认识立体图形、三视图练习题
三视图习题50道(含答案)
三视图练习题1、若某空间几何体的三视图如图所示,则该几何体的体积是()(A)2(B)1(C)23(D)132、一个几何体的三视图如图,该几何体的表面积是()(A)372 (B)360 (C)292 (D)2803、若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是(A)3523cm3(B)3203cm3 (C)2243cm3(D)1603cm34、一个长方体去掉一个小长方体,所得几何体的正(主)视图与侧(左)视图分别如右图所示,则该几何体的俯视图为:()5、若一个底面是正三角形的三棱柱的正视图如图所示,则其侧面积等于 ( )AB.2 C..66、图2中的三个直角三角形是一个体积为20cm2的几何体的三视图,则h= cm第2题第5题7、一个几何体的三视图如图所示,则这个几何体的体积为 。
8、如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为______.9、如图1,△ ABC 为正三角形,AA '//BB ' //CC ' , CC ' ⊥平面ABC 且3AA '=32BB '=CC '=AB,则多面体△ABC -A B C '''的正视图(也称主视图)是( )10、一空间几何体的三视图如图所示,则该几何体的体积为( ).A.2π+B. 4π+C. 2π+D. 4π11、上图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( )A .B .C .D .9π10π11π12π第7题侧(左)视图正(主)视图俯视图俯视图正(主)视图侧(左)视图12、一个棱锥的三视图如图,则该棱锥的全面积(单位:c 2m )为 ()(A )(B )(C )(D )13、若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是 3cm .14、设某几何体的三视图如上图所示。
三视图识图练习题.docx
三视图1•将长方体截去一个四棱锥后,得到的几何体的直观图如图所示,则该几何体的俯视图为()2.如图,甲、乙、丙是三个立体图形的三视图,与甲、乙、丙相对应的标号是()①长方体;②圆锥;③三棱锥;④圆柱.3.如图所示,下列几何体各自的三视图中,有且仅有两个视图相同的是()4.某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能是(15.—个几何体的三视图如右图,则组成该组合体的简单几何体为()A.圆柱与圆台B.四棱柱与四棱台C.圆柱与四棱台D.四棱柱与圆台5.一个长方体截去两个三棱锥,得到的几何体如图所示,则该几何体的三视图为()正视图A.③①②B. ①②③C.③②④D.④②③AD.②④Mr视图6. 将正方体(如图(1)所示)截去两个三棱锥,得到如图(2)所示的几何体,则该几何体的侧视图为7. 如图所示为一个简单几何体的三视图,则其对应的几何体是()&某几何体的直观图如图所示,下列给出的四个俯视图中正确的是()9•一个几何体的三视图如图所示,则该几何体的直观图可以是()俯觇图iE 觇图侧视图 W 8 ® A B C D10.如果用口表示1个立方体,用勿表示2个立方体叠加,用■表示3个立方体叠 A BAB正觇图 韵视图A CBC11 .一个几何体的三视图如图所示,则该几何体的直观图可以是()B.12.下列三视图所对应的直观图是()A.13.下面的三视图对应的物体是()WWW14.如图是哪一个物体的三视图(16.如图是一个物体的三视图,则此三视图所描述物体的直观图是()17.某几何体的三视图如图所示,则这个几何体的直观图是图中的()正视图績视图1&空间几何体的三视图如图所示,则此空间几何体的直观图为(19.某建筑物的三视图如图所示,则此建筑物结构的形状是(A.圆锥B.四棱柱C.从上往下分别是圆锥和四棱柱D.从上往下分别是圆锥和圆柱20.如图所示为一个简单几何体的三视图,则其对应的几何体是()21.已知一个几何体的三视图如图所示,则此几何体的组成为()A.上面为棱台,下面为棱柱B.上面为圆台,下面为棱柱C.上面为圆台,下面为圆柱D.上面为棱台,下面为圆柱22.如图所示为长方体木块堆成的几何体的三视图,此几何体共由 ________ 块木块堆成.23.己知某组合体的正视图与侧视图相同(其中AB=AC,四边形BCDE为矩形),则该组合体的俯视图可以是图中的_________.(把你认为所有正确图象的序号都填上)24._____ 若一个正三棱柱的三视图如图所示,则这个三棱柱的高(两底面之间的距离)和底面边长分别是_____ 和_______ .4—侧觇图VWWW答案解析1.【答案】C【解析】俯视图从图形的上边向下边看,看到一个正方形的底面,在底面上有一条对角线,对角线是由左上角到右下角的线,故选C.2.【答案】D【解析】3.【答案】D【解析】在各自的三视图中①正方体的三个视图都相同;②圆锥有两个视图相同;③三棱台的三个视图都不同;④正四棱锥有两个视图相同.4.【答案】D【解析】根据几何体的三视图知识求解.由于该几何体的正视图和侧视图相同,且上部分是一个矩形,矩形中间无实线和虚线,因此俯视图不可能是D.5.【答案】C【解析】从该几何体可以看出,正视图是一个矩形内有一斜向上的对角线;俯视图是一个矩形內有一斜向下的对角线,没有斜向上的对角线,故排除B、D项;侧视图是一个矩形内有一斜向下的对角线,且都是实线,因为没有看不到的轮廓线,所以排除A项.6.【答案】B【解析】还原正方体后,将6, D, A三点分别向正方体右侧面作垂线.DiA的射影为CiB,且为实线,BiC 被遮挡应为虚线.7.【答案】A【解析】对于A,该几何体的三视图恰好与已知图形相符,故A符合题意;对于B,该几何体的正视图的矩形中,对角线应该是虚线,故不符合题意;对于C,该几何体的正视图的矩形中,对角线应该是从左上到右下的方向,故不符合题意;对于D,该几何体的侧视图的矩形中,对角线应该是虚线,故不符合题意.故选A.&【答案】B【解析】几何体的俯视图,轮廓是矩形,几何体的上部的棱都是可以看见的线段,所以C, D不正确;几何体的上部中间的棱与正视图方向垂直,所以A不正确.故选B.9.【答案】D【解析】由俯视图是圆环可排除A, B, C,进一步将三视图还原为几何体,可得选项D.10.【答案】B【解析】结合已知条件易知B正确.11.【答案】D【解析】由俯视图可知,原几何体的上底面应该是圆面,由此排除选项A和选项C.而俯视图内部只有一个虚圆,所以排除B.故选D.12.【答案】C【解析】从俯视图可以看出直观图的下面部分为长方体,上面部分为圆柱,且与下面的长方体的顶面的两边相切,由侧视图可以看出上下部分高度相同.只有C满足这两点,故选C.13.【答案】D【解析】从俯视图可以看出直观图的下面部分为三个长方体,且三个长方体的宽度相同.只有D 满足这两点,故选D.14.【答案】C【解析】经分析可知,该物体应该是一个圆柱竖直放在一个长方体上,A中的不是一个圆柱,故排除.B 中的圆柱直径小于长方体的宽.D项中上面不是一个圆柱体.故选C.15.【答案】B【解析】由己知中的三视图可得该几何体是一个组合体,由几何体上部的三视图均为矩形可知上部是四棱柱,由下部的三视图中有两个梯形可得下部为四棱台,故组成该组合体的简单几何体为四棱柱与四棱台,故选B.16.