初中数学资料-变量与函数教案
《19.1.1 变量与函数》教案、同步练习
第19章《19.1.1变量与函数》第19章《19.1.1变量与函数》售票数量x取定一个值时,票房收入y就随之确定一个值.例如早场x=150,则y=1500;•日场x=205,则y=2050;晚场x=310,则y=3100.问题(2)中,通过试验可以看出:每当重物质量m确定一个值时,弹簧长度L•就随之确定一个值.如果弹簧原长10cm,每1kg重物使弹簧伸长0.5cm.当m=10时,则L=15,当m=20时,则L=20.[师]很好,他说得非常正确.谢谢你.我们再来回顾活动二中的两个问题.看看它们中的变量又怎样呢?[生]活动二中的两个问题也都分别有两个变量.问题(1)中,很容易算出,当S=10cm2时,r=1.78cm;当S=20cm2时,r=2.52cm.•每当S取定一个值时,r随之确定一个值,它们的关系为r=S.问题(2)中,我们可以根据题意,每确定一个矩形的一边长,•即可得出另一边长,再计算出矩形的面积.如:当x=1cm时,则S=1×(5-1)=4cm2,当x=2cm时,则S=2×(5-2)=6cm2……它们之间存在关系S=x(5-x)=5x-x2.因此可知,•每当矩形长度x取定一个值时,面积S就随之确定一个值.[师]谢谢你,大家为他鼓掌.由以上回顾我们可以归纳这样的结论:上面每个问题中的两个变量互相联系,当其中一个变量取定一个值时,另一个变量随之就有唯一确定的值与它对应.其实,在一些用图或表格表达的问题中,也能看到两个变量间的关系.我们来看下面两个问题,通过观察、思考、讨论后回答:(1)下图是体检时的心电图.其中横坐标x表示时间,纵坐标y•表示心脏部位的生物电流,它们是两个变量.在心电图中,对于x的每个确定的值,y都有唯一确定的对应值吗?(2)在下面的我国人口数统计表中,年份与人口数可以记作两个变量x与y,•对于表中每个确定的年份(x),都对应着个确定的人口数(y)吗?中国人口数统计表年份人口数/亿1984 10.341989 11.061994 11.761999 12.52[生]我们通过观察不难发现在问题(1)的心电图中,对于x的每个确定值,y•都有唯一确定的值与其对应;在问题(2)中,对于表中每个确定的年份x,都对应着一个确定的人口数y.[师]一般地,在一个变化过程中,如果有两个变量x与y,并且对于x•的每个确定的值,y•都有唯一确定的值与其对应,•那么我们就说x•是自变量(independentvariable),y是x的函数(function).如果当x=a时,y=b,那么b•叫做当自变量的值为a时的函数值.据此我们可以认为:上节情景问题中时间t是自变量,里程s是t的函数.t=1时的函数值s=60,t=2时的函数值s=120,t=2.5时的函数值s=150,…,同样地,在以上心电图问题中,时间x是自变量,心脏电流y是x的函数;人口数统计表中,•年份x是自变量,人口数y是x的函数.当x=1999时,函数值y=12.52亿.从上面的学习中可知许多问题中的变量之间都存在函数关系.[活动一]活动内容设计:1.在计算器上按照下面的程序进行操作:填表:x 1 3 -4 0 101y显示的数y是输入的数x的函数吗?为什么?2.在计算器上按照下面的程序进行操作.下表中的x与y是输入的5个数与相应的计算结果:x 1 2 3 0 -1y 3 5 7 2 -1所按的第三、四两个键是哪两个键?y是x的函数吗?如果是,写出它的表达式(用含有x的式子表示y).设计意图:通过在计算器上操作及填表分析,进一步认识函数意义,经过对表中数据分析推理验证以至最后确定按键、写表达式逐步掌握列函数式的方法.教师活动:引导学生正确操作、分析思考、寻求理由证据,确定按键及函数关系式.学生活动:在教师引导下,1.经历操作、填表、分析、推理、确认等一系列过程,更加深刻理解函数意义.2.通过观察、讨论、分析、猜想、验证、确立等一系列过程,进一步掌握建立函数关系式的办法.活动结论:1.从计算结果完全可以看出,每输入一个x的值,操作后都有一个唯五的y值与其对应,所以在这两个变量中,x是自变量、y是x的函数.2.从表中两行数据中不难看出第三、四按键是1这两个键,且每个x•的值都有唯一一个y值与其对应,所以在这两个变量中,x是自变量,y是x的函数.关系式是:y=2x+1《19.1.1变量与函数》同步练习一、单选题(共15题;共30分)1、物体从足够高的地方做自由落体运动,下降的高度h与时间t满足关系式h=gt2则3秒后物体下落的高度是(g取10)()A、15米B、30米C、45米D、60米2、下列关系式中,变量x=-1时,变量y=6的是()A、y=3x+3B、y=-3x+3C、y=3x–3D、y=-3x–33、如图,矩形的长和宽分别为8cm和4cm,截去一个宽为x的小矩形(阴影部分)后余下另一个矩形的面积S与x之间的关系可表示为().A、S=4xB、S=4(8-x)C、S=8(4-x)D、S=8x4、要画一个面积为20cm2的长方形,其长为xcm,宽为ycm,在这一变化过程中,常量与变量分别为( )。
初中函数与变量教案
初中函数与变量教案教学目标:1. 理解变量、常量、函数的概念及其关系。
2. 能够区分实例中的常量与变量,自变量与函数。
3. 能够用函数式表示实际问题中的数量关系。
4. 培养学生在具体情境中感悟函数概念的能力。
教学重点:1. 变量、常量、函数的概念。
2. 函数式表示实际问题中的数量关系。
教学难点:1. 对函数概念的理解。
2. 自变量与函数的确定。
教学准备:1. 教学课件或黑板。
2. 实际问题情境的例子。
教学过程:一、导入(5分钟)1. 引导学生回顾已学的变量、常量的概念。
2. 提问:同学们,你们认为什么是变量?什么是常量?它们之间有什么关系?二、新课讲解(15分钟)1. 讲解变量的概念,解释变量就是可以改变的数据。
