利用引导学生动手折纸及多媒体动态显示角平分线性质的本质内容,在学生脑海中加深印象,从而对性质定理正确使用;(2)通过对比教学让学生选择简单的方法解决问题;(3)通过多媒体创设具有启发性的问题情境,使学生在积极的思维状态中进行学习.四、教学过程(一)教学环节设计1.温故导入:创设情景,动手操作【温故】:①请把发给大家的纸片拿出来,请同学们想一想,不利用工具,将这个用纸片做的角分成两个相等的角,你有什么办法?②学生回答:对折。

八年级数学上册《角的平分线的性质》教案、教学设计

八年级数学上册《角的平分线的性质》教案、教学设计
3.学会运用角的平分线性质解决实际问题,如构造线段相等、角度相等等问题。
学生能够将角的平分线的性质应用于实际问题的解决中,培养学以致用的能力。
(二)过程与方法
1.通过实际操作,让学生经历角的平分线的探索过程,培养动手操作能力和观察能力。
教学过程中,教师引导学生通过实际操作,观察角的平分线,培养学生动手操作的能力和观察能力。
“同学们,你们在生活中见过这样的角吗?它们有什么特殊之处呢?今天我们要学习角的平分线,一起来探索这些角的奥秘吧!”
2.提问:引导学生思考角的平分线的定义及作用。
“谁能来说说什么是角的平分线?它有什么作用呢?”
3.导入新课:通过学生回答,自然导入本节课的学习内容——角的平分线的性质。
(二)讲授新知
1.概念讲解:详细解释角的平分线的定义,并通过图示进行展示。
3.提高题挑战:
完成课后提高题6、7,这两题难度较大,旨在培养学生几何证明的思路和方法,提高学生的逻辑思维能力和解题技巧。
4.探究性问题:
针对本节课所学内容,提出一个探究性问题:“除了点到角的两边的距离相等,角的平分线还有其他性质吗?”鼓励学生在课后进行自主探究,培养学生的创新意识和研究精神。
5.小组合作任务:
五、作业布置
为了巩固本节课所学内容,检验学生对角的平分线性质的理解和应用能力,特布置以下作业:
1.基础知识巩固:
完成课本第章节后的练习题1、2、3,这些题目旨在帮助学生巩固角的平分线的定义和性质,加强对基础知识的掌握。
2.应用题训练:
选择两道应用题(如课本例题4、5),要求学生运用角的平分线性质进行解决。通过解决实际问题,提高学生将理论知识应用于实际情境的能力。
2.强调几何证明的思路和方法。

角平分线教案教学设计

角平分线教案教学设计

角平分线教案教学设计一、教学内容本节课选自教材第十二章第二节,详细内容为角平分线的概念、性质及其应用。

具体包括角平分线的定义,角平分线上的点到角的两边的距离相等等性质,以及如何用这些性质解决实际问题。

二、教学目标1. 理解并掌握角平分线的定义及性质。

2. 学会运用角平分线的性质解决实际问题。

3. 培养学生的逻辑思维能力和空间想象能力。

三、教学难点与重点教学难点:角平分线性质的推导和应用。

教学重点:角平分线的定义及其性质。

四、教具与学具准备1. 教具:三角板、量角器、直尺、圆规。

2. 学具:三角板、量角器、直尺、圆规、练习本。

五、教学过程1. 实践情景引入利用三角板展示一个三角形,引导学生观察并思考:如何将这个三角形的一个角平分为两个相等的角?2. 探究角平分线的定义a. 让学生尝试用直尺和圆规在三角板上画出角平分线。

3. 探究角平分线的性质a. 教师引导学生观察角平分线上的点到角的两边的距离,发现距离相等。

b. 学生尝试证明这一性质,教师给予指导和点评。

4. 例题讲解a. 教师出示例题,讲解解题思路和方法。

b. 学生跟随教师一起解题,巩固所学知识。

5. 随堂练习a. 学生独立完成练习题,巩固角平分线的性质。

b. 教师巡回指导,解答学生疑问。

六、板书设计1. 角平分线的定义2. 角平分线的性质角平分线上的点到角的两边的距离相等七、作业设计1. 作业题目:a. 画出一个角的角平分线。

b. 证明:角平分线上的点到角的两边的距离相等。

c. 解决实际问题:已知一个三角形,求角平分线的长度。

2. 答案:a. 略b. 证明过程见教材c. 解题过程见教材八、课后反思及拓展延伸1. 反思:本节课学生对角平分线的定义和性质掌握程度,以及解题方法的运用。

2. 拓展延伸:引导学生思考如何运用角平分线的性质解决更多实际问题,如:角平分线与三角形面积的关系等。

重点和难点解析1. 实践情景引入2. 角平分线的定义和性质的探究3. 例题讲解4. 随堂练习的设计与指导5. 作业设计6. 课后反思与拓展延伸详细补充和说明:一、实践情景引入实践情景引入是激发学生学习兴趣、引导学生主动探究的关键环节。

