高考直线方程题型归纳

合集下载

高考微分几何题型全归纳12个专题

高考微分几何题型全归纳12个专题

高考微分几何题型全归纳12个专题
本文对高考微分几何中的题型进行全面归纳,总结出以下12个专题,供同学们参考和复:
1. 直线的方程与性质
- 直线的一般方程和截距式方程
- 直线的性质:斜率、与坐标轴的交点等
2. 曲线的方程
- 圆的标准方程、一般方程和参数方程
- 抛物线、椭圆、双曲线的方程
3. 切线与法线
- 曲线的切线方程和法线方程
- 极坐标方程和参数方程下的切线方程和法线方程
4. 曲率与曲率半径
- 曲线上一点的曲率和曲率半径的概念
- 曲率的计算方法和应用
5. 曲线的长度和弧长
- 弧长的求解方法和应用
- 曲线的长度和弧长的关系
6. 曲线与极坐标
- 极坐标系下曲线的方程和性质
- 极坐标系下的切线和法线
7. 曲线与参数方程
- 参数方程下曲线的方程和性质
- 参数方程下的切线和法线
8. 平面与空间曲线的位置关系
- 直线与曲线的位置关系
- 平面曲线与平面曲线的位置关系
9. 旋转曲面与平面曲线的位置关系- 旋转曲面的方程和性质
- 平面曲线与旋转曲面的位置关系
10. 曲线与曲面的位置关系
- 曲线与曲面的切点和切线
- 曲线与曲面的夹角和法线
11. 曲面的方程与性质
- 平面、圆柱、圆锥、球面的方程和性质
- 曲面的几何特征和分类
12. 曲线曲面的投影
- 曲线曲面在投影平面上的投影与性质
- 投影的应用和几何意义
以上是高考微分几何题型的12个专题归纳,希望能帮助同学们更好地复习和理解微分几何的知识点。

祝愿大家在高考中取得好成绩!。

高考数学复习考点题型归类解析38直线与方程(解析版)

高考数学复习考点题型归类解析38直线与方程(解析版)

高考数学复习考点题型归类解析专题38直线与方程一、关键能力1.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.2.掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.二、教学建议通过直线方程的学习,经历用代数方法刻画直线斜率的过程,理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式;根据确定直线位置的几何要素,探索并掌握直线方程的几种形式(点斜式、两点式及一般式),体会斜截式与一次函数的关系.初步建立代数表征几何元素的解析:意识与能力,提高问题解决的能力,逐渐养成用数学的眼光来观察世界,用数学的头脑来分析世界,用数学的语言来表达世界.通过两条直线位置关系的学习,能根据斜率判定两条直线平行或垂直,在探索距离的公式表达过程中,能从多角度认识、理解两点间的距离公式、点到直线的距离公式,会借助点到直线的距离公式来求两条平行直线间的距离,提高逻辑推理和数学运算能力.三、自主梳理1.直线的倾斜角(1)定义:当直线l与x轴相交时,取x轴作为基准,x轴正向与直线l向上方向之间所成的角叫做直线l的倾斜角.(2)规定:当直线l与x轴平行或重合时,规定它的倾斜角为0.(3)范围:直线l倾斜角的取值范围是[0,π).2.斜率公式(1)定义式:直线l 的倾斜角为α⎝ ⎛⎭⎪⎫α≠π2,则斜率k =tan α.(2)坐标式:P 1(x 1,y 1),P 2(x 2,y 2)在直线l 上,且x 1≠x 2,则l 的斜率 k =y 2-y 1x 2-x 1.3.直线方程的五种形式4(1)两条直线平行①对于两条不重合的直线l 1,l 2,若其斜率分别为k 1,k 2,则有l 1∥l 2⇔k 1=k 2. ②当直线l 1,l 2不重合且斜率都不存在时,l 1∥l 2. (2)两条直线垂直①如果两条直线l 1,l 2的斜率存在,设为k 1,k 2,则有l 1⊥l 2⇔k 1·k 2=-1. ②当其中一条直线的斜率不存在,而另一条直线的斜率为0时,l 1⊥l 2. 5.三种距离公式 (1)两点间的距离公式平面上任意两点P 1(x 1,y 1),P 2(x 2,y 2)间的距离公式为|P 1P 2|=(x 2-x 1)2+(y 2-y 1)2.(2)点到直线的距离公式点P0(x0,y0)到直线l:Ax+By+C=0的距离d=|Ax0+By0+C|A2+B2.(3)两平行直线间的距离公式两条平行直线Ax+By+C1=0与Ax+By+C2=0间的距离d=|C1-C2| A2+B2.四、高频考点+重点题型考点一、斜率与倾斜角之间的关系例1-1.直线sinθ•x﹣y+1=0的倾斜角的取值范围是()A.[0,π)B.[0,π4]∪[3π4,π)C.[0,π4]D.[0,π4]∪(π2,π)【解答】解:直线sinθ•x﹣y+1=0的斜率k=sinθ∈[﹣1,1],设直线的倾斜角为α,则﹣1≤tanα<0或0≤tanα≤1,∴3π4≤α<π或0≤α≤π4.∴直线sinθ•x﹣y+1=0的倾斜角的取值范围是[0,π4]∪[3π4,π).故选:B.例1-2.若0<α<π2,则经过两点P1(0,cosα),P2(sinα,0)的直线的倾斜角为()A.αB.π2+αC.π﹣αD.﹣α【解答】解:经过两点P1(0,cosα),P2(sinα,0)的直线的斜率为:−cosαsinα=−cotα.0<α<π2,∴直线的倾斜角为β.tan β=﹣cot α=tan (π2+α). ∴β=π2+α. 故选:B .例1-3.已知直线l 过点P (﹣1,2),且与以A (﹣2,﹣3)、B (3,0)为端点的线段相交,求直线l 的斜率的取值范围是.【解答】解:∵点P (﹣1,2)、A (﹣2,﹣3),∴直线AP 的斜率k 1=−3−2−2+1=5.同理可得直线BP 的斜率k 2=−12. 设直线l 与线段AB 交于M 点,当直线的倾斜角为锐角时,随着M 从A 向B 移动的过程中,l 的倾斜角变大, l 的斜率也变大,直到PM 平行y 轴时l 的斜率不存在,此时l 的斜率k ≥5; 当直线的倾斜角为钝角时,随着l 的倾斜角变大,l 的斜率从负无穷增大到 直线BP 的斜率,此时l 的斜率k ≤−12.综上所述,可得直线l 的斜率取值范围为:(﹣∞,−12]∪[5,+∞). 故答案为:(﹣∞,−12]∪[5,+∞)例1-4.已知点(-1,2)和⎝ ⎛⎭⎪⎫33,0在直线l :ax -y +1=0(a ≠0)的同侧,则直线l 倾斜角的取值范围是________.解析:点(-1,2)和⎝ ⎛⎭⎪⎫33,0在直线l :ax -y +1=0同侧的充要条件是(-a -2+1)⎝ ⎛⎭⎪⎫33a +1>0,解得-3<a <-1,即直线l 的斜率的范围是(-3,-1),故其倾斜角的取值范围是⎝ ⎛⎭⎪⎫2π3,3π4.答案:⎝ ⎛⎭⎪⎫2π3,3π4考点二、直线方程例2-1. 根据所给条件求直线的方程: (1)直线过点(-4,0),倾斜角的正弦值为1010;(2)直线过点(-3,4),且在两坐标轴上的截距之和为12; (3)直线过点(5,10),且到原点的距离为5.解 (1)由题设知,该直线的斜率存在,故可采用点斜式. 设倾斜角为α,则sin α=1010(0≤α<π), 从而cos α=±31010,则k =tan α=±13. 故所求直线方程为y =±13(x +4). 即x +3y +4=0或x -3y +4=0.(2)由题设知纵横截距不为0,设直线方程为x a +y12-a =1,又直线过点(-3,4),从而-3a +412-a =1,解得a =-4或a =9.故所求直线方程为4x -y +16=0或x +3y -9=0. (3)当斜率不存在时,所求直线方程为x -5=0满足题意; 当斜率存在时,设其为k ,则所求直线方程为y -10=k (x -5), 即kx -y +10-5k =0.由点线距离公式,得|10-5k |k 2+1=5,解得k =34.故所求直线方程为3x -4y +25=0.综上知,所求直线方程为x -5=0或3x -4y +25=0.例2-2.已知A (3,0),B (0,4),直线AB 上一动点P (x ,y ),则xy 的最大值是 3 . 【解答】解:∵A (3,0),B (0,4),∴直线AB 的方程是:x3+y4=1,即4x +3y ﹣12=0, 设 P (x ,y ),则x =3−34y , ∴xy =3y −34y 2=−34(y ﹣2)2+3≤3. 当且仅当y =2,x =32时,取等号, ∴xy 的最大值是3. 故答案为:3.例2-3.已知△ABC 中,∠ABC =90°,BC =3,AC =4,P 是AB 上的点,求点P 到AC 、BC 的距离乘积的最大值.【解答】解:∵∠ABC =90°,BC =3,AC =4,P 是AB 上的点,依题意,作图如下: BC 在x 轴上,B 点与原点O 重合,点A (0,b )在y 轴正半轴上,依题意知,b =√42−32=√7, 设点P (0,m )(0<m <√7), ∵直线AC 的方程为x3+√7=1,即√7x +3y ﹣3√7=0,∴点P (0,m )到直线√7x +3y ﹣3√7=0的距离(即点P (0,m )到AC 的距离)d =√7|√(√7)2+32=34|m −√7|=34(√7−m ), 又点P (0,m )到BC 的距离为m ,∴点P 到AC 、BC 的距离乘积f (m )=m •34(√7−m )≤34•(m+(√7−m)2)2=34•74=2116(当且仅当m =√72时取“=”). ∴点P 到AC 、BC 的距离乘积的最大值为2116.考点三、截距的使用例3.已知直线l 过点M (2,1),且分别与x 轴的正半轴、y 轴的正半轴交于A ,B 两点,O 为坐标原点,当△AOB 面积最小时,直线l 的方程为__________________.[解析](1)设直线l 的方程为y -1=k (x -2)(k <0),则A ⎝ ⎛⎭⎪⎫2-1k ,0,B (0,1-2k ),S △AOB =12(1-2k )·⎝ ⎛⎭⎪⎫2-1k =12⎣⎢⎡⎦⎥⎤4+(-4k )+⎝ ⎛⎭⎪⎫-1k ≥12(4+4)=4,当且仅当-4k =-1k ,即k =-12时,等号成立.故直线l 的方程为y -1=-12(x -2),即x +2y -4=0.对点训练1.已知直线l 1:ax -2y =2a -4,l 2:2x +a 2y =2a 2+4,若0<a <2时,直线l 1,l 2与两坐标轴围成一个四边形,当四边形的面积最小时,实数a =________.解析:直线l 1可写成a (x -2)=2(y -2),直线l 2可写成2(x -2)=a 2(2-y ),所以直线l 1,l 2恒过定点P (2,2),直线l 1的纵截距为2-a ,直线l 2的横截距为a 2+2,所以四边形的面积S =12×2×(2-a )+12×2×(a 2+2)=a 2-a +4=⎝ ⎛⎭⎪⎫a -122+154,故当a =12时,四边形的面积最小.[答案] (1)x +2y -4=0 (2)12考点四、两直线位置关系判断例4-1.k =5是直线l 1:(k ﹣3)x +(4﹣k )y +1=0与l 2:2(k ﹣3)x ﹣2y +3=0平行的( ) A .充分不必要条件B .必要不充分条件 C .充要条件D .既不充分也不必要条件 【解答】①当k =5时,直线l 1:2x ﹣y +1=0与l 2:4x ﹣2y +3=0平行;②若直线l1:(k﹣3)x+(4﹣k)y+1=0与l2:2(k﹣3)x﹣2y+3=0平行,则(k﹣3)(﹣2)﹣(4﹣k)2(k﹣3)=0,解得,k=3或k=5.故k=5是直线l1:(k﹣3)x+(4﹣k)y+1=0与l2:2(k﹣3)x﹣2y+3=0平行的充分不必要条件.故选:A.例4-2.已知直线l1:mx+y+4=0和直线l2:(m+2)x-ny+1=0(m>0,n>0)互相垂直,则mn的取值范围为________.解析:因为l1⊥l2,所以m(m+2)+1×(-n)=0,得n=m2+2m,因为m>0,所以mn=mm2+2m=1m+2,则0<1m+2<12,故mn的取值范围为⎝⎛⎭⎪⎫0,12.故答案为:﹣4例4-3.已知△ABC的两条高所在直线的方程分别为x+y=0,2x﹣3y+1=0,且点A的坐标为(1,2),(1)求△ABC的垂心坐标;(注:三角形三条高所在直线交于一点,交点叫做垂心)(2)求BC边上的高所在直线的方程.【解答】解:(1)∵三角形三条高所在直线交于一点,交点叫做垂心,已知△ABC的两条高所在直线的方程分别为x+y=0,2x﹣3y+1=0,解方程组:{x+y=02x−3y+1=0得:{x=−15y=15,∴△ABC 的垂心坐标(−15,15);(2)∵点A 的坐标为(1,2), 根据直线方程的两点式得:y−215−2=x−1−15−1即:3x ﹣2y +1=0.∴BC 边上的高所在直线的方程3x ﹣2y +1=0.声明:试题解析著作权属所有,未经书面同意,不得复制发布例4-4.已知直线y =kx +2k +1与直线y =-12x +2的交点位于第一象限,则实数k 的取值范围是________. 答案⎝ ⎛⎭⎪⎫-16,12解析 由方程组⎩⎪⎨⎪⎧y =kx +2k +1,y =-12x +2,解得⎩⎪⎨⎪⎧x =2-4k2k +1,y =6k +12k +1.(若2k +1=0,即k =-12,则两直线平行) ∴交点坐标为⎝⎛⎭⎪⎫2-4k 2k +1,6k +12k +1. 又∵交点位于第一象限,∴⎩⎪⎨⎪⎧2-4k 2k +1>0,6k +12k +1>0,解得-16<k <12.例4-5.已知三条直线2x -3y +1=0,4x +3y +5=0,mx -y -1=0不能构成三角形,则实数m 的取值集合为( )A .⎩⎨⎧⎭⎬⎫-43,23B .⎩⎨⎧⎭⎬⎫43,-23C .⎩⎨⎧⎭⎬⎫-43,23,43D .⎩⎨⎧⎭⎬⎫-43,-23,23解析:三线共点时也不能围成一个三角形. 由⎩⎨⎧2x -3y +1=0,4x +3y +5=0, 解得 ⎩⎪⎨⎪⎧x =-1,y =-13交点P 为⎝ ⎛⎭⎪⎫-1,-13 代入mx -y -1=0,则m =-23. 故选D .考点五、距离问题例5-1.已知点A (﹣1,2),B (1,4),若直线l 过原点,且A ,B 两点到直线l 的距离相等,则直线l 的方程为( )A .y =x 或x =0B .y =x 或y =0C .y =x 或y =﹣4xD .y =x 或y =12x 【解答】解:①当直线l 与直线AB 平行时,直线AB 的斜率为4−21−(−1)=1, 此时直线l 的方程为y =x ;②当直线l 过线段AB 的中点时,AB 中点的坐标为(0,3), 此时直线l 的方程为x =0. 故选:A .例5-2.直线l 过点P (1,4)分别交x 轴的正方向和y 轴正方向于A 、B 两点.①当|OA|+|OB|最小时,求l的方程.②当|PA|•|PB|最小时,求l的方程.【解答】解:①∵直线l过点P(1,4)分别交x轴的正方向和y轴正方向于A、B两点,∴直线l的斜率k<0,设直线l的方程为y﹣4=k(x﹣1),则A(−4k+1,0),B(0,﹣k+4),∴|OA|+|OB|=−4k+1+(−k+4)=(−4k −k)+5≥2√(−4k)⋅(−k)+5=9,当且仅当k=﹣2时取等号,∴l的方程为y﹣4=﹣2(x﹣1),即2x+y﹣6=0.②由①知|PA|•|PB|=√(−4k+1−1)2+42•√12+(−k+4−4)2=√16(k2+1)2k2=−4k(k2+1)=4(−1k−k)≥4⋅2√(−1k)⋅(−k)=8,当且仅当k=﹣1时取等号,∴l的方程为y﹣4=﹣(x﹣1),即x+y﹣5=0.例5-3.曲线y=2x-x3在横坐标为-1的点处的切线为l,则点P(3,2)到直线l的距离为________.解析(1)曲线y=2x-x3上横坐标为-1的点的纵坐标为-1,故切点坐标为(-1,-1).切线斜率为k=y′|x=-1=2-3×(-1)2=-1,故切线l的方程为y-(-1)=-1×[x-(-1)],整理得x+y+2=0.由点到直线的距离公式,得点P(3,2)到直线l的距离为|3+2+2|12+12=722.例5-4.已知A (4,-3),B (2,-1)和直线l :4x +3y -2=0,若在坐标平面内存在一点P ,使|PA |=|PB |,且点P 到直线l 的距离为2,则P 点坐标为______________________. 解析:设点P 的坐标为(a ,b ).∵A (4,-3),B (2,-1),∴线段AB 的中点M 的坐标为(3,-2).而AB 所在直线的斜率k AB =-3+14-2=-1,∴线段AB 的垂直平分线方程为y +2=x -3,即x -y -5=0.∵点P (a ,b )在直线x -y -5=0上,∴a -b -5=0.①又点P (a ,b )到直线l :4x +3y -2=0的距离为2,∴|4a +3b -2|42+32=2,即4a +3b -2=±10,②由①②联立解得⎩⎨⎧a =1,b =-4或⎩⎪⎨⎪⎧a =277,b =-87.∴所求点P 的坐标为(1,-4)或⎝ ⎛⎭⎪⎫277,-87.答案:(1,-4)或⎝ ⎛⎭⎪⎫277,-87考点六、对称问题例6-1.已知直线y =2x 是△ABC 中∠C 的平分线所在的直线,若点A ,B 的坐标分别是(-4,2),(3,1),则点C 的坐标为( ) A .(-2,4)B.(-2,-4) C .(2,4)D .(2,-4)解析:选C设A (-4,2)关于直线y =2x 的对称点为(x ,y ),则⎩⎪⎨⎪⎧y -2x +4×2=-1,y +22=2×-4+x2,解得⎩⎨⎧x =4,y =-2,∴BC 所在直线方程为y -1=-2-14-3(x -3),即3x +y -10=0.联立⎩⎨⎧3x +y -10=0,y =2x ,解得⎩⎨⎧x =2,y =4,则C (2,4).例6-2.直线x +3y ﹣1=0关于直线x ﹣y +1=0对称的直线方程是.【解答】解:联立{x +3y −1=0x −y +1=0,解得{x =−12y =12.其交点为M (−12,12). 在直线x +3y ﹣1=0上取一点P (1,0),设点P 关于直线x ﹣y +1=0的对称点为Q (m ,n ),则{m+12−n2+1=0n m−1×1=−1解得{m =−1n =2,即Q (﹣1,2).∴直线MQ 的方程为y −2=12−2−12−(−1)(x +1),化为3x +y +1=0,即为所求.故答案为3x +y +1=0.例6-3.若直线l 1:y =k (x ﹣4)与直线l 2关于点(2,1)对称,则直线l 2恒过定点. 【解答】解:∵直线l 1:y =k (x ﹣4)经过定点M (4,0),而点M 关于点(2,1)对称点为N (0,2),又直线l 1:y =k (x ﹣4)与直线l 2关于点(2,1)对称,则直线l 2恒过定点N (0,2), 故答案为(0,2).例6-4.过点P (0,1)作直线l ,使它被直线l 1:2x +y -8=0和l 2:x -3y +10=0截得的线段被点P 平分,则直线l 的方程为________________.答案 x +4y -4=0解析 设l 1与l 的交点为A (a ,8-2a ),则由题意知,点A 关于点P 的对称点B (-a ,2a -6)在l 2上,代入l 2的方程得-a -3(2a -6)+10=0,解得a =4,即点A (4,0)在直线l 上,所以直线l 的方程为x +4y -4=0. 故答案是:8x ﹣y ﹣24=0.例6-5.如图,已知A (4,0)、B (0,4),从点P (2,0)射出的光线经直线AB 反向后再射到直线OB 上,最后经直线OB 反射后又回到P 点,则光线所经过的路程是( )A .2√10B .6C .3√3D .2√5【解答】解:点P 关于y 轴的对称点P ′坐标是(﹣2,0),设点P 关于直线AB :x +y ﹣4=0的对称点P ″(a ,b )∴{b−0a−2×(−1)=−1a+22+b+02−4=0,解得{a =4b =2, ∴光线所经过的路程|P ′P ″|=2√10, 故选:A .例6-6.已知两点A (2,3),B (4,1),直线l :x +2y -2=0,在直线l 上求一点P , (1)使|P A |+|PB |最小; (2)使|P A |-|PB |最大.解 (1)如图,可判断A ,B 在直线l 的同侧,设点A 关于l 的对称点A ′的坐标为(x 1,y 1).则有⎩⎪⎨⎪⎧x 1+22+2·y 1+32-2=0,y 1-3x 1-2·⎝ ⎛⎭⎪⎫-12=-1,解得⎩⎪⎨⎪⎧x 1=-25,y 1=-95.由两点式求得直线A ′B 的方程为y =711(x -4)+1,由平面几何知识可知,当点P 为直线A ′B 与直线l 的交点时,|P A |+|PB |最小,此时|P A |+|PB |=|P A ′|+|PB |=|A ′B |,若P 不在此点时,|P A |+|PB |=|P A ′|+|PB |>|A ′B |,即直线A ′B 与l 的交点为P ⎝ ⎛⎭⎪⎫5625,-325.(2)由两点式求得直线AB 的方程为y -1=-(x -4),即x +y -5=0.由平面几何知识可知,当点P 为直线AB 与l 的交点时,|P A |-|PB |最大,此时|P A |-|PB |=|AB |. 直线AB 与l 的交点为所求点P (8,-3).巩固训练一、单项选择题1.直线2x +y +m =0和x +2y +n =0的位置关系是( )A .平行B .垂直C .相交但不垂直D .不能确定 答案:C解析:直线2x +y +m =0的斜率k 1=-2,直线x +2y +n =0的斜率k 2=-12,则k 1≠k 2,且k 1k 2≠-1,故选C .2.直线l :x sin 30°+y cos 150°+1=0的斜率是( )A .33B .3C .-3D .-33 答案:A解析:设直线l 的斜率为k ,则k =-sin 30°cos 150°=33,故选A .3.数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半.这条直线被后人称为三角形的欧拉线.已知 △ABC 的顶点A (1,0),B (0,2),且AC =BC ,则△ABC 的欧拉线的方程为( )A .4x +2y +3=0B .2x -4y +3=0C .x -2y +3=0D .2x -y +3=0 答案:B解析:因为AC =BC ,所以欧拉线为AB 的中垂线, 又A (1,0),B (0,2),故AB 的中点为⎝ ⎛⎭⎪⎫12,1,k AB =-2,故AB 的中垂线方程为y -1=12⎝ ⎛⎭⎪⎫x -12,即2x -4y +3=0. 故选B .4.已知直线l 过点(1,0),且倾斜角为直线l 0:x -2y -2=0的倾斜角的2倍,则直线l 的方程为( )A .4x -3y -3=0B .3x -4y -3=0C .3x -4y -4=0D .4x -3y -4=0 答案:D解析:由题意可设直线l 0,l 的倾斜角分别为α,2α,因为直线l 0:x -2y -2=0的斜率为12,则tan α=12,所以直线l 的斜率k =tan 2α=2tan α1-tan 2α=2×121-⎝ ⎛⎭⎪⎫122=43,所以由点斜式可得直线l 的方程为y -0=43(x -1),即4x -3y -4=0.5.已知两点A (-1,2),B (m ,3),且m ∈⎣⎢⎡⎦⎥⎤-33-1,3-1,则直线AB 的倾斜角α的取值范围是( )A.⎣⎢⎡⎭⎪⎫π6,π2B.⎝ ⎛⎦⎥⎤π2,2π3C.⎣⎢⎡⎦⎥⎤π6,2π3D.⎣⎢⎡⎭⎪⎫π6,π2∪⎝ ⎛⎦⎥⎤π2,2π3 答案:C解析:①当m =-1时,α=π2;②当m ≠-1时,∵k =1m +1∈(-∞,- 3 ]∪⎣⎢⎡⎭⎪⎫33,+∞,∴α∈⎣⎢⎡⎭⎪⎫π6,π2∪⎝ ⎛⎦⎥⎤π2,2π3.综合①②知直线AB 的倾斜角α的取值范围是⎣⎢⎡⎦⎥⎤π6,2π3,故选C .6.已知点M 是直线l :2x -y -4=0与x 轴的交点,将直线l 绕点M 按逆时针方向旋转45°,得到的直线方程是( )A .x +y -3=0B .x -3y -2=0C .3x -y +6=0D .3x +y -6=0 答案:D解析:设直线l 的倾斜角为α,则tan α=k =2,直线l 绕点M 按逆时针方向旋转45°,所得直线的斜率k ′=tan ⎝ ⎛⎭⎪⎫α+π4=2+11-2×1=-3,又点M (2,0),所以y =-3(x -2),即3x +y-6=0. 二、多项选择题7.已知直线l 1:x -y -1=0,动直线l 2:(k +1)x +ky +k =0(k ∈R ),则下列结论正确的是( )A .存在k ,使得l 2的倾斜角为90°B .对任意的k ,l 1与l 2都有公共点C .对任意的k ,l 1与l 2都不重合D .对任意的k ,l 1与l 2都不垂直 答案:ABD解析:对于A ,当k =0时,直线l 2为x =0,倾斜角为90°,正确;对于B ,直线l 1与l 2均过点(0,-1),所以对任意的k ,l 1与l 2都有公共点,正确; 对于C ,当k =-12时,直线l 2为12x -12y -12=0,与l 1重合,错误;对于D ,直线l 1的斜率为1,l 2的斜率-k +1k ≠-1,所以l 1与l 2不可能垂直,正确. 故选ABD .8.定义点P (x 0,y 0)到直线l :ax +by +c =0(a 2+b 2≠0)的有向距离为d =ax 0+by 0+ca 2+b2.已知点P 1,P 2到直线l 的有向距离分别是d 1,d 2.以下命题不正确的是( ) A .若d 1=d 2=1,则直线P 1P 2与直线l 平行 B .若d 1=1,d 2=-1,则直线P 1P 2与直线l 垂直 C .若d 1+d 2=0,则直线P 1P 2与直线l 垂直 D .若d 1·d 2≤0,则直线P 1P 2与直线l 相交 答案:BCD解析:设P 1(x 1,y 1),P 2(x 2,y 2),对于A ,若d 1=d 2=1,则ax 1+by 1+c =ax 2+by 2+c =a 2+b 2,直线P 1P 2与直线l 平行,正确;对于B ,点P 1,P 2在直线l 的两侧且到直线l 的距离相等,P 1P 2不一定与l 垂直,错误;对于C ,若d 1=d 2=0,即ax 1+by 1+c =ax 2+by 2+c =0,则点P 1,P 2都在直线l 上,所以此时直线P 1P 2与直线l 重合,错误;对于D ,若d 1·d 2≤0,即(ax 1+by 1+c )(ax 2+by 2+c )≤0,所以点P 1,P 2分别位于直线l 的两侧或在直线l 上,所以直线P 1P 2与直线l 相交或重合,错误. 故选BCD . 三、填空题9.已知A (3,5),B (4,7),C (-1,x )三点共线,则x =________. 答案:-3解析:∵A ,B ,C 三点共线,∴k AB =k AC .∴7-54-3=x -5-1-3,∴x =-3.10.设直线l 的方程为(a +1)x +y +2-a =0(a ∈R ),若l 不经过第二象限,则实数a 的取值范围为___________. 答案:a ≤-1解析:将l 的方程化为y =-(a +1)x +a -2,∴⎩⎨⎧ -(a +1)>0,a -2≤0或⎩⎨⎧-(a +1)=0,a -2≤0,∴a ≤-1.综上可知a 的取值范围是a ≤-1.11.如图,已知A (4,0),B (0,4),从点P (2,0)射出的光线经直线AB 反射后再射到直线OB 上,最后经直线OB 反射后又回到P 点,则光线所经过的路程是_________. 答案: 210解析:由题意知点P 关于直线AB 的对称点为D (4,2),关于y 轴的对称点为C (-2,0),则光线所经过的路程PMN 的长为CD =210.12.已知A (3,0),B (0,4),直线AB 上一动点P (x ,y ),则xy 的最大值是________. 答案:3解析:直线AB 的方程为x 3+y 4=1,设P (x ,y ),则x =3-34y ,∴xy =3y -34y 2=34(-y 2+4y )=34[-(y -2)2+4]≤3.即当P 点坐标为⎝ ⎛⎭⎪⎫32,2时,xy 取最大值3. 四、解答题13.已知△ABC 的顶点A (5,1),AB 边上的中线CM 所在直线方程为2x -y -5=0,AC边上的高BH 所在直线方程为x -2y -5=0,求直线BC 的方程.解析:依题意知:k AC =-2,A (5,1),∴l AC 为2x +y -11=0,联立l AC 、l CM 得⎩⎨⎧ 2x +y -11=0,2x -y -5=0,∴C (4,3). 设B (x 0,y 0),AB 的中点M 为(x 0+52,y 0+12),代入2x -y -5=0,得2x 0-y 0-1=0,∴⎩⎨⎧2x 0-y 0-1=0,x 0-2y 0-5=0,∴B (-1,-3),∴k BC =65,∴直线BC 的方程为y -3=65(x -4), 即6x -5y -9=0.14.如图,射线OA 、OB 分别与x 轴正半轴成45°和30°角,过点P (1,0)作直线AB 分别交OA 、OB 于A 、B 两点,当AB的中点C 恰好落在直线y =12x 上时,求直线AB 的方程.答案:(3+3)x -2y -3-3=0解析:由题意可得k OA =tan 45°=1,k OB =tan(180°-30°)=-33,所以直线l OA :y =x ,l OB :y =-33x .设A (m ,m ),B (-3n ,n ),所以AB 的中点C ⎝ ⎛⎭⎪⎫m -3n 2,m +n 2, 由点C 在y =12x 上,且A ,P ,B 三点共线得⎩⎪⎨⎪⎧ m +n 2=12·m -3n 2,m -0m -1=n -0-3n -1,解得m =3,所以A (3,3).又P (1,0),所以k AB =k AP =33-1=3+32,所以l AB :y =3+32(x -1), 即直线AB 的方程为(3+3)x -2y -3-3=0.。