2. 讲解常量的概念,解释常量是固定不变的数据。
3. 引入函数的概念,解释函数是一种关系,其中每个输入值(自变量)都对应唯一的输出值(函数值)。
4. 通过实际问题情境的例子,让学生区分实例中的常量与变量,自变量与函数。
三、课堂练习(10分钟)1. 让学生独立完成课本上的练习题。
2. 引导学生通过练习题加深对变量、常量、函数概念的理解。
四、课堂小结(5分钟)1. 让学生总结本节课所学的内容,包括变量、常量、函数的概念及其关系。
2. 强调函数式表示实际问题中的数量关系的重要性。
五、作业布置(5分钟)1. 布置课后作业,要求学生巩固本节课所学的内容。
教学反思:本节课通过实际问题情境的例子,让学生在具体情境中感悟函数概念的意义,了解常量与变量的含义,能分清实例中的常量与变量,了解自变量与函数的意义。
在教学过程中,要注意引导学生观察、分析实际问题,从具体到抽象,建立函数的模型。
同时,要关注学生的学习情况,及时解答学生的疑问,确保学生能够掌握变量、常量、函数的概念及其关系。
初中数学《变量与函数》教案
初中数学《变量与函数》教案一、教学目标1. 让学生理解变量的概念,能够识别生活中的变量。
2. 让学生掌握函数的定义,能够判断生活中的函数关系。
3. 培养学生运用数学知识解决实际问题的能力。
二、教学内容1. 变量:定义、分类及表示方法。
2. 函数:定义、表示方法及生活中的函数关系。
三、教学重点与难点1. 重点:变量与函数的概念及表示方法。
2. 难点:函数关系的判断及应用。
四、教学方法1. 采用情境教学法,结合生活实例讲解变量与函数的概念。
2. 利用数形结合法,引导学生理解函数的表示方法。
3. 运用小组合作学习,培养学生的团队协作能力。
五、教学过程1. 导入:通过展示生活中的一些变化现象,引导学生认识变量。
2. 新课导入:介绍变量的定义、分类及表示方法。
3. 案例分析:分析生活中的函数关系,让学生理解函数的概念。
4. 课堂练习:让学生自主完成一些关于变量与函数的练习题。
六、教学评价1. 评价目标:检查学生对变量与函数概念的理解,以及能否运用所学知识解决实际问题。
2. 评价方法:课堂问答、练习题、小组讨论、课后作业等。
3. 评价内容:a. 学生能否正确识别生活中的变量。
b. 学生能否理解并运用函数的定义。
c. 学生能否判断生活中的函数关系。
d. 学生能否运用数学知识解决实际问题。
七、教学资源1. 教学课件:展示生活中的变化现象,图片、图表等。
2. 练习题:提供一些关于变量与函数的练习题,包括选择题、填空题、解答题等。
3. 小组讨论材料:提供一些实际问题,让学生在小组内进行讨论和分析。
八、教学进度安排1. 第1周:介绍变量概念,让学生认识生活中的变量。
2. 第2周:讲解函数的定义,让学生理解函数关系。
3. 第3周:练习题讲解,巩固所学知识。
4. 第4周:小组合作学习,解决实际问题。
九、课后作业1. 复习本节课的主要内容,整理笔记。
2. 完成练习题,巩固所学知识。
3. 思考生活中的函数关系,尝试运用所学知识解决实际问题。
变量与函数教学设计-经典教学教辅文档
19.1.1变量与函数教学设计(第一课时)教学目标知识与技能1.认识变量、常量.2.学会用含一个变量的代数式表示另一个变量.过程与方法1.经历观察、分析、考虑等数学活动过程,发展合情推理,有条理地、清晰地阐述本人观点.2.逐渐感知变量间的关系.情感与价值观要求1.积极参与数学活动,对数学产生好奇心和求知欲.2.构成实事求是的态度和独立考虑的习气.教学重点1.认识变量、常量2.用式子表示变量间关系教学难点用含有一个变量的式子表示另一个变量教学方法精心设疑合作交流自主探求教具预备多媒体课件课时安排1课时教学过程活动一图片欣赏开头语:为了更深入地认识千变万化的世界,在这一章里,我们将学习有关一种量随另一种量变化的知识,共同见证事物变化的规律.活动二提出成绩,创设情境成绩1:一辆汽车以60千米/小时的速度匀速行驶,行驶里程为s千米.•行驶工夫为t小时.1.请同学们根据题意填写下表:2.在以上这个过程中,变化的量是________.没有变化的量是__________.3.试用含t的式子表示s.成绩2:每张电影票的售价为10元,如果早场售出票150张,日场售出205张,晚场售出310张,三场电影票的票房支出各多少元?若设一场电影售出票x张,票房支出为y元,怎样用含x的式子表示y?成绩3:圆形水波慢慢地扩大,在这一过程中,当圆的半径r 分别为10cm,20cm,30cm 时,圆的面积S分别为多少?怎样用半径r来表示面积S?成绩4:用10 m长的绳子围一个矩形,当矩形的一边长x分别为3m,3.5m,4m,4.5m时,它的邻边长y分别为多少?如何用一边长x来表示它的邻边长y?先生合作交流自主完成.结论:1.S=60t; 2.y=10x; 3.S=兀r2;4. y=5–x.成绩升华发问1:分别指出考虑(1)~(4)的变化过程中所触及的量,在这些量中哪些量是发生了变化的?哪些量是一直不变的?发问2:在考虑(1)~(4)的变化过程中,当一个量发生变化时,另一个量能否也随之发生变化?是哪一个量随哪一个量的变化而变化?发问3:在考虑(1)~(4)的变化过程中,发生变化的量无量制条件吗?如何限制?活动三构成概念变量(variable):在一个变化过程中,数值发生变化的量为变量。
初中数学函数教案15篇
初中数学函数教案初中数学函数教案15篇作为一位无私奉献的人民教师,很有必要精心设计一份教案,教案有助于顺利而有效地开展教学活动。
那么大家知道正规的教案是怎么写的吗?下面是小编帮大家整理的初中数学函数教案,欢迎大家分享。
初中数学函数教案1这节课的内容是义务教育课程标准教材数学九年级下册锐角三角函数——正弦。