【答案】D【解析】正视图和侧视图相同,说明组合体上面是锥体,下面是正四棱柱或圆柱,由俯视图可知下面是圆柱.故选D.17.【答案】B【解析】由正视图可排除A, C选项;由侧视图可排除D选项,综合三视图可得,B选项正确.故选B.18.【答案】A【解析】由已知中三视图的上部分是锥体,是三棱锥,满足条件的正视图的选项是A与D,由侧视图可知,选项D不正确,由三视图可知该几何体下部分是一个四棱柱,选项都正确,故选A.19.【答案】C【解析】由图可得该几何体是一个组合体,其上部的三视图有两个三角形,一个圆,故上部是一个圆锥,其下部的三视图均为矩形,故下部是一个四棱柱.故选C.20.【答案】A【解析】对于A,该几何体的三视图恰好与已知图形相符,故A符合题意;对于B,该几何体的正视图的矩形中,对角线应该是虚线,故不符合题意;对于C,该几何体的正视图的矩形中,对角线应该是从左上到右下的方向,故不符合题意;对于D,该几何体的侧视图的矩形中,对角线应该是虚线,故不符合题意.故选A.21.【答案】C【解析】结合图形分析知上为圆台,下为圆柱.故选C.22.【答案】4【解析】由三视图知,由4块木块组成.如图.23.【答案】①②③④【解析】由正视图和侧视图可知几何体为锥体和柱体的组合体.(1)若几何体为圆柱与圆锥的组合体,则俯视图为③;(2)若几何体为棱柱与圆锥的组合体,则俯视图为④;(3)若几何体为棱柱与棱锥的组合体,则俯视图为①;(4)若几何体为圆柱与棱锥的组合体,则俯视图为②.24.【答案】2陋3【解析】25.【答案】三视图对应的几何体如下图所示.“长方体【解析】。
三视图习题50道(含答案)
三视图练习题1、若某空间几何体的三视图如图所示,则该几何体的体积是()(A)2(B)1(C)23(D)132、一个几何体的三视图如图,该几何体的表面积是()(A)372 (B)360 (C)292 (D)2803、若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是(A)3523cm3(B)3203cm3 (C)2243cm3(D)1603cm34、一个长方体去掉一个小长方体,所得几何体的正(主)视图与侧(左)视图分别如右图所示,则该几何体的俯视图为:()5、若一个底面是正三角形的三棱柱的正视图如图所示,则其侧面积等于 ( )AB.2 C..66、图2中的三个直角三角形是一个体积为20cm2的几何体的三视图,则h= cm第2题第5题7、一个几何体的三视图如图所示,则这个几何体的体积为 。
8、如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为______.9、如图1,△ ABC 为正三角形,AA '//BB ' //CC ' , CC ' ⊥平面ABC 且3AA '=32BB '=CC '=AB,则多面体△ABC -A B C '''的正视图(也称主视图)是( )10、一空间几何体的三视图如图所示,则该几何体的体积为( ).A.2π+B. 4π+C. 2π+D. 4π11、上图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( )A .B .C .D .9π10π11π12π第7题侧(左)视图正(主)视图俯视图俯视图正(主)视图侧(左)视图12、一个棱锥的三视图如图,则该棱锥的全面积(单位:c 2m )为 ()(A )(B )(C )(D )13、若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是 3cm .14、设某几何体的三视图如上图所示。
立体几何三视图相关习题
立体几何三视图相关习题1.如图1所示,是一个棱长为2的正方体被削去一个角后所得到的几何体的直观图,其中DD 1=1,AB =BC =AA 1=2,若此几何体的俯视图如图2所示,则可以作为其正视图的是( C )[解析] 由直观图和俯视图知,正视图中点D 1的射影是B 1,所以正视图是选项C 中的图形,A 中少了虚线,故不正确.2.如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( C )A .20πB .24πC .28πD .32π[解析] 该几何体是圆锥与圆柱的组合体,由三视图可知圆柱底面圆的半径r =2,底面圆的周长c =2πr =4π,圆锥的母线长l =22+(23)2=4,圆柱的高h =4,所以该几何体的表面积S 表=πr 2+ch +12cl =4π+16π+8π=28π,故选C .3.(文)一个几何体的三视图如图所示,则该几何体的体积为( A )A .12-πB .12-2πC .6-πD .4-π[解析] 由三视图知,该几何体是一个组合体,由一个长方体挖去一个圆柱构成,长方体的长、宽高为4,3,1,圆柱底半径1,高为1,∴体积V =4×3×1-π×12×1=12-π.(理)若某棱锥的三视图(单位:cm)如图所示,则该棱锥的体积等于( B )A .10 cm 3B .20 cm 3C .30 cm 3D .40 cm 3[解析] 由三视图知该几何体是四棱锥,可视作直三棱柱ABC -A 1B 1C 1沿平面AB 1C 1截去一个三棱锥A -A 1B 1C 1余下的部分.∴VA -BCC 1B 1=VABC -A 1B 1C 1-VA -A 1B 1C 1=12×4×3×5-13×(12×4×3)×5=20cm 3.4.某几何体的三视图如图所示,则该几何体的表面积为( B )A .18+2πB .20+πC .20+π2D .16+π[解析] 由三视图可知,这个几何体是一个边长为2的正方体割去了相对边对应的两个半径为1、高为1的14圆柱体,其表面积相当于正方体五个面的面积与两个14圆柱的侧面积的和,即该几何体的表面积S =4×5+2×2π×1×1×14=20+π.故选B .5.(2018·双鸭山一模)一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几何体的外接球的表面积为( A )A .16π3B .8π3C .4 3D .23π[解析] 由已知几何体的正视图是一个正三角形,侧视图和俯视图均为三角形,可得该几何体有一个侧面P AC 垂直于底面,高为3,底面是一个等腰直角三角形的三棱锥,如图.则这个几何体的外接球的球心O 在高线PD 上,且是等边三角形P AC 的中心, 这个几何体的外接球的半径R =23PD =233.则这个几何体的外接球的表面积为S =4πR 2=4π×(233)2=16π3.6.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F 分别为线段AA 1,B 1C 上的点,则三棱锥D 1-EDF 的体积为16.[解析] 利用三棱锥的体积公式直接求解.VD 1-EDF =VF -DD 1E =13SD 1DE ·AB =13×12×1×1×1=16.7.已知E ,F 分别是矩形ABCD 的边BC 与AD 的中点,且BC =2AB =2,现沿EF 将平面ABEF 折起,使平面ABEF ⊥平面EFDC ,则三棱锥A -FEC 2π. [解析] 如图,平面ABEF ⊥平面EFDC ,AF ⊥EF ,所以AF ⊥平面ECDF ,将三棱锥A -FEC 补成正方体ABC ′D ′-FECD . 依题意,其棱长为1,外接球的半径R =32, 所以外接球的体积V =43πR 3=43π·(32)3=32π.8.