八年级数学上册《角平分线》教案、教学设计

八年级数学上册《角平分线》教案、教学设计
(2)作业完成情况:评价学生对知识点的掌握程度,以及对尺规作图的熟练程度;
(3)单元测试:通过测试,了解学生对角平分线知识点的掌握情况,以及运用知识解决问题的能力;
(4)课后访谈:了解学生在学习过程中遇到的困难和问题,及时调整教学策略。
4.教学资源:
(1)教材:充分利用课本资源,结合教学目标进行教学设计;
(2)反思自己在学习过程中的收获和不足,为下一节课的学习做好准备。
作业要求:
1.认真完成作业,保持卷面整洁;
2.思考题要结合所学知识,进行深入分析和研究;
3.遇到问题及时与同学、老师交流,提高解决问题的能力;
4.作业提交时间:下周一下午放学前。
(4)应用:设计有针对性的例题和练习,让学生运用角平分线知识解决问题,巩固所学;
(5)拓展:引导学生思考角平分线在其他几何问题中的应用,培养学生的发散思维;
(6)总结:对本节课的知识点进行梳理,强调重难点,帮助学生巩固记忆。
3.教学评价:
(1)课堂表现:关注学生在课堂上的参与程度、积极性和合作精神;
(五)总结归纳
1.教学活动设计:
(1)对本节课的知识点进行梳理,强调重点和难点;
(2)学生分享学习收获和感受,教师给予鼓励和评价;
(3)布置课后作业,巩固所学知识。
2.教学内容:
(1)总结角平分线的定义、性质和判定方法;
(2)回顾尺规作图的方法,强调注意事项;
(3)明确角平分线在实际问题中的应用价值。
五、作业布置
为了巩固本节课所学知识,培养学生的几何思维和解决问题的能力,特布置以下作业:
1.必做题:
(1)完成课本第十五章第二节课后练习题1、2、3;
(2)运用尺规作图,作出给定角的平分线,并简要说明作图过程;

冀教版数学八年级上册《16.3 角的平分线》教学设计

冀教版数学八年级上册《16.3 角的平分线》教学设计

冀教版数学八年级上册《16.3 角的平分线》教学设计一. 教材分析冀教版数学八年级上册《16.3 角的平分线》是角平分线的相关知识,主要包括角平分线的定义、性质和运用。

通过本节课的学习,使学生了解角平分线的基本概念,掌握角平分线的性质,并能够运用角平分线解决一些实际问题。

二. 学情分析学生在学习本节课之前,已经掌握了平行线、垂线的相关知识,具备一定的逻辑思维能力和空间想象能力。

但对于角平分线的概念和性质,可能较为抽象,需要通过实例和动手操作来加深理解。

三. 教学目标1.知识与技能:了解角平分线的定义和性质,能够运用角平分线解决一些几何问题。

2.过程与方法:通过观察、操作、推理等过程,培养学生的空间想象能力和逻辑思维能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和勇于探究的精神。

四. 教学重难点1.角平分线的定义和性质。

2.运用角平分线解决实际问题。

五. 教学方法1.情境教学法:通过生活实例引入角平分线,使学生能够联系实际,更好地理解角平分线的概念。

2.动手操作法:让学生亲自动手操作,观察角平分线的性质,加深对知识的理解。

3.小组讨论法:引导学生分组讨论,培养学生的团队合作意识和交流能力。

六. 教学准备1.准备相关的教学课件和教学素材。

2.准备角平分线的教具,如三角板、直尺等。

3.安排学生进行小组讨论的座位。

七. 教学过程1.导入(5分钟)通过生活实例,如剪刀的剪切过程,引导学生观察并思考:剪刀的刀口为什么能够将纸张剪成两部分相等的部分?从而引入角平分线的概念。

2.呈现(10分钟)利用课件呈现角平分线的定义和性质,让学生直观地了解角平分线的基本特征。

同时,配合教具的演示,使学生更好地理解角平分线的性质。

3.操练(10分钟)让学生亲自动手操作,利用直尺和三角板画出某个角的平分线,并观察和验证角平分线的性质。

在操作过程中,引导学生思考和解决问题,培养学生的空间想象能力和逻辑思维能力。

角的平分线教学设计:如何创造性地教授角平分线概念?