我将从以下几个方面来就本节课的教学进行解说。
一、教材分析教材所处的地位及作用:本章是在学生已学了一次函数、反比例函数、二次函数以及相似形的基础上进行的,它反映的不是数值与数值的对应关系,而是角度与数值之间的对应关系,这对学生来说是个全新的领域。
一方面,这是在学习了直角三角形两锐角关系、勾股定理等知识的基础上,对直角三角形边角关系的进一步深入和拓展;另一方面,又为解直角三角形等知识奠定了基础.二、学情分析1、九年级学生的思维活跃,接受能力较强,具备了一定的数学探究活动经历和应用数学的意识。
2、学生已经掌握直角三角形中各边和各角的关系,能灵活运用相似图形的性质及判定方法解决问题,有较强的推理证明能力,这为顺利完成本节课的教学任务打下了基础,学生要得出锐角与比值之间的对应关系,这种对应关系不同于以前学习的数值与数值之间的对应关系,因此对学生而言建立这种对应关系有一定困难。
三、教学目标1、理解锐角正弦的'意义,了解锐角与锐角正弦值之间的一一对应关系,进一步体会函数的变化与对应的思想;2、会根据锐角正弦的意义解决直角三角形中已知边长求锐角正弦,以及已知正弦值和一边长求其它边长的问题;3、经历锐角正弦意义的探索过程,体会从特殊到一般的研究问题的思路和数形结合的思想方法;4、经历由实际问题引发出对正弦函数讨论的过程,培养学生观察生活、发现问题、研究问题的能力。
四、重点、难点1、重点:锐角正弦的定义及应用;2、难点:理解锐角正弦是锐角与边的比值之间的函数关系.3、难点突破方法:由特殊角入手开展讨论,自然过度到一般角;从具体情境抽象出正弦的概念,并结合多个实例从不同角度深化理解。
初中数学《变量与函数》教案
初中数学《变量与函数》教案一、教学目标1. 让学生理解变量的概念,能够识别常量和变量。
2. 让学生掌握函数的定义,能够判断两个变量之间的函数关系。
3. 培养学生运用函数解决实际问题的能力。
二、教学内容1. 常量与变量的概念。
2. 函数的定义及其相关性质。
3. 函数关系的判断。
三、教学重点与难点1. 教学重点:常量与变量的概念,函数的定义及其性质。
2. 教学难点:函数关系的判断。
四、教学方法1. 采用问题驱动法,引导学生主动探究常量与变量、函数的关系。
2. 利用实例分析,让学生直观理解函数的概念。
3. 运用小组合作学习,培养学生解决实际问题的能力。
五、教学过程1. 导入新课:通过展示生活中常见的变化现象,引导学生认识常量和变量。
2. 自主学习:让学生通过教材自主学习常量与变量的概念,并尝试判断生活中的常量和变量。
3. 课堂讲解:讲解常量与变量的概念,并通过实例让学生理解函数的定义。
4. 课堂练习:设计相关练习题,让学生判断生活中的函数关系。
5. 拓展应用:让学生运用函数解决实际问题,如计算购物时的折扣等。
6. 总结反馈:对本节课的内容进行总结,收集学生反馈,为后续教学做好准备。
六、教学评价1. 课后作业:布置有关常量、变量和函数的练习题,要求学生在课后进行自主复习和巩固。
2. 课堂表现:观察学生在课堂上的参与程度、提问回答以及合作学习的表现,了解学生的学习情况。
3. 实际问题解决:评估学生在解决实际问题时的应用能力,如购物折扣、行程规划等。
七、教学拓展1. 介绍函数在现实生活中的应用,如经济学中的需求函数、物理学中的速度与时间函数等。
2. 引导学生探究函数的图像,如直线、曲线等,并了解它们的特点和应用。
八、教学资源1. 教材:提供《变量与函数》的相关章节内容,供学生自主学习和参考。
2. 实例素材:收集生活中的实例,用于讲解和展示函数的应用。
3. 练习题库:准备不同难度的练习题,用于课堂练习和课后巩固。
初中数学《变量与函数》教案
初中数学《变量与函数》教案第一章:认识变量1.1 引入变量概念通过现实生活中的实例,如温度、身高、体重等,引导学生理解变量的含义。
展示变量表示方法,如x表示温度,y表示身高。
1.2 变量之间的关系引导学生观察实例中变量之间的关系,如温度升高,冰融化等。
让学生通过图表或数学表达式表示变量之间的关系。
第二章:常量与变量2.1 引入常量概念解释常量的含义,即不随时间或条件改变的具体数值。
举例说明常量,如圆周率π、地球的重力加速度g等。
2.2 常量与变量的区别引导学生理解常量与变量的区别,如π是一个常量,而圆的半径可以变化。
通过实际问题让学生区分常量和变量。
第三章:函数的概念3.1 引入函数概念解释函数的定义,即一个变量依赖于另一个变量的值。
举例说明函数,如温度与冰的融化量之间的关系。
3.2 函数的表示方法介绍函数的表示方法,包括表格、解析式和图像等。
让学生通过不同方法表示给定的函数关系。
第四章:函数的性质4.1 函数的增减性解释函数的增减性,即函数值随自变量变化的趋势。
通过图表和实际问题让学生判断函数的增减性。
4.2 函数的奇偶性解释函数的奇偶性,即函数关于原点对称的性质。
让学生通过图像和数学表达式判断函数的奇偶性。
第五章:函数的图像5.1 函数图像的绘制介绍绘制函数图像的方法,如使用描点法或图像绘制工具。
让学生通过绘制函数图像来理解函数的性质。
5.2 函数图像的解读引导学生如何解读函数图像,如确定函数的增减区间、极值等。
通过实际问题让学生运用函数图像解决数学问题。
第六章:一次函数6.1 一次函数的定义解释一次函数的概念,即函数的最高次项为一次的线性函数。
给出一次函数的一般形式y = kx + b,解释k 和b 的意义。
6.2 一次函数的图像描述一次函数图像的特点,如直线和斜率。
让学生通过绘制一次函数图像来理解斜率和截距对图像的影响。
第七章:二次函数7.1 二次函数的定义解释二次函数的概念,即函数的最高次项为二次的函数。
变量与函数的优秀教案
变量与函数的优秀教案
一、理解变量与函数
1.什么是变量?