(文)如图,三棱柱ABC -A 1B 1C 1中,CA =CB ,AB =AA 1,∠BAA 1=60°.(1)证明:AB ⊥A 1C ;(2)若AB =CB =2,A 1C =6,求三棱柱ABC -A 1B 1C 1的体积. [解析] (1)取AB 的中点O ,连接OC ,OA 1,A 1B . 因为CA =CB ,所以OC ⊥AB .由于AB =AA 1,∠BAA 1=60°,故△AA 1B 为等边三角形,所以OA 1⊥AB . 因为OC ∩OA 1=O ,所以AB ⊥平面OA 1C . 又A 1C ⊂平面OA 1C ,故AB ⊥A 1C .(2)由题设知△ABC 与△AA 1B 都是边长为2的等边三角形,所以OC =OA 1= 3. 又A 1C =6,则A 1C 2=OC 2+OA 21,故OA 1⊥OC .因为OC ∩AB =O ,所以OA 1⊥平面ABC ,OA 1为三棱柱ABC -A 1B 1C 1的高. 又△ABC 的面积S △ABC = 3.故三棱柱ABC -A 1B 1C 1的体积V =S △ABC ×OA 1=3. (理)如图,四棱锥P -ABCD 中,侧面P AD 为等边三角形且垂直于底面ABCD ,AB =BC=12AD ,∠BAD =∠ABC =90°. (1)证明:直线BC ∥平面P AD ;(2)若△PCD 的面积为27,求四棱锥P -ABCD 的体积. [解析] (1)证明:在平面ABCD 内,因为∠BAD =∠ABC =90°,所以BC ∥AD .又BC ⊄平面P AD ,AD ⊂平面P AD , 故BC ∥平面P AD .(2)如图,取AD 的中点M ,连接PM ,CM .由AB =BC =12AD 及BC ∥AD ,∠ABC =90°得四边形ABCM 为正方形,则CM ⊥AD .因为侧面P AD 为等边三角形且垂直于底面ABCD , 平面P AD ∩平面ABCD =AD , 所以PM ⊥AD ,PM ⊥底面ABCD . 因为CM ⊂底面ABCD , 所以PM ⊥CM .设BC =x ,则CM =x ,CD =2x ,PM =3x ,PC =PD =2x . 如图,取CD 的中点N ,连接PN ,则PN ⊥CD , 所以PN =142x . 因为△PCD 的面积为27, 所以12×2x ×142x =27,解得x =-2(舍去)或x =2.于是AB =BC =2,AD =4,PM =2 3.所以四棱锥P -ABCD 的体积V =13×2(2+4)2×23=4 3.。
三视图练习题含答案
23正视图侧视图2俯视图2第3题三视图练习题1.某几何体的三视图如图所示,则它的体积是( ) A.283π-B.83π-C.π28-D.23π2.某四棱锥的三视图如图所示,该四棱锥的表面积是( )A .32 B.16+162 C.48 D.16322+3.如图,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别是等边三角形,等腰三角形和菱形,则该几何体的体积为( ) A .43 B .4C .23 D .24.如图是某几何体的三视图,则该几何体的体积为( )A .942π+ B.3618π+C.9122π+D.9182π+ 5.一个空间几何体的三视图如图所示,则该几何体的表面积为( ) A. 48 B.32+817C.48+817D.806.若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是( ) A.35233cm B.32033cm C.22433cm D.16033cm3 32正视图侧视图俯视图第4题第5题第1题 第2题第6 题7.若某空间几何体的三视图如图所示,则该几何体的体积是( ) A.2B.1C.23D.138.某几何体的三视图如图所示,则该几何体的体积为( ) A.π816+ B.π88+ C.π1616+ D.π168+9. 某四棱台的三视图如图所示,则该四棱台的体积是( ) A.4 B.314 C.316D.610. 某三棱锥的三视图如图所示,已知该三视图中正视图和俯视图均为边长为2的正三角形,侧视图为如图所示的直角三角形,则该三棱锥的体积为( ) A .1B .3C .4D .511. 一个几何体的三视图如图所示,则这个几何体的体积为( )A .(8)36π+B .(82)36π+C .(6)36π+D .(92)36π+ 12.某几何体的底面为正方形,其三视图如图所示,则该几何体的体积等于( )A .1B .2C .3D .4第7题第8题第9题第10题3122第11题 211俯视图正视图13第12题13.某几何体的三视图如图所示,则其体积为______.14.若某几何体的三视图(单位:cm )如图所示,则此几何体的体积等于______3cm . 15.某几何体的三视图如图所示,则该几何体的体积是______.16.已知某三棱锥的三视图(单位:cm )如图所示,则该三棱锥的体积是 17.一个空间几何体的三视图如图所示,则这个空间几何体的体积是.18.如图所示,一个三棱锥的三视图是三个直角三角形,则该三棱锥外接球的表面积为19.若某空间几何体的三视图如下图所示,则该几何体的表面积是_______________.20.一个正方体的内切球与它的外接球的体积比是( ).A .1∶33B .1∶22C .1∶383 D .1∶4221.已知球面上A 、B 、C 三点的截面和球心的距离都是球半径的一半,且AB =BC =CA =2,则球表面积是( )A.π964 B. π38C. π4D. π916第17题 24 3正视图 侧视图 俯视图第18题 第15题第14题第13题第16题 第19题22. P 、A 、B 、C 是球O 面上的四点,且PA 、PB 、PC 的两两垂直,PA=PB=PC=9,则球心O 到截面ABC 的距离为23.半径为5的球被一个平面所截,截面面积为16π,则球心到截面的距离为 ( ) A.4 B.3 C.2.5 D.224.表面积为3π的圆锥,它的侧面展开图是一个半圆,则该圆锥的底面直径为________. 25.答案1.A2.B3.C4.D5.C6.B7.B8.A9.B 10.A 11.A 12.A 13.3π 14.24 15.1616-π 16.1 17.67π 18.29π 19. 20+8220.A 21.A 22.233 23.B 24. 2 25.︒9026.3500π 27.π628.π29 29.72 30. 3629+3226-31.2500π 32.π1200。
物体三视图的认识 小学数学 练习题
一、选择题1. 一个几何体从正面和左面看都是,从上面看是,这个几何体是()。
C.A.B.2. 如图从右面看到的形状是()。
A.B.C.D.3. 如图,从前面看到的图形与从()面看到的图形相同。
A.上B.后C.左D.右4. 从上面观察,看到的形状相同的立体图形是()。
A.①③④B.①②④C.①②③D.②③④5. 下面立体图形中,()从左面观察,所看到的图形不是。
A.B.C.二、填空题6. 分别从前面、右面和上面观察下边的物体,从( )面和( )面看到的图形完全相同。
7. 我能选择对.(1)从正面看图________,看到的是图a.(2)从正面看图________,看到的是图b.(3)从侧面看图________,看到的是图c.8. 是从物体(如图)的( )面看到的。