【高考数学】直线方程秒杀

【高考数学】直线方程秒杀

解析:设点 P ( x, y ) 是直线 l 上不同于点 P0 的任意一点,根据经过两点的直线的斜率公式,得 k
y y0 x x0

可化为 y y0 k ( x x0 ) ,即为过点 P0 、斜率为 k 的直线 l 的方程。
方程 y y0 k ( x x0 ) 是由直线上一点及其斜率确定的,把
2, k AC
11 5 5 3
2,故k AB
k AC
,则
A、B、C
三点共线。
例 5、(最值问题)已知实数 x, y ,满足 2 x y 8 ,当 2 x 8 时,求 y 的最大值和最小值 x
解: x 2时,y 4, y 2; x 8时,y 8, y 1 ,如图, 1 k 2 。
率为 2 ③经过点 ( 4, 2 ) ,且与 x 轴平行④经过点 ( 2 , 3 ) ,且与 x 轴垂直 解:① y 3 x 2 ,即 x y 5 0 ;② y 2 2x 1 ,即 2x y 0 ;③ y 2 ;④ x 2
(2)斜截式:
问题:已知直线l的斜率是 k,与 y 轴的交点是 P (0, b ) ,代入直线方程的点斜式,得直线l的方程 y b k ( x 0) ,
②规定:直线与 x 轴平行或重合时,直线的倾斜角为 00 ③直线倾斜角α的取值范围是: 00 1800 ④在同一直角坐标系下,任何一条直线都有倾斜角且唯一,倾斜程度相同的直线,其倾斜角相等,
倾斜程度不同的直线,其倾斜角不相等。
3、直线的斜率:倾斜角不是 900 的直线,它的倾斜角 的正切值叫做这条直线的斜率,即 k tan( 900) 。
解:当 m 2 时,斜率不存在,
9 0 0 ;当 m 2 时,k
31 m2
4 m2

高考直线方程题型归纳

高考直线方程题型归纳

高考直线方程题型归纳知识点梳理 1.点斜式方程设直线l 过点P 0(x 0,y 0),且斜率为k ,则直线的方程为y -y 0=k (x -x 0),由于此方程是由直线上一点P 0(x 0,y 0)和斜率k 所确定的直线方程,我们把这个方程叫做直线的点斜式方程.注意:利用点斜式求直线方程时,需要先判断斜率存在与否. (1)当直线l 的倾斜角α=90°时,斜率k 不存在,不能用点斜式方程表示,但这时直线l 恰与y 轴平行或重合,这时直线l 上每个点的横坐标都等于x 0,所以此时的方程为x =x 0.(2)当直线l 的倾斜角α=0°时,k =0,此时直线l 的方程为y =y 0,即y -y 0=0.(3)当直线l 的倾斜角不为0°或90°时,可以直接代入方程求解. 2.斜截式方程:如果一条直线通过点(0,b )且斜率为k ,则直线的点斜式方程为y =kx + b 其中k 为斜率,b 叫做直线y =kx +b 在y 轴上的截距,简称直线的截距. 注意:利用斜截式求直线方程时,需要先判断斜率存在与否.(1)并非所有直线在y 轴上都有截距,当直线的斜率不存在时,如直线x =2在y 轴上就没有截距,即只有不与y 轴平行的直线在y 轴上有截距,从而得斜截式方程不能表示与x 轴垂直的直线的方程.(2)直线的斜截式方程y =kx +b 是y 关于x 的函数,当k =0时,该函数为常量函数.x =b ;当k ≠0时,该函数为一次函数,且当k >0时,函数单调递增,当k <0时,函数单调递减.(3)直线的斜截式方程是直线的点斜式方程的特例。

要注意它们之间的区别和联系及其相互转化.3.直线的两点式方程若直线l 经过两点A (x 1,y 1),B (x 2,y 2),(x 1≠x 2),则直线l 的方程为112121y y x x y y x x --=--,这种形式的方程叫做直线的两点式方程. 注意(1)当直线没有斜率(x 1=x 2)或斜率为零(y 1=y 2)时,不能用两点式112121y y x x y y x x --=--表示它的方程; (2)可以把两点式的方程化为整式(x 2-x 1)(y -y 1)= (y 2-y 1)(x -x 1),就可以用它来求过平面上任意两点的直线方程; 如过两点A (1,2),B (1,3)的直线方程可以求得x =1,过两点A (1,3),B (-2,3)的直线方程可以求得y =3.(3)需要特别注意整式(x 2-x 1)(y -y 1)= (y 2-y 1)(x -x 1)与两点式方程112121y y x x y y x x --=--的区别,前者对于任意的两点都适用,而后者则有条件的限制,两者并不相同,前者是后者的拓展。