变量是一个特殊的存储单元,它可以存储一个值,通常用来存储程序
运行时可能变化的值。
变量名用来表示变量的内存中的地址,使得程序可
以引用这个变量。
当程序运行时,变量名会被相应的值所取代。
2.什么是函数?
函数是一种代码的抽象,它是用来执行一些特定任务的代码块。
函数
由函数名、参数列表和函数体组成,可以在程序中被多次调用,可以接受
参数并返回一个结果。
函数可以使得一段程序的代码更加清晰与可维护,
代码的可重用性得以提升。
二、变量与函数的基本使用
1.如何创建变量?
变量的创建需要先定义变量的类型和变量名,然后给变量赋予初始值,使得它可以在程序中使用。
例如:
int x = 0; //声明一个变量x,类型为int,初始值为0
2.如何创建函数?
函数的创建需要先定义函数的返回类型、函数名和参数列表,然后定
义函数的实现,使得它可以在程序中使用。
例如:
int add(int x, int y)
return x + y; //将参数x和y相加后返回结果
三、变量与函数的进阶用法
1.作用域
变量的作用域指的是变量的定义的可见范围,即在程序中变量可以使用的有效范围。
C++分为全局变量、局部变量和模板变量等,根据作用域的不同变量可以使用在程序的不同地方。
八年级数学下册《变量与函数》教案、教学设计
5. **分层教学**:针对学生个体差异,我会设计不同难度的练习题,既保证基础知识的巩固,又提供挑战性的问题,激发学有余力学生的学习兴趣。
4.部分学生对数学学习缺乏兴趣,教师应结合生活实际,设计有趣的问题情境,激发学生的学习兴趣和积极性。
5.学生在团队合作中沟通与协作能力有待加强,教师应注重引导学生在讨论、交流中相互学习,共同提高。
三、教学重难点和教学设想
(一)教学重难点
1.理解并掌握函数的定义,特别是函数的单值性、对应关系等核心概念。
3.挑战练习:针对学有余力的学生,设计一些具有挑战性的题目,激发他们的学习兴趣,提高他们的数学素养。
(五)总结归纳
在这一环节中,我将引导学生对所学知识进行总结归纳,帮助他们形成完整的知识体系。
1.学生自评:让学生回顾本节课的学习过程,反思自己的学习方法和效果,找出不足之处。
2.教师总结:我会对本节课的重点知识进行梳理,强调函数的定义、表示方法和性质等方面的要点。
2.结合实际问题,引导学生运用数学建模方法,将问题转化为数学问题,培养学生解决问题的能力。
3.通过小组合作学习,让学生在讨论、交流中互相启发,共同提高,培养团队合作意识。
4.利用现代教育技术手段,如几何画板、数学软件等,帮助学生直观地理解函数的性质,提高数学思维能力。
5.设计丰富的课堂练习,巩固所学知识,提高学生的运算能力和逻辑思维能力。
八年级数学下册《变量与函数》教案、教学设计
一、教学目标
(一)知识与技能
1.理解变量的概念,能够识别实际问题中的变量,并描述变量之间的关系。
《变量与函数》教案
《变量与函数》教案第一章:变量的概念与分类1.1 引入变量通过现实生活中的实例引入变量的概念,让学生理解变量表示事物变化的量。
讲解变量可以用字母表示,如x, y等。
1.2 变量分类讲解常量和变量的区别,常量是固定不变的数,变量是可以改变的数。
讲解自变量和因变量的概念,自变量是独立变量,因变量是依赖于自变量的变量。
第二章:函数的定义与性质2.1 函数的定义讲解函数的概念,函数是一种关系,将一个集合(定义域)中的每个元素对应到另一个集合(值域)中的元素。
讲解函数的表示方法,如解析式、表格、图象等。
2.2 函数的性质讲解函数的单调性,即函数值随自变量变化的趋势。
讲解函数的奇偶性,即函数关于原点的对称性。
讲解函数的周期性,即函数值随自变量变化的周期性。
第三章:一次函数与二次函数3.1 一次函数讲解一次函数的定义,一次函数是形式为y=kx+b的函数,其中k和b是常数。
讲解一次函数的图象特征,如直线、斜率等。
3.2 二次函数讲解二次函数的定义,二次函数是形式为y=ax^2+bx+c的函数,其中a、b、c是常数且a≠0。
讲解二次函数的图象特征,如抛物线、开口方向、顶点等。
第四章:函数的图像4.1 函数图像的绘制讲解如何绘制函数的图像,如利用描点法、直线平移法等。
讲解如何利用函数图像分析函数的性质,如单调性、奇偶性、周期性等。
4.2 函数图像的变换讲解如何对函数图像进行平移,如向上平移、向下平移、向左平移、向右平移等。
讲解如何对函数图像进行缩放,如水平缩放、垂直缩放等。
第五章:函数的应用5.1 函数在实际问题中的应用讲解如何利用函数解决实际问题,如成本问题、利润问题等。
讲解如何建立函数模型,即将实际问题转化为函数问题。
5.2 函数在数学问题中的应用讲解如何利用函数解决数学问题,如求解函数的零点、最值等。
讲解如何利用函数性质解决数学问题,如证明不等式等。
第六章:函数的极限与连续性6.1 函数的极限讲解函数在某一点邻域内的极限概念,即当自变量趋近于该点时,函数值的趋近行为。
初中数学《变量与函数》教案
初中数学《变量与函数》教案第一章:变量1.1 引入变量概念解释变量的含义:变量是数学中用来表示可以取不同值的量。
举例说明:温度、身高、年龄等。
1.2 变量分类说明常量和变量的区别:常量是在数学表达式中固定不变的量,变量是可以取不同值的量。
举例说明:π是一个常量,而圆的半径是一个变量。
1.3 变量表示方法介绍变量的表示方法:使用字母或符号来表示变量。
举例说明:使用x表示未知数,y表示函数的输出值等。
第二章:函数的概念2.1 引入函数概念解释函数的定义:函数是一种关系,其中一个变量(自变量)依赖于另一个变量(因变量)。
