完整版-全等三角形总复习

合集下载

(完整)八年级数学全等三角形复习题及答案

(完整)八年级数学全等三角形复习题及答案

初二数学第十一章全等三角形综合复习牢记:“有三个角对应相等”和“有两边及此中一边的对角对应相等”的两个三角形不必定全等。

例 1. 如图,A, F , E, B 四点共线,AC CE , BD DF, AE BF,AC BD 。

求证:ACF BDE 。

例 2.如图,在ABC 中, BE 是∠ABC的均分线,AD BE ,垂足为 D 。

求证:21 C 。

例3.如图,在ABC 中, AB BC ,ABC90o。

F为 AB 延伸线上一点,点E 在 BC 上,BE BF,连结AE, EF和 CF 。

求证:AE CF。

例 4. 如图,AB // CD,AD // BC,求证:AB CD 。

例 5. 如图, AP, CP 分别是ABC 外角MAC 和NCA 的均分线,它们交于点P 。

求证:BP 为MBN 的均分线。

例 6. 如图,D是ABC 的边 BC 上的点,且 CD AB , ADB BAD , AE 是ABD 的。

中线。

求证:AC2AE例7.如图,在ABC 中, AB AC ,1 2 , P 为 AD 上任意一点。

求证:AB AC PB PC 。

同步练习一、选择题:1.能使两个直角三角形全等的条件是()A. 两直角边对应相等B. 一锐角对应相等C. 两锐角对应相等D. 斜边相等2.依据以下条件,能画出独一ABC 的是()oA.AB3, BC 4 , CA8B.AB 4 , BC3, A 30C.C60o, B45o,AB4D.C90o,AB63.如图,已知12, AC AD ,增添以下条件:① AB AE ;② BC ED ;③C D ;④B E 。

此中能使ABC AED 的条件有()A. 4 个B. 3 个C. 2 个D. 1 个()4. 如图,1 2 ,C D ,AC , BD交于E 点,以下不正确的选项是A.DAE CBEB.CE DEC.DEA 不全等于CBED.EAB 是等腰三角形5. 如图,已知AB CD , BC AD ,B23o,则D等于()A. 67oB.46oC. 23oD. 没法确立二、填空题:6. 如图,在ABC 中, C 90o,ABC 的平分线 BD 交 AC 于点 D ,且CD : AD 2:3 , AC10cm ,则点 D 到 AB 的距离等于__________cm;7. 如图,已知AB DC,AD BC ,E, F是 BD 上的两点,且 BE DF ,若AEB 100o, ADB 30o,则BCF ____________;BC , BD为折痕,则CBD的大小为8.将一张正方形纸片按如图的方式折叠,_________;9.如图,在等腰 Rt ABC 中, C 90o,AC BC,AD均分BAC 交 BC 于 D ,DE AB 于 E ,若 AB 10 ,则BDE 的周长等于____________;10. 如图,点 D , E, F , B在同一条直线上,AB // CD ,AE // CF,且AE CF,若BD10 , BF 2 ,则EF___________;三、解答题:11. 如图,交于 Q 点。

八年级数学上册期末复习资料

八年级数学上册期末复习资料

初二上册数学全册.第十一章全等三角形综合复习1. 全等三角形的概念及性质;2. 三角形全等的判定;3. 角平分线的性质及判定。

知识点一:证明三角形全等的思路通过对问题的分析,将解决的问题归结到证明某两个三角形的全等后,采用哪个全等判定定理加以证明,可以按下图思路进行分析:⎧→⎧⎪⎪→⎨⎪⎪⎪→⎩⎪⎪→→⎧⎪⎪→⎧⎪⎪⎨⎨⎪→⎨⎪⎪⎪⎪⎪→⎩⎩⎪⎪→⎧⎪⎨→⎪⎩⎪⎩SAS SSSHL AAS SAS ASAAAS ASA AAS 找夹角已知两边找第三边找直角边为角的对边找任一角找夹角的另一边已知一边一角边为角的邻边找夹边的另一角找边的对角找夹边已知两角找任一对边切记:“有三个角对应相等”和“有两边及其中一边的对角对应相等”的两个三角形不一定全等。

. 例1. 如图,,,,A F E B 四点共线,AC CE ⊥,BD DF ⊥,AE BF =,AC BD =。

求证:ACF BDE ∆≅∆。

知识点二:构造全等三角形 例2. 如图,在ABC ∆中,BE 是∠ABC 的平分线,AD BE ⊥,垂足为D 。

求证:21C ∠=∠+∠。

例3. 如图,在ABC ∆中,AB BC =,90ABC ∠=。

F 为AB 延长线上一点,点E 在BC 上,BE BF =,连接,AE EF 和CF 。

求证:AE CF=。

知识点三:常见辅助线的作法..1. 连接四边形的对角线例4. 如图,AB //CD ,AD //BC ,求证:AB CD =。

2. 作垂线,利用角平分线的知识..例5. 如图,,AP CP 分别是ABC ∆外角MAC ∠和NCA ∠的 平分线,它们交于点P 。

求证:BP 为MBN ∠的平分线。

例6. 如图,D 是ABC ∆的边BC 上的点,且CD AB =,ADB BAD ∠=∠,AE 是ABD ∆的中线。

求证:2AC AE =。

4. “截长补短”构造全等三角形.例7. 如图,在ABC ∆中,AB AC >,12∠=∠,P 为AD 上任意一点。

完整版-全等三角形总复习教学课件

完整版-全等三角形总复习教学课件

判定 到角的两边的距离相等的点在角平分线上 2
全等三角形的判定方法
三角形全等判定方法1
三边对应相等的两个三角形全等(可以简写
为“边边边”或“SSS”)。
A
用符号语言表达为:
在△ABC和△ DEF中
B
C
AB=DE
D
BC=EF
CA=FD
∴ △ABC ≌△ DEF(SSS) E
F
2024/9/30
3
三角形全等判定方法2
∴ △ABC≌△DEF(AAS)
2024/9/30
6
三角形全等判定方法5
有一条斜边和一条直角边对应相等的两个直角 三角形全等(HL)。
在Rt△ABC和Rt△DEF中
A
D
AB=DE (已知 ) AC=DF(已知 )
C ∴ △ABC≌△DEF(HL)
2024/9/30
B
F
E
7
知识点
1.全等三角形的性质: 对应边、对应角、对应线段相等, 周长、面积也相等。
A.1对 B.2对 C.3对 D.4对
2024/9/30
17
例3. 已知: AC⊥BC,BD⊥AD,AC=BD. 求证:BC=AD.
D
C
A
B
2024/9/30
18
▪例4:下面条件中, 不能证出Rt△ABC≌Rt△A' B'C'的是[ C] (A.)AC=A'C' , BC=B'C' (B.)AB=A'B' , AC=A'C' (C.) AB=B'C' , AC=A'C' (D.)∠B=∠B' , AB=A'B'