备战高考数学复习考点知识与题型讲解60---直线的方程

备战高考数学复习考点知识与题型讲解60---直线的方程

备战高考数学复习考点知识与题型讲解第60讲直线的方程考向预测核心素养直线是解析几何中最基本的内容,对直线的考查一是在选择题、填空题中考查直线的倾斜角、斜率、直线的方程等基本知识;二是在解答题中与圆、椭圆、双曲线、抛物线等知识进行综合考查.直观想象、数学运算一、知识梳理1.直线的方向向量设A,B是直线上的两点,则AB→就是这条直线的方向向量.2.直线的倾斜角(1)定义:当直线l与x轴相交时,我们以x轴作为基准,x轴正向与直线l向上的方向之间所成的角α叫做直线l的倾斜角.(2)范围:直线的倾斜角α的取值范围为0°≤α<180°.3.直线的斜率(1)定义:把一条直线的倾斜角α的正切值叫做这条直线的斜率.斜率常用小写字母k表示,即k=tan α(α≠90°).(2)过两点的直线的斜率公式如果直线经过两点P1(x1,y1),P2(x2,y2)(x1≠x2),其斜率k=y2-y1x2-x1.4.直线方程的五种形式名称方程适用范围点斜式y-y0=k(x-x0)不含直线x=x0斜截式y=kx+b 不含垂直于x轴的直线两点式y-y1y2-y1=x-x1x2-x1(x1≠x2,y1≠y2)不含直线x=x1和直线y=y1截距式xa+yb=1不含垂直于坐标轴和过原点的直线一般式Ax+By+C=0(A2+B2≠0)平面直角坐标系内的直线都适用常用结论1.直线的倾斜角α和斜率k之间的对应关系α00<α<π2π2π2<α<πk 0k>0不存在k<0 2.识记几种特殊位置的直线方程(1)x轴:y=0.(2)y轴:x=0.(3)平行于x轴的直线:y=b(b≠0).(4)平行于y轴的直线:x=a(a≠0).(5)过原点且斜率存在的直线:y=kx.二、教材衍化1.(人A选择性必修第一册P58习题2.1 T7改编)若过点M(-2,m),N(m,4)的直线的斜率等于1,则m的值为( )A.1 B.4C.1或3D.1或4答案:A2.(人A选择性必修第一册P60例1改编)经过点P(2,-3),倾斜角为45°的直线方程为________.答案:x-y-5=03.(人A选择性必修第一册P67习题2.2 T7改编)过点P(2,3)且在两坐标轴上截距相等的直线方程为______________________.解析:当截距为0时,直线方程为3x-2y=0;当截距不为0时,设直线方程为xa+ya=1,则2a+3a=1,解得a=5.所以直线方程为x+y-5=0.答案:3x-2y=0或x+y-5=0一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)若直线的斜率为tan α,则其倾斜角为α.( )(2)斜率相等的两直线的倾斜角不一定相等.( )(3)经过定点A(0,b)的直线都可以用方程y=kx+b表示.( )答案:(1)×(2)×(3)×二、易错纠偏1.(多选)(不理解倾斜角和斜率致误)下列说法正确的是( )A.有的直线斜率不存在B.若直线l的倾斜角为α,且α≠90°,则它的斜率k=tan αC.若直线l的斜率为1,则它的倾斜角为3π4D.截距可以为负值答案:ABD2.(不理解直线位置关系致误)如果AB<0,且BC<0,那么直线Ax+By+C=0不经过( )A.第一象限 B.第二象限C.第三象限 D.第四象限答案:D3.(搞混倾斜角和斜率关系致误)若直线l的斜率为k,倾斜角为α,且α∈[π6,π4)∪[2π3,π),则k的取值范围是________.解析:当α∈[π6,π4)时,k =tan α∈[33,1); 当α∈[2π3,π)时,k =tan α∈[-3,0).综上可得k ∈[-3,0)∪[33,1). 答案:[-3,0)∪[33,1)考点一 直线的倾斜角与斜率(思维发散)复习指导:1.在平面直角坐标系中,结合具体图形掌握确定直线位置的几何要素. 2.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.(1)直线x sin α+y +2=0的倾斜角的取值范围是( ) A.[)0,π B.⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,π C.⎣⎢⎡⎦⎥⎤0,π4D.⎣⎢⎡⎦⎥⎤0,π4∪⎝ ⎛⎭⎪⎫π2,π(2)已知点A (1,3),B (-2,-1).若直线l :y =k (x -2)+1与线段AB 恒相交,则k 的取值范围是( )A .k ≥12B.k ≤-2C .k ≥12或k ≤-2 D.-2≤k ≤12【解析】 (1)设直线的倾斜角为θ,则有tan θ=-sin α. 因为sin α∈[-1,1], 所以-1≤tan θ≤1,又θ∈[0,π),所以0≤θ≤π4或3π4≤θ<π,故选B. (2)直线l :y =k (x -2)+1经过定点P (2,1), 因为k PA =3-11-2=-2,k PB =-1-1-2-2=12, 又直线l :y =k (x -2)+1与线段AB 恒相交, 所以-2≤k ≤12.【答案】 (1)B (2)D本例(2)直线l 改为y =kx ,若l 与线段AB 恒相交,则k 的取值范围是________________.解析:直线l 过定点P (0,0), 所以k PA =3,k PB =12,所以k ≥3或k ≤12.答案:⎝⎛⎦⎥⎤-∞,12∪[3,+∞)(1)斜率的求法①定义法:若已知直线的倾斜角α或α的某种三角函数值,一般根据k =tan α求斜率;②公式法:若已知直线上两点A (x 1,y 1),B (x 2,y 2),一般根据斜率公式k =y 2-y 1x 2-x 1(x 1≠x 2)求斜率.(2)倾斜角及斜率取值范围的两种求法①数形结合法:作出直线在平面直角坐标系中可能的位置,借助图形,结合正切函数的单调性确定;②函数图象法:根据正切函数图象,由倾斜角范围求斜率范围,反之亦可.|跟踪训练|1.已知直线方程为x cos 300°+y sin 300°=3,则直线的倾斜角为( ) A .60° B.60°或300° C .30°D.30°或330°解析:选C.直线的斜率为k =-cos 300°sin 300°=-cos (360°-60°)sin (360°-60°)=-cos (-60°)sin (-60°)=cos 60°sin 60°=33.因为直线倾斜角的范围为[0°,180°), 所以倾斜角为30°,故选C.2.直线l 过点P (1,0),且与以A (2,1),B (0,3)为端点的线段有公共点,则直线l 斜率的取值范围为________.解析:如图,因为k AP =1-02-1=1, k BP =3-00-1=-3,所以直线l 的斜率k ∈(]-∞,-3∪[)1,+∞. 答案:(]-∞,-3∪[)1,+∞考点二 直线的方程(自主练透)复习指导:根据确定直线位置的几何要素,探索并掌握直线方程的几种形式(点斜式、两点式、斜截式、截距式及一般式),体会斜截式与一次函数的关系.1.已知△ABC 的三个顶点坐标为A (1,2),B (3,6),C (5,2),M 为AB 的中点,N 为AC 的中点,则中位线MN 所在直线的方程为( )A .2x +y -12=0 B.2x -y -12=0 C .2x +y -8=0D.2x -y +8=0解析:选C.由题知M (2,4),N (3,2),中位线MN 所在直线的方程为y -42-4=x -23-2,整理得2x +y -8=0.2.(多选)(链接常用结论2)下列命题正确的有( ) A .直线斜率是关于直线倾斜角的增函数 B .方程x =ty +m 可以表示垂直于x 轴的直线C .直线过不同的两点A ()x 1,y 1,B ()x 2,y 2,则方程()x 2-x 1()y -y 1=()y 2-y 1()x -x 1可以表示平行于x ,y 轴和经过坐标原点的直线D .直线方程bx +ay =ab 不能表示平行于x ,y 轴的直线 解析:选BCD.倾斜角0≤α<π,斜率k =tan α(α≠π2),由正切函数的单调性知直线斜率不是关于直线倾斜角的增函数,故A 错误;方程x =ty +m 中t =0时,表示直线x =m ,故B 正确;当x 2-x 1=0时,方程()x 2-x 1()y -y 1=()y 2-y 1()x -x 1为()y 2-y 1()x -x 1=0, 当y 2-y 1=0时,方程()x 2-x 1()y -y 1=()y 2-y 1()x -x 1为()x 2-x 1()y -y 1=0, 当x =0,y =0时,代入方程可得-y 1()x 2-x 1=-x 1()y 2-y 1成立, 故方程可以表示平行于x ,y 轴和经过坐标原点的直线,故C 正确;当a =0,b ≠0时,方程为bx =0,当b =0,a ≠0时,方程为ay =0不能表示平行于x ,y 轴的直线,故D 正确.3.经过点B (3,4),且与两坐标轴围成一个等腰直角三角形的直线的方程为________. 解析:由题意可知,所求直线的斜率为±1. 又过点(3,4),由点斜式得y -4=±(x -3). 所求直线的方程为x -y +1=0或x +y -7=0. 答案:x -y +1=0或x +y -7=04.经过两条直线l 1:x +y =2,l 2:2x -y =1的交点,且直线的一个方向向量v =(-3,2)的直线方程为________________.解析:联立⎩⎨⎧x +y =2,2x -y =1,得x =1,y =1,所以直线过点(1,1),因为直线的方向向量v =(-3,2), 所以直线的斜率k =-23.则直线的方程为y -1=-23(x -1),即2x +3y -5=0. 答案:2x +3y -5=0巧设直线方程的方法(1)已知一点坐标,可采用点斜式设直线方程,但要注意讨论直线斜率不存在的情况; (2)已知两点或可通过计算表示出两点的坐标,则可采用两点式设直线方程,但要注意讨论分母为零的情况;(3)当题目涉及直线在x 轴、y 轴上的截距时,可采用截距式设直线方程,但要注意莫遗漏直线在x 轴、y 轴上的截距为0的情况;(4)已知直线的斜率或倾斜角,考虑利用点斜式或斜截式设直线方程.[注意] (1)当已知直线经过点(a ,0),且斜率不为0时,可将直线方程设为x =my +a ;(2)当已知直线经过点(0,a ),且斜率存在时,可将直线方程设为y =kx +a ; (3)当直线过原点,且斜率存在时,可将直线方程设为y =kx .考点三 直线方程的综合应用(思维发散)复习指导:求解与直线方程有关的最值问题,先求出斜率或设出直线方程,建立目标函数,再利用基本不等式或函数单调性求解最值.(一题多解)已知直线l 过点M (2,1),且分别与x 轴的正半轴、y 轴的正半轴交于A ,B 两点,O 为原点,当△AOB 面积最小时,求直线l 的方程.【解】 方法一:设直线l 的方程为y -1=k (x -2)(k <0),则A ⎝⎛⎭⎪⎫2-1k ,0,B (0,1-2k ),S △AOB =12(1-2k )·⎝ ⎛⎭⎪⎫2-1k =12⎣⎢⎡⎦⎥⎤4+(-4k )+⎝ ⎛⎭⎪⎫-1k ≥12(4+4)=4,当且仅当-4k=-1k ,即k =-12时,等号成立.故直线l 的方程为y -1=-12(x -2),即x +2y -4=0.方法二:设直线l :x a +y b =1,且a >0,b >0,因为直线l 过点M (2,1),所以2a +1b =1,则1=2a +1b≥22ab ,故ab ≥8,故S △AOB 的最小值为12×ab =12×8=4,当且仅当2a =1b =12时取等号,此时a =4,b =2,故直线l 为x 4+y2=1,即x +2y -4=0.1.在本例条件下,当|OA |+|OB |取最小值时,求直线l 的方程. 解:由本例方法二知,2a +1b=1,a >0,b >0,所以|OA |+|OB |=a +b =(a +b )·⎝ ⎛⎭⎪⎫2a +1b=3+a b +2ba≥3+22, 当且仅当a =2+2,b =1+2时等号成立,所以当|OA |+|OB |取最小值时,直线l 的方程为x +2y =2+ 2. 2.本例中,当|MA |·|MB |取得最小值时,求直线l 的方程. 解:方法一:由本例方法一知A ⎝ ⎛⎭⎪⎫2k -1k ,0,B (0,1-2k )(k <0). 所以|MA |·|MB |=1k2+1·4+4k 2=21+k 2|k |=2⎣⎢⎡⎦⎥⎤(-k )+1(-k )≥4. 当且仅当-k =-1k,即k =-1时取等号.此时直线l 的方程为x +y -3=0.方法二:由本例方法二知A (a ,0),B (0,b ),a >0,b >0,2a +1b=1.所以|MA |·|MB |=|MA →|·|MB →|=-MA →·MB →=-(a -2,-1)·(-2,b -1) =2(a -2)+b -1=2a +b -5 =(2a +b )⎝ ⎛⎭⎪⎫2a +1b -5=2⎝ ⎛⎭⎪⎫b a +a b ≥4,当且仅当a =b =3时取等号,此时直线l 的方程为x +y -3=0.与直线方程有关问题的常见类型及解题策略(1)求解与直线方程有关的最值问题.先设出直线方程,建立目标函数,再利用基本不等式求解最值.(2)求直线方程.弄清确定直线的两个条件,由直线方程的几种特殊形式直接写出方程.(3)求参数值或范围.注意点在直线上,则点的坐标适合直线的方程,再结合函数的单调性或基本不等式求解.|跟踪训练|已知直线l :kx -y +1+2k =0(k ∈R ). (1)证明:直线l 过定点;(2)若直线l 不经过第四象限,求k 的取值范围;(3)若直线l 交x 轴负半轴于A ,交y 轴正半轴于B ,△AOB 的面积为S (O 为坐标原点),求S 的最小值并求此时直线l 的方程.解:(1)证明:直线l 的方程可化为k (x +2)+(1-y )=0, 令⎩⎨⎧x +2=0,1-y =0,解得⎩⎨⎧x =-2,y =1.所以无论k 取何值,直线l 总经过定点(-2,1). (2)由方程知,当k ≠0时直线在x 轴上的截距为-1+2kk,在y 轴上的截距为1+2k ,要使直线不经过第四象限,则必须有⎩⎨⎧-1+2kk ≤-2,1+2k ≥1,解得k >0;当k =0时,直线为y =1,符合题意,故k 的取值范围是[0,+∞). (3)由题意可知k ≠0,再由直线l 的方程, 得A ⎝ ⎛⎭⎪⎫-1+2k k ,0,B (0,1+2k ). 依题意得⎩⎨⎧-1+2k k <0,1+2k >0,解得k >0. 因为S =12·|OA |·|OB |=12·⎪⎪⎪⎪⎪⎪1+2k k ·|1+2k | =12·(1+2k )2k =12⎝ ⎛⎭⎪⎫4k +1k +4≥12×(2×2+4)=4, 当k >0且4k =1k ,即k =12时等号成立,所以S min =4,此时直线l 的方程为x -2y +4=0.[A 基础达标]1.(2022·北京市昌平区期中)已知点A ()2,-3,B ()-3,-2,直线l :mx +y -m -1=0与线段AB 相交,则实数m 的取值范围是( )A .m ≤-4或m ≥34B.m ≤-34或m ≥4C .-4≤m ≤34D.-34≤m ≤4解析:选B.直线l :mx +y -m -1=0过定点P ()1,1, 由mx +y -m -1=0可得y =-m ()x -1+1, 作出图象如图所示:k PA =-3-12-1=-4,k PB =-2-1-3-1=34, 若直线l 与线段AB 相交,则-m ≥34或-m ≤-4,解得m ≤-34或m ≥4,所以实数m 的取值范围是m ≤-34或m ≥4.2.若平面内三点A (1,-a ),B (2,a 2),C (3,a 3)共线,则a =( ) A .1±2或0 B.2-52或0 C.2±52D.2+52或0 解析:选A.由题意知k AB =k AC ,即a 2+a 2-1=a 3+a 3-1,即a (a 2-2a -1)=0,解得a =0或a=1± 2.3.(2022·江西省抚州检测)已知k +b =0,k ≠0,则直线y =kx +b 的位置可能是( )解析:选B.因为直线方程为y =kx +b ,且k ≠0,k +b =0,即b =-k ,所以y =kx -k =k (x -1),令y =0,得x =1,所以直线与x 轴的交点坐标为(1,0).只有选项B 中的图象符合要求.4.直线x -2y +b =0与两坐标轴所围成的三角形的面积不大于1,那么b 的取值范围是( )A .[-2,2]B .(-∞,-2]∪[2,+∞)C .[-2,0)∪(0,2]D .(-∞,+∞)解析:选C.令x =0,得y =b2,令y =0,得x =-b ,所以所求三角形的面积为12·⎪⎪⎪⎪⎪⎪b 2·|-b |=14b 2,且b ≠0,14b 2≤1,所以b 2≤4,所以b 的取值范围是[-2,0)∪(0,2].5.(多选)(2022·昌平一中期中考试改编)直线l 过点P (2,-1)且在两坐标轴上的截距之和为0,则直线l 的方程为( )A .x -y -3=0 B.2x +y -3=0 C .x +2y =0D.x +y -1=0解析:选AC.当直线l 过原点时,直线l 的方程为y =-12x ⇒x +2y =0符合题意. 当直线l 不过原点时,设直线l 的方程为x a +y-a=1,将P 点坐标代入得2a +1a =1⇒a =3,x 3-y3=1⇒x -y -3=0.所以直线l 的方程为x +2y =0或x -y -3=0.6.把直线x -y +3-1=0绕点(1,3)逆时针旋转15°后,所得直线l 的方程是________.解析:已知直线的斜率为1,则其倾斜角为45°,绕点(1,3)逆时针旋转15°后,得到的直线l 的倾斜角α=45°+15°=60°,直线l 的斜率为tan α=tan 60°=3,所以直线l 的方程为y -3=3(x -1),即y =3x .答案:y =3x7.在平面直角坐标系中,已知矩形OABC ,O ()0,0,A ()2,0,C ()0,1,将矩形折叠,使O 点落在线段BC 上,设折痕所在直线的斜率为k ,则k 的取值范围是________.解析:如图,要想使折叠后O 点落在线段BC 上,可取BC 上任意一点D , 作线段OD 的垂直平分线l ,以l 为折痕可使O 与D 重合, 因为k OD ≥k OB =12,所以k =-1k OD≥-2,且k <0.又当折叠后O 与C 重合时,k =0, 所以-2≤k ≤0,所以k 的取值范围是[]-2,0. 答案:[-2,0]8.设直线l 的方程为2x +(k -3)y -2k +6=0(k ≠3),若直线l 的斜率为-1,则k =________;若直线l 在x 轴、y 轴上的截距之和等于0,则k =________.解析:因为直线l 的斜率存在,所以直线l 的方程可化为y =-2k -3x +2,由题意得-2k -3=-1,解得k =5. 直线l 的方程可化为x k -3+y2=1,由题意得k -3+2=0,解得k =1. 答案:5 19.已知两点A (-3,4),B (3,2),过点P (1,0)的直线l 与线段AB 有公共点.(1)求直线l 的斜率k 的取值范围; (2)求直线l 的倾斜角α的取值范围. 解:如图,由题意,知k PA =4-0-3-1=-1,k PB =2-03-1=1.(1)要使直线l 与线段AB 有公共点,则直线l 的斜率k 的取值范围是k ≤-1或k ≥1. (2)由题意可知,直线l 的倾斜角介于直线PB 与PA 的倾斜角之间,又直线PB 的倾斜角是45°,直线PA 的倾斜角是135°,所以α的取值范围是45°≤α≤135°.10.已知△ABC 的三个顶点分别为A (-3,0),B (2,1),C (-2,3),求: (1)BC 边所在直线的方程; (2)BC 边的垂直平分线DE 的方程.解:(1)因为直线BC 经过B (2,1)和C (-2,3)两点, 所以BC 的方程为y -13-1=x -2-2-2,即x +2y -4=0.(2)由(1)知,直线BC 的斜率k 1=-12,则直线BC 的垂直平分线DE 的斜率k 2=2.因为BC 边的垂直平分线DE 经过BC 的中点(0,2), 所以所求直线方程为y -2=2(x -0), 即2x -y +2=0.[B 综合应用]11.(多选)下列说法正确的是( )A .截距相等的直线都可以用方程x a +y a=1表示 B .方程x +my -2=0(m ∈R )能表示平行于y 轴的直线C .经过点P (1,1),倾斜角为θ的直线方程为y -1=tan θ(x -1)D .经过两点P 1(x 1,y 1),P 2(x 2,y 2)的直线方程为(y 2-y 1)(x -x 1)-(x 2-x 1)(y -y 1)=0解析:选BD.对于A ,若直线过原点,横纵截距都为0,则不能用方程x a +y a=1表示,所以A 不正确;对于B ,当m =0时,平行于y 轴的直线方程为x =2,所以B 正确;对于C ,若直线的倾斜角为90°,则该直线的斜率不存在,不能用y -1=tan θ(x -1)表示,所以C 不正确;对于D ,设点P (x ,y )是经过两点P 1(x 1,y 1),P 2(x 2,y 2)的直线上的任意一点,则根据P 1P 2→∥P 1P →可得(y 2-y 1)(x -x 1)-(x 2-x 1)(y -y 1)=0,所以D 正确,故选BD.12.(2022·东北三省三校调研)设P 为曲线C :y =x 2+2x +3上的点,且曲线C 在点P 处的切线倾斜角的取值范围为[0,π4],则点P 横坐标的取值范围为( )A .[-1,-12]B.[-1,0] C .[0,1]D.[12,1] 解析:选A.由题意知,y ′=2x +2,设P (x 0,y 0),则在点P 处的切线的斜率k =2x 0+2. 因为曲线C 在点P 处的切线倾斜角的取值范围为[0,π4],则0≤k ≤1,即0≤2x 0+2≤1,解得-1≤x 0≤-12.13.(2022·江西九江模拟)在△ABC 中,已知A (5,-2),B (7,3),且AC 的中点M 在y 轴上,BC 的中点N 在x 轴上,则直线MN 的方程为_______________________________________________________.解析:设C (x 0,y 0), 则M (5+x 02,y 0-22),N (7+x 02,3+y 02).因为点M 在y 轴上,所以5+x 02=0,所以x 0=-5. 因为点N 在x 轴上,所以y 0+32=0,所以y 0=-3,即C (-5,-3),所以M (0,-52),N (1,0),所以直线MN 的方程为x1+y -52=1,即5x -2y -5=0.答案:5x -2y -5=014.已知直线l 1:ax -2y =2a -4,l 2:2x +a 2y =2a 2+4,当0<a <2时,直线l 1,l 2与两坐标轴围成一个四边形,当a =________时,四边形的面积最小,最小值为________.解析:由题意知直线l 1,l 2恒过定点P (2,2),直线l 1在y 轴上的截距为2-a ,直线l 2在x 轴上的截距为a 2+2,所以四边形的面积S =12×2×(2-a )+12×2×(a 2+2)=a 2-a +4=⎝⎛⎭⎪⎫a -122+154,故当a =12时,四边形的面积最小,最小值为154.答案:12154[C 素养提升]15.在△ABC 中,∠ACB =90°,BC =3,AC =4,P 是线段AB 上的点,则P 到AC ,BC 的距离的乘积的最大值为________.解析:以C 为坐标原点,CB 所在直线为x 轴建立直角坐标系(如图所示),则A (0,4),B (3,0),直线AB 的方程为x 3+y4=1.设P (x ,y )(0≤x ≤3),所以P 到AC ,BC 的距离的乘积为xy ,因为x 3+y 4≥2x 3·y 4, 当且仅当x 3=y 4=12时取等号,所以xy ≤3,所以xy 的最大值为3. 答案:3 16.如图,射线OA ,OB 分别与x 轴正半轴成45°和30°角,过点P (1,0)作直线AB 分别交OA ,OB 于A ,B 两点,当AB 的中点C 恰好落在直线y =12x 上时,求直线AB 的方程.解:由题意可得k OA =tan 45°=1, k OB =tan(180°-30°)=-33,所以直线l OA :y =x ,l OB :y =-33x . 设A (m ,m ),B (-3n ,n ), 所以AB 的中点C ⎝ ⎛⎭⎪⎫m -3n 2,m +n 2, 由点C 在直线y =12x 上,且A ,P ,B 三点共线得⎩⎨⎧m +n 2=12·m -3n 2,(m -0)·(-3n -1)=(n -0)·(m -1),解得m=3,所以A(3,3).又P(1,0),所以k AB=k AP=33-1=3+32,所以l AB:y=3+32(x-1),即直线AB的方程为(3+3)x-2y-3-3=0.。