举例说明:y = 2x + 3 是一个函数,其中x是自变量,y是因变量。
2.2 函数的表示方法介绍函数的表示方法:使用函数表达式、表格、图像等。
举例说明:用函数表达式表示y = 2x + 3,用表格表示输入和输出的对应关系,用图像表示函数的图像。
第三章:函数的性质3.1 函数的单调性解释函数的单调性:函数在某个区间内是单调递增或单调递减的。
举例说明:函数y = 2x + 3在整个实数范围内是单调递增的。
3.2 函数的奇偶性解释函数的奇偶性:函数关于原点对称的性质。
举例说明:函数y = x^2是一个偶函数,而函数y = -x是一个奇函数。
3.3 函数的周期性解释函数的周期性:函数值每隔一个固定时间间隔重复的性质。
举例说明:函数y = sin(x)是一个周期函数,其周期为2π。
第四章:函数的图像4.1 函数图像的画法介绍函数图像的画法:使用平面直角坐标系来绘制函数的图像。
举例说明:绘制函数y = x^2的图像,展示抛物线的形状。
4.2 函数图像的性质解释函数图像的性质:包括开口方向、对称轴、顶点等。
举例说明:函数y = x^2的图像开口向上,对称轴是y轴,顶点是原点。
4.3 函数图像的变换介绍函数图像的变换:包括平移、缩放、翻转等。
举例说明:函数y = (x 2)^2的图像是在函数y = x^2的图像基础上向右平移2个单位。
变量与函数教案初中
变量与函数教案初中教学目标:1. 让学生通过丰富的实例,理解函数的概念,掌握常量与变量的含义。
2. 培养学生分析问题和解决问题的能力,提高学生对数学的兴趣。
教学重点:函数概念的形成过程。
教学难点:正确理解函数的概念。
教学准备:每个小组准备一副弹簧秤和挂件,一根绳子。
教学过程:一、导入(5分钟)1. 引导学生思考:什么是常量?什么是变量?2. 举例说明:汽车以60千米/小时的速度匀速行驶,行驶里程为s千米,行驶时间为t小时。
常量是什么?变量是什么?二、新课讲解(15分钟)1. 通过弹簧秤的实验,让学生观察弹簧秤的读数变化,引导学生发现变量之间的关系。
2. 引导学生思考:自变量和函数是什么?如何表示它们?3. 举例说明:每张电影票的售价为10元。
早场售出150张,日场售出205张,晚场售出310张。
票房收入如何表示?三、动手实践(15分钟)1. 让学生分组进行实验,测量不同半径的圆的面积,引导学生发现圆面积和半径之间的关系。
2. 学生分组讨论,尝试用含圆面积S的式子表示圆半径r。
四、课堂小结(5分钟)1. 回顾本节课所学内容,让学生总结常量、变量、自变量和函数的概念。
2. 强调函数的概念,让学生理解函数是一种变量之间的关系。
五、课后作业(5分钟)1. 完成课后练习题,巩固所学知识。
2. 寻找生活中的函数实例,下节课分享。
教学反思:本节课通过丰富的实例,让学生在具体情境中领悟函数的概念,了解常量与变量的含义。
学生在动手实践的过程中,积极参与,发现并理解变量之间的关系。
在课堂小结环节,学生能够较好地总结出常量、变量、自变量和函数的概念。
但在教学过程中,仍有个别学生对函数的概念理解不够深入,需要在今后的教学中加强引导和讲解。
变量与函数的优秀教案
变量与函数的优秀教案【篇一:肖春梅《变量与函数》教学设计】“国培计划(2014)” ——示范性教师工作坊高端研修项目教学设计表【篇二:变量与函数教学设计】变量与函数教学设计教学设计思想:本节课的主要内容是变量和常量以及函数的概念。
在现实世界中,到处都有变化的量,函数是表达现实世界中数量之间变化规律的一种数学模型。
本节课是用变化的观点研究量,需要学生在解决问题的活动中亲身感受;在对变量有了初步认识的基础上,探索两个变量之间的依赖关系——函数,它是两个变量之间关系的积累和升华,是对问题背景的抽象与概括。
教学目标:知识与技能:知道什么是常量、变量;叙述函数的概念;能确定简单的整式、分式及实际问题中的函数自变量的取值范围。
过程与方法:经历由实际问题抽象出函数模型,感受变量与函数是刻画现实生活中许多变化事物的一种重要的数学工具;学习本节要注意自变量与因变量的意义。
情感态度价值观:通过观察和思考“神州”五号飞船返回过程中的相关记录,意识到知识来源于生活,激发学习兴趣。
教学重点:函数的概念、自变量的取值范围。
教学难点:函数的概念。
教学安排: 1课时。
教具:直尺、计算器。
教学过程:一、引入师:大家还记得“神舟”五号飞船嘛,现在我们就那它举一例。
2003年10月15日,我国“神舟”五号载人飞船发射成功。
绕地球飞行14圈后,飞船返回舱于10月16日6时23分顺利返回地面。
下面是“神舟”五号飞船返回舱返回过程中的相关记录:师:看上面的数据,回答下面的问题(1)“神舟”五号飞船返回舱返回地面共用多少分钟?在这段时间里,返回舱的高度共下降了多少米?(2)在这段时间里,飞船返回舱降落的速度最慢?(3)上表中涉及了哪几个量?这几个量的值在这一变化过程中是保持不变还是不断变化?[教学建议]分析“神舟”五号飞船返回舱降落的过程,应在观察表格的基础上先通过自己动手计算、动脑思考完成,然后再通过合作交流形成统一的认识。
引导学生借助计算器列出表格:学生得出结论。
变量与函数第一课时教案doc初中数学
