新教材北师大版八年级上册《7.2定义与命题(2)》教学设计
7.2定义与命题说课稿
![7.2定义与命题说课稿](https://img.taocdn.com/s3/m/ea219b315727a5e9856a6179.png)
《7.2定义与命题》说课稿一、教材分析1、教材地位与作用本节课是北师大版初中数学八年级上册第七章第二节第二课时的内容,是初中数学的重要内容之一。
本节课是学生第一次接触证明,它为学生学习后面的各种几何证明奠定了基础。
因此本节课在教材中具有非常重要的作用。
通过本节课的学习让学生掌握初中阶段必备的基础证明知识,锻炼他们的观察,语言表达能力,以及进一步发展逻辑思维。
2.教学目标:(1)了解公理,定理和证明的含义;理解并牢记8个公理,并能运用它们去判断一个命题的真假。
(2)了解证明的表达格式,会按照规定格式证明简单命题。
二.教法与学法分析1、学情分析:对初中学生来说,他们的抽象思维和归纳能力已初步形成,希望老师创设他们自主学习的环境,给他们发表自己见解和表现自己才华的机会。
本节课我设置了三个探究活动,学生可以互相讨论和交流等。
2、教法:新课标要求教师应激发学生的积极性,向学生提供充分从事教学活动的机会,帮助他们自主探究和合作交流,为达到这一目标,结合教材和学生实际采用发现法,小组合作法,启发法,反馈练习等方法教学。
3、学法:新课标指出自主探究和合作交流是学生学习的主要方式,因此在课堂上要确立学生的主体地位,指导学生学会观察,动口表达,动脑思考,主动多感官参与,多智能投入,共同探索新知和解决新问题的能力。
三、教学过程分析为有序、有效地进行教学,本节课我主要安排以下教学环节:1.预习展示设计意图:这一块主要分为两部分,一部分回顾上节课有关命题的重要知识点,可以更有效的对本节课的学习起到作用。
另一部分预习本节课的重要知识点2、合作探究,交流创新设计意图:通过设置三个探究题,学生可以互相探究,互相交流,展示自我等,既可以很好的完成学习目标又可以培养学生的合作能力,交流能力和创新意识。
3、当堂训练设计意图:可以很好的对本节所学内容进行检测,及时反馈。
老师在这一块要有所侧重有所针对的进行讲解。
4.自我小结设计意图:学生自己进行小结,谈一谈自己收获了什么,还有哪些方面的疑问。
北师大版数学八年级上册《认识定义与命题》教案2
![北师大版数学八年级上册《认识定义与命题》教案2](https://img.taocdn.com/s3/m/f3483568590216fc700abb68a98271fe900eaf4d.png)
北师大版数学八年级上册《认识定义与命题》教案2一. 教材分析《认识定义与命题》是北师大版数学八年级上册的一章内容。
这一章节的主要目的是让学生理解命题的概念,掌握如何判断一个命题是真命题还是假命题,以及如何根据已知命题得出新的命题。
本章内容是学生学习几何初步知识的基础,也是进一步学习几何证明的关键。
二. 学情分析学生在七年级时已经学习了命题的概念,对命题有基本的了解。
但是,他们可能还没有完全理解命题与定义、定理之间的区别和联系。
此外,学生在逻辑思维方面可能还存在一些困难,需要通过实例和练习来进一步巩固。
三. 教学目标1.让学生理解命题的定义,能够判断一个命题是真命题还是假命题。
2.让学生掌握如何根据已知命题得出新的命题。
3.培养学生的逻辑思维能力,提高他们解决几何问题的能力。
四. 教学重难点1.教学重点:让学生理解命题的定义,掌握判断命题真假的方法,以及如何得出新的命题。
2.教学难点:让学生理解命题与定义、定理之间的区别和联系,以及如何运用这些知识解决实际问题。
五. 教学方法1.采用问题驱动的教学方法,通过引导学生思考和解决问题,让学生理解命题的定义和性质。
2.使用实例和练习,让学生通过实际操作和思考,掌握判断命题真假的方法,以及如何得出新的命题。
3.鼓励学生进行合作学习,通过讨论和交流,提高他们的逻辑思维能力。
六. 教学准备1.准备相关的教学材料,如教材、PPT、黑板等。
2.准备一些实例和练习题,用于引导学生进行思考和练习。