高考直线方程题型归纳(最新整理)

高考直线方程题型归纳(最新整理)

高考直线方程题型归纳知识点梳理1.点斜式方程设直线l 过点P 0(x 0,y 0),且斜率为k ,则直线的方程为y -y 0=k (x -x 0),由于此方程是由直线上一点P 0(x 0,y 0)和斜率k 所确定的直线方程,我们把这个方程叫做直线的点斜式方程.注意:利用点斜式求直线方程时,需要先判断斜率存在与否.(1)当直线l 的倾斜角α=90°时,斜率k 不存在,不能用点斜式方程表示,但这时直线l 恰与y 轴平行或重合,这时直线l 上每个点的横坐标都等于x 0,所以此时的方程为x =x 0.(2)当直线l 的倾斜角α=0°时,k =0,此时直线l 的方程为y =y 0,即y-y 0=0.(3)当直线l 的倾斜角不为0°或90°时,可以直接代入方程求解.2.斜截式方程:如果一条直线通过点(0,b )且斜率为k ,则直线的点斜式方程为y =kx + b 其中k 为斜率,b 叫做直线y =kx +b 在y 轴上的截距,简称直线的截距. 注意:利用斜截式求直线方程时,需要先判断斜率存在与否.(1)并非所有直线在y 轴上都有截距,当直线的斜率不存在时,如直线x =2在y 轴上就没有截距,即只有不与y 轴平行的直线在y 轴上有截距,从而得斜截式方程不能表示与x 轴垂直的直线的方程.(2)直线的斜截式方程y =kx +b 是y 关于x 的函数,当k =0时,该函数为常量函数.x =b ;当k ≠0时,该函数为一次函数,且当k >0时,函数单调递增,当k <0时,函数单调递减.(3)直线的斜截式方程是直线的点斜式方程的特例。

要注意它们之间的区别和联系及其相互转化.3.直线的两点式方程若直线l 经过两点A (x 1,y 1),B (x 2,y 2),(x 1≠x 2),则直线l 的方程为,这112121y y x x y y x x --=--种形式的方程叫做直线的两点式方程.注意(1)当直线没有斜率(x 1=x 2)或斜率为零(y 1=y 2)时,不能用两点式表示112121y y x x y y x x --=--它的方程;(2)可以把两点式的方程化为整式(x 2-x 1)(y -y 1)= (y 2-y 1)(x -x 1),就可以用它来求过平面上任意两点的直线方程; 如过两点A (1,2),B (1,3)的直线方程可以求得x =1,过两点A (1,3),B (-2,3)的直线方程可以求得y =3.(3)需要特别注意整式(x 2-x 1)(y -y 1)= (y 2-y 1)(x -x 1)与两点式方程的112121y y x x y y x x --=--区别,前者对于任意的两点都适用,而后者则有条件的限制,两者并不相同,前者是后者的拓展。

专题9.1 直线的方程(练习)【必考点专练】2023届高考数学二轮复习专题

专题9.1 直线的方程(练习)【必考点专练】2023届高考数学二轮复习专题

专专9.1直线的方程一、单选题1. 点(0,1)-到直线(1)y k x =+距离的最大值为( ) A. 1B. 2C. 3D. 22. 若平面内三点(1,)A a -,2(2,)B a ,3(3,)C a 共线,则a =( ) A. 12±或0B.252-或0 C.252± D.252+或0 3. “4ab =”是“直线210x ay +-=与直线220bx y +-=平行”的( ) A. 充要条件 B. 充分不必要条件 C. 必要不充分条件D. 既不充分也不必要条件4. 在平面直角坐标系中,记d 为点到直线20x my --=的距离,当θ、m 变化时,d 的最大值为A. 1B. 2C. 3D. 45. 已知(2,3)A ,(1,2)B -,若点(,)P x y 在线段AB 上,则3yx -最大值为 ( ) A. 1B.35C. 12-D. 3-6. 已知00(,)P x y 是直线:0++=l Ax By C 外一点,则方程00()0Ax By C Ax By C +++++=表示( )A. 过点P 且与l 垂直的直线B. 过点P 且与l 平行的直线C. 不过点P 且与l 垂直的直线D. 不过点P 且与l 平行的直线7. 2020年12月4日,嫦娥五号探测器在月球表面第一次动态展示国旗.1949年公布的《国旗制法说明》中就五星的位置规定:大五角星有一个角尖正向上方,四颗小五角星均各有一个角尖正对大五角星的中心点。

有人发现,第三颗小星的姿态与大星相近。

为便于研究,如图,以大星的中心点为原点,建立直角坐标系,1234,,,OO OO OO OO 分别是大星中心点与四颗小星中心点的联结线,3OO 与x 轴所成的角16α︒≈,则第三颗小星的一条边AB 所在直线的倾斜角约为( )A. 0︒B. 1︒C. 2︒D. 3︒8. 已知直线1:0()l kx y k R +=∈与直线2:220l x ky k -+-=相交于点A ,点B 是圆22(2)(3)2x y +++=上的动点,则||AB 的最大值为( )A. B. C. 5+ D. 3+9. 著名数学家华罗庚曾说过“数无形时少直觉,形少数时难入微”,事实上,很多代点(,)M x y 与点(,)N a b 最小值为( )A. B. C. 8 D. 610. 已知圆C :221x y +=,直线l :2x =,P 为直线l 上的动点,过点P 作圆C 的切线,切点分别为A ,B ,则直线AB 过定点( )A. 1(,0)2B. (0,2)C. (2,1)D. 1(,1)2二、多选题11. 已知直线12:10,:10l x l x +=-=,直线:10l kx y k -+-=被12,l l 截,则k 的值可能为( )A. 2+B. 2-C. 2D. 212. 已知在平面直角坐标系中,3(,0)2A ,(0,3)B ,点(,)M m n 位于线段AB 上,M与端点A ,B 不重合,则11212m n +++的可能取值为( ) A.13B.23C. 1D. 313. 下列说法中,正确的有.( )A. 点斜式11()y y k x x -=-可以表示任何直线B. 直线42y x =-在y 轴上的截距为2-C. 直线20x y -=关于0x y +=对称的直线方程是20x y -=D. 点(2,3)P 到直线的(1)30ax a y +-+=的最大距离为5 14. 下列说法正确的是( )A. 直线 10xsin y α-+=的倾斜角的取值范围为3[0,][,)44πππ⋃B. “5c =”是“点(2,1)到直线340x y c ++=距离为3”的充要条件C. 直线l :30()x y R λλλ+-=∈恒过定点(3,0)D. 直线25y x =-+与210x y ++=平行,且与圆225x y +=相切三、填空题15. 曲线23()x y x x e =+在点(0,0)处的切线方程为__________.16. 已知实数1x 、2x 、1y 、2y 满足:22111x y +=,22221x y +=,121212x x y y +=,的最大值为__________. 17. 已知函数,函数()f x 的图象在点和点的两条切线互相垂直,且分别交y 轴于M ,N 两点,则||||AM BN 取值范围是__________.18. 已知直线l 过点(0,2)A 和2(1213)()B m m m R ++∈,则直线l 的倾斜角的取值范围为__________. 四、解答题19. 已知直线l 过点(1,1)M ,且与x 轴,y 轴的正半轴分别相交于A ,B 两点,O 为坐标原点.求:(1)当||||OA OB +取得最小值时,直线l 的方程;(2)当22||||MA MB +取得最小值时,直线l 的方程.20. 已知直线l 经过直线1l :250x y +-=与2l :20x y -=的交点.(1)若点(5,0)A 到l 的距离为3,求直线l 的方程; (2)求直线l 的方程,使点(5,0)A 到直线l 的距离最大;(3)求直线l 的方程,使直线l 和直线1l 关于直线2l 对称.答案和解析1.【答案】B解:因为直线(1)y k x =+恒过点(1,0)-,可知:点(0,1)-到直线(1)y k x =+的最大距离,即为点(0,1)-与(1,0)-两点的距离,则点(0,1)-到直线(1)y k x =+ 故选.B2.【答案】A解:平面内三点(1,)A a -,2(2,)B a ,3(3,)C a 共线,,AB AC k k ∴=232131a a a a ++∴=--,化为:2(21)0a a a --=,解得0a =或1a =± 故选.A3.【答案】C解:由题意知a ,b 均不为0,则直线210x ay +-=与直线220bx y +-=平行的充要条件是22b a -=-且11a≠, 即4ab =且1a ≠,故“4ab =”是“直线210x ay +-=与直线220bx y +-=平行”的必要不充分条件. 故选.C4.【答案】C解:由题意, 当0m =时,,∴当cos 1θ=-时,max 3;d =当0m ≠时,222222|cos sin 2||sin cos 2||1sin()2|111m m m d mmm θθθθθα---++++===+++,(其中1tan )mα=-,∴当sin()1θα+=时,max 13d =+<,d ∴的最大值为3.故选.C5.【答案】C解:设(3,0)Q ,3yx -表示直线PQ 的斜率, 则30323AQ k -==--,201132BQ k -==---, 点(,)P x y 是线段AB 上的任意一点,3y x ∴-的取值范围是1[3,]2--, 故3yx -的最大值为12-,故选:.C6.【答案】D解:因为点00(,)P x y 不在直线0Ax By C ++=上, 所以000Ax By C ++≠,所以直线00()0Ax By C Ax By C +++++=不经过点P ,排除A 、B ;又直线00()0Ax By C Ax By C +++++=与直线l :0Ax By C ++=平行,排除C , 故选.D7.【答案】C解:过3O 作x 轴平行线3O E ,则316.OO E α∠=≈︒ 由五角星的内角为36︒,可知318BAO ∠=︒, 所以直线AB 的倾斜角为18162︒-︒=︒, 故选.C8.【答案】C解:联立消去参数k 得22(1)(1)2x y -+-=,所以点A 在以(1,1)C 为圆心,2为半径的圆上.又点B 是圆22(2)(3)2x y +++=上的动点,此圆圆心为(2,3)D --,半径为2, 且22||(12)(13)5CD =+++=,两圆相离, 所以||AB 的最大值为||2252 2.CD ++=+ 故选.C9.【答案】B解:设()f x =则()f x()f x ∴的几何意义为点(,0)M x 到两定点(2,4)A 与(1,3)B 的距离之和.设点(2,4)A 关于x 轴的对称点为A ',则A '的坐标为(2,4).- 要求()f x 的最小值,可转化为求||||MA MB +的最小值,利用对称思想可知||||||||||MA MB MA MB A B +='+'=即()f x故选.B10.【答案】A解:根据题意,因为P 为直线l :2x =上的动点,设(2,)P t ,圆C :221x y +=,其圆心C 的坐标为(0,0),半径为1,PA 、PB 为圆C 的切线, 则以线段PC 为直径的圆N 的方程为2220x y x ty +--=,则有2222120x y x y x ty ⎧+=⎨+--=⎩,联立可得210x ty +-=, 即两圆公共弦AB 的方程为210x ty +-=,即12()2ty x -=-, 所以直线AB 过定点1(,0).2故选:.A11.【答案】AD解:直线12:310,:310l x y l x y -+=--=平行, 倾斜角为,两平行线间距离为1112+=, 因为直线:10l kx y k -+-=被12,l l 截得的线段长为2, 所以直线:10l kx y k -+-=的倾斜角为或,,,则斜率为23+或3 2.- 故选.AD12.【答案】BC解:由题意知,直线AB 的方程为2133x y+=, 点(,)M m n 位于线段AB 上,M 与端点A ,B 不重合, 则2133m n+=,即23m n +=,(0,3)n ∈, 所以111121242m n n n +=+++-+ 266.(4)(2)(1)9n n n ==-+--+ 因为(0,3)n ∈, 所以2(1)9(5,9],n --+∈ 所以2626[,).(1)935n ∈--+故选.BC13.【答案】BCD解:A :点斜式11()y y k x x -=-不能表示斜率不存在的直线,故A 错误; B :直线42y x =-在y 轴上的截距为2-,正确;C :在直线20x y -=上任取一点(,)P m n ,它关于0x y +=的对称点(,)Q m n --在直线20x y -=上,所以直线20x y -=关于0x y +=对称的直线方程是20x y -=,C 正确;D :因为直线的(1)30ax a y +-+=即()30a x y y +-+=过定点(3,3)M -,所以点(2,3)P 到直线的(1)30ax a y +-+=的最大距离为||5MP =,D 正确. 故选:.BCD14.【答案】ACD解:直线 sin 10x y α-+=的倾斜角θ,可得tan sin [1,1]θα=∈-, 所以θ的取值范围为3[0,][,),44πππ⋃所以A 正确; “点(2,1)到直线340x y c ++=距离为3”,可得22|64| 3.34c ++=+解得5c =,25c =-,所以“5c =”是“点(2,1)到直线340x y c ++=距离为3”的充分不必要条件,所以B 不正确;直线l :30()x y R λλλ+-=∈,即,恒过定点(3,0),所以C 正确;直线25y x =-+即250x y +-=与直线210x y ++=平行,22|5|521-=+,所以直线25y x =-+与圆225x y +=相切, 所以D 正确; 故选:.ACD15.【答案】3y x =解:23()x y x x e =+,223(21)3()3(31)x x x y x e x x e e x x ∴'=+++=++, ∴当0x =时,3y '=,23()x y x x e ∴=+在点(0,0)处的切线斜率3k =, ∴曲线23()x y x x e =+在点(0,0)处的切线方程为:3.y x =故答案为3.y x =16.+解:设11(,)A x y ,22(,)B x y ,O 为坐标原点,11(,)OA x y =,22(,)OB x y =,由22111x y +=,22221x y +=,121212x x y y +=, 可得A ,B 两点在圆221x y +=上, 且1212111cos 2OA OB AOB x x y y ⋅=⨯⨯∠=+=, 即有60AOB ︒∠=,即三角形OAB 为等边三角形,1AB =,A ,B 两点到直线:10l x y +-=的距离1d 与2d 之和,设AB 中点为M ,则距离1d 与2d 之和等于M 到直线l 的距离的两倍,圆心(0,0)到线段AB 中点M 的距离2d =,圆心到直线l 的距离d '=M ∴到直线l 的距离的最大值为d d +'=+,+17.【答案】解:由题意,,则,所以点和点,12,xxAM BN k e k e =-=,所以12121,0xx e e x x -⋅=-+=,所以,所以,同理,所以故答案为:18.【答案】[0,](,)62πππ⋃解:设此直线的倾斜角为θ,[0,).θπ∈ 则2tanθ=232).3m =+ [0,](,).62ππθπ∴∈⋃故答案为:[0,](,).62πππ⋃19.【答案】 解:(1)设(,0)A a ,(0,)(0,0).B b a b >>设直线l 的方程为1x y a b +=,则111a b+=, 所以2224a b a bb a b a=+++⋅=, 当且仅当2a b ==时取等号, 此时直线l 的方程为20.x y +-=(2)方法一:设直线l 的斜率为k ,则0k <,直线l 的方程为1(1)y k x -=-, 则,(0,1)B k -,所以22222211||||2224MA MB k k k k +=+++⋅=, 当且仅当221k k=,即1k =-时, 22||||MA MB +取得最小值4,此时直线l 的方程为20.x y +-=方法二:设(,0)A a ,(0,)(0,0).B b a b >>设直线l 的方程为1x y a b +=,则111a b+=,即a b ab +=, 2222||||(1)1(1)1MA MB a b +=-++-+222()4a b a b =+-++2224a b ab =+-+2()4a b =-+∴当且仅当2a b ==时,22||||MA MB +取得最小值4, 此时直线方程为122x y +=,即20.x y +-=20.【答案】解:(1)易知l 不可能为2l ,故可设经过两已知直线交点的直线系方程为(25)(2)0x y x y λ+-+-=,即(2)(12)50x y λλ++--=,点(5,0)A 到l 的距离为3, 22|1055|3(2)(12)λλλ+-∴=++-,化简得22520λλ-+=,解得12λ=或2λ=, ∴直线l 的方程为2x =或4350.x y --=(2)由解得直线1l 与2l 的交点为(2,1)P , 显然当l PA ⊥时,点(5,0)A 到直线l 的距离最大, 又101253PA k -==--, 3l k ∴=,∴所求直线l 的方程是13(2)y x -=-,即350.x y --=(3)在直线1l 上取点(0,5)E ,设点E 关于直线2l 的对称点是(,)F a b ,则052022a b ++-⋅=且520b a -=--, 解得4a =,3b =-,由直线l 经过两点(2,1)P ,(4,3)F -, 可得直线l 的方程是341324y x +-=+-,即250.x y +-=。