角的平分线教学设计:如何创造性地教授角平分线概念?

角的平分线教学设计:如何创造性地教授角平分线概念??角平分线,是指从角的顶点引出一条线段,将角分为两个相等的角的线段。

这是初中数学中的一个重要概念,对于学生来说,学会了角平分线的概念与应用,将有助于理解与解题。

那么,在教学时,如何能够创造性地教授角平分线的概念,让学生更深入地理解与掌握呢?一、教学目标1.掌握角平分线的定义与特征。

2.理解角平分线与角度大小的关系。

3.探究角平分线的性质。

4.能够应用角平分线解决实际问题。

二、教学环节1.导入环节:通过简单的问题与示例,激发学生了解角的平分线。

通过提问的方式,让学生了解什么是角,角是由两条射线共同围成的部分。

并且说明,在角中存在一个特殊的点,即角的顶点。

接下来,介绍角平分线的概念:角平分线是从角的顶点引出的一条线段,将角分为两个相等的角的线段。

2.拓展环节:通过实质性的例子,让学生了解角平分线与角的特点的关联。

拓展环节主要讲解角平分线与角的大小的关系。

通过实际的例子,让学生思考并发现规律。

例如,假设有角ABC,引出一条角平分线AD,可以发现角BAD与角DAC是相等的。

通过类似的例子演示,让学生掌握角平分线与角大小之间的关系。

3.深化环节:探究角平分线的性质在探究环节中,介绍角平分线的性质,并结合实例演示。

比如,任意角都存在平分线;平分线在角内部,且与角的边相交于不同的点等等。

通过深化环节的讲解,让学生对角平分线的性质有更加深入的理解与认识。

4.应用环节:将角平分线的知识应用到实际问题中在应用环节中,通过实际问题的演示,让学生将角平分线的知识应用到实际场景中,并解决问题。

例如,假设现有一根木棍,经过测量发现其长度为l,现在将其固定在地面上,问从木棍的中间点引出一条线段,可以将木棍分为等长部分的线段长度是多少。

通过这样的问题演示,让学生掌握角平分线的应用方法。

5.总结环节:通过总结,让学生更好地掌握角平分线的概念,并激发学生的兴趣在总结环节中,回顾角平分线的概念与特点,并通过总结,让学生更好地掌握已学知识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.9角的平分线教学目标 1.掌握角的平分线的性质定理和它的逆定理的内容、证明及应用.2.理解原命题和逆命题的概念和关系,会找一个简单命题的逆命题.3.渗透角平分线是满足特定条件的点的集合的思想。