9. 一个几何体从上面看是,图中的数字表示在这个位置上的小正方体的个数,则这个几何体从正面看是___________,从左面看是___________,从右面看是___________。
(填序号)10. 从( )面看是,从( )面看是,从( )面看是。
三、解答题11. 把8个棱长是1厘米的小正方体拼在一起(如图),从上面,正面和左面看到的图形面积和是多少?最多取走几个小正方体使得从正面看到的图形不变?12. 下面3个几何体都是由棱长1cm的小正方体摆成的。
(1)下面的图形是聪聪从上面看到的,它们分别是从哪个几何体的上面看到的?将序号写在括号中。
()()()(2)①的体积是②的体积的()(3)③的体积是()cm3,如果要把它继续拼搭成一个大正方体,至少还需要()个小正方体。
(4)你还能提出一个数学问题并解答吗?13. 把4个同样大小的正方体横着摆成一个长方体,说说下面的图形是从哪一面看到的.14. 看一看,写一写,画一画。
(1)上面的物体都是由()个小正方体组成的。
(2)从左面看到的图形相同的是(),从前面看到的图形相同的是()。
(填序号)(3)分别画出物体③和④从上面看到的图形。
三视图习题50道(含答案)
word 格式三视图练习题则该几何体的体积是()(D)()(D ) 280第3题(单位cm ) 16033(D) 所得几何体的正则该几何体的俯视图为()1 3第5题(A) 2(主)视图与侧(左)视图分别如右图所示(B ) 1(C ) 292第1题(B ) 3603、若某几何体的三视图 如图所示,则此几何体的体积是 1、若某空间几何体的三视图如图所示—cm 34、一个长方体去掉一个小长方体 2、一个几何体的三视图如图,该几何体的表面积是(B ) 320cm 3“,f=L23(A ) 352cm 3 33r — 1111I ___J第2题1'1-T P5、 若一个底面是正三角形的三棱柱的正视图如图所示,则其侧.面积等于(A . . 3B . 2C . 2 3D . 66、 图2中的三个直角三角形是一个体积为20cm 2的几何体的三视图,则h=7、 一个几何体的三视图如图所示 ,则这个几何体的体积为 _____________AA // BB // CC , CC 丄平面 ABC3且3 AA = 3 BB = CC =AB,则多面体△ ABC - ABC 的正视图(也称主视图)是()8、如图,网格纸的小正方形的边长是1 ,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为9、如图1 , △ ABC 为正三角形,)S 2a.俯视图正(主)视图侧(左)视图A. 9 nB. 10 nC. 11 n D . 12 n10、一空间几何体的三视图如图所示,则该几何体的体积为().A.2 2.3B. 4 2 . 3侧(左)视图C. 2D. 4第11题第10题11、上图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是12、一个棱锥的三视图如图,则该棱锥的全面积(单位:c m2)为(A) 48+12 . 2 (B) 48+24 . 2 ( C) 36+12 2 (D)36+24 213、若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是cm3第12题正视图侧视图俯视图15题14、设某几何体的三视图如上图所示。
三视图练习题(含答案)
第二十九章投影与视图29.2 三视图一、课前小测:1、身高相同的甲、乙两人分别距同一路灯2米、3米,路灯亮时,甲的影子比乙的影子(填“长”或“短”)2、小刚和小明在太阳光下行走,小刚身高1.75米,他的影长为2.0m ,小刚比小明矮5cm ,此刻小明的影长是________m.3、墙壁D处有一盏灯(如图),小明站在A处测得他的影长与身长相等都为1.6m ,小明向墙壁走1m 到B处发现影子刚好落在A点,到B处发现影子刚好落在A点,则灯泡与地则灯泡与地面的距离CD =_______.4、圆柱的左视图是,俯视图是;5、如图,一几何体的三视图如右:那么这个几何体是;主视图左视图俯视图二、基础训练:1、填空题(1)俯视图为圆的几何体是,.(2)画视图时,看得见的轮廓线通常画成,看不见的部分通常画成. (3)举两个左视图是三角形的物体例子:,.(4)如图所示是一个立体图形的三视图,请根据视图说出立体图形的名称.(5)请将六棱柱的三视图名称填在相应的横线上.(6)一张桌子摆放若干碟子,从三个方向上看,三种视图如下图所示,则这张桌子上共有()个碟子.2、有一实物如图,那么它的主视图()AB C D 3、下图中几何体的主视图是(). 俯视图主视图左视图主视图左视图俯视图俯视图主(正)视图左视图(A) (B) (C ) (D)4、若干桶方便面摆放在桌子上,实物图片左边所给的是它的三视图,则这一堆方便面共有(有( ) (A )5桶 (B ) 6桶(C )9桶 (D )12桶5、水平放置的正方体的六面分别用“前面、后面、上面、下面、左面、右面”表示,如图是一个正方体的表面展开图,若图中“2”在正方体的前面,则这个正方体的后面是方体的前面,则这个正方体的后面是 ( ) ( )A .OB O B.. 6C 6 C.快.快.快D D D.乐.乐.乐三、综合训练:1.小明从正面观察下图所示的两个物体,看到的是(.小明从正面观察下图所示的两个物体,看到的是( )2、右图是由一些完全相同的小立方块搭成的几何体的三种视图,那么搭成这个几何体所用的小立方块的个数是(的小立方块的个数是( )A 5个B 6个C 7个D 8个3、如果用□表示1个立方体,用表示两个立方体叠加,用■表示三个立方体叠加,那么下面右图由7个立方体叠成的几何体,从正前方观察,可画出的平面图形是 ( )4、下面是空心圆柱在指定方向上的视图,正确的是…(、下面是空心圆柱在指定方向上的视图,正确的是…( )B AC D正面 A B C D (A) (B) (C) (D)5、画出下面实物的三视图:实物的三视图:第二十九章 投影与视图29.2 三视图三视图 参考答案:考答案: 课前小测:课前小测:1、短、短2、35723、15644、矩形,圆、矩形,圆5、空心圆柱、空心圆柱 二、基础训练:二、基础训练:1、(1)球,圆柱体;(2)实线,虚线;(3)圆锥,正四棱锥,倒放的正三棱柱等;(4)圆锥;(5)俯视图,正视图,左视图;(6)12.2、A ;3、C4、B5、B三、综合训练:三、综合训练:1、C2、D3、B ;4、A ;5、题图:图:主视图左视图俯视图。
三视图习题(含答案)
几何体的三视图练习题1、若某空间几何体的三视图如下图,则该几何体的体积是 ( )(A )2(B )1(C )23(D )132、一个几何体的三视图如图,该几何体的表面积是 ( ) (A )372 (B )360 (C )292 (D )2803、若某几何体的三视图(单位:cm )如下图,则此几何体的体积是 (A )3523cm 3 (B )3203cm 3 (C )2243cm 3 (D )1603cm 34、一个长方体去掉一个小长方体,所得几何体的正(主)视图与侧(左)视图分别如右图所示,则该几何体的俯视图为: ( )5、若一个底面是正三角形的三棱柱的正视图如下图,则其侧面积...等于 ( ) A .3 B .2 C .23 D .66、图2中的三个直角三角形是一个体积为20cm 2的几何体的三视图,则h= cm第1题第2题第3题第5题第6题7、一个几何体的三视图如下图,则这个几何体的体积为 。