新热点赏析——高考中的直线方程

新热点赏析——高考中的直线方程

新热点赏析——高考中的直线方程高考中的直线方程:一、基本概念1.什么是直线方程?直线方程,又称笛卡尔直线方程,是一种表示二元一次方程的形式,可以用一条直线表示出来。

它的形式为:ax + by+c = 0 ,其中a、b、c 均为实数。

2.为什么要学习直线方程?直线方程的概念可以帮助我们更好的理解二元一次方程,它可以帮助我们更准确的求解某些问题,而在高考中,也有许多与直线方程有关的题目,学习直线方程能有助于我们正确答题。

二、求解策略1.直角坐标系的特点分析直角坐标系的特点之一是,在直角坐标系中,点之间的关系可以用坐标的形式表示出来,这也意味着,可以通过求解不满足条件的坐标来求解我们的问题。

2.求解直线方程的两种方法(1)利用坐标的方法:通过把包含某一变量的两个方程放在同一个直角坐标系中,由于这两条直线都是最小二乘方程,因此可以通过求得直线上不满足条件的坐标来求解问题。

(2)利用代数的方法:首先将有关的方程用简单的运算方法(如化简、分解)等进行处理,然后对有关的变量进行替换,就可以求得所要求的答案。

三、实战练习1.有一道题目提出:已知直线l:3x-y-6=0,求点A(x0,y0)关于l的对称点C(x1,y1)的坐标。

(1)解:将两个方程画在同一个直角坐标系中,可以得到两条直线,交点就是M(x0,y0),而C(x1,y1)就是对称点。

于是,只需要通过点M(x0,y0)和l直线的方程求得C(x1,y1)。

将M(x0,y0)代入原式: 3(x0)-y0-6=0;令:y0-3(x0)=6,求得C点的坐标: x1=x0,y1=y0-3x0 = y0-6即点C的坐标为:(x0,y0-6)。

2.另一道题目提出:已知直线l:2x+3y+5=0,两点A(x1,y1)、B(x2,y2),求点C在l线上的坐标。

(2)解:将两个方程画在同一个直角坐标系中,可以得到两条直线。

由直线l方程,令:2x+3y=a,将两点坐标代入求出a的值:则有:a1=2x1+3y1+5,a2=2x2+3y2+5,假设点C在直线l上,则a3=2x3+3y3+5,由a1=a2=a3,求得点C的坐标:则C点的坐标为:(2a/5-2x1-3y1/5,3a/5-3x2-2y2/5)。

高考数学直线方程知识点总结

高考数学直线方程知识点总结

高考数学直线方程知识点总结高考数学中,直线方程是一个非常重要的知识点。

直线是我们周围不可或缺的几何要素,也是许多数学问题的关键要素。

而在高考中,直线方程也经常成为考试的热点难点,理解掌握这个知识点,对我们取得好成绩也有着重要的作用。

一、直线的解析式在平面直角坐标系中,直线的解析式可以表示如下:y = kx + b其中,k为直线的斜率,b为直线在y轴上的截距,y轴截距指的是直线与y轴的交点纵坐标。

当直线不垂直于x轴时,斜率k可以表示为:k = tanθ其中,θ是直线与x轴正方向的夹角,斜率k表示的是直线的倾斜程度。

二、直线的一般式在平面直角坐标系中,直线的一般式可以表示为:Ax + By + C = 0其中,A、B、C代表实数且不全为0,A和B不同时为0。

直线的一般式与解析式的换算可以表示如下:A = -k,B = 1,C = -bk = - A/B,b = - C/B三、点斜式如果已知直线上的一点(x0,y0)和直线的斜率k,就可以求出直线的解析式:y - y0 = k(x - x0)点斜式可以根据直线的斜率和其中一个点来确定直线的解析式,因此对于已知一点和一斜率的情况下就可以确定一条直线的解析式。

四、两点式如果已知直线上的两个点(x1,y1)和(x2,y2),则可以求出直线的解析式:(y - y1)/(x - x1) = (y2 - y1)/(x2 - x1)两点式可以根据直线的两个点来确定直线的解析式,因此对于已知两点的情况下就可以确定一条直线的解析式。

五、截距式如果已知直线在x轴上的截距a和y轴上的截距b,直接就可以求出直线的解析式:y = kx + b截距式可以根据直线在x轴和y轴上的截距来确定直线的解析式,因此对于已知两个截距的情况下就可以确定一条直线的解析式。

六、平面直角坐标系中两条直线的位置关系如果两条直线的斜率相等,它们平行;如果两条直线的斜率互为相反数,则它们垂直;如果两条直线的斜率不相等也不互为相反数,则它们相交。

高考数学一轮复习专题训练—直线的方程

高考数学一轮复习专题训练—直线的方程

直线的方程考纲要求1.在平面直角坐标系中,结合具体图形,确定直线位置的几何要素;2.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式;3.掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.知识梳理1.直线的倾斜角(1)定义:当直线l 与x 轴相交时,我们取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角α叫做直线l 的倾斜角;(2)规定:当直线l 与x 轴平行或重合时,规定它的倾斜角为0; (3)范围:直线的倾斜角α的取值范围是[0,π). 2.直线的斜率(1)定义:当直线l 的倾斜角α≠π2时,其倾斜角α的正切值tan α叫做这条直线的斜率,斜率通常用小写字母k 表示,即k =tan_α. (2)计算公式①经过两点P 1(x 1,y 1),P 2(x 2,y 2)(x 1≠x 2)的直线的斜率k =y 2-y 1x 2-x 1.②若直线的方向向量为a =(x ,y )(x ≠0),则直线的斜率k =yx .3.直线方程的五种形式截距式纵、横截距x a +y b =1 不过原点且与两坐标轴均不垂直的直线一般式Ax +By +C =0(A 2+B 2≠0)所有直线1.直线的倾斜角α和斜率k 之间的对应关系:α 0 0<α<π2π2 π2<α<π kk >0不存在k <02.“截距”是直线与坐标轴交点的坐标值,它可正,可负,也可以是零,而“距离”是一个非负数.诊断自测1.判断下列结论正误(在括号内打“√”或“×”) (1)直线的倾斜角越大,其斜率就越大.( ) (2)直线的斜率为tan α,则其倾斜角为α.( ) (3)斜率相等的两直线的倾斜角不一定相等.( )(4)经过任意两个不同的点P 1(x 1,y 1),P 2(x 2,y 2)的直线都可以用方程(y -y 1)(x 2-x 1)=(x -x 1)(y 2-y 1)表示.( )答案 (1)× (2)× (3)× (4)√解析 (1)当直线的倾斜角α1=135°,α2=45°时,α1>α2,但其对应斜率k 1=-1,k 2=1,k 1<k 2.(2)当直线斜率为tan(-45°)时,其倾斜角为135°. (3)两直线的斜率相等,则其倾斜角一定相等.2.若过两点A (-m,6),B (1,3m )的直线的斜率为12,则直线的方程为________. 答案 12x -y -18=0解析 由题意得3m -61+m =12,解得m =-2,∴A (2,6),∴直线AB 的方程为y -6=12(x -2), 整理得12x -y -18=0.3.若方程Ax +By +C =0表示与两条坐标轴都相交的直线(不与坐标轴重合),则应满足的条件是________. 答案 A ≠0且B ≠0解析 由题意知,直线斜率存在且斜率不为零,所以A ≠0且B ≠0. 4.(2020·衡水模拟)直线x +3y +1=0的倾斜角是( ) A.π6 B .π3C .2π3D .5π6答案 D解析 由直线的方程得直线的斜率为k =-33,设倾斜角为α,则tan α=-33,又α∈[0,π),所以α=5π6.5.(2021·西安模拟)已知两点A (-1,2),B (m,3),且m ∈⎣⎡⎦⎤-33-1,3-1,则直线AB 的倾斜角α的取值范围是( ) A.⎣⎡⎭⎫π6,π2B .⎝⎛⎦⎤π2,2π3 C.⎣⎡⎭⎫π6,π2∪⎝⎛⎦⎤π2,2π3 D .⎣⎡⎦⎤π6,2π3答案 D解析 ①当m =-1时,α=π2;②当m ≠-1时,∵k =1m +1∈(-∞,-3]∪⎣⎡⎭⎫33,+∞,∴α∈⎣⎡⎭⎫π6,π2∪⎝⎛⎦⎤π2,2π3. 综合①②知直线AB 的倾斜角α的取值范围是⎣⎡⎦⎤π6,2π3.6.(2021·合肥调研)过点(-3,4),在x 轴上的截距为负数,且在两坐标轴上的截距之和为12的直线方程为______. 答案 4x -y +16=0解析 由题设知,横、纵截距均不为0,设直线的方程为x a +y12-a =1,又直线过点(-3,4),从而-3a +412-a =1,解得a =-4或a =9(舍).故所求直线的方程为4x -y +16=0.考点一 直线的倾斜角与斜率【例1】 (经典母题)直线l 过点P (1,0),且与以A (2,1),B (0,3)为端点的线段有公共点,则直线l 斜率的取值范围为________. 答案 (-∞,-3]∪[1,+∞)解析 法一 设P A 与PB 的倾斜角分别为α,β,直线P A 的斜率是k AP =1,直线PB 的斜率是k BP =-3,当直线l 由P A 变化到与y 轴平行的位置PC 时,它的倾斜角由α增至90°,斜率的取值范围为[1,+∞).当直线l 由PC 变化到PB 的位置时,它的倾斜角由90°增至β,斜率的变化范围是(-∞, -3].故斜率的取值范围是(-∞,-3]∪[1,+∞). 法二 设直线l 的斜率为k ,则直线l 的方程为 y =k (x -1),即kx -y -k =0.∵A ,B 两点在直线l 的两侧或其中一点在直线l 上, ∴(2k -1-k )(-3-k )≤0,即(k -1)(k +3)≥0,解得k ≥1或k ≤- 3.即直线l 的斜率k 的取值范围是(-∞,-3]∪[1,+∞).【迁移】 若将例1中P (1,0)改为P (-1,0),其他条件不变,求直线l 斜率的取值范围.解 设直线l 的斜率为k ,则直线l 的方程为 y =k (x +1),即kx -y +k =0.∵A ,B 两点在直线l 的两侧或其中一点在直线l 上, ∴(2k -1+k )(-3+k )≤0, 即(3k -1)(k -3)≤0,解得13≤k ≤ 3.即直线l 的斜率的取值范围是⎣⎡⎦⎤13,3. 感悟升华 1.由直线倾斜角的取值范围求斜率的取值范围或由斜率的取值范围求直线倾斜角的取值范围时,常借助正切函数y =tan x 在⎣⎡⎭⎫0,π2∪⎝⎛⎭⎫π2,π上的单调性求解,这里特别要注意,正切函数在⎣⎡⎭⎫0,π2∪⎝⎛⎭⎫π2,π上并不是单调的. 2.过一定点作直线与已知线段相交,求直线斜率取值范围时,应注意倾斜角为π2时,直线斜率不存在.【训练1】 过函数f (x )=13x 3-x 2图象上一个动点作函数图象的切线,则切线倾斜角的取值范围为( ) A.⎣⎡⎦⎤0,3π4 B .⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π C.⎣⎡⎭⎫3π4,π D .⎝⎛⎦⎤π2,3π4答案 B解析 ∵f ′(x )=x 2-2x =(x -1)2-1≥-1,∴斜率k =tan α≥-1,解得倾斜角α∈⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π,故选B. 考点二 直线方程的求法【例2】 (1)已知△ABC 的三个顶点分别为A (-3,0),B (2,1),C (-2,3).求BC 边上的中线AD 所在直线的方程.(2)经过点P (2,3),并且在两坐标轴上截距相等;(3)经过两条直线l 1:x +y =2,l 2:2x -y =1的交点,且直线的一个方向向量v =(-3,2). 解 (1)由题意得线段BC 的中点D (0,2),可得BC 边上的中线AD 所在直线的方程为x -3+y2=1,即2x -3y +6=0.(2)法一 ①当截距为0时,直线l 过点(0,0),(2,3), 则直线l 的斜率为k =3-02-0=32,因此,直线l 的方程为y =32x ,即3x -2y =0.②当截距不为0时,可设直线l 的方程为x a +ya =1.因为直线l 过点P (2,3),所以2a +3a =1,所以a =5.所以直线l 的方程为x +y -5=0.综上可知,直线l 的方程为3x -2y =0或x +y -5=0. 法二 由题意可知所求直线斜率存在, 则可设y -3=k (x -2),且k ≠0.令x =0,得y =-2k +3.令y =0,得x =-3k +2.于是-2k +3=-3k +2,解得k =32或k =-1.则直线l 的方程为y -3=32(x -2)或y -3=-(x -2),即直线l 的方程为3x -2y =0或x +y -5=0.(3)联立⎩⎪⎨⎪⎧x +y =2,2x -y =1,得x =1,y =1,∴直线过点(1,1),∵直线的方向向量v =(-3,2), ∴直线的斜率k =-23.则直线的方程为y -1=-23(x -1),即2x +3y -5=0.感悟升华 (1)求直线方程一般有以下两种方法:①直接法:由题意确定出直线方程的适当形式,然后直接写出其方程.②待定系数法:先由直线满足的条件设出直线方程,方程中含有待定的系数,再由题设条件求出待定系数,即得所求直线方程.(2)对于点斜式、截距式方程使用时要注意分类讨论思想的运用(若采用点斜式,应先考虑斜率不存在的情况;若采用截距式,应判断截距是否为零).【训练2】 (1)已知点M 是直线l :2x -y -4=0与x 轴的交点,将直线l 绕点M 按逆时针方向旋转45°,得到的直线方程是( ) A .x +y -3=0 B .x -3y -2=0 C .3x -y +6=0D .3x +y -6=0(2)过点(2,1)且在x 轴上截距与在y 轴上截距之和为6的直线方程为________________. 答案 (1)D (2)x +y -3=0或x +2y -4=0 解析 (1)设直线l 的倾斜角为α,则tan α=k =2,直线l 绕点M 按逆时针方向旋转45°,所得直线的斜率k ′=tan ()α+45°=2+11-2×1=-3,又点M (2,0),所以y =-3(x -2),即3x +y -6=0. (2)由题意可设直线方程为x a +yb=1.则⎩⎪⎨⎪⎧a +b =6,2a +1b =1,解得a =b =3,或a =4,b =2. 故所求直线方程为x +y -3=0或x +2y -4=0. 考点三 直线方程的综合应用【例3】 已知直线l :kx -y +1+2k =0(k ∈R).(1)证明:直线l 过定点;(2)若直线不经过第四象限,求k 的取值范围;(3)若直线l 交x 轴负半轴于点A ,交y 轴正半轴于点B ,△AOB 的面积为S (O 为坐标原点),求S 的最小值并求此时直线l 的方程.(1)证明 直线l 的方程可化为k (x +2)+(1-y )=0,令⎩⎪⎨⎪⎧ x +2=0,1-y =0,解得⎩⎪⎨⎪⎧x =-2,y =1.∴无论k 取何值,直线总经过定点(-2,1).(2)解 由方程知,当k ≠0时,直线在x 轴上的截距为-1+2k k ,在y 轴上的截距为1+2k ,要使直线不经过第四象限,则必须有⎩⎪⎨⎪⎧-1+2k k ≤-2,1+2k ≥1,解得k >0; 当k =0时,直线为y =1,符合题意,故k 的取值范围是[0,+∞). (3)解 由题意可知k ≠0,再由l 的方程, 得A ⎝⎛⎭⎫-1+2k k ,0,B (0,1+2k ).依题意得⎩⎪⎨⎪⎧-1+2k k <0,1+2k >0,解得k >0. ∵S =12·|OA |·|OB |=12·⎪⎪⎪⎪1+2k k ·|1+2k |=12·1+2k 2k=12⎝⎛⎭⎫4k +1k +4 ≥12×(2×2+4)=4, “=”成立的条件是k >0且4k =1k ,即k =12,∴S min =4,此时直线l 的方程为x -2y +4=0.感悟升华 1.含有参数的直线方程可看作直线系方程,这时要能够整理成过定点的直线系,能够看出“动中有定”.若直线的方程为y =k (x -1)+2,则直线过定点(1,2).2.求解与直线方程有关的面积问题,应根据直线方程求解相应坐标或者相关长度,进而求得多边形面积.3.求参数值或范围.注意点在直线上,则点的坐标适合直线的方程,再结合函数的单调性或基本不等式求解.【训练3】 (1)已知k ∈R ,写出以下动直线所过的定点坐标: ①若直线方程为y =kx +3,则直线过定点________; ②若直线方程为y =kx +3k ,则直线过定点________; ③若直线方程为x =ky +3,则直线过定点________.(2)(2021·武威模拟)若直线ax +by =ab (a >0,b >0)过点(1,1),则该直线在x 轴、y 轴上的截距之和的最小值为( ) A .1B .4C .2D .8答案 (1)①(0,3) ②(-3,0) ③(3,0) (2)B解析 (1)①当x =0时,y =3,所以直线过定点(0,3). ②直线方程可化为y =k (x +3),故直线过定点(-3,0). ③当y =0时,x =3,所以直线过定点(3,0). (2)∵直线ax +by =ab (a >0,b >0)过点(1,1),所以a +b =ab ,1a +1b =1,因为直线在x 轴的截距为b ,在y 轴上的截距为a ,所以直线在x轴、y 轴上的截距之和为a +b ,a +b =(a +b )⎝⎛⎭⎫1a +1b =2+b a +ab ≥2+2b a ·ab=4,所以当a =b =2时取最小值,最小值为4,故选B.基础巩固一、选择题1.如图中的直线l 1, l 2,l 3的斜率分别为k 1,k 2,k 3,则( )A .k 1<k 2<k 3B .k 3<k 1<k 2C .k 3<k 2<k 1D .k 1<k 3<k 2答案 D解析 直线l 1的倾斜角α1是钝角,故k 1<0,直线l 2与l 3的倾斜角α2与α3均为锐角且α2>α3,所以0<k 3<k 2,因此k 1<k 3<k 2.2.(2021·安阳模拟)若平面内三点A (1,-a ),B (2,a 2),C (3,a 3)共线,则a =( ) A .1±2或0 B .2-52或0C.2±52D .2+52或0答案 A解析 由题意知k AB =k AC ,即a 2+a 2-1=a 3+a3-1,即a (a 2-2a -1)=0,解得a =0或a =1±2.3.如果A ·B >0,B ·C <0,那么直线Ax -By -C =0不经过的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 答案 D解析 因为直线在x 轴、y 轴上的截距分别为C A <0,-CB >0,所以直线Ax -By -C =0不经过的象限是第四象限.故选D.4.(2020·成都诊断)过点(2,1),且倾斜角比直线y =-x -1的倾斜角小π4的直线方程是( )A .x =2B .y =1C .x =1D .y =2答案 A解析 直线y =-x -1的倾斜角为3π4,则所求直线的倾斜角为π2,故所求直线斜率不存在,又直线过点(2,1),所以所求直线方程为x =2.5.(2021·福建六校联考)在同一平面直角坐标系中,直线l 1:ax +y +b =0和直线l 2:bx +y +a =0有可能是( )答案 B解析 当a >0,b >0时,-a <0,-b <0,结合选项知B 符合,其他均不符合.6.已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则a 的值是( )A .1B .-1C .-2或-1D .-2或1答案 D解析 令x =0,y =2+a ,令y =0,x =2+a a ,则2+a =2+a a. 即(a +2)(a -1)=0,∴a =-2或a =1. 7.直线2x cos α-y -3=0⎝⎛⎭⎫α∈⎣⎡⎦⎤π6,π3的倾斜角的取值范围是( ) A.⎣⎡⎦⎤π6,π3B .⎣⎡⎦⎤π4,π3C .⎣⎡⎦⎤π4,π2D .⎣⎡⎦⎤π4,2π3答案 B解析 直线2x cos α-y -3=0的斜率k =2cos α,因为α∈⎣⎡⎦⎤π6,π3,所以12≤cos α≤32, 因此k =2cos α∈[1,3].设直线的倾斜角为θ,则有tan θ∈[1,3].又θ∈[0,π),所以θ∈⎣⎡⎦⎤π4,π3,即倾斜角的取值范围是⎣⎡⎦⎤π4,π3.8.(2021·安阳模拟)已知点A (1,3),B (-2,-1).若直线l :y =k (x -2)+1与线段AB 恒相交,则k 的取值范围是( )A .k ≥12B .k ≤-2C .k ≥12或k ≤-2 D .-2≤k ≤12答案 D解析 直线l :y =k (x -2)+1经过定点P (2,1),∵k P A =3-11-2=-2,k PB =-1-1-2-2=12, 又直线l :y =k (x -2)+1与线段AB 恒相交,∴-2≤k ≤12. 二、填空题9.把直线x -y +3-1=0绕点(1,3)逆时针旋转15°后,所得直线l 的方程是________. 答案 y =3x解析 已知直线的斜率为1,则其倾斜角为45°,绕点逆时针旋转15°后,得到的直线l 的倾斜角α=45°+15°=60°,直线l 的斜率为tan α=tan 60°=3,∴直线l 的方程为y -3=3(x -1),即y =3x .10.(2020·沈阳模拟)过点⎝⎛⎭⎫1,14且在两坐标轴上的截距互为倒数的直线方程为________. 答案 x +4y -2=0解析 因为两坐标轴上的截距互为倒数,所以截距不为零,可设直线方程为x a+ay =1, 因为x a+ay =1过点⎝⎛⎭⎫1,14,所以1a +14a =1,解得a =2, 所以,所求直线方程为12x +2y =1,化为x +4y -2=0. 11.(2021·广州质检)若直线l 与直线y =1,x =7分别交于点P ,Q ,且线段PQ 的中点坐标为(1,-1),则直线l 的斜率为________.答案 -13解析 依题意,设点P (a,1),Q (7,b ),则有⎩⎪⎨⎪⎧ a +7=2,b +1=-2,解得⎩⎪⎨⎪⎧a =-5,b =-3, 从而可知直线l 的斜率为-3-17+5=-13. 12.在平面直角坐标系xOy 中,经过点P (1,1)的直线l 与x 轴交于点A ,与y 轴交于点B .若P A→=-2PB →,则直线l 的方程是________.答案 x +2y -3=0解析 设A (a,0),B (0,b ),由P A →=-2PB →,可得a -1=-2×(0-1),0-1=-2(b -1),则a=3,b =32,由截距式可得直线l 的方程为x 3+y 32=1,即x +2y -3=0. B 级 能力提升13.(2020·东北三省三校调研)设P 为曲线C :y =x 2+2x +3上的点,且曲线C 在点P 处的切线倾斜角的取值范围为⎣⎡⎦⎤0,π4,则点P 横坐标的取值范围为( ) A.⎣⎡⎦⎤-1,-12 B .[-1,0] C .[0,1]D .⎣⎡⎦⎤12,1答案 A解析 由题意知,y ′=2x +2,设P (x 0,y 0),则在点P 处的切线的斜率k =2x 0+2.因为曲线C 在点P 处的切线倾斜角的取值范围为⎣⎡⎦⎤0,π4,则0≤k ≤1,即0≤2x 0+2≤1, 故-1≤x 0≤-12. 14.已知A ,B 是x 轴上的不同两点,点P 的横坐标为2,且|P A |=|PB |,若直线P A 的方程为x -y +1=0,则直线PB 的方程是( )A .2x +y -7=0B .x +y -5=0C .2y -x -4=0D .2x -y -1=0答案 B解析 因为点P 的横坐标为2,且点P 在直线x -y +1=0上,所以点P 的纵坐标为3,所以P (2,3).又因为|P A |=|PB |,所以直线P A ,PB 的斜率互为相反数,所以直线PB 的斜率为-1,则直线PB 的方程是y -3=-(x -2),即x +y -5=0.故选B.15.已知直线l 1:ax -2y =2a -4,l 2:2x +a 2y =2a 2+4,当0<a <2时,直线l 1,l 2与两坐标轴围成一个四边形,当四边形的面积最小时,则a =________.答案 12解析 由题意知直线l 1,l 2恒过定点P (2,2),直线l 1的纵截距为2-a ,直线l 2的横截距为a 2+2,所以四边形的面积S =12×2(2-a )+12×2(a 2+2)=a 2-a +4=⎝⎛⎭⎫a -122+154,又0<a <2,所以当a =12时,面积最小. 16.在△ABC 中,∠ACB =90°,BC =3,AC =4,P 是线段AB 上的点,则P 到AC ,BC 的距离的乘积的最大值为________.答案 3解析 以C 为坐标原点,CB 所在直线为x 轴建立直角坐标系(如图所示),则A (0,4),B (3,0),直线AB的方程为x3+y4=1.设P(x,y)(0≤x≤3),所以P到AC,BC的距离的乘积为xy,因为x3+y4≥2x3·y4,当且仅当x3=y4=12时取等号,所以xy≤3,所以xy的最大值为3.。