七. 教学过程1.导入(5分钟)通过提出一个问题,引发学生的思考,例如:“什么是命题?”让学生回顾命题的概念,为后续的学习打下基础。
2.呈现(10分钟)通过PPT或黑板,呈现本节课的主要内容,包括命题的定义、如何判断命题的真假,以及如何得出新的命题。
同时,给出一些实例,让学生直观地理解这些概念。
3.操练(10分钟)让学生通过实际操作和思考,掌握判断命题真假的方法,以及如何得出新的命题。
北师大版八年级上册《7.2 定义与命题》教案x
![北师大版八年级上册《7.2 定义与命题》教案x](https://img.taocdn.com/s3/m/c56a9abd5ff7ba0d4a7302768e9951e79a89691a.png)
北师大版八年级上册《7.2 定义与命题》教案x一. 教材分析《7.2 定义与命题》这一节主要让学生了解数学中的定义与命题的概念,理解命题的构成要素,学会如何书写和阅读命题。
教材通过具体的例子,引导学生理解定义与命题的关系,以及如何从命题中提取信息。
二. 学情分析八年级的学生已经有一定的数学基础,对数学概念和命题有一定的认识。
但是,对于定义与命题的深入理解,以及如何从命题中提取信息,可能还存在一定的困难。
因此,在教学过程中,需要通过具体的例子,引导学生理解定义与命题的概念,以及如何从命题中提取信息。
三. 教学目标1.了解定义与命题的概念,理解命题的构成要素。
2.学会如何书写和阅读命题。
3.学会从命题中提取信息。
四. 教学重难点1.重点:定义与命题的概念,命题的构成要素。
2.难点:如何从命题中提取信息。
五. 教学方法采用讲授法、引导法、讨论法、案例分析法等,通过具体的例子,引导学生理解定义与命题的概念,以及如何从命题中提取信息。
六. 教学准备2.PPT。
3.教学案例。
七. 教学过程1.导入(5分钟)通过一个具体的案例,引导学生思考什么是定义,什么是命题。
例如,定义一个三角形:由三条线段首尾相连围成的图形。
然后,给出一个命题:所有的三角形都有三个顶点。
让学生思考这个命题是否正确。
2.呈现(10分钟)通过PPT,呈现定义与命题的概念,以及命题的构成要素。
让学生理解定义与命题的关系。
3.操练(15分钟)让学生阅读教材中的例子,尝试自己书写和阅读命题。
教师通过提问,引导学生理解命题的构成要素。
4.巩固(10分钟)通过小组讨论,让学生互相交流自己的理解和发现。
教师通过提问,检查学生对定义与命题的理解。
5.拓展(10分钟)让学生尝试解决一些与定义与命题相关的问题。
例如,给出一个命题,让学生判断其是否正确,并说明理由。
6.小结(5分钟)通过总结,让学生回顾本节课所学的内容,加深对定义与命题的理解。
7.家庭作业(5分钟)布置一些与定义与命题相关的作业,让学生课后巩固所学知识。
北师大版八年级数学上册7.2定义与命题优秀教学案例
![北师大版八年级数学上册7.2定义与命题优秀教学案例](https://img.taocdn.com/s3/m/cde50352854769eae009581b6bd97f192279bfc4.png)
3.鼓励学生主动提问,培养学生敢于质疑的精神,提高他们的问题解决能力。
(三)小组合作
1.划分学习小组,鼓励学生相互讨论、交流,提高团队协作能力。
2.设计小组合作任务,使学生在讨论中深入理解定义与命题,提高他们的逻辑思维能力。
3.注重小组评价,激发学生的竞争意识,提高他们的学习积极性。
北师大版八年级数学上册7.2定义与命题优秀教学案例
一、案例背景
北师大版八年级数学上册7.2节“定义与命题”的教学,旨在让学生理解概念的含义,掌握命题的构成要素,培养学生的逻辑思维能力。本节课内容是学生对数学语言和基本概念的深入学习,是建立良好数学思维的基础。
在这个阶段,学生已经掌握了初步的数学概念和简单的逻辑推理,但对定义与命题的深层含义理解不足,容易混淆概念,对命题的真假判断缺乏准确性。因此,在教学过程中,我以学生已有的知识为基础,通过丰富的教学活动和实例,引导学生深入理解定义与命题的关系,提高他们的逻辑思维和判断能力。