8、如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为______.9、如图1,△ ABC 为正三角形,AA '//BB ' //CC ' , CC ' ⊥平面ABC 且3AA '=32BB '=CC '=AB,则多面体△ABC -A B C '''的正视图(也称主视图)是( )10、一空间几何体的三视图如下图,则该几何体 的体积为( ).A.223π+B. 423π+C. 2323π+D. 2343π+11、上图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( )A .9πB .10πC .11πD .12π12、一个棱锥的三视图如图,则该棱锥的全面积(单位:c 2m )为 ( )第7题第8题2 2侧(左)视图2 22 正(主)视俯视图第10题俯视图 正(主)视图 侧(左)视图2 32 2第11题(A )48+122 (B )48+242 (C )36+122 (D )36+242 13、若某几何体的三视图(单位:cm )如下图,则此几何体的体积是 3cm .14、设某几何体的三视图如上图所示。
几何体的三视图练习题
几何体的三视图练习题
1、若某空间几何体的三视图如图所示,则该几何体的体积是 ( ) (A )2
(B )1
(C )
23
(D )
3、若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是 (A )
3523cm 3 (B )3203cm 3 (C )2243
cm 3 (D )1603cm 3
5、若一个底面是正三角形的三棱柱的正视图如图所示,则其侧面积...等于 ( ) A
.2 C
..6
6、图2中的三个直角三角形是一个体积为20cm 2
的几何体的三视图,则h= cm
8、如图,网格纸的小正方形的边长是1,在其上用粗线画出 了某多面体的三视图,
则这个多面体最长的一条棱的长为______.
第5题
10、一空间几何体的三视图如图所示,则该几何体 的体积为( ).
A.2π+
B. 4π+
C. 23π+
D. 43
π+ 13、若某几何体的三视图(单位:cm )如图所示, 则此几何体的体积是 3
cm .
15、已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是( )
A.
34000cm 3 B.3
8000cm 3
C.32000cm D.34000cm 16、一个几何体的三视图如上图所示,其中正视图与侧视图都是边长为2的正三角形,则这个几何体
的侧面积为( ) A.
3
3
π B .2π C .3π D .4π
21、一个几何体的三视图及其尺寸(单位:cm)如图所示,则该几何体的侧面积为_ ______cm 2.
侧(左)视图
正(主)视
俯视图
正视图 侧视图
俯视图
俯视图。
三视图练习题
三视图练习题一、基本概念题1. 请简述三视图的概念及其作用。
2. 三视图包括哪三个视图?分别表示物体的哪些信息?3. 在三视图中,主视图、俯视图和左视图之间的位置关系是怎样的?二、识图题(1)正方体(2)长方体(3)圆柱体(1)球体(2)圆锥体(3)圆环体(1)三棱柱(2)四棱锥(3)六棱柱三、绘图题(1)一个长方体,长、宽、高分别为10cm、6cm、4cm。
(2)一个圆柱体,底面直径为8cm,高为10cm。
(3)一个圆锥体,底面直径为6cm,高为8cm。
(1)一把直尺(2)一个手机(3)一个茶壶四、分析题(1)主视图为矩形,俯视图为圆形,左视图为矩形。
(2)主视图为三角形,俯视图为矩形,左视图为三角形。
(1)主视图、俯视图和左视图均为正方形。
(2)主视图、俯视图和左视图均为圆形。
五、应用题(1)主视图为长方形,长、宽、高分别为10cm、6cm、4cm。
(2)主视图为圆形,直径为8cm,高为10cm。
(1)一个长方体木箱,长、宽、高分别为60cm、40cm、20cm。
(2)一个圆柱形水桶,底面直径为40cm,高为50cm。
六、综合题(1)一个长方体上放置一个正方体。
(2)一个圆柱体和一个圆锥体组合在一起。
(1)一个长方体挖去一个圆柱体形成的组合体,长方体的长、宽、高分别为20cm、10cm、5cm,圆柱体直径为5cm,高为10cm。
(2)一个正方体和一个四棱锥组合在一起,正方体边长为8cm,四棱锥底面边长为6cm,高为4cm。
七、判断题1. 三视图中,主视图和俯视图的长度方向一定相同。
()2. 在三视图中,左视图的宽度方向与主视图的高度方向一致。
()3. 任何物体的三视图都可以通过旋转和翻转得到。
()八、选择题A. 主视图B. 俯视图C. 正视图D. 左视图A. 主视图B. 俯视图C. 左视图D. 所有视图A. 主视图反映了物体的长度和高度B. 俯视图反映了物体的长度和宽度C. 左视图反映了物体的宽度和高度D. 三视图中的每个视图都包含了物体的所有尺寸信息九、填空题1. 三视图是用于表达物体______、______和______三个方向尺寸的图样。
CAD三视图练习题
投影与三视图练习题1.填空题(1)俯视图为圆的几何体是_______,______。
(2)画视图时,看得见的轮廓线通常画成_______,看不见的部分通常画成_______。
(3)举两个左视图是三角形的物体例子:________,_______。
(4)如图所示是一个立体图形的三视图,请根据视图说出立体图形的名称_______。
请将六棱柱的三视图名称填在相应的横线上.(6)、如图所示是一个立体图形的三视图,请根据视图说出立体图形的名称_______。
(7)、一张桌子摆放若干碟子,从三个方向上看,三种视图如下图所示,则这张桌子上共有________个碟子。
(8)、某几何体的三种视图分别如下图所示,那么这个几何体可能是_____。
(9)人在观察目标时,从眼睛到目标的叫做视线。
所在的位置叫做视点,有公共的两条所成的角叫做视角。
视线不能到达的区域叫做。
(10)物体在光线的照射下,在某个内形成的影子叫做,这时光线叫做,投影所在的叫做投影面。
由的投射线所形成的投影叫做平行投影。
由的投射线所形成的投影叫做中心投影。
(11)在平行投影中,如果投射线垂直于投影面,那么这种投影就称为正投影。
(12)物体的三视图是物体在三个不同方向的。
上的正投影就是主视图,水平面上的正投影就是,上的正投影就是左视图。
2.选择题(1)圆柱对应的主视图是()。
(A)(B)(C)(D)(2)某几何体的三种视图分别如下图所示,那么这个几何体可能是()。
(A)长方体(B)圆柱(C)圆锥(D)球(3)下面是空心圆柱在指定方向上的视图,正确的是…()(4)一个四棱柱的俯视图如右图所示,则这个四棱柱的主视图和左视图可能是()(5)主视图、左视图、俯视图都是圆的几何体是()。
(A)圆锥(B)圆柱(C)球(D)空心圆柱(6)在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下()A、小明的影子比小强的影子长B、小明的影子比小强的影子短C、小明和小强的影子一样长D、无法判断谁的影子长3、解答题(1)根据要求画出下列立体图形的视图。
高中三视图试题及答案