高考数学解题方法专题讲解(26)直线系方程

高考数学解题方法专题讲解(26)直线系方程

高考数学解题方法专题讲解专题(二十六) 直线系方程在求解直线方程的题目中,可采用设直线系方程的方式简化运算,常见的直线系有平行直线系,垂直直线系和过两直线交点的直线系.一、平行直线系[例1] 求与直线3x+4y+1=0平行且过点(1,2)的直线l的方程.解析:由题意,可设所求直线方程为3x+4y+c=0(c≠1),又因为直线l过点(1,2),所以3×1+4×2+c=0,解得c=-11.因此,所求直线方程为3x+4y-11=0.二、垂直直线系由于直线A1x+B1y+C1=0与A2x+B2y+C2=0垂直的充要条件为A1A2+B1B2=0.因此,当两直线垂直时,它们的一次项系数有必然的联系.可以考虑用直线系方程求解.[例2] 求经过点A(2,1),且与直线2x+y-10=0垂直的直线l的方程.解析:因为所求直线与直线2x+y-10=0垂直,所以设该直线方程为x-2y+C1=0,又直线过点A(2,1),所以有2-2×1+C1=0,解得C1=0,即所求直线方程为x-2y=0.三、过两直线交点的直线系[例3] 经过两条直线2x+3y+1=0和x-3y+4=0的交点,并且垂直于3x+4y-7=0的直线方程为________.解析:解法一由方程组⎩⎨⎧2x +3y +1=0,x -3y +4=0,解得⎩⎪⎨⎪⎧x =-53,y =79,即两直线交点为⎝ ⎛⎭⎪⎫-53,79,∵所求直线与直线3x +4y -7=0垂直,∴所求直线的斜率为k =43.由点斜式得所求直线方程为y -79=43⎝ ⎛⎭⎪⎫x +53,即4x -3y +9=0. 解法二由垂直关系可设所求直线方程为4x -3y +m =0, 由方程组⎩⎨⎧2x +3y +1=0,x -3y +4=0,可解得两直线交点为⎝ ⎛⎭⎪⎫-53,79,代入4x -3y +m =0,得m =9,故所求直线方程为4x -3y +9=0. 解法三由题意可设所求直线方程为 (2x +3y +1)+λ(x -3y +4)=0, 即(2+λ)x +(3-3λ)y +1+4λ=0,① 又∵所求直线与直线3x +4y -7=0垂直, ∴3(2+λ)+4(3-3λ)=0,∴λ=2,代入①式得所求直线方程为4x -3y +9=0. 答案:4x -3y +9=0 名师点评1.本例3法一采用常规方法,先通过方程组求出两直线交点,再根据垂直关系求出斜率,由于交点在y 轴上,故采用斜截式求解;法三则采用了过两直线A 1x +B 1y +C 1=0与A 2x +B 2y +C 2=0的交点的直线系方程:A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0,直接设出过两直线交点的方程,再根据垂直条件用待定系数法求解.2.与直线Ax +By +C =0平行的直线系方程为Ax +By +C 1=0(C 1≠C );与直线Ax +By +C =0垂直的直线系方程为Bx -Ay +C 1=0.[变式练] 求经过两直线l 1:x -2y +4=0和l 2:x +y -2=0的交点P ,且与直线l 3:3x -4y +5=0垂直的直线l 的方程.专题(二十六)变式练解析:解法一解方程组⎩⎨⎧x -2y +4=0,x +y -2=0,得P (0,2).因为l 3的斜率为34,且l ⊥l 3,所以直线l 的斜率为-43,由斜截式可知l 的方程为y =-43x +2,即4x +3y -6=0.解法二设直线l的方程为x-2y+4+λ(x+y-2)=0,即(1+λ)x+(λ-2)y+4-2λ=0.又∵l⊥l3,∴3×(1+λ)+(-4)×(λ-2)=0,解得λ=11.∴直线l的方程为4x+3y-6=0.。

高考数学直线方程知识点总结

高考数学直线方程知识点总结

高考数学直线方程知识点总结高考数学直线方程是高中数学中的一项基础知识,也是高考数学试题中经常出现的考点。

直线方程的掌握程度直接影响到解题的准确性和速度。

下面将对高考数学直线方程的知识点进行总结,希望对你的学习有所帮助。

一、直线的一般式方程直线的一般式方程表示为Ax+By+C=0。

通过两个点P(x1, y1)和Q(x2, y2)的坐标可以确定一条直线的一般式方程。

当直线过点P(x1, y1)且斜率存在时,直线的一般式方程可以表示为y-y1=k(x-x1),其中k为直线的斜率。

二、直线的斜截式方程直线的斜截式方程表示为y=kx+b。

其中k为直线的斜率,b为直线在y轴上的截距。

通过直线的斜截式方程可以确定一条直线在平面直角坐标系中的位置。

三、直线的点斜式方程直线的点斜式方程表示为y-y1=k(x-x1)。

其中k为直线的斜率,(x1, y1)为直线上的一点。

通过直线的点斜式方程可以确定一条直线在平面直角坐标系中的位置。

四、直线的截距式方程直线的截距式方程表示为x/a+y/b=1。

其中a、b为直线在x轴和y轴上的截距。

通过直线的截距式方程可以确定一条直线在平面直角坐标系中的位置。

五、直线的平行和垂直关系1. 平行关系:两条直线的斜率相等时,两条直线平行。

2. 垂直关系:两条直线的斜率的乘积为-1时,两条直线垂直。

六、直线的截线式方程直线的截线式方程表示为x/a+y/b=1。

其中a、b为直线在x轴和y轴上的截距。

通过直线的截截式方程可以确定一条直线在平面直角坐标系中与坐标轴的交点。

七、直线的交点和距离1. 直线的交点:两条直线的交点可以通过联立方程求解得到。

2. 直线的距离:设直线L的一般式方程为Ax+By+C1=0,点P(x0, y0)到直线L的距离为d=|Ax0+B y0+C1|/√(A²+B²)。

八、直线的性质和常见问题1. 直线的斜率和方向角:直线的斜率k=tanθ,其中θ为直线的方向角。

九种直线和圆的方程的解题方法高考数学一轮复习(新高考专用原卷版)

九种直线和圆的方程的解题方法高考数学一轮复习(新高考专用原卷版)