变量与函数第一课时教案doc初中数学教师学科数学年级八年级课题§17.1.1 变量与函数〔1〕时间2005年3月17日三维目标知识与技能(1) 把握常量和变量、自变量和因变量〔函数〕差不多概念;(2)了解表示函数关系的三种方法:解析法、列表法、图象法, 并会用解析法表示数量关系.(2)了解表示函数关系的三种方法: 解析法、列表法、图象法,并会用解析法表示数量关系.(2)了解表示函数关系的三种方法:解析法、列表法、图象法,并会用解析法表示数量关系.过程与方法(1) 通过实际咨询题, 引导学生直观感知, 领会函数差不多概念的意义;(2.引导学生联系代数式和方程的相关知识,连续探究数量关系,增强数学建模意识,列出函数关系式.(2) 引导学生联系代数式和方程的相关知识, 连续探究数量关系, 增强数学建模意识, 列出函数关系式.(2) 引导学生联系代数式和方程的相关知识,连续探究数量关系,增强数学建模意识,列出函数关系式.情感、态度与价值观经历对有关的图形进行观看、分析、观赏、交流等活动, 进展初步的审美能力, 增强对图形观赏的意识。
教学重点函数的定义以及运用方程的方法列出具体实例中的两个变量间的关系.教学难点对函数概念的明白得, 讲出生活实际中有函数关系的量的实例.关键点函数差不多概念教具学具课件、刻度尺等教学环节知识内容教师活动学生活动设计意图一、回忆与探究在学习与生活中, 经常要研究一些数量关系, 先看下面的咨询题. 〔让B层的学生回答以下咨询题,并适当加以鼓舞〕学生回答以下咨询题,并让学生互相补充创设咨询题情形引导学生回忆,并巩固所咨询题1 如图是某地一天内的气温变化图.学知识教学环节知识内容教师活动学生活动设计意图看图回答:(1)这天的6时、10时和14时的气温分不为多少?任意给出这天中的某一时刻, 讲出这一时刻的气温.(2)这一天中, 最高气温是多少?最低气温是多少?(3)这一天中, 什么时段的气温在逐步升高?什么时段的气温在逐步降低?解(1)这天的6时、10时和14时的气温分不为-1℃、2℃、5℃;(2)这一天中, 最高气温是5℃. 最低气温是-4℃;(3)这一天中, 3时~14时的气温在逐步升高. 0时~3时和14时~24时的气温在逐步降低. 从图中我们能够看到, 随着时刻t〔时〕的变化, 相应地气温T(℃)也随之变化.那么在生活中是否还有其它类似的数量关系呢?二、探究归纳咨询题2 银行对各种不同的存款方式都规定了相应的利率, 下表是2002年7月中国工商银行为〝整存整取〞的存款方式规定的年利率: (让A层学生举出生活中实例并适当的加以鼓舞)观看上表, 讲讲随着存期x的增长, 相应的年利率y是如何变化的.观看上表,讲讲随着存期x的增长,相应的年利率y是如何变化的.观看上表,讲讲随着存期x的增长,相应的年利率y是如何变化的.让学生充分摸索,互相交流,并让学生代表回答以下咨询题解随着存期x的增长,相应的年利率y也随着增长.学生在教师引导下主动学习并积极思考相关咨询题咨询题3 收音机刻度盘的波长和频率分不是用教师巡视全班,对有困难的学生加以点拨指导,对学生摸索,探究交流,并尝试解题探究新知2米(m)和千赫兹(kHz)为单位标刻的. 下面是一些对应的数值: 学生交流及反馈情形加以总结并引导学生得出结论观看上表回答:(1)波长l和频率f数值之间有什么关系?(2)波长l越大, 频率f就________.(1) l 与 f 的乘积是一个定值, 即lf=300 000,或者讲.(2)波长l越大, 频率f就越小.学生在教师引导下主动学习并积极思考相关咨询题,并作出概括。
初中数学《变量与函数》教案
初中数学《变量与函数》教案第一章:变量1.1 引入变量概念讲解变量定义:变量是数学中的一个基本概念,用来表示一个可以取不同值的量。
举例说明:气温、身高、年龄等都是变量。
1.2 变量分类讲解分类:自变量、因变量、常量。
自变量:独立变量,可以自己取值的变量。
因变量:依赖变量,其值依赖于其他变量。
常量:在一定条件下保持不变的量。
第二章:函数概念2.1 引入函数概念讲解函数定义:函数是一种关系,其中一个变量(自变量)的每一个值都唯一对应另一个变量(因变量)的值。
举例说明:一次函数、二次函数等。
2.2 函数的表示方法讲解解析式和图像表示法:解析式是通过数学公式表示的函数关系,图像表示法是通过图形表示的函数关系。
第三章:函数的性质3.1 函数的单调性讲解单调性定义:如果函数在某一区间内的值随着自变量的增加而增加或减少,则称函数在该区间内单调增加或单调减少。
举例说明:一次函数、二次函数的单调性。
3.2 函数的奇偶性讲解奇偶性定义:如果对于函数的定义域内任意一个值,有f(-x) = f(x)(奇函数)或f(-x) = -f(x)(偶函数),则称函数为奇函数或偶函数。
举例说明:正弦函数、余弦函数的奇偶性。
3.3 函数的周期性讲解周期性定义:如果函数满足f(x+T) = f(x),其中T 为常数,称函数为周期函数,T 为函数的周期。
举例说明:正弦函数、余弦函数的周期性。
第四章:一次函数和二次函数4.1 一次函数讲解一次函数的定义:一次函数是指函数的最高次项为一次的函数,一般形式为y = kx + b。
举例说明:斜率k 和截距b 的意义。
4.2 二次函数讲解二次函数的定义:二次函数是指函数的最高次项为二次的函数,一般形式为y = ax^2 + bx + c。
举例说明:开口方向、顶点、对称轴等概念。
第五章:函数的应用5.1 函数图像的绘制讲解绘制方法:利用函数的解析式或图像表示法,绘制函数的图像。
举例说明:绘制一次函数、二次函数的图像。
《变量与函数》教案
《变量与函数》教案一、教学目标1. 让学生理解变量的概念,能够区分常量与变量。
2. 让学生掌握函数的定义,理解函数的表示方法。
3. 培养学生运用变量和函数解决实际问题的能力。
二、教学内容1. 变量概念的引入和区分2. 函数的定义和表示方法3. 函数的性质和特点4. 实际问题中的函数应用三、教学重点与难点1. 重点:变量、函数的概念及表示方法。