高中三视图试题及答案一、选择题(每题2分,共10分)1. 在三视图中,主视图、左视图和俯视图分别表示物体的哪个面?A. 正面、侧面、上面B. 侧面、正面、上面C. 正面、上面、侧面D. 上面、侧面、正面2. 以下哪个选项不是三视图的组成部分?A. 主视图B. 左视图C. 右视图D. 俯视图3. 根据三视图的规则,物体的长、宽、高分别在哪个视图中表示?A. 主视图、俯视图、左视图B. 俯视图、主视图、左视图C. 左视图、主视图、俯视图D. 主视图、左视图、俯视图4. 如果一个物体的主视图和俯视图都是圆形,那么这个物体可能是:A. 圆柱体B. 圆锥体C. 球体D. 立方体5. 在绘制三视图时,如果一个物体的左视图和主视图相同,那么这个物体可能是:A. 正方体B. 长方体C. 圆柱体D. 圆锥体二、填空题(每空1分,共10分)6. 三视图包括______、______和______。
7. 物体的三视图应该按照______、______、______的顺序排列。
8. 在三视图中,______视图可以反映物体的高度和长度。
9. 如果一个物体的主视图是一个矩形,左视图是一个圆形,那么这个物体可能是______。
10. 在绘制三视图时,需要考虑物体的______、______和______。
三、简答题(每题5分,共10分)11. 简述三视图的定义及其重要性。
12. 描述如何根据一个物体的主视图和俯视图推断其形状。
四、绘图题(每题5分,共10分)13. 根据以下描述绘制一个物体的三视图:- 主视图:一个正方形- 左视图:一个矩形,宽度为正方形的边长的一半- 俯视图:一个圆形,直径等于正方形的边长14. 根据以下三视图,描述物体的形状:- 主视图:一个圆形- 左视图:一个矩形- 俯视图:一个圆形答案:一、选择题1. A2. C3. D4. C5. A二、填空题6. 主视图、左视图、俯视图7. 主视图、左视图、俯视图8. 左视图9. 圆柱体10. 长度、宽度、高度三、简答题11. 三视图是工程图学中用来描述物体形状的三个基本视图,包括主视图、左视图和俯视图。
三视图练习题六年级
三视图练习题六年级在学习图学的过程中,三视图是一个非常重要的概念。
通过观察物体的正视图、侧视图和俯视图,我们可以更好地理解和描述物体的形状和结构。
本文将为六年级的学生提供一些三视图练习题,帮助他们加深对三视图的理解和运用。
练习题一:绘制三视图请你根据下面的描述,用适当比例绘制物体的三视图。
物体描述:这个物体是一个立方体,所有的边长都相等。
正视图上,你能看到正方形的轮廓,左上角有一个小正方形,表示开放的一面。
侧视图上,你能看到一个竖直方向的线段,表示物体的高度。
俯视图上,你能看到一个水平方向的线段,表示物体的宽度。
练习题二:识别物体下面是三个物体的正视图、侧视图和俯视图,请你根据给出的视图,识别物体的形状并写下对应的名称。
正视图:(图片描述)侧视图:(图片描述)(图片描述)练习题三:推测三视图下面是一个物体的正视图和侧视图,请你根据这两个视图,推测物体的俯视图,并画出来。
正视图:(图片描述)侧视图:(图片描述)练习题四:绘制三视图(进阶)请你使用适当比例,根据下面的描述绘制物体的三视图。
物体描述:这个物体是一个长方体,长边是短边的2倍。
正视图上,你能看到一个长方形的轮廓,短边朝向左侧。
侧视图上,你能看到一个竖直方向的线段,表示物体的高度。
俯视图上,你能看到一个水平方向的线段,表示物体的宽度。
练习题五:识别物体(进阶)下面是三个物体的三视图,请你根据给出的视图,识别物体的形状并写下对应的名称。
(图片描述)侧视图:(图片描述)俯视图:(图片描述)练习题六:推测三视图(进阶)下面是一个物体的正视图和俯视图,请你根据这两个视图,推测物体的侧视图,并画出来。
正视图:(图片描述)俯视图:(图片描述)以上是六年级的三视图练习题,希望对你们的学习有所帮助。
通过练习,相信你们能够更加熟练地观察和绘制物体的三视图,提高对图学的理解和运用能力。
加油!。
立体几何(三视图)练习题
第一节空间几何体的结构及其三视图和直观图(练习题)A组基础达标一、选择题1.关于空间几何体的结构特征,下列说法不正确的是()A.棱柱的侧棱长都相等B.棱锥的侧棱长都相等C.三棱台的上、下底面是相似三角形D.有的棱台的侧棱长都相等2.某空间几何体的正视图是三角形,则该几何体不可能是()A.圆B.圆锥C.四面体D.三棱柱3.(2017·云南玉溪一中月考)将长方体截去一个四棱锥后得到的几何体如图7-1-7所示,则该几何体的侧视图为()A B C D4.一个几何体的三视图如图7-1-8所示,则该几何体的表面积为()A.3 B.4π C.2π+4 D.3π+45.(2015·全国卷Ⅱ)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()A.18 B.17 C.16 D.15二、填空题6.(2017·福建龙岩联考)一水平放置的平面四边形OABC,用斜二测画法画出它的直观图O′A′B′C′如图7-1-10所示,此直观图恰好是一个边长为1的正方形,则原平面四边形OABC的面积为________.7.如图7-1-11所示,在正方体ABCD-A1B1C1D1中,点P是上底面A1B1C1D1内一动点,则三棱锥P-ABC的正视图与侧视图的面积的比值为________.图7-1-118.某三棱锥的三视图如图7-1-12所示,则该三棱锥最长棱的棱长为________.图7-1-12三、解答题9.某几何体的三视图如图7-1-13所示.图7-1-13(1)判断该几何体是什么几何体?(2)画出该几何体的直观图.10.如图7-1-14,在四棱锥P-ABCD中,底面为正方形,PC与底面ABCD垂直,如图7-1-15为该四棱锥的正视图和侧视图,它们是腰长为6 cm的全等的等腰直角三角形.图7-1-14图7-1-15(1)根据图中所给的正视图、侧视图,画出相应的俯视图,并求出该俯视图的面积;(2)求P A.B组能力提升(建议用时:15分钟)1.在如图7-1-16所示的空间直角坐标系O-xyz中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出编号①②③④的四个图,则该四面体的正视图和俯视图分别为()A.①和②B.③和①C.④和③D.④和②2.(2017·长郡中学质检)如图7-1-17是一个几何体的三视图,则该几何体任意两个顶点间距离的最大值是()图7-1-17A.4 B.5C.3 2 D.3 33.(2016·北京高考)某四棱柱的三视图如图7-1-18所示,则该四棱柱的体积为________.图7-1-18导数与函数的单调性(课后巩固练习案)1.函数1)(+-=x xexe x f 的单调递增区间是( )A .),(e -∞B .),1(eC .),(+∞eD .),1(+∞-e2.已知函数421)(3++=ax x x f ,则“0>a ”是“)(x f 在R 上单调递增”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件3.已知x x x f sin 1)(-+=,则)(),3(),2(πf f f 的大小关系正确的是( ) A .)()3()2(πf f f >> B .)()2()3(πf f f >> C .)3()()2(f f f >>π D .)2()3()(f f f >>π4.已知函数axx x f 1)(+=在()1,-∞-上单调递增,则实数a 的取值范围是( ) A .