九种直线和圆的方程的解题方法题型一:直接法求直线方程 一、单选题 1.(2022·全国·高三专题练习)直线l 经过两条直线10x y -+=和2320x y ++=的交点,且平行于直线240x y -+=,则直线l 的方程为( ) A .210x y --= B .210x y -+= C .220x y -+=D .220x y +-=2.(2022·全国·高三专题练习(文))若经过点(1,2)P --的直线与圆225x y +=相切,则该直线在y 轴上的截距为( ) A .52B .5C .52-D .5-3.(2022·浙江·高三专题练习)如图,圆1C 、2C 在第一象限,且与x 轴,直线:l y =均相切,则圆心1C 、2C 所在直线的方程为( )A .y =B .y x =C .y =D .y x =4.(2022·重庆·高三开学考试)若直线l 交圆22:420C x y x y +-+=于A 、B 两点,且弦AB 的中点为()1,0M ,则l 方程为( ) A .10x y --= B .10x y -+=C .10x y +-=D .10x y ++=二、多选题5.(2022·全国·高三专题练习)过点()2,3A 且在两坐标轴上截距相等的直线方程为( ) A .320x y -=B .230x y -=C .5x y +=D .1x y -=-6.(2022·全国·高三专题练习)已知(1,2)A ,(3,4)B -,(2,0)C -,则( ) A .直线0x y -=与线段AB 有公共点 B .直线AB 的倾斜角大于135︒C .ABC 的边BC 上的中线所在直线的方程为2y =D .ABC 的边BC 上的高所在直线的方程为470x y -+=7.(2022·全国·高三专题练习)已知直线l 过点P (-1,1),且与直线1:230l x y -+=以及x 轴围成一个底边在x 轴上的等腰三角形,则下列结论正确的是( ) A .直线l 与直线l 1的斜率互为相反数B .所围成的等腰三角形面积为1C .直线l 关于原点的对称直线方程为210x y +-=D .原点到直线l 8.(2021·全国·模拟预测)已知平面上的线段l 及点P ,任取l 上一点Q ,称线段PQ 长度的最小值为点P 到线段l 的距离,记作(,)d P l .已知线段1:(122)l x y =--≤≤,21:()20l x y =-≤≤,点P 为平面上一点,且满足12(,)(,)d P l d P l =,若点P 的轨迹为曲线C ,A ,B 是第一象限内曲线C 上两点,点(10)F ,且54AF =,BF = ) A .曲线C 关于x 轴对称 B .点A 的坐标为1,14⎛⎫ ⎪⎝⎭C .点B 的坐标为35,22⎛⎫⎪⎝⎭D .FAB 的面积为1916题型二:待定系数法求直线方程一、单选题 1.(2022·内蒙古·满洲里市教研培训中心模拟预测(理))已知抛物线C :22y px =的焦点F 的坐标为()20,,准线与x 轴交于点A ,点M 在第一象限且在抛物线C 上,则当MAMF取得最大值时,直线M A 的方程为( ) A .24y x =+ B .24y x =-- C .y =x +2D .2y x =--2.(2022·全国·高三专题练习)若直线1:2330l x y --=与2l 互相平行,且2l 过点(2,1),则直线2l 的方程为( ) A .3270x y +-= B .3240x y -+= C .2330x y -+=D .2310x y --=3.(2022·全国·高三专题练习)已知直线:20l ax y a +-+=在x 轴与y 轴上的截距相等,则实数a 的值是( ) A .1B .﹣1C .﹣2或1D .2或14.(2022·全国·高三专题练习)过点()1,2作直线l ,满足在两坐标轴上截距的绝对值相等的直线l 有( )条. A .1 B .2C .3D .4二、多选题5.(2021·重庆梁平·高三阶段练习)已知直线l 10y -+=,则下列结论正确的是( )A .直线l 的倾斜角是3πB .若直线m :10x +=,则l m ⊥ C.点到直线l 的距离是2D .过2)与直线l 40y --= 6.(2022·全国·高三专题练习)下列命题正确的是( )A .已知点3(2,)A -,(3,2)B --,若直线(1)1y k x =-+与线段AB 有交点,则34k ≥或4k ≤-B .1m =是直线1l :10mx y +-=与直线2l :()220m x my -+-=垂直的充分不必要条件C .经过点()1,1且在x 轴和y 轴上的截距都相等的直线的方程为20x y +-=D .已知直线1l :10ax y -+=,2l :10x ay ++=,R a ∈,和两点(0,1)A ,(1,0)B -,如果1l 与2l 交于点M ,则MA MB ⋅的最大值是1.7.(2022·全国·高三专题练习)下列说法错误..的是( ) A .若直线210a x y -+=与直线20x ay --=互相垂直,则1a =- B .直线sin 20x y α++=的倾斜角的取值范围是30,,)44[πππ⎡⎤⋃⎢⎥⎣⎦C .()()()()0,1,2,1,3,4,1,2A B CD -四点不在同一个圆上D .经过点()1,1且在x 轴和y 轴上截距都相等的直线方程为20x y +-=8.(2021·全国·高三专题练习)直线l 与圆22(2)2x y -+=相切,且l 在x 轴、y 轴上的截距相等,则直线l 的方程可能是A .0x y +=B .20x y +-=C .0x y -=D .40x y +-=三、填空题9.(2022·全国·高三专题练习(理))已知抛物线2:4C y x =的焦点为F ,过焦点F 的直线C 交于11(,)A x y ,22(,)B x y 两点,若21154x x -=,则直线AB 的方程为______. 10.(2020·黑龙江·哈师大附中高三期末(理))若过点()1,1A 的直线l 将圆()()22:324C x y -+-=的周长分为2:1两部分,则直线l 的斜率为___________.四、解答题11.(2022·全国·高三专题练习)已知圆C :()()22214x y -+-=,直线l :()()423360m x m y m ----=.(1)过点()4,2P -,作圆C 的切线1l ,求切线1l 的方程;(2)判断直线l 与圆C 是否相交,若相交,求出直线l 被圆截得的弦长最短时m 的值及最短弦长;若不相交,请说明理由.12.(2022·全国·高三专题练习)已知椭圆C 的中心在原点,焦点在x 轴上,左右焦点分别为1F ,2F ,且12||2F F ,点3(1,)2在椭圆C 上.(1)求椭圆C 的方程;(2)过1F 的直线l 与椭圆C 相交于,A B 两点,且2AF B ∆,求以2F 为圆心且与直线l 相切的圆的方程.题型三:已知两直线位置关系求参数值或范围一、单选题 1.(2022·四川凉山·三模(理))已知直线1:210l x y -+=,2:10l x ay +-=,且12l l ⊥,点()1,2P 到直线2l 的距离d =( )A BC D 2.(2022·辽宁·二模)己知直线:0l ax y a ++=,直线:0m x ay a ++=,则l m ∥的充要条件是( ) A .1a =- B .1a = C .1a =± D .0a =二、多选题3.(2021·重庆一中高三阶段练习)下列说法正确的有( )A .若m ∈R ,则“1m =”是“1l :330x my m -+=与2l :()20m x y m +--=平行”的充要条件B .当圆222110x y x +--=截直线l :()1y kx k =+∈R 所得的弦长最短时,1k =-C .若圆1C :222x y t +=+与圆2C :()()22349x y -++=有且仅有两条公切线,则()2,6t ∈D .直线l :tan 412022y x =-︒⋅+的倾斜角为139°4.(2021·广东·高三阶段练习)已知直线l 过点()1,2M 且与圆C :()2225x y -+=相切,直线l 与x 轴交于点N ,点P 是圆C 上的动点,则下列结论中正确的有( ) A .点N 的坐标为()3,0- B .MNP △面积的最大值为10C .当直线l 与直线10ax y -+=垂直时,2a =D .tan MNP ∠的最大值为43三、填空题5.(2022·陕西·安康市高新中学三模(理))若双曲线()2222:10,0x y C a b a b-=>>的一条渐近线l 与直线:20g ax by a ++=平行,则直线l ,g 间的距离为______. 6.(2022·天津·二模)在平面直角坐标系xOy 中,已知圆222:(62)4560C x y m x my m m +---+-=,直线l 经过点(1,2)-,若对任意的实数m ,直线l 被圆C 截得的弦长都是定值,则直线l 的方程为___________.四、解答题7.(2022·全国·高三专题练习)已知曲线32y x x =+-在点0P 处的切线1l 平行于直线410x y --=,且点0P 在第三象限.(1)求0P 的坐标;(2)若直线1l l ⊥,且l 也过切点0P ,求直线l 的方程.8.(2020·江苏·南京师大附中模拟预测)如图,在平面直角坐标系xOy 中,已知圆221:(4)1C x y ++=,圆222:(4)4C x y -+=,A 是第一象限内的一点,其坐标为(,)t t .(1)若1212AC AC →→⋅=-,求t 的值; (2)过A 点作斜率为k 的直线l ,①若直线l 和圆1C ,圆2C 均相切,求k 的值;①若直线l 和圆2C ,圆2C 分别相交于,A B 和,C D ,且AB CD =,求t 的最小值.题型四:求解直线的定点 一、单选题1.(2022·山东滨州·二模)已知直线()22:1(32)250l m m x m y m +++---=,圆22:20C x y x +-=,则直线l 与圆C 的位置关系是( )A .相离B .相切C .相交D .不确定2.(2022·陕西·榆林市教育科学研究所模拟预测(理))在平面直角坐标系xOy 中,已知圆22:1O x y +=,若曲线12y k x =-+上存在四个点()1,2,3,4i P i =,过动点Pi 作圆O 的两条切线,A ,B 为切点,满足32i iP A PB ⋅=,则k 的取值范围为( ) A .4,3∞⎛⎫-- ⎪⎝⎭B .4,03⎛⎫- ⎪⎝⎭C .(,7)(4,13)--∞--D .4(7,)1)30(,---二、多选题3.(2022·湖南·长沙市明德中学二模)已知O 为坐标原点,点()P a b ,在直线()40l kx y k --=∈R :上,PA PB ,是圆222x y +=的两条切线,A B ,为切点,则( ) A .直线l 恒过定点()04,B .当PAB △为正三角形时,OP =C .当PA PB ⊥时,k 的取值范围为()7⎡-∞+∞⎣,,D.当14PO PA ⋅=时,a b +的最大值为4.(2022·江苏盐城·三模)设直线l :()220mx y m m R --+=∈,交圆C :()()22349x y -+-=于A ,B 两点,则下列说法正确的有( )A .直线l 恒过定点()1,2B .弦AB 长的最小值为4C .当1m =时,圆C 关于直线l 对称的圆的方程为:()()22439x y -+-=D .过坐标原点O 作直线l 的垂线,垂足为点M ,则线段MC 5.(2022·重庆·高三阶段练习)在平面直角坐标系xOy 中,圆22:1O x y +=,若曲线12y k x =-+上存在四个点()1,2,3,4=i P i ,过动点i P 作圆O 的两条切线,A ,B 为切点,满足32i iP A PB ⋅=,则k 的值可能为( ) A .-7 B .-5 C .-2 D .–1三、双空题6.(2022·北京房山·二模)已知圆()()22:121C x y -+-=和直线():1l y k x =+,则圆心坐标为___________;若点P 在圆C 上运动,P 到直线l 的距离记为()d k ,则()d k 的最大值为___________. 四、填空题7.(2022·河南焦作·三模(文))已知()f x 是定义在R 上的奇函数,其图象关于点(2,0)对称,当[0,2]x ∈时,()f x =()(2)0f x k x --=的所有根的和为6,则实数k 的取值范围是______. 五、解答题8.(2022·全国·高三专题练习)O 为坐标原点,动点M 在椭圆22:12x C y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =. (1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ =,直线l 过点P 且垂直于OQ ,求证:直线过定点.9.(2022·全国·高三专题练习)在平面直角坐标系xoy 中,如图,已知椭圆22195x y +=的左、右顶点为A 、B ,右焦点为F ,设过点(,)T t m 的直线TA 、TB 与此椭圆分别交于点1(M x ,1)y 、2(N x ,2)y ,其中0m >,10y >,20y <(1)设动点P 满足()()13PF PB PF PB +-=,求点P 的轨迹方程;(2)设12x =,213x =,求点T 的坐标;(3)若点T 在点P 的轨迹上运动,问直线MN 是否经过x 轴上的一定点,若是,求出定点的坐标;若不是,说明理由.题型五:直线相关的对称问题一、单选题 1.(2022·全国·高三专题练习(理))集合M 在平面直角坐标系中表示线段的长度之和记为M .若集合(){}22,925A x y xy =≤+≤,(){},B x y y x m ==+,(){},2C x y y kx k ==+-则下列说法中不正确的有( )A .若AB ⋂≠∅,则实数m 的取值范围为{m m -≤ B .存在k ∈R ,使A C ⋂≠∅C .无论k 取何值,都有A C ⋂≠∅D .A C 的最大值为42.(2022·全国·高三专题练习)已知平面向量12312312,,,1,,60e e e e e e e e ︒====.若对区间1,12⎡⎤⎢⎥⎣⎦内的三个任意的实数123,,λλλ,都有11223312312e e e e e e λλλ++++,则向量1e 与3e 夹角的最大值的余弦值为( )A .B .C .D .二、多选题3.(2022·全国·模拟预测)已知直线:50l x y -+=,过直线上任意一点M 作圆()22:34C x y -+=的两条切线,切点分别为A ,B ,则有( )A .四边形MACB 面积的最小值为B .AMB ∠最大度数为60°C .直线AB 过定点15,22⎛⎫ ⎪⎝⎭D .AB 4.(2022·福建三明·模拟预测)已知直线l :10kx y k --+=与圆C :()()222216x y -++=相交于A ,B 两点,O 为坐标原点,下列说法正确的是( )A .AB 的最小值为B .若圆C 关于直线l 对称,则3k =C .若2ACB CAB ∠=∠,则1k =或17k =-D .若A ,B ,C ,O 四点共圆,则13k =-三、填空题5.(2022·全国·模拟预测)已知平面内点,05n n A ⎛⎫- ⎪⎝⎭,,05n n B ⎛⎫⎪⎝⎭()*n ∈N ,点n C 满足n n n n A C B C ⊥.设n C 到直线()3410x y n n +++=的距离的最大值为n a ,若数列1n a ⎧⎫⎨⎬⎩⎭的前n项和n S m <恒成立,则实数m 能取的最小值是______.6.(2022·天津·南开中学模拟预测)已知圆221:(1)(2)4C x y -+-=和圆222:(2)(1)2C x y -+-=交于,A B 两点,直线l 与直线AB 平行,且与圆2C 相切,与圆1C 交于点,M N ,则MN =__________.7.(2022·广东佛山·模拟预测)已知点1,0A ,()3,0B ,若2PA PB ⋅=,则点P 到直线l :340x y -+=的距离的最小值为____________.四、解答题8.(2022·安徽·蚌埠二中模拟预测(理))在直角坐标系xOy 中,曲线C 的参数方程为22224x t ty t ⎧=-⎨=+⎩(t 为参数). (1)求C 与坐标轴交点的直角坐标;(2)以坐标原点O 为极点,x 轴非负半轴为极轴建立极坐标系,曲线C 与坐标轴的交点是否共圆,若共圆,求出该圆的极坐标方程;若不共圆,请说明理由.9.(2022·安徽·寿县第一中学高三阶段练习(理))已知直线:sin cos 0l x y a θθ++=,圆()()221:324C x y a +--=,圆2222:340C x y a a +-+=(1)若4θ=,求直线l 的倾斜角;(2)设直线l 截两圆的弦长分别为12,d d ,当23πθ=时,求12d d ⋅的最大值并求此时a 的值.10.(2022·江西南昌·一模(理))已知面积为ABO (O 是坐标原点)的三个顶点都在抛物线()2:20E y px p =>上,过点(),2P p -作抛物线E 的两条切线分别交y 轴于M ,N 两点.(1)求p 的值;(2)求PMN 的外接圆的方程.题型六:几何法求圆的方程一、多选题 1.(2022·广东·模拟预测)三角形的外心、重心、垂心所在的直线称为欧拉线.已知圆O '的圆心在OAB 的欧拉线l 上,O 为坐标原点,点()4,1B 与点()1,4A 在圆O '上,且满足O A O B '⊥',则下列说法正确的是( )A .圆O '的方程为224430x y x y +--+=B .l 的方程为0x y -=C .圆O '上的点到l 的最大距离为3D .若点(),x y 在圆O '上,则x y -的取值范围是⎡-⎣二、填空题2.(2022·河北·模拟预测)圆心为(1,2)C -,且截直线350x y ++=所得弦长为方程为___________.3.(2022·河南·高三阶段练习(文))已知㮋圆1C :()2221024x y b b+=<<的离心率为12,1F 和2F 是1C 的左右焦点,M 是1C 上的动点,点N 在线段1F M 的延长线上,2MN MF =,线段2F N 的中点为P ,则1F P 的最大值为______.4.(2022·天津·高三专题练习)已知圆C 过点(0,1)(2,1)P Q 、两点,且圆心C 在x 轴上,经过点(1,0)M -且倾斜角为钝角的直线l 交圆C 于A ,B 两点,若0CA CB ⋅=(C 为圆心),则该直线l 的斜率为________.5.(2022·全国·高三专题练习)已知圆C :(x -2)2+y 2=2,直线l :y =k (x +2)与x 轴交于点A ,过l 上一点P 作圆C 的切线,切点为T ,若|P A ||PT |,则实数k 的取值范围是______________. 三、解答题6.(2022·内蒙古呼和浩特·二模(理))拋物线C 的顶点为坐标原点O ,焦点在x 轴上,直线l :2x =交C 于P ,Q 两点,且OP OQ ⊥.已知点M 的坐标为()4,0,M 与直线l 相切.(1)求抛物线C 和M 的标准方程;(2)已知点()8,4N ,点1A ,2A 是C 上的两个点,且直线1NA ,2NA 均与M 相切.判断直线12A A 与M 的位置关系,并说明理由.7.(2022·江苏·南京市第五高级中学一模)已知O 为坐标原点,抛物线E :22x py =(p >0),过点C (0,2)作直线l 交抛物线E 于点A 、B (其中点A 在第一象限),4OA OB ⋅=-且AC CB λ=(λ>0). (1)求抛物线E 的方程;(2)当λ=2时,过点A 、B 的圆与抛物线E 在点A 处有共同的切线,求该圆的方程8.(2022·全国·高三专题练习)已知平面直角坐标系上一动点(),P x y 到点()2,0A -的距离是点P 到点()10B ,的距离的2倍. (1)求点P 的轨迹方程:(2)若点P 与点Q 关于点()1,4-对称,求P 、Q 两点间距离的最大值;(3)若过点A 的直线l 与点P 的轨迹C 相交于E 、F 两点,()2,0M ,则是否存在直线l ,使BFM S △取得最大值,若存在,求出此时的方程,若不存在,请说明理由.题型七:待定系数法求圆的方程一、单选题 1.(2016·天津市红桥区教师发展中心高三学业考试)已知圆M 的半径为1,若此圆同时与 x轴和直线y = 相切,则圆M 的标准方程可能是( )A .22((1)1x y +-=B .22(1)(1x y -+-=C .22(1)(1x y -+=D .22((1)1x y ++=二、填空题2.(2022·四川眉山·三模(文))已知函数()()()2112819f x x x x =+--.过点()() 1,1A f --作曲线()y f x =两条切线,两切线与曲线()y f x =另外的公共点分别为B 、C ,则ABC 外接圆的方程为___________.3.(2022·安徽·高三阶段练习(文))已知抛物线2:8C x y =,过点(2,2)N -作抛物线C 的两条切线NA ,NB ,切点分别为点A ,B ,以AB 为直径的圆交x 轴于P ,Q 两点,则PQ =_______.4.(2022·天津·高三专题练习)已知抛物线C :24y x =的焦点为F ,抛物线C 上一点A 位于第一象限,且满足3AF =,则以点A 为圆心,AF 为半径的圆的方程为______. 三、解答题5.(2022·全国·高三专题练习)已知圆C 经过点A (0,2),B (2,0),圆C 的圆心在圆x 2+y 2=2的内部,且直线3x +4y +5=0被圆C 所截得的弦长为点P 为圆C 上异于A ,B 的任意一点,直线P A 与x 轴交于点M ,直线PB 与y 轴交于点N . (1)求圆C 的方程;(2)若直线y =x +1与圆C 交于A 1,A 2两点,求12BA BA →→; (3)求证:|AN |·|BM |为定值.6.(2021·江西·高三阶段练习(理))已知圆C 过点(2,1)-,(6,3),(2,3)-. (1)求C 的标准方程;(2)若点(,)P x y 在C 上运动,求34x y -的取值范围.7.(2021·全国·模拟预测)已知点()1,1P 在抛物线C :()220y px p =>上,过点P 作圆E :()()22220y x r r +=->的两条切线,切点为A ,B ,延长PA ,PB 交抛物线于C ,D .(1)当直线AB 抛物线焦点时,求抛物线C 的方程与圆E 的方程; (2)证明:对于任意()0,1r ∈,直线CD 恒过定点.8.(2019·云南·二模(理))已知O 是坐标原点,抛物线C :2x y =的焦点为F ,过F 且斜率为1的直线l 交抛物线C 于A 、B 两点,Q 为抛物线C 的准线上一点,且2AQB π∠=.(1)求Q 点的坐标;(2)设与直线l 垂直的直线与抛物线C 交于M 、N 两点,过点M 、N 分别作抛物线C 的切线1l 、2l ,设直线1l 与2l 交于点P ,若OP OQ ⊥,求MON ∆外接圆的标准方程.题型八:几何法求弦长 一、单选题1.(2022·全国·模拟预测)已知直线 l 过点(A ,则直线 l 被圆O :2212x y +=截得的弦长的最小值为( )A .3B .6C .D .2.(2022·全国·模拟预测)过点()2,2A ,作倾斜角为π3的直线l ,则直线l 被圆22:16O x y +=- )A .1B .2C .3D .6-二、多选题3.(2022·广东·模拟预测)已知圆221:(1)1C x y ++=和圆222:(4)4C x y -+=,过圆2C 上任意一点P 作圆1C 的两条切线,设两切点分别为,A B ,则( )A .线段ABB .线段ABC .当直线AP 与圆2C 相切时,原点O 到直线AP 的距离为65D .当直线AP 平分圆2C 的周长时,原点O 到直线AP 的距离为45三、填空题4.(2022·河北唐山·三模)直线:0+-=l x m 与圆22:480+--=C x y x 交于A 、B 两点,且6⋅=-CA CB ,则实数m =_______. 四、解答题5.(2022·全国·高三专题练习)已知点()()1,0M m m ->,不垂直于x 轴的直线l 与椭圆22:143x y C +=相交于()11,A x y ,()22,B x y 两点.(1)若M 为线段AB 的中点,证明:212112y y x x ->-; (2)设C 的左焦点为F ,若M 在①AFB 的角平分线所在直线上,且l 被圆224x y +=截得的弦长为l 的方程.6.(2021·湖北·武汉市第六中学高三阶段练习)已知圆O :x 2+y 2=2,过点A (1,1)的直线交圆O,且与x 轴的交点为双曲线E :2222x y a b-=1的右焦点F (c ,0)(c >2),双曲线E 的离心率为32.(1)求双曲线E 的方程; (2)若直线y =kx +m (k <0,k ≠m >0)交y 轴于点P ,交x 轴于点Q ,交双曲线右支于点M ,N 两点,当满足关系111||||||PM PN PQ +=时,求实数m 的值.7.(2022·全国·高三专题练习)已知椭圆()2222:10x y E a b a b+=>>0y -=过E 的上顶点A 和左焦点1F .(1)求E 的方程;(2)设直线l 与椭圆E 相切,又与圆22:4O x y +=交于M ,N 两点(O 为坐标原点),求OMN 面积的最大值,并求出此时直线l 的方程.题型九:利用点到直线的距离解决圆上点与直线上点的距离问题一、单选题 1.(2022·江苏扬州·模拟预测)已知直线():130l a x y -+-=,圆22:(1)5C x y -+=.则“32a =”是“l 与C 相切”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件2.(2022·重庆南开中学模拟预测)已知圆2220x y x a +-+=上仅存在一个点到直线30x +=的距离为1,则实数a 的值为( )A .-2B .C .-1D .03.(2022·全国·高三专题练习(文))圆O :222x y +=上点P 到直线l :3410x y +=距离的最小值为( )A 1B .2C .2D .04.(2022·安徽·寿县第一中学高三阶段练习(理))过直线34110x y -+=上一动点P 作圆22:2210C x y x y +--+=的两条切线,切点分别为,A B ,则四边形PACB 的面积的最小值为( )AB C .3D二、多选题5.(2022·湖南·长郡中学高三阶段练习)已知点P 在圆22:4O x y +=上,点()3,0A ,()0,4B ,则( )A .点P 到直线AB 的距离最大值为225B .满足AP BP ⊥的点P 有2个C .过点B 作圆O 的两切线,切点分别为M 、N ,则直线MN 的方程为1y =D .2PA PB +的最小值是6.(2022·重庆·二模)已知点(),P x y 是圆()22:14C x y -+=上的任意一点,直线()):1130l m x y m ++-=,则下列结论正确的是( )A .直线l 与圆C 的位置关系只有相交和相切两种B .圆C 的圆心到直线l C .点P 到直线43160++=x y 距离的最小值为2D .点P 可能在圆221x y +=上 三、填空题7.(2022·四川省泸县第二中学模拟预测(理))过直线0x y m --=上动点P 作圆2:(2)(3)1M x y -+-=的一条切线,切点为A ,若使得1PA =的点P 有两个,则实数m 的取值范围为___________.8.(2022·贵州遵义·三模(理))圆22:2O x y +=上点P 到直线3410:x y l +=距离的最小值为__________. 四、解答题9.(2022·广东茂名·模拟预测)已知抛物线2:4C y x =的焦点为F ,直线2y x =-与抛物线C 交于A ,B 两点. (1)求FAB 的面积;(2)过抛物线C 上一点Р作圆()22:34M x y -+=的两条斜率都存在的切线,分别与抛物线C 交于异于点P 的两点D ,E .证明:直线DE 与圆M 相切.。