全等三角形复习资料(搜集整理版)

全等三角形复习资料(搜集整理版)

特别鸣谢资源原创者,本人仅仅便于自己的备课整理排版了一下。

第十一章全等三角形复习一、全等三角形能够完全重合的两个三角形叫做全等三角形。

一个三角形经过平移、翻折、旋转可以得到它的全等形.2、全等三角形有哪些性质(1):全等三角形的对应边相等、对应角相等。

(2):全等三角形的周长相等、面积相等。

(3):全等三角形的对应边上的对应中线、角平分线、高线分别相等.3、全等三角形的判定边边边:三边对应相等的两个三角形全等(可简写成“SSS")边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”))2、(判定)角的内部到角的两边的距离相等的点在角的平分线上。

三、学习全等三角形应注意以下几个问题:(1)要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;(2表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;(3)“有三个角对应相等"或“有两边及其中一边的对角对应相等”的两个三角形不一定全等; (4)时刻注意图形中的隐含条件,如“公共角”、“公共边"、“对顶角”第十二章轴对称一、轴对称图形1. 把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。

这条直线就是它的对称轴.这时我们也说这个图形关于这条直线(成轴)对称.2. 把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。

这条直线叫做对称轴.折叠后重合的点是对应点,叫做对称点4。

轴对称的性质①关于某直线对称的两个图形是全等形。

②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。

③轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

④如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。

二、线段的垂直平分线1。

经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线.2.线段垂直平分线上的点与这条线段的两个端点的距离相等3.与一条线段两个端点距离相等的点,在线段的垂直平分线上三、用坐标表示轴对称小结:在平面直角坐标系中,关于x轴对称的点横坐标相等,纵坐标互为相反数。

全等三角形的判定(总复习)

全等三角形的判定(总复习)

图(1) B D
C
学习提示:公共边,公共角, 对顶角这些都是隐含的边,角相等的条件!
9
二.添条件判全等
B
4、如图,已知AD平分∠BAC, A D 要使△ABD≌△ACD, • 根据“SAS”需要添加条件 ; C AB=AC ∠BDA=∠CDA • 根据“ASA”需要添加条件 ; • 根据“AAS”需要添加条件 ; ∠B=∠C
全等三角形共有6组元素(3组对应边、3组对应角)
三角形的6组元素(3组对应边、3组对应角) 中,要使两个三角形全等,到底需 要满足哪些条件?
要使两个三角形全等, 应至少有 3 组元素对应相等。
边边边 (SSS) 两边一角 6选 3
两边和它的夹角(SAS)
两角一边
角角角×
两边和它一边的对角 × 两角和夹边(ASA)
性质:角的平分线上的点到角的两边的距离相等.
用数学语言表示为: ∵ QD⊥OA,QE⊥OB,点Q在∠AOB的平分线上 ∴ QD=QE
例、已知:BD⊥AM于点D,CE⊥AN于点 E,BD,CE交点F,CF=BF,求证:点F在∠A的平 分线上. M
D C F A E B N
练一练 1、如图,为了促进当地旅游发展,某地要在 三条公路围成的一块平地上修建一个度假村.要 使这个度假村到三条公路的距离相等,应在何处 修建 ? 2、直线表示三条相互交叉的公路 ,现要建一个货
解: 连接AC
在△ABC和△ADC中, AB=AD(已知) BC=DC(已知) AC=AC(公共边)
∴△ADC≌△ABC(SSS)
∴ ∠ABC=∠ADC (全等三角形的对应角相等)
14
实际运用
9. 测量如图河的宽度,某人在河的对岸找到一参照物 树木A,视线 AB与河岸垂直,然后该人沿河岸 步行10步(每步约0.75M)到O处,进行标记, 再向前步行10步到D处,最后背对河岸向前步行20 步,此时树木A,标记O,恰好在同一视线上,则 河的宽度为 米。 15

全等三角形复习专题

全等三角形复习专题

全等三角形复习专题一、全等三角形基本概念与性质全等三角形是指能够完全重合的两个三角形,即形状相同和大小相等的三角形。

全等三角形的性质是全等三角形的边、角及其对应线段之间具有一些特殊的数量关系和位置关系。

如全等三角形的对应边相等,对应角相等,对应线段相等,以及全等三角形的中点连线等于其一边。

二、全等三角形的判定全等三角形的判定是全等三角形研究的核心内容,主要有以下五个判定方法:1、边角边定理(SAS):若两个三角形的两边及其夹角对应相等,则这两个三角形全等。