[)+∞,1 B .()(]1,00, ∞- C .(]1,0 D .()[)+∞∞-,10,5.已知定义在R 上的函数f (x ),其导函数f ′(x )的大致图象如图所示,则下列叙述正确的是( )A .)()()(d f c f b f >>B .)()()(e f a f b f >>C .)()()(a f b f c f >>D .)()()(d f e f c f >> 6.设函数)('x f 是奇函数)(x f (R x ∈)的导函数,0)1(=-f ,当0>x 时,0)()('<-x f x xf ,则使得0)(>x f 成立的x 的取值范围是( )A .(-∞,-1)∪(0,1)B .(-1,0)∪(1,+∞)C .(-∞,-1)∪(-1,0)D .(0,1)∪(1,+∞) 7.若函数d cx bx x x f +++=3)(的单调减区间为()3,1-,则c b +=________.8.已知函数)(x f (R x ∈)满足1)1(=f ,)(x f 的导数21)('<x f ,则不等式212)(22+<x x f 的解集为________________.。
三视图练习专项练习带答案
1、下面几何体的俯视图是( D )2、如图是一个由相同的小正方体组成的立体图形,它的主视图是( D )3. 如图是由6个相同的正方体搭成的一个几何体,则它的俯视图是( A )4.、如左下图所示几何体的主视图是( D )5.如图是某几何体的三视图,则该几何体的侧面展开图是(A)A .B .C .D .6.如图1,四个几何体中,主视图、俯视图、左视图都相同的有( B )A.1个B.2个C.3个D.4个7.如图是每个面上都有一个汉字的正方体的一种平面展开图,那么在原正方体中和“国”字相对的图1面是( C )A.中 B.钓C.鱼D.岛8、左下图是由3个完全相同的小正方体组成的立体图形,它的主视图是( B )DCBA正面9、在下列几何体中,各自的三视图中只有两种视图相同的几何体是( C )A. B. C. D.10.某几何体的三视图如图所示,则这个几何体是( D )A.圆柱B.正方体C.球D.圆锥11.由5个完全相同的正方体组成的立体图形如图所示,则它的俯视图是( C )A.B.C.D.12.如图是一个六角螺栓,它的主视图和俯视图都正确的是( C )中国的钓鱼岛A.B.C.D、13.若一个几何体的主视图、左视图、俯视图是半径相等的圆,则这个几何体是( C )A.圆柱 B.圆锥C.球D.正方体14.下列几何体的左视图为长方形的是( C )A.B. C.D.15.如图所示的支架(一种小零件)的两个台阶的高度和宽度相等,则它的左视图为( D )A.B.C.D.16、正面是由7个小立方块所搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,这个几何体的左视图是( C )17、如图所示的几何体是由一个圆锥和一个长方体组成的,则它的俯视图是(C)A .B .C .D .18、我国古代数学家刘徽用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.如图所示的几何体是可以形成“牟合方盖”的一种模型,它的俯视图是( A )19、下列立体图形中,俯视图是三角形的是( A )20、如图是由6个完全相同的小正方体组成的立体图形,它的左视图是(D)21、下列几何体中,主视图是三角形的是( C )A B C D第20题图A B CD。
立体图形三视图练习
立体图形三视图练习一.操作题1.下面立体图形从上面、前面和左面看到的图形分别是什么?画一画。
2.动手实践,操作应用。
分别画出从正面、上面、左面看到的立体图形的形状。
3.分别画出下面三个物体从前面、上面和左面看到的图形。
4.把从正面、上面和左面看到的形状分别画出来。
5.在方格纸上画出从正面、左面和上面看到的图形。
6.下面的图形从上面,左面和正面看到的分别是什么形状?请画在方格纸上。
7.如图是由8个同样大小的正方体摆成的几何体,请在方格纸中画出从正面、左面和上面看到的图形。
8.画图题。
9.下列立体图形从上面、正面和左面看到的形状分别是什么?画一画。
10.在方格纸上画出从不同位置看到的图形。
11.在方格图中分别画出右边两个几何体从前面和左面看到的图形。
12.分别画出从前面、上面和左面看到的图形。
13.分别画出如图所示的立体图形从前面,左面和上面看到的形状。
14.分别画出从正面、上面、右面看到的立体图形的形状。
15.分别画出下面这个立体图形从正面、左面、上面看到的图形。
16.画出如图从前面、上面和左面看到的图形。
17.在方格纸上画出右上图从上面、左面和前面看到的平面图形。
18.下面的物体分别从正面、左面、上面看到的形状分别是什么?请你在方格纸上画出来。
19.动手实践,操作应用。
分别画出下图从正面、左面、上面看到的图形。
20.把下面的几何体从正面、上面、左面观察到的图形在方格纸上画出来。
21.在方格纸上分别画出下面物体从前面、上面、左面看到的图形。
22.分别画出下面立体图形从不同位置观察到的图形。
CAD三视图练习题
CAD三视图练习题投影与三视图练习题1.填空题(1)俯视图为圆的几何体是_______,______。
(2)画视图时,看得见的轮廓线通常画成_______,看不见的部分通常画成_______。
(3)举两个左视图是三角形的物体例子:________,_______。
(4)如图所示是一个立体图形的三视图,请根据视图说出立体图形的名称_______。
请将六棱柱的三视图名称填在相应的横线上.(6)、如图所示是一个立体图形的三视图,请根据视图说出立体图形的名称_______。
(7)、一张桌子摆放若干碟子,从三个方向上看,三种视图如下图所示,则这张桌子上共有________个碟子。
(8)、某几何体的三种视图分别如下图所示,那么这个几何体可能是_____。
(9)人在观察目标时,从眼睛到目标的叫做视线。
所在的位置叫做视点,有公共的两条所成的角叫做视角。
视线不能到达的区域叫做。
(10)物体在光线的照射下,在某个内形成的影子叫做,这时光线叫做,投影所在的叫做投影面。
由的投射线所形成的投影叫做平行投影。
由的投射线所形成的投影叫做中心投影。
(11)在平行投影中,如果投射线垂直于投影面,那么这种投影就称为正投影。
(12)物体的三视图是物体在三个不同方向的。
上的正投影就是主视图,水平面上的正投影就是,上的正投影就是左视图。
2.选择题(1)圆柱对应的主视图是( )。
(A) (B) (C) (D)(2)某几何体的三种视图分别如下图所示,那么这个几何体可能是( )。
(A)长方体 (B)圆柱 (C)圆锥 (D)球(3)下面是空心圆柱在指定方向上的视图,正确的是…( )(4)一个四棱柱的俯视图如右图所示,则这个四棱柱的主视图和左视图可能是( )(5)主视图、左视图、俯视图都是圆的几何体是( )。
(A)圆锥(B)圆柱 (C)球 (D)空心圆柱(6)在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下( )A、小明的影子比小强的影子长B、小明的影子比小强的影子短C、小明和小强的影子一样长D、无法判断谁的影子长 3、解答题(1)根据要求画出下列立体图形的视图。
三视图练习题1
1.下面是一些立体图形的三视图(如图),•请在括号
内填上立体图形的名称.