这些亮点体现了我在教学过程中的创新与实践,注重启发式教学,关注学生的全面发展,培养他们的自主学习能力和团队协作能力。同时,我也注重激发学生的学习兴趣,让他们在轻松愉快的氛围中掌握知识,提高他们的数学素养。
2.感受数学的严谨性和逻辑性,培养学生的求真精神。
3.认识到数学在实际生活中的应用价值,提高学生运用数学解决实际问题的能力。
4.培养学生热爱祖国,为祖国的繁荣富强而努力学习的情感。
在教学过程中,我将以学生为主体,关注每个学生的个体差异,充分调动他们的积极性,引导他们主动参与课堂讨论,培养他们的自主学习能力。同时,注重启发式教学,引导学生发现定义与命题之间的内在联系,提高他们的逻辑思维能力。
北师版八年级上册 第七章 7.2.2 定义与命题 教案
![北师版八年级上册 第七章 7.2.2 定义与命题 教案](https://img.taocdn.com/s3/m/1d7a18f6ff00bed5b8f31d88.png)
北师版八年级上册第七章7.2.2 定义与命题教案7.2.2定义与命题(教案)教学目标知识与技能:1.理解公理、证明、定理的概念.2.掌握公理、证明、定理的联系与区别.过程与方法:1.通过对公理的认识,明确证明需要公理和定理.2.经历实际情境,初步体会公理化的思想和方法.情感态度与价值观:1.通过从具体例子中提炼数学概念,培养学生思维的严密性和逻辑性.2.结合实例让学生意识到证明的必要性,培养学生做到有理有据,有条理地表达自己的想法的良好意识,培养学生的语言表达能力.教学重难点【重点】理解公理、证明和定理的概念.【难点】准确找出命题的条件和结论,公理与定理的区别,写出步步有理有据的证明过程.教学准备【教师准备】教材第168页情景图和第169页例题的投影图片.【学生准备】复习命题等相关概念.教学过程生1:李老师不是峄城人,所以李老师可能是市中人或薛城人;李老师不教数学,所以李老师可能教语文或英语;因为峄城人教语文,所以李老师只能教英语;而薛城人不教英语,所以李老师是市中人.生2:(补充)因为王老师不是薛城人,所以王老师可能是市中人或峄城人;李老师已经判断是市中人了,所以王老师只能是峄城人,范老师就是薛城人了.生3:(接着说)王老师是峄城人,所以王老师教语文,而范老师教的课程是数学.师:三位同学推理非常合理,我们为他们鼓掌.(学生鼓掌)解决这样的逻辑推理题目的关键是:根据条件,进行依次判断,进而得出正确结论.那么,如何证实一个命题是真命题呢?我们今天继续来探究.(板书课题)[设计意图]加深学生对逻辑推理的理解,可激发学生学习本课时的兴趣,从而引出本课时的问题.二、新知构建[过渡语]怎样判断一个命题是真命题还是假命题?你判断的依据是什么?(1)、公理、证明、定理的有关概念思路一(多媒体出示)公理、证明、定理的有关概念.问题1【课件1】公理的概念是什么?证明、定理的概念是什么?完成下列填空:(1)叫做公理.除了公理外,其他命题的真假都需要通过的方法进行判断.(2)的过程称为证明.经过证明的称为定理.每个定理都只能用、和已经证明为的命题来证明.问题2【课件2】本套教科书选用的公理有哪些?本套教科书选用九条基本事实(公理)作为证明的出发点和依据,我们已经认识了其中的八条:(1);(2);(3);(4);(5);(6);(7);(8).思路二师: (投影出示)公元前3世纪,人们已经积累了大量的数学知识,在此基础上,古希腊数学家欧几里得编写了一本书,书名叫《原本》,为了说明每一结论的正确性,他在编写这本书时进行了大胆创造:挑选了一部分数学名词和一部分公认的真命题作为证实其他命题的出发点和依据,其中的数学名词称为原名,公认的真命题称为公理.除了公理外,其他真命题的正确性都需要通过演绎推理的方法证实.演绎推理的过程称为证明.经过证明的真命题称为定理,而证明所需的定义、公理和其他定理都编写在要证明的这个定理的前面.《原本》问世之前,世界上还没有一本数学书籍像《原本》这样编排,因此,《原本》是一部具有划时代意义的著作.