2. 难点:函数的性质和实际问题中的运用。
四、教学方法1. 采用问题驱动法,引导学生主动探究变量和函数的关系。
2. 利用实例分析,让学生直观理解函数的概念。
3. 运用小组合作学习,培养学生解决问题的能力。
五、教学准备1. 课件、教案、blackboard2. 实例素材(如:温度随时间的变化、商品价格等)3. 练习题一、教学目标1. 让学生理解变量的概念,能够区分常量与变量。
二、教学内容1. 引入变量概念:通过生活实例,引导学生认识变量,理解变量表示事物变化的概念。
2. 区分常量与变量:讲解常量和变量的定义,让学生能够识别生活中的常量和变量。
三、教学重点与难点1. 重点:理解变量的概念,能够区分常量与变量。
2. 难点:识别生活中的常量和变量。
四、教学方法1. 采用情境教学法,以生活实例引入变量概念,激发学生兴趣。
2. 运用讲解法,明确常量与变量的区别。
五、教学准备1. 课件、教案2. 生活实例素材(如:身高、体重等)教学过程:1. 导入:通过展示身高、体重等生活实例,引导学生认识变量。
2. 新课导入:讲解常量与变量的定义,明确它们的概念和区别。
3. 实例分析:让学生举例说明常量和变量,加深对概念的理解。
4. 课堂练习:设计练习题,让学生区分常量和变量。
六、教学内容1. 函数的定义和表示方法2. 函数的性质和特点七、教学重点与难点1. 重点:理解函数的定义,掌握函数的表示方法。
2. 难点:函数的性质和特点的理解与应用。
八、教学方法1. 采用案例分析法,通过具体实例让学生理解函数的概念。
人教版八年级下册第十九章:19.1.1变量与函数(教案)
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了变量与函数的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对函数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解函数的基本概念。函数是一种特殊的关系,每个输入值对应唯一的输出值。它在描述现实世界中的数量关系方面有着重要作用。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了函数在实际中的应用,以及它如何帮助我们解决问题。
3.重点难点解析:在讲授过程中,我会特别强调函数的定义和三要素这两个重点。对于难点部分,如函数图像的识别与绘制,我会通过具体例题和图像分析来帮助大家理解。
五、教学反思
在今天的课堂中,我们探讨了变量与函数的概念,我发现学生们对这个话题的兴趣还是挺高的。他们对于生活中各种变量关系的例子非常敏感,比如身高和体重、时间和速度等。在导入新课的时候,通过提问的方式激发了学生的好奇心,这是一个不错的开始。
在新课讲授环节,我注意到了一些问题。对于函数的定义,虽然我尽力用简单明了的语言解释,但仍然有一些学生显得有些迷茫。我可能需要寻找更多生动的例子,或者尝试用图形来直观展示输入和输出之间的关系,以便让学生更好地理解函数的本质。
4.掌握常量函数、线性函数、反比例函数等基本函数类型。
二、核心素养目标
1.培养学生运用数学语言描述现实世界中变量关系的抽象思维能力,提升数学建模素养。
数学《变量与函数》教案
数学《变量与函数》教案教学目标:1. 熟悉变量和函数的概念及其在数学中的应用。
2. 掌握变量与函数的定义方法和表示方法。
3. 能够利用变量和函数解决实际问题。
教学重点:1. 理解变量和函数的概念。
2. 熟悉变量和函数的定义方法和表示方法。
教学难点:1. 把握变量和函数的应用技巧。
2. 理解变量和函数的意义与关系。
教学方法:1. 导入法:通过引入实际问题,使学生对变量和函数的应用有深入了解。
2. 讲解法:通过对定义和表示方法进行讲解,巩固学生对概念的理解。
3. 实例法:通过例题分析,让学生熟悉应用方法,提高问题解决能力。
4. 练习法:通过大量练习,加强学生对知识点的掌握程度。
教学过程:一、引入实际问题老师可引入如下实际问题:小明买了一些苹果,如果每个苹果的重量为x克,他购买的苹果总重为y克,那么y与x有什么关系?二、讲解变量的概念1. 变量是什么?变量是指能够取不同值的量。
在数学中,我们经常会用字母表示变量,例如x、y等。
2. 变量的表示方法变量一般用字母表示,其常见符号如下:x、y、z、a、b、c等,可以是任意字母或者希腊字母。
3. 变量的应用变量可用于解决各种实际问题。
例如,在小明买苹果的问题中,x就是苹果的重量,y就是苹果的总重。
三、讲解函数的概念1. 函数是什么?函数是一种特殊的映射关系,用来描述因变量和自变量之间的关系。
简单来说,函数就是把自变量输入,经过一定的变换,得到因变量的结果。
2. 函数的表示方法函数一般用符号f表示,其中x是自变量,f(x)是因变量的函数值。
在函数图像中,自变量通常对应着横坐标,因变量对应着纵坐标。
3. 函数的应用函数常常用于描述各种数量之间的关系,例如,利润和销售量、速度和时间、温度和时间等。
四、例题分析1. 例题1:某家店的商品原价为x元,现在打8折,那么打折后的价格可以表示为多少?解答:商品打折后的价格表示为y元,因为打折是按照原价的0.8来算的,所以有y=0.8x。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
14.1.1变量与函数
教材:人教版八年级上
教学目标
1.引导学生在探索实际问题中的数量关系和变化规律中,自主建构常量和变量的概念、函数的定义,渗透函数的三种表示法.