2.下列图形都是几何体的平面展开图,你能说出这些几何体的名称吗?
第一题图第二题图
3.一个几何体的主视图和左视图如图所示,请你补画出这个几何体的俯视图
4.一个物体的三视图如图所示,试举例说明物体的形状.
5.已知一个几何体的三视图如图所示,则该几何体的体积为多少?
第三题图第四题图
第五题图
6.小刚的桌上放着两个物品,它的三视图如图所示,你知道这两个物品是什么吗?
7.下列三视图所表示的几何体存在吗?如果存在,请你说出相应的几何体的名称.
8.由若干个相同的小立方体搭成的一个几何体的主视图和俯视图如图所示,俯视图的方格中的字母和数字表示该位置上小立方体的个数,求x,y的值.
9.由几个小立方体叠成的几何体的主视图和左视图如图,求组成几何体的小立方体个数的最大值及最小值.
第六题图第七题图第八题图第九题图
10.已知集合A={正方体},B={长方体},C={正四棱柱},D={直四棱柱},E={棱柱},F={直平行六面体},则()
A、A⊂B⊂C⊂D⊂F⊂E
B、A⊂C⊂B⊂F⊂D⊂E
C、C⊂A⊂B⊂D⊂F⊂E
D、不都存在包含关系
11.一个圆锥的母线长为2,底面圆周的半径为2,过圆锥的顶点作圆锥的截面,求截面图形面积的最大值。
若把圆锥的母线长改为3,底面圆周半径不变,求该截面面积的最大值。
物体三视图的认识 小学数学 习题集
一、选择题1. 下面立体图形中,从正面和左面看到的图形完全相同的是()。
A.B.C.2. 观察如图,从左面看到的图形是().A.B.C.D.3. 从下面()图形上看不到正方形。
A.B.C.D.4. 观察下面的立体图形:从前面看图形相同的有(),从左面看图形相同的有()。
A.①④,②③B.②④,①③C.①②,③④5. 从正面看到的图形与其他几个不同的是()。
A.B.C.D.二、填空题6. 先看一看,再填一填.观察这三个物体,从( )面和( )面看到的形状相同,从( )面看到的形状不同.(填“前”“右”或“上”)7.这3个物体,从________面看到的形状相同,从________面和________面看到的形状不同。
8.从正面看,相同的有( )和( );( )从正面看和从左面相同.9. 一个由8个正方体组成的立体图形,从正面和上面观察这个图形时,得到的平面图形如图所示,那么从左面观察这个图形时,得到的平面图形可能是哪个图形,请在正确的图形下面画“√”。
()()()()10. 一些正方体堆积如图,从_____面看到的图形是,从_____面看到的是。
三、解答题11. 把10个棱长是1cm的小正方体摆成一个几何体(如图)。
从正面和上面看,所看到的图形面积之和是多少平方厘米?12.哪几个图形从上面看到的形状相同?将看到的形状画在下图中。
13. 桌上放着一个茶壶,四位同学从各自的方向进行观察。
请指出下面四幅图分别是哪位同学看到的。
14. 从的上面看,看到的是什么图形?从它的右面看呢?要看到,应该从哪个方向看?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
认识立体图形、三视图练习题
1、观察图中的立体图形,分别写出它们的名称.
2、观察图中的立体图形,分别写出它们的名称.
3、请画出如下几何体的三视图.
4、请画出如下几何体的三视图.
5、一个正n棱柱,它有18条棱,一条侧棱长为10cm,一条底面边长为5cm.
(1)这是几棱柱?
(2)此棱柱的侧面积是多少?
6、已知一个直四棱柱的底面边长为5cm的正方形,侧棱长都是8cm,回答下列问题:
(1)这个直四棱柱一共有几个面?几个顶点?
(2)这个直四棱柱有多少条棱?
(3)将这个直四棱柱的侧面展开成一个平面图形,这个图形是什么形状?面积是多少?
(4)这个直四棱柱的体积是多少?
7、若某几何体的三视图如图所示,则这个几何体的直观图可以是( )
A.B.C.D.
8、几何体的三视图如图所示,则这个几何体的直观图可以是( )
A.B.C.D.
答案:
1、从左向右依次是:球、六棱柱、圆锥、四棱柱、三棱柱、圆柱、四棱锥.
2、根据图示可知:几何体的名称依次为正方体、球、圆柱、长方体、圆锥、三棱柱、六棱柱、三棱锥.
3、如图所示:
4、如图所示:
5、解:(1)18÷3=6,这是一个六棱柱;
(2)此棱柱的侧面积是5×10×6=300(cm2).
6、解:(1)这个直四棱柱一共有6个面,8个顶点.
(2)这个直四棱柱有12条棱.
(3)将这个直四棱柱的侧面展开成一个平面图形,这个图形是长方形,面积是4×5×8=160cm2.
(4)这个直四棱柱的体积是5×5×8=200cm3.
7、A.
(理由:根据左视图可以排除掉C和D,根据俯视图可以排除掉B,因此符合条件的只有A,故选A.
8、B.
(根据侧视图可以排除掉D,根据正视图可以排除掉A和C,因此符合条件的只有B,故选B.)。