2、角边角定理(ASA):若两个三角形的两个角及其夹边对应相等,则这两个三角形全等。

3、边边边定理(SSS):若两个三角形的三边对应相等,则这两个三角形全等。

4、角角边定理(AAS):若两个三角形的两个角及其一边对应相等,则这两个三角形全等。

5、斜边直角边定理(HL):若两个直角三角形的斜边和一条直角边对应相等,则这两个直角三角形全等。

三、全等三角形的应用全等三角形在数学、几何、物理等领域中都有广泛的应用。

如证明线段相等、角相等、平行四边形、矩形、菱形、正方形等几何图形的性质和判定,以及解决一些实际问题等。

四、全等三角形的复习策略1、掌握全等三角形的基本概念和性质,理解判定方法的意义和适用范围。

2、熟练掌握全等三角形的判定方法,能够根据题目条件选择合适的判定方法解决问题。

3、熟悉全等三角形的应用,能够将全等三角形的知识应用到实际问题和数学问题中。

4、多做练习题,熟悉各种题型和解题方法,提高解题能力和思维水平。

5、注意对易错点和难点进行重点复习和强化训练,避免出现常见的错误和失误。

全等三角形动点专题在数学的世界里,全等三角形和动点问题是两个重要的概念。

全等三角形是指两个或两个以上的三角形,它们的边长和角度都相等,可以完全重合。

动点问题则涉及到在给定的图形或轨迹上移动的点,以及这些点的变化和规律。

将这两个概念结合起来,我们可以研究一类非常有趣的数学问题,即全等三角形动点专题。

初二上学期数学期末总复习资料(分章完整版-知识点+习题)--黄立宗整理--极力推荐

初二上学期数学期末总复习资料(分章完整版-知识点+习题)--黄立宗整理--极力推荐

初二上期末总复习(分章节)全等三角形复习一、知识点1、全等三角形有哪些性质(1)全等三角形的对应边相等、对应角相等。

(2)全等三角形的周长相等、面积相等。

(3)全等三角形的对应边上的对应中线、角平分线、高线分别相等。

2、三角形全等的判定方法及基本思路: 方法指引证明两个三角形全等的基本思路:(1):已知两边----找第三边(SSS )找夹角(SAS )(2):已知一边一角---已知一边和它的邻角找是否有直角(HL )已知一边和它的对角找这边的另一个邻角(ASA )找这个角的另一个边(SAS)找这边的对角(AAS )找一角(AAS )已知角是直角,找一边(HL )(3):已知两角---找两角的夹边(ASA)找夹边外的任意边(AAS )练习3、角的平分线(1)、性质:角的平分线上的点到角的两边的距离相等.(2)、判定:角的内部到角的两边的距离相等的点在角的平分线上。

二、典型例题选讲 细心选一选1.如图,已知AB AD =,那么添加下列一个条件后,仍无法判定ABC ADC △≌△的是( )A .CB CD = B .BAC DAC =∠∠ C .BCA DCA =∠∠D .90B D ==︒∠∠ 2.如下图,给出下列四组条件:①AB DE BC EF AC DF ===,,; ②AB DE B E BC EF =∠=∠=,,; ③B E BC EF C F ∠=∠=∠=∠,,; ④AB DE AC DF B E ==∠=∠,,. 其中,能使ABC DEF △≌△的条件共有( ) A .1组 B .2组 C .3组 D .4组第2题 第3题3.如上图,ACB A CB ''△≌△,BCB ∠'=30°,则ACA '∠的度数为( )A.20°B.30°C.35°D.40°4. 以下四个命题中正确的是( )A .有三个角对应相等的两个三角形全等B .有两边对应相等的两个三角形全等C .有一个角相等且有两边相等的两个三角形全等D .有一边相等的两个等边三角形全等 5.如图所示,90EF ∠=∠=,B C ∠=∠,AE AF =,结论:①EM FN =;②CD DN =; ③FAN EAM ∠=∠;④ACN ABM △≌△.其中正确的有( )A .1个B .2个C .3个D .4个5题 6题6.如图,已知△ABC 的六个元素,则下列甲、乙、丙三个三角形中和△ABC 全等的图形是( )A 甲乙B 甲丙C 乙丙D 乙 7.下列说法正确的是 ( )A.周长相等的两个三角形全等B.有两边和其中一边的对角对应相等的两个三角形全等C.面积相等的两个三角形全等D.有两角和其中一角的对边对应相等的两个三角形全等 8.如图,OA=OB,OC=OD, ∠O=60°, ∠C=25°则∠BED 的度数是 ( )A.70°B. 85°C. 65°D. 以上都不对9. 如图,△ABC ≌△DEF,AC ∥DF,BC ∥EF.则不正确的等式是 ( ) A.AC=DF B.AD=BE C.DF=EF D.BC=EFCEDBOA8题 9题图 11B DOCA10题10.如图11,在CD 上求一点P ,使它到OA ,OB 的距离相等,则P 点是 ( ) A. 线段CD 的中点 B. OA 与OB 的中垂线的交点 C. OA 与CD 的中垂线的交点 D. CD 与∠AOB 的平分线的交点耐心填一填1.如图,若111ABC A B C △≌△,且11040A B ∠=∠=°,°,则1C ∠=2.如图,点B 、E 、F 、C 在同一直线上. 已知∠A =∠D ,∠B =∠C ,要使△ABF ≌△DCE , 需要补充的一个条件是 (写出一个即可).2题 3题3.如图,BAC ABD ∠=∠,请你添加一个条件: ,使OC OD =(只添一个即可).4. 如图,已知AB ∥CD ,AD ∥BC ,E.F 是BD 上两点,且BF =DE ,则图中共有 对全等三角形.4题 5题5.在Rt △ABC 中,∠C =90°,∠A.∠B 的平分线相交于O ,则∠AOB =_________.6.如图,幼儿园的滑梯中有两个长度相等的梯子(BC=EF ),左边滑梯的高度AC 等于右边滑梯 水平方向长度DF ,则∠ABC+∠DFE= °. 用心答一答17、已知:如图点C 是AB 的中点,CD ∥BE ,且CD=BE.求证:∠D=∠E.18.如图,点C 、E 、B 、F 在同一直线上,AC ∥DF ,AC =DF ,BC =EF ,求证:AB=DE.19.如图,D 、E 、F 、B 在一条直线上,AB=CD ,∠B=∠D ,BF=DE 。