欧几里得生:老师,我知道了,除公理、定义外,其他的真命题必须通过证明才能证实.师:(投影出示)我们这套教材中已经认识了有如下命题作为基本事实:1.两点确定一条直线.2.两点之间线段最短.3.同一平面内,过一点有且只有一条直线与已知直线垂直.4.两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.5.过直线外一点有且只有一条直线与这条直线平行.6.两边及其夹角分别相等的两个三角形全等.7.两角及其夹边分别相等的两个三角形全等.8.三边分别相等的两个三角形全等.[设计意图]让学生明确有哪些公理,给学生留出一定的思维空间,让他们思考如何证实真命题的问题,在此基础上,引出数学家欧几里得《原本》的编写思路.另外一条基本事实我们将在后面的学习中认识它.等式的有关性质和不等式的有关性质都可以看作公理,在等式或不等式中,一个量可以用它的等量来代替.例如,如果a=b,b=c,那么a=c,这一性质也看作公理,称为“等量代换”.问题3【课件3】还有哪些有关性质可以作为证明的依据?[处理方式](1)让学生自学3分钟(要求根据多媒体出示的问题逐一回答),并独立思考.(2)对于未完成的问题,小组内交流自己的想法并完善,教师巡视,检查完成情况.(3)完成多媒体出示的内容,借助多媒体展示正确答案,学生完成后及时点评,让学生对出现的问题进行矫正.(教师可以根据学生回答问题的情况给予适时点拨)(2)、公理、定理、定义及它们之间的关系(多媒体出示)问题1【课件1】公理的来源是什么?问题2【课件2】定理是怎么得到的?证明定理的依据是什么?问题3【课件3】最初的定理是怎么得到的?问题4【课件4】你能否通过图表把这个关系画出来?[处理方式]首先学生自主思考,挨个回答上面的问题,然后学生交流合作试画图表,此时教师给予必要的指导.巡视同时注意看有没有同学能够画出较为合理的图表,有的话就给予全班展示.最后再多媒体展示,出示答案.[设计意图]通过自主学习、合作交流、优秀图表展示等环节,既可以锻炼学生的自主学习能力,又发展了学生的合作交流能力、有条理思考的能力和语言表达能力.(3)、定理的证明[过渡语]从这些基本事实出发,我们就可以证明已经探索过的结论了,我们已经知道:同角的补角相等.怎么利用你刚才整理的公理进行证明呢?问题1【课件1】你能书写证明下面这个定理的规范步骤吗?(多媒体出示)证明:同角的补角相等.已知:∠1+∠2=180°,∠1+∠3=180°.求证:∠2=∠3.证明:∵∠1+∠2=180°,∠1+∠3=180°(已知),∴∠2=180°-∠1,∠3=180°-∠1(等式的性质),∴∠2=∠3(等量代换).注意:符号“∵”读作“因为”,“∴”读作“所以”.[处理方式]先让学生独立思考,然后学生试着写出证明过程,最后老师在黑板上板书.说明符号“∵”读作“因为”,“∴”读作“所以”.强调“刚开始学习证明,最好在每一步的后面注明依据”.[设计意图]证明已经探索过的结论,目的是引导学生了解证明要有理有据,规范证明的步骤,发展推理能力;培养学生的合作探究意识.巩固训练1:证明等角的补角相等.[处理方式]教师先让学生独立完成,并请学生板演,其他学生在练习本上完成.做完后小组之间开展互评.教师巡视,适时点拨.学生完成后及时点评,借助多媒体展示正确答案,让学生对出现的问题进行矫正.(多媒体出示下面答案)参考答案:已知:∠1=∠2,∠1+∠3=180°,∠2+∠4=180°.求证:∠3=∠4.证明:∵∠1+∠3=180°,∠2+∠4=180°(已知),∴∠3=180°-∠1,∠4=180°-∠2(等式的性质).又∠1=∠2(已知),∴∠3=∠4(等量代换).[设计意图]在解决这个问题的过程中,帮助学生进一步理解和巩固证明的含义,引导学生利用公理、定义、已经证明的真命题解决实际问题,训练思维的严谨性、逻辑性,强化证明步骤的规范性.为了使我们的解答更为规范和有条理,请同学们根据此题总结一下证明一个命题的一般步骤.证明一个命题的一般步骤:1.已知:写出命题的条件(必要时结合图形).2.求证:写出命题的结论.3.证明:写出演绎推理的过程.