高考数学直线方程典型例题解析

高考数学直线方程典型例题解析

高考数学直线方程典型例题解析一. 教学内容: 直线方程[知识点]1. 直线方程两点式:()()()方程推导:已知直线经过两点,,,求直线的l P x y P x y x x l 11122212≠方程?解:k y y x x =--2121代入点斜式()y y k x x -=-121()∴-=---y y y y x x x x 121211·∴--=--y y y y x x x x 121121注意:(1)特殊情况:x =x 1或y =y 1不能用两点式表示,即与x 轴平行或与x 轴垂直的直线不能用两点式表示,故平面上的直线与两点式方程不是一一对应。

(2)两点式变形形式:(y -y 1)(x 2-x 1)=(y 2-y 1)(x -x 1) 此方程与平面上的直线一一对应。

2. 直线方程的截距式:公式推导:已知直线与x 轴交于A (0,a )与y 轴交于B (b ,0),其中(a ≠0,b ≠0)求直线l 的方程。

解用两点式:y b x aa --=--000∴=-y b a x a∴+=x a yb1(截距式)注意:(1)特殊情况:当a =0或b =0时不能用上式,即过原点或与x 轴平行或与y 轴平行的直线不能用截距式。

(2)截距式是两点式的特殊情况。

3. 直线方程的一般式:方程形式:,、不同时为零。

Ax By C A B ++=0适用范围:平面直角坐标系中,任何一条直线都可由一般式表示出来。

4. 关于直线方程形式间的互化方法。

【典型例题】例1. 已知直线过点P (-5,-4),且与两坐标轴围成三角形面积为5,求直线l 的方程。

解:设直线的截距式方程为:x a yb +=1则有-+-==⎧⎨⎪⎪⎩⎪⎪541125a bab⇒==-a b 52,或,a b =-=524∴-+=--=直线方程为或852*******x y x y例2. 如图,已知直线l 经过点P (3,2),且与x 轴、y 轴的正半轴分别交于点A 、B 。

【高三】2021届高考数学难点突破复习 直线方程

【高三】2021届高考数学难点突破复习 直线方程

【高三】2021届高考数学难点突破复习直线方程【高三】2021届高考数学难点突破复习直线方程7.1线性方程一、高考考点:1.直线的倾角:。

范围是。

2.线性方程的五种形式:点斜型、截距型、两点型、斜截面型和一般型。

3.两条直线⑴平行:(2)垂直:4.直线的交角:(1)从直线到:⑵两条相交直线与的夹角:5.点到线的距离:⑴点到直线的距离公式:设点,直线到的距离为,则有.(2)两条平行线之间的距离公式。

如果距离是,那么就有6.两点p1(x1,y1)、p2(x2,y2)的距离公式:.7.固定比率分界点的坐标分数。

如果点P(x,y)被划分为有向线段,其中P1(x1,Y1),P2(X2,Y2)为中点坐标公式;三角形重心坐标公式。

8.两点钟二、例题例1直线+y+2=0的倾角范围为()a.[,)∪(,]b.[0,]∪[,π)c、 [0,]d.[变式训练1.若∈,则直线2cosx+3y+1=0的倾斜角的取值范围.例2假设直线通过该点并与线段Mn相交,直线斜率的取值范围为()a.b.c、 d。

变式训练2.已知点a(-2,4)、b(4,2),直线l过点p(0,-2)与线段ab相交,则直线l的斜率k的取值范围是.例如3,当m为值时,已知两条直线L1:(3+m)x+4Y=5-3m和L2:2x+(5+m)y=8,L1和L2:(1)相交?(2)平行?(3)垂直?已知直线L1:ax+2Y+6=0,直线L2:x+(A-1)y+A2-1=0,(1)试判断l1与l2是否平行;(2)当L1⊥ L2,求A的值三.训练反馈1.在以下四个命题中,正确的共同所有权()(1)坐标平面内的任何一条直线均有倾斜角和斜率(2)直线倾角的取值范围为:(3)若一条直线的斜率为,则此直线的倾斜角为(4)如果直线的倾角为,直线的斜率为a.0个b.1个c.2个d.3个2.如果两条直线的倾角分别为,则以下四个命题中正确的一个为()a.若,则两直线的斜率:b.若,则两直线的斜率:c、如果两条直线的斜率:,那么D.如果两条直线的斜率:,那么3、若直线在第一、二、三象限,则()a、不列颠哥伦比亚省。

高中数学知识点全总结(3篇)

高中数学知识点全总结(3篇)

高中数学知识点全总结一、直线与方程高考考试内容及考试要求:考试内容:1.直线的倾斜角和斜率;直线方程的点斜式和两点式;直线方程的一般式;2.两条直线平行与垂直的条件;两条直线的交角;点到直线的距离;考试要求:1.理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程;2.掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式能够根据直线的方程判断两条直线的位置关系;二、直线与方程课标要求:1.在平面直角坐标系中,结合具体图形,探索确定直线位置的几何要素;3.根据确定直线位置的几何要素,探索并掌握直线方程的几种形式(点斜式、两点式及一般式),体会斜截式与一次函数的关系;4.会用代数的方法解决直线的有关问题,包括求两直线的交点,判断两条直线的位置关系,求两点间的距离、点到直线的距离以及两条平行线之间的距离等。

要点精讲:1.直线的倾斜角:当直线l与x轴相交时,取x轴作为基准,x 轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角。

特别地,当直线l与x轴平行或重合时,规定α=0°.倾斜角α的取值范围:0°≤α<180°.当直线l与x轴垂直时,α=90°.2.直线的斜率:一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是k=tanα(1)当直线l与x轴平行或重合时,α=0°,k=tan0°=0;(2)当直线l与x轴垂直时,α=90°,k不存在。

由此可知,一条直线l的倾斜角α一定存在,但是斜率k不一定存在。

3.过两点p1(x1,y1),p2(x2,y2)(x1≠x2)的直线的斜率公式:(若x1=x2,则直线p1p2的斜率不存在,此时直线的倾斜角为90°)。

4.两条直线的平行与垂直的判定(1)若l1,l2均存在斜率且不重合:注:上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考直线方程题型归纳 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN高考直线方程题型归纳知识点梳理 1.点斜式方程设直线l 过点P 0(x 0,y 0),且斜率为k ,则直线的方程为y -y 0=k (x -x 0),由于此方程是由直线上一点P 0(x 0,y 0)和斜率k 所确定的直线方程,我们把这个方程叫做直线的点斜式方程.注意:利用点斜式求直线方程时,需要先判断斜率存在与否. (1)当直线l 的倾斜角α=90°时,斜率k 不存在,不能用点斜式方程表示,但这时直线l 恰与y 轴平行或重合,这时直线l 上每个点的横坐标都等于x 0,所以此时的方程为x =x 0.(2)当直线l 的倾斜角α=0°时,k =0,此时直线l 的方程为y =y 0,即y -y 0=0.(3)当直线l 的倾斜角不为0°或90°时,可以直接代入方程求解. 2.斜截式方程:如果一条直线通过点(0,b )且斜率为k ,则直线的点斜式方程为y =kx + b 其中k 为斜率,b 叫做直线y =kx +b 在y 轴上的截距,简称直线的截距. 注意:利用斜截式求直线方程时,需要先判断斜率存在与否.(1)并非所有直线在y 轴上都有截距,当直线的斜率不存在时,如直线x =2在y 轴上就没有截距,即只有不与y 轴平行的直线在y 轴上有截距,从而得斜截式方程不能表示与x 轴垂直的直线的方程.(2)直线的斜截式方程y =kx +b 是y 关于x 的函数,当k =0时,该函数为常量函数.x =b ;当k ≠0时,该函数为一次函数,且当k >0时,函数单调递增,当k <0时,函数单调递减.(3)直线的斜截式方程是直线的点斜式方程的特例。

要注意它们之间的区别和联系及其相互转化.3.直线的两点式方程若直线l 经过两点A (x 1,y 1),B (x 2,y 2),(x 1≠x 2),则直线l 的方程为112121y y x x y y x x --=--,这种形式的方程叫做直线的两点式方程.注意(1)当直线没有斜率(x 1=x 2)或斜率为零(y 1=y 2)时,不能用两点式112121y y x x y y x x --=--表示它的方程;(2)可以把两点式的方程化为整式(x 2-x 1)(y -y 1)= (y 2-y 1)(x -x 1),就可以用它来求过平面上任意两点的直线方程; 如过两点A (1,2),B (1,3)的直线方程可以求得x =1,过两点A (1,3),B (-2,3)的直线方程可以求得y =3.(3)需要特别注意整式(x 2-x 1)(y -y 1)= (y 2-y 1)(x -x 1)与两点式方程112121y y x x y y x x --=--的区别,前者对于任意的两点都适用,而后者则有条件的限制,两者并不相同,前者是后者的拓展。

4.直线的截距式方程若直线l 在x 轴上的截距是a ,在y 轴上的截距是b ,且a ≠0,b ≠0,则直线l 的方程为1x ya b +=,这种形式的方程叫做直线的截距式方程。

注意:(1)方程的条件限制为a ≠0,b ≠0,即两个截距均不能为零,因此截距式方程不能表示过原点的直线以及与坐标轴平行的直线;(2)用截距式方程最便于作图,要注意截距是坐标而不是长度;(3)要注意“截距相等”与“截距绝对值相等”是两个不同的概念,截距式中的截距可正、可负,但不可为零。

截距式方程的应用(1)与坐标轴围成的三角形的周长为:|a |+|b ;(2)直线与坐标轴围成的三角形面积为:S =1||2ab ;(3)直线在两坐标轴上的截距相等,则k =-1或直线过原点,常设此方程为x +y =a 或y =kx .5.直线方程的一般形式方程Ax +By +C =0(A 、B 不全为零)叫做直线的一般式方程. 注意(1).两个独立的条件可求直线方程:求直线方程,表面上需求A 、B 、C 三个系数,由于A 、B 不同时为零,若A ≠0,则方程化为0B Cx y A A++=,只需确定,B C A A 的值;若B ≠0,同理只需确定两个数值即可;因此,只要给出两个条件,就可以求出直线方程;(2).直线方程的其他形式都可以化成一般式,解题时,如果没有特殊说明应把最后结果化为一般式,一般式也可以化为其他形式。

(3).在一般式Ax +By +C =0(A 、B 不全为零)中,若A =0,则y =CB -,它表示一条与y 轴垂直的直线;若B =0,则Cx A=-,它表示一条与x 轴垂直的直线.6.直线方程的选择(1)待定系数法是求直线方程的最基本、最常用的方法,但要注意选择形式,一般地已知一点,可以待定斜率k ,但要注意讨论斜率k 不存在的情形,如果已知斜率可以选择斜截式待定截距等;(2)直线方程的几种特殊形式都有其使用的局限性,解题过程中要能够根据不同的题典型例题剖析题型1.直线的点斜式方程例1.一条直线经过点M (-2,-3),倾斜角α=135°,求这条直线的方程。

例2.求斜率为33,且分别满足下列条件的直线方程:(1)经过点M (3,-1);(2)在x 轴上的截距是-5.题型2.直线的斜截式方程例3.若直线Ax +By +C =0通过第二、三、四象限,则系数A 、B 、C 需满足条件( )(A )A 、B 、C 同号 (B )AC <0,BC <0 (C )C =0,AB <0 (D )A =0,BC <0例4.直线y =ax +b (a +b =0)的图象是( )例5.写出过下列两点的直线方程,再化成斜截式方程.(1)P 1(2,1),P 2(0,-3);(2)P 1(2,0),P 2(0,3)。

例6. 三角形的顶点是A (-5,0)、B (3,-3)、C (0,2),求这个三角形三边所在的直线方程.题型4.直线的截距式方程例7.已知直线的斜率为61,且和坐标轴围成面积为3的三角形,求该直线的方程。

例8.过点A (1,4)且纵截距与横截距的绝对值相等的直线共有的条数为( ) (A )1 (B )2 (C )3 (D )4题型5.直线的一般式方程例9.已知直线经过点A (6,-4),斜率为-34,求直线的点斜式和一般式方程.例10.把直线l 的方程x -2y +6=0化成斜截式,求出直线l 的斜率和它在x 轴与y 轴上的截距,并画图.题型6.定点问题 例11、已知直线所过定点的横、纵坐标分别是等差数列{}的第一项与第二项,若,数列的前n 项和为T n ,则T 10=( )A. B. C. D.题型7.对称问题例12、已知直线l1:y=2x+3,直线l2与l1关于直线y=-x对称,则直线l2的斜率为( ) A. B.- C.2 D.-2例13、直线关于直线对称的直线方程是() A. B.C. D.例14、直线2x-y-4=0上有一点P,它与两定点A(4,-1),B(3,4)的距离之差最大,则P点坐标是_________例15.(1)求点A(3,2)关于点B(-3,4)的对称点C的坐标;(2)求直线3x-y-4=0关于点P(2,-1)对称的直线l的方程;(3)求点A(2,2)关于直线2x-4y+9=0的对称点的坐标.题型8.最值问题例16、若点(m,n)在直线4x+3y-10=0上,则m2+n2的最小值是( )A.2 B.2 C.4 D.2例17、直线与直线互相垂直,则的最小值为()A.1 B.2 C.4 D.5例18.过点P(1,2)作直线l,交x,y轴的正半轴于A、B两点,求使△OAB面积取得最小值时直线l的方程.题型9.创新问题例19.已知两直线a1x+b1y+1=0和a2x+b2y+1=0的交点为P(2,3),求过两点Q1(a1,b1),Q2(a2,b2)的直线方程.例20、已知点A(-1,0),B(1,0),C(0,1),直线y=ax+b(a>0)将△ABC分割为面积相等的两部分,则b的取值范围是( )A.(0,1) B. C. D.例21、在平面直角坐标系中,定义d (P ,Q )=|x 1﹣x 2|+|y 1﹣y 2|为两点P (x 1,y 1),Q (x 2,y 2)之间的“折线距离”,在这个定义下,给出下列命题: ①到原点的“折线距离”等于1的点的集合是一个圆; ②到原点的“折线距离”小于等于2的点构成的区域面积为8;③到M (0,﹣2),N (0,2)两点的“折线距离”相等的点的轨迹方程是y=0; ④直线y=x+1上的点到N (0,2)的“折线距离”的最小值为1. 其中真命题有( ) A .1个 B .2个 C .3个 D .4个 例22、已知两定点M (-2,0),N (2,0),若直线上存在点P ,使得,则该称直线为“A 型直线”.给出下列直线: ①, ②, ③, ④,其中是“A 型直线”的序号是 .例23、已知直线l :(A ,B 不全为0),两点,,若,且,则( )A .直线l 与直线P 1P 2不相交B .直线l 与线段P 2 P 1的延长线相交C .直线l 与线段P 1 P 2的延长线相交D .直线l 与线段P 1P 2相交例24. 已知实数x ,y 满足y =x 2-2x +2(-1≤x ≤1).试求y +3x +2的最大值与最小值.强化训练1.下列说法中不正确的是( )(A )点斜式y -y 0=k (x -x 0)适用于不垂直于x 轴的任何直线 (B )斜截式y =kx +b 适用于不垂直x 轴的任何直线(C )两点式112121y y x x y y x x --=--适用于不垂直于坐标轴的任何直线 (D )截距式1x ya b+=适用于不过原点的任何直线2.直线3x -2y =4的截距式方程为( )(A )3142x y -= (B )11132x y -= (C )3142x y -=- (D )1423x y+=-3.过点(3,-4)且平行于x 轴的直线方程是 ;过点(5,-2)且平行于y 轴的直线方程是 。

4.过点P (1,3)的直线分别与两坐标轴交于A 、B 两点,若P 为AB 的中点,求直线的方程.5.已知△ABC 中,A (1,-4),B (6,6),C (-2,0),求:(1)△ABC 的平行于BC 边的中位线的一般式方程和截距式方程; (2)BC 边的中线的一般式方程,并化为截距式方程.6.如果AC <0,BC <0,那么直线Ax +By +C =0不通过( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限7.直线l 过点P (1,3),且与x ,y 轴正半轴所围成的三角形的面积等于6,则l 的方程是( )(A )3x +y -6=0 (B )x +3y -10=0 (C )3x -y =0 (D )x -3y +8=08.若直线(2m 2+m -3)x +(m 2-m )y =4m -1在x 轴上的截距为1,则实数m 是( )(A )1 (B )2 (C )-21 (D )2或-219.已知直线l :Ax +By +C =0(A 2+B 2≠0),点P (x 0,y 0)在l 上,则l 的方程可化为( )(A )A (x +x 0)+B (y +y 0)+C =0 (B )A (x +x 0)+B (y +y 0)=0 (C )A (x -x 0)+B (y -y 0)+C =0 (D )A (x -x 0)+B (y -y 0)=010.经过点(-3,-2),在两坐标轴上截距相等的直线方程为11.若点(a ,12)在过点(1,3)及点(5,7)的直线上,则a = . 12.、在平面直角坐标系中,是坐标原点,设函数的图象为直线,且与轴、轴分别交于、两点,给出下列四个命题:①存在正实数,使△的面积为的直线仅有一条;②存在正实数,使△的面积为的直线仅有两条;③存在正实数,使△的面积为的直线仅有三条;④存在正实数,使△的面积为的直线仅有四条.其中所有真命题的序号是 .13、在平面直角坐标系xOy中,设点、,定义:.已知点,点M为直线上的动点,则使取最小值时点M的坐标是.14(1)已知直线l:(2m2+m-3)x+(m2-m)y-4m+1=0,求m的取值范围#(2)如果ab>0,bc<0,那么直线ax-by-c必经过第几象限?。

相关文档
最新文档