人教版八年级上册第十二章全等三角形知识点复习

人教版八年级上册第十二章全等三角形知识点复习

A. ①④
B.①②
C.②③
D.③④
2.如图,ABD ≌ CDB ,且 AB 和 CD 是对应边,下面四个结论中不正确的是( )
A. ABD和CDB 的面积相等
A
D
B. ABD和CDB 的周长相等 C. A + ABD = C + CBD
B
C
D.DAD//BC 且 AD=BC
3.如图, ABC ≌ BAD ,A 和 B 以及 C 和 D 分别是对应点,如果
4.全等三角形的判定(一):三边对应相等的两个三角形全等,简与成“边边边”或“SSS”.
AB = DE 如图,在 ABC 和 DEF 中 BC = EF
AC =
【典型例题】
例1.如图, ABC ≌ ADC ,点 B 与点 D 是对应点, BAC = 26 ,且 B = 20 , SABC = 1,求 CAD , D, ACD 的度数及 ACD 的面积.
数及 BC 的长.
E
F
A
BC
D
本文来源于网络,如果侵权行为,请联系删除!
精品文档,助力人生,欢迎关注小编!
11.如图,在 ABC与ABD 中,AC=BD,AD=BC,求证: ABC ≌ ABD
D A
C B
全等三角形(一)作业
1.如图, ABC ≌ CDA ,AC=7cm,AB=5cm.,则 AD 的长是( )
求证:(1) DE ⊥ AB ; (2)BD 平分 ABC (角平分线的相关证明及性质)
B
A E
D
C
【巩固练习】 1.下面给出四个结论:①若两个图形是全等图形,则它们形状一定相同;②若两个图形的
形状相同,则它们一定是全等图形;③若两个图形的面积相等,则它们一定是全等图形; ④若两个图形是全等图形,则它们的大小一定相同,其中正确的是( )

全等三角形复习和例习题含答案

全等三角形复习和例习题含答案

第十一章:全等三角形一、基础知识1.全等图形的有关概念 (1)全等图形的定义能够完全重合的两个图形就是全等图形。

例如:图13-1和图13-2就是全等图形图13-1图13-2 (2)全等多边形的定义两个多边形是全等图形,则称为全等多边形。

例如:图13-3和图13-4中的两对多边形就是全等多边形。

图13-3 图13-4(3)全等多边形的对应顶点、对应角、对应边两个全等的多边形,经过运动而重合,相互重合的顶点叫做对应顶点,相互重合的边叫做对应边,相互重合的角叫做对应角。

(4)全等多边形的表示例如:图13-5中的两个五边形是全等的,记作五边形ABCDE ≌五边形A ’B ’C ’D ’E ’(这里符号“≌”表示全等,读作“全等于”)。

图13-5表示图形的全等时,要把对应顶点写在对应的位置。

(5)全等多边形的性质全等多边形的对应边、对应角分别相等。

A B DC E B ’A ’ C ’ D ’ E ’(6)全等多边形的识别多边形相等、对应角相等的两个多边形全等。

2.全等三角形的识别(1)根据定义若两个三角形的边、角分别对应相等,则这两个三角形全等。

(2)根据SSS如果两个三角形的三条边分别对应相等,那么这两个三角形全等。

相似三角形的识别法中有一个与(SSS)全等识别法相类似,即三条边对应成比例的两个三角形相似,而相似比为1时,就成为全等三角形。

(3)根据SAS如果两个三角形有两边机器夹角分别对应相等,那么这两个三角形全等。

相似三角形的识别法中同样有一个是与(SAS)全等识别法相类似,即一角对应相等而夹这个角的两边对应成比例的两个三角形相似,当相似比为1时,即为全等三角形。

(4)根据ASA如果两个三角形的两个角及其夹边分别对应相等,那么这两个三角形全等。

(5)根据AAS如果两个三角形有两个角及其中一角的对边分别对应相等,那么这两个三角形全等。

3.直角三角形全等的识别(1)根据HL如果两个直角三角形的斜边及一条直角边分别对应相等,那么这两个直角三角形全等。

完整版-全等三角形总复习

完整版-全等三角形总复习

完整版-全等三角形总复习完整版全等三角形总复习全等三角形是初中数学中的重要内容,它不仅是几何证明的基础,也是解决许多实际问题的工具。

在这篇文章中,我们将对全等三角形进行一次全面的复习。

一、全等三角形的定义能够完全重合的两个三角形叫做全等三角形。

全等三角形的形状和大小完全相同,对应边相等,对应角相等。

二、全等三角形的性质1、全等三角形的对应边相等。

比如,若△ABC ≌△DEF,则 AB = DE,BC = EF,AC = DF。

2、全等三角形的对应角相等。

例如,△ABC ≌△DEF 时,∠A =∠D,∠B =∠E,∠C =∠F。

3、全等三角形的周长相等、面积相等。

三、全等三角形的判定1、“边边边”(SSS)如果两个三角形的三条边分别对应相等,那么这两个三角形全等。

2、“边角边”(SAS)如果两个三角形的两条边及其夹角分别对应相等,那么这两个三角形全等。

3、“角边角”(ASA)如果两个三角形的两个角及其夹边分别对应相等,那么这两个三角形全等。

4、“角角边”(AAS)如果两个三角形的两个角和其中一个角的对边分别对应相等,那么这两个三角形全等。

5、“斜边、直角边”(HL)如果两个直角三角形的斜边和一条直角边分别对应相等,那么这两个直角三角形全等。

四、全等三角形的常见模型1、平移型两个三角形沿着某一条直线平移,对应边平行且相等,对应角相等。

2、对称型两个三角形沿着某一条直线对称,对应边相等,对应角相等。

3、旋转型两个三角形绕着某一点旋转一定的角度,对应边相等,对应角相等。

五、证明全等三角形的步骤1、分析题目仔细阅读题目,找出已知条件和需要证明的结论。

2、确定方法根据已知条件和图形特点,选择合适的全等三角形判定方法。

3、书写证明按照逻辑顺序,清晰地书写证明过程,每一步都要有依据。

六、全等三角形的应用1、测量可以利用全等三角形测量无法直接测量的距离或长度。

2、证明线段和角的相等关系通过证明两个三角形全等,得出对应线段和角相等。

(完整版)全等三角形知识总结和经典例题

(完整版)全等三角形知识总结和经典例题

全等三角形复习[ 知识要点 ]一、全等三角形1.判定和性质一般三角形直角三角形边角边( SAS)、角边角( ASA)具备一般三角形的判定方法判定斜边和一条直角边对应相等( HL )角角边( AAS)、边边边( SSS)对应边相等,对应角相等性质对应中线相等,对应高相等,对应角平分线相等注:①判定两个三角形全等必须有一组边对应相等;② 全等三角形面积相等.2.证题的思路:找夹角( SAS)已知两边找直角( HL )找第三边( SSS)若边为角的对边,则找任意角( AAS)找已知角的另一边(SAS)已知一边一角边为角的邻边找已知边的对角(AAS)找夹已知边的另一角(ASA)找两角的夹边(ASA)已知两角找任意一边(AAS)性质1、全等三角形的对应角相等、对应边相等。