2.引导学生例举、研讨,体会“变化与对应”的思想,深化对函数概念实质的认识,体验函数是研究运动变化的重要数学模型,激发学习兴趣和学习积极主动性.
3.培养学生的观察、比较、分析、归纳、概括能力.
教学重点
变量、函数概念
教学难点
建立函数概念
教学方法和教学手段
借助多媒体信息技术的运用,由具体实例逐步过度到抽象定义
教学过程
活动一:通过实例揭示常量和变量的概念
1.已知水绘园的门票的价格是50元/人.
(1)2个人进去,需_______元;
3个人进去, 需_______元;
5个人进去, 需_______元.
(2)在这个变化过程中,变化的量是___________,没变化的量是_________.
(3)设进去的人有x个,需要门票总费用为y元,则用x的代数式表示y为_______;
2.如果弹簧原长10cm,每1kg重物使弹簧伸长0.5cm(弹力范围内),怎样用含重物质量m(单位:kg)的式子表示受力后的弹簧长度l(单位:cm)?
挂1kg重物时弹簧长度 1×0.5+10=10.5(cm)
挂2kg重物时弹簧长度 2×0.5+10=11(cm)
在这变化的过程中,变化的量是_________,没变化的量是_____________.
l=0.5m+10
下面请我们同学仿照上面的例子,举出几个变化的过程,并说出哪些是变化的量?哪些是没变化的量?
变量的定义:在一个变化过程中,数值发生变化的量叫变量;
常量的定义:在一个变化过程中,数值始终不变的量叫常量。
活动二:提供实例,引导学生分析变化过程中的数量关系和变化规律,渗透函数概念的实质,为概括函数定义奠定基础
1.汽车在公路上行驶.
(1)若汽车以v=80km/h的速度匀速行驶,则路程s(km)与时间t(h)的关系式为___________;
(2)若汽车从南通匀速开往如皋,路程s=55km.用v(km/h)表示速度时间t (h)为_______.
2.我国体育健儿近7届奥运会奖牌数统计表
看表格回答:(1) 在这个变化过程中有哪几个变量?
(2) 当x=23时,y=?当x=27时,y=? …
3.本市某一天内的气温变化示意图
(1)通过图像描述出的变化过程,有哪几个变量?
(2)当t=3时,T=?;当t=10时,T=?…
活动三:引导学生概括函数定义及其表示法
1.以上三个问题共同点是
(1)一个变化过程;
(2)有两个变量;
(3)一个变量的每一个确定的值,另一个变量都有唯一确定的值与其对应.
2.函数定义
在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.3.如果当x=a时,y=b,那么b叫做当自变量的值为a时的函数值.例如,在s=80t中,当t=1时,s=80,80是自变量t=1时的函数值.
4.函数的三种表示方法.
活动四:教师给出实例,引导学生分析研究问题中的变量间是否是函数关系
1.下表是表示一个工人生产零件的总数和工作天数的关系表
通过阅读表格的信息,利用今天所学的知识,你能设计几个问题考考你的同学吗?
活动五:师生共同小结
1. 变量与常量
2.函数的定义
3. 函数的三种表示形式
课后作业
1.阅读教材93-97的内容
2.列举你熟知的生活中存在函数关系的实例三则
3.某摩托车油箱可装汽油10L,原装有汽油2L,现再加汽油x L,已知每升汽油
4.6元,求出油箱内的汽油总价y(元)与x(L)之间的函数关系式.
教学设计说明
世界是运动变化的,函数就是研究运动变化的重要数学模型,它源自生活,又服务于生活。
函数有着广泛的应用,初中阶段对函数的认识也是逐步加深的,因此,本节课的学习效果如何将直接影响学生的后续学习。
本节课注重联系学生的生活实际,在探索实际问题中的数量关系和变化规律中,自主学习,构建常量和变量的概念、函数的定义。
通过学生举例、研讨,体会“变化与对应”的思想,激发学习兴趣和学习主动性。
新课程标准要求学生能认识到现实生活中蕴含着大量的数学信息,数学在现实生活中有着广泛的应用;面对实际问题时,能主动尝试着从数学的角度运用所学知识和方法寻求解决问题的策略;面对新的数学知识时,能主动地寻找其实际背景,并探索其应用价值。
因此本节课从创设学生能理解的生活情境开始,使学生从生活中理解变量和常量的概念,通过汽车行驶问题,作为函数的实际背景,为学习抽象概念服务。
分析变化和对应的数学思想,通过另两个例子加深对同一问题中两变量的变化和对应关系的理解,同时又渗透了函数的三种表示法。
在教学设计上,我是以五个活动为载体,在活动中生成概念,在活动中感悟概念,在活动中应用概念,和学生的所有交流都是在自然中进行的。
对于五个活动的设计,我注重了活动的目的性、活动的层次性、活动的思维性。
在具体的教学过程中,我遵循由感性到理性,由具体到抽象的认识过程,启发学生审清题意,明确题中的各量的含义,在整个教学过程中,始终注重的是学生的参与意识,注重学生对待学习的态度是否积极;注重引导学生从数学的角度去思考问题,让学生主动暴露思维过程,及时得到信息的反馈。
我在课堂上,尽量留给学生更多的空间,更多的展示自己的机会,让学生在充满情感的、和谐的课堂氛围中,充分调动学生的非智力因素,特别是内在动机,让他们以强烈的求知欲和饱满的热情来学习新知识,在老师和同学的鼓励与欣赏中认识自我,找到自信,体验成功的乐趣,从而树立了学好数学的信心。