教学重点和难点角平分线的性质定理和逆定理的应用是重点.性质定理和判定定理的区别和灵活运用是难点.教学过程设计一、角平分钱的性质定理与判定定理的探求与证明1,复习引入课题.(1)提问关于直角三角形全等的判定定理.(2)让学生用量角器画出图3-86中的∠AOB的角平分线OC.2.画图探索角平分线的性质并证明之.(1)在图3-86中,让学生在角平分线OC上任取一点P,并分别作出表示P点到∠AOB两边的距离的线段PD,PE.(2)这两个距离的大小之间有什么关系?为什么?学生度量后得出猜想,并用直角三角形全等的知识进行证明,得出定理.(3)引导学生叙述角平分线的性质定理(定理1),分析定理的条件、结论,并根据相应图形写出表达式. 3.逆向思维探求角平分线的判定定理.(1)让学生将定理1的条件、结论进行交换,并思考所得命题是否成立?如何证明?请一位同学叙述证明过程,得出定理2——角平分线的判定定理.(2)教师随后强调定理1与定理2的区别:已知角平分线用性质为定理1,由所给条件判定出角平分线是定理2.(3)教师指出:直接使用两个定理不用再证全等,可简化解题过程.4.理解角平分线是到角的两边距离都相等的点的集合.(1)角平分线上任意一点(运动显示)到角的两边的距离都相等(渗透集合的纯粹性).(2)在角的内部,到角的两边距离相等的点(运动显示)都在这个角的平分线上(而不在其它位置,渗透集合的完备性).由此得出结论:角的平分线是到角的两边距离相等的所有点的集合.二、应用举例、变式练习练习1填空:如图3-86(1)∵OC平分∠AOB,点P 在射线OC上,PD⊥OA于DPE⊥OB于E.∴(角平分线的性质定理).(2)∵PD⊥OA,PE⊥OB,∴ OP 平分∠AOB()例1已知:如图3-87(a), ABC的角平分线BD和CE交于F.(l)求证:F到AB,BC和 AC边的距离相等;(2)求证:AF平分∠BAC;(3)求证:三角形中三条内角的平分线交于一点,而且这点到三角形三边的距离相等;(4)怎样找△ABC内到三边距离相等的点?(5)若将“两内角平分线BD,CE交于F”改为“△ABC的两个外角平分线BD,CE交于F,如图387(b),那么(1)~(3)题的结论是否会改变?怎样找△ABC外到三边所在直线距离相等的点?共有多少个?说明:(1)通过此题达到巩固角平分线的性质定理(第(1)题)和判定定理(第(2)题)的目的.(2)此题提供了证明“三线共点”的一种常用方法:先确定两条直线交于某一点,再证明这点在第三条直线上。

(3)引导学生对题目的条件进行类比联想(第(5)题),观察结论如何变化,培养发散思维能力.练习2已知△ABC,在△ABC内求作一点P,使它到△ABC三边的距离相等.练习 3已知:如图 3-88,在四边形 ABCD中, AB=AD, AB ⊥BC,AD⊥DC.求证:点 C在∠DAB的平分线上.例2已知:如图 3- 89,OE平分∠AOB,EC⊥OA 于 C,ED⊥OB于 D.求证:(1)OC=OD;(2)OE垂直平分CD.分析:证明第(1)题时,利用“等角的余角相等”可得到∠OEC=∠OED,再利用角平分线的性质定理得到 OC=OD.这样处理,可避免证明两个三角形全等.练习4 课本第54页的练习.说明:训练学生将生活语言翻译成数学语言的能力.三、互逆命题,互逆定理的定义及应用1.互逆命题、互逆定理的定义.教师引导学生分析角平分线的性质,判定定理的题设、结论,使学生看到这两个命题的题设和结论正好相反,得出互逆命题、互逆定理的定义,并举出学过的互逆命题、互逆定理的例子.教师强调“互逆命题”是两个命题之间的关系,其中任何一个做为原命题,那么另一个就是它的逆命题.2.会找一个命题的逆命题,并判定它是真、假命题.例3写出下列命题的逆命题,并判断(1)~(5)中原命题和它的逆命题是真命题还是假命题:(1)两直线平行,同位角相等;(2)直角三角形的两锐角互余;(3)对顶角相等;(4)全等三角形的对应角相等;(5)如果|x|=|y|,那么x=y;(6)等腰三角形的两个底角相等;(7)直角三角形两条直角边的平方和等于斜边的平方.说明:注意逆命题语言的准确描述,例如第(6)题的逆命题不能说成是“两底角相等的三角形是等腰三角形”.3.理解互逆命题、互逆定理的有关结论.例4 判断下列命题是否正确:(1)错误的命题没有逆命题;(2)每个命题都有逆命题;(3)一个真命题的逆命题一定是正确的;(4)一个假命题的逆命题一定是错误的;(5)每一个定理都一定有逆定理.通过此题使学生理解互逆命题的真假性关系及互逆定理的定义.四、师生共同小结1.角平分线的性质定理与判定定理的条件内容分别是什么?2.三角形的角平分线有什么性质?怎样找三角形内到三角形三边距离相等的点?3.怎样找一个命题的逆命题?原命题与逆命题是否同真、同假?五、作业课本第55页第3,5,6,7,8,9题.课堂教学设计说明本教学设计需2课时完成.角平分
线是符合某种条件的动点的集合,因此,利用教具,投影或计算机演示动点运动的过程和规律,更能展示知识的形成过程,有利于学生自己观察,探索新知识,从中提高兴趣,以充分培养能力,发挥学生学习的主动性.
数学教案-角的平分线。

相关文档
最新文档