2、全等三角形的对应边上的高对应相等。

3、全等三角形的对应角平分线相等。

4、全等三角形的对应中线相等。

5、全等三角形面积相等。

6、全等三角形周长相等。

( 以上可以简称 : 全等三角形的对应元素相等)7、三边对应相等的两个三角形全等。

(SSS)8、两边和它们的夹角对应相等的两个三角形全等。

(SAS)9、两角和它们的夹边对应相等的两个三角形全等。

(ASA)10、两个角和其中一个角的对边对应相等的两个三角形全等。

(AAS)11、斜边和一条直角边对应相等的两个直角三角形全等。

(HL)运用1、性质中三角形全等是条件,结论是对应角、对应边相等。

而全等的判定却刚好相反。

2、利用性质和判定,学会准确地找出两个全等三角形中的对应边与对应角是关键。

在写两个三角形全等时,一定把对应的顶点,角、边的顺序写一致,为找对应边,角提供方便。

3,当图中出现两个以上等边三角形时,应首先考虑用 SAS找全等三角形。

4、用在实际中,一般我们用全等三角形测等距离。

以及等角,用于工业和军事。

有一定帮助。

5、角平分线的性质及判定性质:角平分线上的点到这个角的两边的距离相等判定:到一个角的两边距离相等的点在这个角平分线上做题技巧一般来说考试中线段和角相等需要证明全等。

全等三角形知识点总结复习

全等三角形知识点总结复习

全等三角形1.基本定义:⑴全等形:能够完全重合的两个图形叫做全等形.⑵全等三角形:能够完全重合的两个三角形叫做全等三角形.理解:①全等三角形形状与大小完全相等,与位置无关;②一个三角形经过平移、翻折、旋转可以得到它的全等形;③三角形全等不因位置发生变化而改变。

.2.基本性质:理解:①长边对长边,短边对短边;最大角对最大角,最小角对最小角;②对应角的对边为对应边,对应边对的角为对应角。

(3)全等三角形的周长相等、面积相等。

(4)全等三角形的对应边上的对应中线、角平分线、高线分别相等。

3.全等三角形的判定定理:⑴边边边(SSS):三边对应相等的两个三角形全等.⑵边角边(SAS):两边和它们的夹角对应相等的两个三角形全等.⑶角边角(ASA):两角和它们的夹边对应相等的两个三角形全等.⑷角角边(AAS):两角和其中一个角的对边对应相等的两个三角形全等.⑸斜边、直角边(HL):斜边和一条直角边对应相等的两个直角三角形全等.4.证明两个三角形全等的基本思路:5.角平分线:⑴画法:⑵性质定理:角平分线上的点到角的两边的距离相等.⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上.(4)三角形的三条角平分线交于三角形内部一点,并且这点到三边的距离相等6.证明的基本方法:⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)⑵根据题意,画出图形,并用数字符号表示已知和求证.⑶经过分析,找出由已知推出求证的途径,写出证明过程.7.学习全等三角形应注意以下几个问题:(1)要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;(2)表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;(3)“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等;通关精选1.如图,△ABC≌△EFD,且AB=EF,EC=4,CD=3,则AC=() A.3 B.4 C.7 D.8,第1题图)2.如图,AC=BD,AO=BO,CO=DO,∠D=30°,∠A=95°,则∠AOB 等于()A.120°B.125°C.130°D.135°,第2题图)3.如图,已知AB∥CD,AD∥CB,则△ABC≌△CDA的依据是() A.SAS B.ASA C.AAS D.SSS,第3题图)4.(2015·六盘水)如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD,第4题图)5.如图,△ABC和△EDF中,∠B=∠D=90°,∠A=∠E,点B,F,C,D在同一条直线上,再增加一个条件,不能判定△ABC≌△EDF的是()A.AB=ED B.AC=EF C.AC∥EF D.BF=DC,第5题图)常考例题精选1.(2015·绥化中考)如图,A,B,C三点在同一条直线上,∠A=∠C=90°,AB=CD,请添加一个适当的条件,使得△EAB≌△BCD.2.(2015·临沂中考)在Rt△ABC中,∠ACB=90°,BC=2cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5cm,则AE= cm.3.(2015·武汉中考)如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C.求证:∠A=∠D.6.(2015·昆明中考)已知:如图,AD,BC相交于点O,OA=OD,AB∥CD.求证:AB=CD.7.(2015·大理中考)如图,点B在AE上,点D在AC上,AB=AD,请你添加一个适当的条件,使△ABC≌△ADE(只能添加一个).(1)你添加的条件是.(2)添加条件后,请说明△ABC≌△ADE的理由.8.(2015·随州中考)如图,点F,B,E,C在同一直线上,并且BF=CE,∠ABC=∠DEF.能否由上面的已知条件证明△ABC≌△DEF?如果能,请给出证明;如果不能,请从下列三个条件中选择一个合适的条件,添加到已知条件中,使△ABC≌△DEF,并给出证明.提供的三个条件是:①AB=DE;②AC=DF;③AC∥DF.9.(2015·河源中考)如图,已知AB=CD,∠B=∠C,AC和BD相交于点O,E是AD 的中点,连接OE.(1)求证:△AOB≌△DOC.(2)求∠AEO的度数.7.如图,在△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于点E,点F 在AC上,BE=FC,求证:BD=DF.如图,点B,E,C,F在同一条直线上,∠A=∠D,∠B=∠DEF,BE=CF.求证:AC=DF.。

全面的全等三角形题型汇总

全面的全等三角形题型汇总

全等三角形的总复习题型:角角边证明三角形全等1、如图,若∠1=∠2,∠C=∠D,则证明△ADB≌△ACB。

2、如图,已知:AD=AE,ABEACD∠=∠,求证:BD=CE.3、如图,已知:ABDBACDC∠=∠∠=∠.,求证:OC=OD.4、如图,CD⊥AB,BE⊥AC,垂足分别为D、E,BE交CD于F,且AD=DF,求证:AC= BF。

BAE FCDD EBAOD C5、如图,已知:BE=CD,∠B=∠C,求证:∠1=∠2。

题型:边角边证明三角形全等1、如图,△ABC中,AB=AC,AD平分∠BAC,证明:△ABD≌△ACD。

2、如图,已知AB=BE,BC=BD,∠1=∠2,证明:∠D=∠C。

3、如右图,AB=AD ,∠BAD=∠CAE,AC=AE,求证:CB=ED。

4、已知:如图,AB=CD,AB//DC.求证:AD//BC,AD=BC。

ABCDE5、如图,D、E在BC上,且BD=CE,AD=AE,∠ADE=∠AED,求证:AB=AC。

题型:角边角证明三角形全等1、如图,∠ABC=∠DCB,∠ACB=∠DCB,试说明△ABC≌△DCB。

A DB C2、已知:如图, AB=AC , ∠B=∠C,BE、DC交于O点。

求证:BD=CE.3、如图:在△ABC和△DBC中,∠ABD=∠DCA,∠DBC=∠ACB,求证:AC=DB.4、如图,已知:AE=CE,∠A=∠C,∠BED=∠AEC,求证:AB=CD.AEC B D5、已知:如图,AB//DE,AC//DF,BE=CF,求证:∠A=∠B.6、如图, AB//CD, AD、BC交于O点, EF过点O分别交AB、CD于E、F,且AE=DF, 求证:O是EF的中点.7、已知:如图,AE=BF,AD//BC,AB、CD交于O点。

求证:CE=DF.题型:边边边证明三角形全等1、如图,AB=AC,BD=CD,求证:∠1=∠2.2、已知:如图,AC=AD,BC=BD,求证:∠C=∠D3、如图,已知AB=CD,AC=BD,求证:∠A=∠D.4、已知:如图,AB=AC,AD=AE,BD=CE.求证:(1)△ABD≌△ACE;(2)△ABE≌△ACD.5、如图,AC与BD交于点O,AD=CB,E、F是BD上两点,且AE=CF,DE=BF.请推导下列结论:⑴∠D=∠B;⑵AE//CF.6、已知:如图,在四边形ABCD中,AB=CD,AD=CB,求证:(1)∠A=∠C;(2)AB//CD ,AD//BC.题型:HL定理证明三角形全等1、如图,△ABC中,D是BC上一点,DE⊥AB,DF⊥AC,E、F分别为垂足,且AE=AF,试说明:DE=DF,AD平分∠BAC.2、如图,B、E、F、C在同一直线上,AE⊥BC,DF⊥BC,AB=DC,BE=CF,试判断AB与CD的位置关系,并证明3、如图,AD是△ABC的高,E为AC上一点,BE交AD于F,且有BF=AC,FD=CD,试探究BE与AC的位置关系.4、如图,在△ABC中,∠ACB=90°,AC=BC,直线DN经过点C,且AD⊥DN于D,BE⊥DN于E,求证:DE=AD+BE.5、如图,AB=CD,DF⊥AC于F,BE⊥AC于E,DF=BE,求证:AF=CE.6、如图,A、E、F、B四点共线,AC⊥CE、BD⊥DF、AE=BF、AC=BD,求证:△ACF≌△BDE.7、已知:如图,AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=DC.求证:BE=DF.8、如图,在ABC中,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别是E、F,且DE=DF,试说明AB=AC题型:角平分线的应用1、如图,在△ABC中,∠C=90°,AD平分∠BAC,BC=10cm,BD=6cm,则点D到AB的距离为___________。

数学中考总复习(一轮复习)第17讲全等三角形

数学中考总复习(一轮复习)第17讲全等三角形

第17讲全等三角形【考点总汇】一、全等三角形的性质及判定定理 1•性质(1) _________________________ 全等三角形的对应边,对应角 。

(2) ________________________________ 全等三角形的对应边的中线 _______________________ ,对应角平分线 _____________________________________ ,对应边上的高 __________ ,全等三角 形的周长 _________ ,面积 _________ 。

2•判定定理(1)三边分别 _________ 的两个三角形全等(简写“边边边”或“ _______ ”)。

微拨炉:已知两边和一角判定三角形全等时,没有“ SSA ”定理,即不能错用成“两边及一边对角相等的两个三角形全等”。

二、角的平分线1•性质:角的平分线上的点到角的两边的距离 ___________ 。

2•判定:角的内部到角的两边的距离相等的点在 ____________ 。

3•三角形的三条角平分线相交于一点,并且这一点到三条边的距离 微拨炉: 1•三角形的角平分线是一条线段,不是射线。

2•角的平分线的性质定理和判定定理互为逆定理。

注意分清题设和结论。

高频考点1、全等三角形的判定与性质 【范例】如图,在△ ABC 中,AB=CB ,■ ABC =90,D 为AB 延长线上一点,点 E 在BC 边上, 且 BE 二 BD ,连接 AE 、DE 、DC 。

(2)两边和它们的夹角分别________ 的两个三角形全等(简写“边角边”或 ”) (3)两角和它们的夹边分别________ 的两个三角形全等(简写“角边角”或”)(4)斜边和一条直角边分别 的两个直角三角形全等(简写“斜边、直角边”或 ”)(1)求证:△ ABE ◎△ CBD(2)若• CAE =30 [求• BDC 的度数D得分要领:判定全等三角形的基本思路1•已知两边:(1)找夹角(SAS) ; (2)找直角(HL或SAS) ; (3)找第三边(SSS)。

全等三角形专题复习(含练习讲评)

全等三角形专题复习(含练习讲评)

一、全等三角形注: ① 判定两个三角形全等必须有一组边对应相等;② 全等三角形面积相等. 2. 证题的思路:⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧)找任意一边()找两角的夹边(已知两角)找夹已知边的另一角()找已知边的对角()找已知角的另一边(边为角的邻边)任意角(若边为角的对边,则找已知一边一角)找第三边()找直角()找夹角(已知两边AAS ASA ASA AAS SAS AAS SSS HL SAS例1: 如图, 在△ABE 中, AB =AE,AD =AC,∠BAD =∠EAC, BC.DE 交于点O.求证: (1) △ABC ≌△AED ; (2) OB =OE .例2: 如图所示, 已知正方形ABCD 的边BC.CD 上分别有点E 、点F, 且BE +DF =EF, 试求∠EAF 的度数.AD F例3.在△ABC中, ∠ACB=90°,AC=BC, AE是BC的中线, 过点C作CF⊥AE于F,过B作BD⊥CB 交CF的延长线于点D。

(1)求证:AE=CD, (2)若BD=5㎝,求AC的长。

例4:如图, △ABE和△ADC是△ABC分别沿着AB.AC边翻折180°形成的, 若∠1: ∠2: ∠3=28: 5: 3, 则∠a的度数为例5: 如图: 在△ABC中, ∠ACB=90°, AC=BC, D是AB上一点, AE⊥CD于E, BF⊥CD交CD的延长线于F.求证: AE=EF+BF。

练习:1.已知: 如图5—129, △ABC 的∠B.∠C 的平分线相交于点D, 过D 作MN ∥BC 交AB.AC 分别于点M 、N, 求证:BM +CN =MN2.如图(13):已知AB ⊥BD, ED ⊥BD, AB=CD , BC=DE ,请你判断AC 垂直于CE 吗? 并说明理由。

3.如图(14),已知AB=DC , DE=BF, ∠B=∠D , 试说明(1)DE ∥BF (2)AE=CFFDCABE(14)4.如图: 在△ABC中, ∠BAC=90°,∠ABD= ∠ABC, DF⊥BC, 垂足为F, AF交BD于E。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

离相等). 同理,PE=PF. ∴PD=PE=PF. 即点P到三边AB、BC、CA的距离相等
3.如图,已知△ABC的外角∠CBD和∠BCE的平分线相
证明: 过点F作FG⊥AE于G, FH⊥AD于H,FM⊥BC于M ∵点F在∠BCE的平分线上, FG⊥AE, FM⊥BC ∴FG=FM(角平分线上的点到这个角
A.AD=AE
C.BE=CD
B. ∠AEB=∠ADC
D.AB=AC
例2:已知:如图,CD⊥AB, BE⊥AC,垂足分别为D、E,BE、 CD相交于O点,∠1=∠2,图中全 D 等的三角形共有( )
A.1对 B.2对 C.3对 D.4对
例3. 已知: AC⊥BC,BD⊥AD,AC=BD. 求证:BC=AD.
∠CAB=∠DAB (AAS) 找任一角 或者 ∠CBA=∠DBA
如图,已知∠1= ∠2,要识别△ABC≌ △CDA, 需要添加的一个条件是----------------D 2 1 C
A
B
思路3: 已知一边一角(边与角相邻): 找夹这个角的另一边 找夹这条边的另一角 找边的对角 AD=CB (SAS) ∠ACD=∠CAB (ASA) ∠D=∠( B AAS)
EBD=FCD(已证) BD=CD(已知) ∴△DEB≌△DFC(AAS) ∴DE=DF( 全等三角形的对应边相等)
2.点A、F、E、C在同一直线上,AF=CE, BE = DF,BE∥DF,求证:AB∥CD。
证明: AF CE AE CF

BE ∥ DF
1 2
13.如图,已知∠A=∠D,AB=DE,AF=CD,BC=EF.
求证:BC∥EF
F E D
A B C
14.已知:如图21,AD平分∠BAC, DE⊥AB于E,DF⊥AC于F,DB=DC, 求证:EB=FC
F A B E D
C
34
11. 求证:三角形一边上的中线小于其他两边之和的一半。 1 AD ( AB AC ) 已知:如图,AD是△ABC 的中线,求证: 2 证明: 延长AD到E,使DE=AD,连结BE A ∵ AD是△ABC 的中线 ∴ BD=CD 又 ∵ DE=AD ADC EDB ∴ △ADC ≌ △EDB ∴ AC = EB 在△ABE中,AE < AB+BE=AB+AC 即 2AD < AB+AC 1 ∴ AD ( AB AC ) 2
全等三角形的判定方法
三角形全等判定方法1
三边对应相等的两个三角形全等(可以简写
为“边边边”或“SSS”)。
用符号语言表达为: 在△ABC和△ DEF中 AB=DE BC=EF CA=FD
B
A
C
D
∴ △ABC ≌△ DEF(SSS) E
F
三角形全等判定方法2
两边和它们的夹角对应相等的两个三角形全
等。(可以简写成“边角边”或“SAS”)
知识点
3.三角形全等的证题思路:
找夹角 SAS ① 已知两边找另一边 SSS 找直角 HL
边为角的对边 找任一角 AAS 找夹角的另一边 SAS ② 已知一边一角 边为角的邻边 找边的对角 AAS
找夹边 ASA ③已知两角 找任一边 AAS
∠ADC,求证:AE平分∠DAB D C
F E
∴BC⊥DC 又∵EF⊥AD
∴EF=CE
又∵E是BC的中点
A B 证明:作EF⊥AD,垂足为F ∵DE平分∠ADC AB//CD,∴∠C=∠B 又∵∠B=90º ∴∠C=90º
∴EB=EC
∴EF=EB ∵∠B=90º ∴EB⊥AB ∴AE平分∠DAB
10. 如图,AB=DE,AF=CD, EF=BC,∠A=∠D, 试说明:BF∥CE
E
C
F
B D
例8. 如图,在△ABC中,两条角平分线BD和 CE相交于点O,若∠BOC=1200,那么∠A的度数 是 600 . A E D C
O
B
例9、如图:在△ABC中,∠C =900, AD平分∠ BAC,DE⊥AB交AB于E, BC=30,BD:CD=3:2,则 DE= 12 。 c
D
A
用符号语言表达为:
A D
在△ABC与△DEF中 AC=DF
∠C=∠F BC=EF
B
C F E
∴△ABC≌△DEF(SAS)
三角形全等判定方法3
有两角和它们夹边对应相等的两个三角形全 等(可以简写成“角边角”或“ASA”)。 用符号语言表达为:
在△ABC和△DEF中 ∠A=∠D AB=DE ∠B=∠E
∠ODB=∠OEC(垂直的定义) ∴△OBD≌△OCE(ASA) ∴OB=OC
4. 如图,CA=CB,AD=BD,M、N分别是CA、CB的 中点,证明DM=DN,
C M
N
A
B
D
28
5.已知,△ABC和△ECD都是等边三角形,且点 B,C,D在一条直线上求证:BE=AD
证明:
E
∵ △ABC和△ECD都是等边三角形
找夹角的另一角 ASA
二.角的平分线: 角的平分线上的点到角的两边的距离相等. ∵ QD⊥OA,QE⊥OB,点Q在∠AOB的平 分线上 (已知) ∴ QD=QE(角的平分线上的点到角的两
边的距离相等)
1.角平分线的性质:
2.角平分线的判定:
到角的两边的距离相等的点在角的平 分线上。 ∵ QD⊥OA,QE⊥OB,QD=QE(已知). ∴点Q在∠AOB的平分线上.(到角的两边的距
AB = DB
∠ABE = ∠ DBC BE=BC ∴△ABE≌△DBC(SAS) 证明:∵△ABD,△BCE是等边三角形。 ∴∠DBA=△EBC=60° ∵ A、B、C共线∴∠DBE=60° ∴∠ABE=∠DBC 在△ABE与△DBC中 ∴∠2=∠1 在△BEF与△BCG中 ∠EBF = ∠ CBG BE = BC
的 两边距离相等) . 又∵点 F在∠CBD 的平分线上,
交于点F,求证:点F在∠DAE的平分线上.
G M
H
FH⊥AD, FM⊥BC ∴FM=FH (角平分线上的点到这个角的两边距离相等). ∴FG=FH(等量代换) ∴点F在∠DAE的平分线上
二、全等三角形识别思路复习
如图,已知△ABC和△DCB中,AB=DC,请补充一个 条件-----------------------,使△ABC≌ △DCB。 A D
8 . 已 知 : ΔABC 和 ΔBDE 是 等 边 三 角 形 , 点D在AE的延长线上。 求证:BD + DC = AD
A E B
分析:∵AD = AE + ED ∴只需证:BD + DC = AE + ED ∵BD = ED ∴只需证DC = AE即可。
C
D
32
9.如图AB//CD,∠B=90º ,E是BC的中点,DE平分
离相等的点在角的平分线上)
2.如图, △ABC的角平分线BM,CN相交于点P, 求证:点P到三边AB、BC、CA的距离相等 证明:过点P作PD⊥AB于D, PE⊥BC于E,PF⊥AC于F ∵BM是△ABC的角平分线,点P在 BM上, PD⊥AB于D,PE⊥BC于E
B A ND P M F C
E ∴PD=PE(角平分线上的点到这个角的两边距
B C F E A D
∴ △ABC≌△DEF(ASA)
三角形全等判定方法4
有两角和其中一个角的对边对应相等的两个三
角形全等(可以简写成“角角边”或“AAS”)。
在△ABC和△DEF中 ∠A=∠D ∠B=∠E BC=EF
∴ △ABC≌△DEF(AAS)
三角形全等判定方法5
有一条斜边和一条直角边对应相等的两个直角 三角形全等(HL)。
在Rt△ABC和Rt△DEF中 AB=DE (已知 ) A D
AC=DF(已知 )
C ∴ △ABC≌△DEF(HL) B F E
知识点
1.全等三角形的性质:
对应边、对应角、对应线段相等,周长、面积也相等。 2.全等三角形的判定: ①一般三角形全等的判定: SAS、ASA、AAS、SSS ②直角三角形全等的判定: SAS、ASA、AAS、SSS、HL
∴ AC=BC DC=EC ∠BCA=∠DCE=60° ∴ ∠BCA+∠ACE=∠DCE+ ∠ACE
A
即∠BCE=∠DCA
在△ACD和△BCE中 AC=BC ∠BCE=∠DCA DC=EC ∴ △ACD≌△BCE (SAS) ∴ BE=AD
B
C
D
6. 如图A、B、C在一直线上,△ABD,△BCE都是等边 三角形,AE交BD于F,DC交BE于G,求证:BF=BG。
E
B
10.如图,∠ACB=90°,AC=BC, BE⊥CE,AD⊥CE于D, AD=2.5cm,DE=1.7cm。求:BE的长。
B E
D
C
A
1.已知BD=CD,∠ABD=∠ACD,DE、DF分别垂直 于AB及AC交延长线于E、F,求证:DE=DF
证明:∵∠ABD=∠ACD(已知) ∴∠EBD=∠FCD( 等角的补角相等) 又∵DE⊥AE,DF⊥AF(已知) ∴∠E=∠F=900(垂直的定义 ) 在△DEB和△DFC中 ∵ E F (已证)
又 BE DF
AEB ≌ CFD A C AB ∥CD
3. 如图CD⊥AB,BE⊥AC,垂足分别为D、E, BE与CD相交于点O,且∠1=∠2,求证OB=OC。
证明:∵∠1=∠2 CD⊥AB,BE⊥AC
∴OD=OE(角平分线的性质定理)
在△OBD与△OCE中 ∠BOD = ∠ COE( 对 顶 角 相 等 ) OD = OE( 已 证 )
相关文档
最新文档