[处理方式]在小组交流的基础上,在教师的引导下,首先归纳总结出证明一个命题的一般步骤,然后让学生对照步骤,完善各自的解题过程.[设计意图]出示“证明一个命题的一般步骤”,使学生进一步验证并熟悉“证明一个命题的一般步骤”,然后通过自己观察、思考、争辩,发现规律、归纳总结,加深对“证明一个命题的一般步骤”的认识与理解,培养学生的分析和归纳概括的能力.证明:对顶角相等.已知:如图所示,直线AB与直线CD相交于点O,∠AOC与∠BOD是对顶角.求证:∠AOC=∠BOD.证明:∵∠AOC+∠AOD=180°,∠BOD+∠AOD=180°(平角的定义),∴∠AOC和∠BOD都是∠AOD的补角(补角的定义),∴∠AOC=∠BOD(同角的补角相等).定理:对顶角相等.[处理方式]先找一名学生到黑板板演做题步骤,其余同学在练习本上完成,此时教师在下边巡视、指导.然后师生一起规范做题步骤,并在课件上展示例题的规范步骤.[设计意图]教师先引导学生回想命题的一般证明步骤,再由教师示范,写出例题的过程,理由依据要强调.再找一个同学,到黑板上板演,其余同学在练习本上完成,教师巡视,适时点拨,再次向学生强调证明步骤“三步走”:已知、求证和证明,并强调证明的“三依据”:公理、定义和已经证明的真命题.你还能证明下面定理吗?定理:同角(等角)的余角相等.定理:三角形的任意两边之和大于第三边.[知识拓展] 1.对于公理:①公理是不需要推理证实的真命题,②公理可以作为判断其他命题真假的根据.2.对于定理:①定理都是真命题,但真命题不一定都是定理;②定理可以作为推证其他命题的依据.3.证明的一般步骤:①根据题意,画出图形;②根据条件和结论,结合图形写出已知和求证;③经过分析,找出由已知推出求证的途径,写出证明过程.4.假命题的判断:判断一个命题是假命题,只要举出反例来说明即可.三、课堂总结 证明的依据—||—定义、公理—定理—运算和运算法则—反映大小关系的有关性质四、课堂练习1. 称为公理;真命题称为定理;称为证明.答案:公认的真命题经过证明的演绎推理的过程2.写出两个公理:;.答案:两点确定一条直线两点之间线段最短(答案不唯一)3.“平行于同一条直线的两条直线平行”可以写成:如果,那么.答案:两条直线平行于同一条直线这两条直线平行4.判断“对应角相等的三角形是全等三角形”这一命题的真假性,并给出证明.解析:先判断出这一命题的真假,再举例证明即可.解:对应角相等的三角形是全等三角形,是假命题.举例证明:如图所示,DE∥BC,∠ADE=∠B,∠AED=∠C,∠A=∠A,但ΔADE与ΔABC不全等.五、板书设计第2课时1.公理、证明和定理2.证明的基本依据3.定理的证明六、布置作业(1)、教材作业【必做题】教材随堂练习.【选做题】教材习题7.3第2题.(2)、课后作业【基础巩固】1.下列叙述错误的是()A.所有的命题都有条件和结论B.所有的命题都是定理C.所有的定理都是命题D.所有的公理都是真命题2.下列命题为假命题的是()A.三角形三个内角的和等于180°B.三角形两边之和大于第三边C.三角形两边的平方和等于第三边的平方D.三角形的面积等于一条边的长与该边上的高的乘积的一半3.已知命题:等底等高的两个三角形面积相等,则这个命题的结论是()A.两个三角形B.两个三角形的面积C.两个三角形的面积相等D.两个三角形等底等高4.命题“对顶角相等”的“条件”是.【能力提升】5.如图所示,AB=AE,∠1=∠2,∠C=∠D.求证ΔABC≌ΔAED.【思维拓展】6.如图所示,已知∠AOC与∠BOD都是直角,∠BOC=65°.(1)求∠AOD的度数;(2)求证∠AOB=∠DOC;(3)若不知道∠BOC的具体度数,其他条件不变,(2)的关系仍成立吗?若成立,说明理由.【答案与解析】1.B2.C(解析:直角三角形两直角边的平方和等于斜边的平方,所以C选项为假命题.)3.C4.两个角是对顶角(解析:改写成“如果两个角是对顶角,那么这两个角相等”就容易找到命题的条件和结论了.)5.证明:因为∠1=∠2,所以∠1+∠EAC =∠2+∠EAC ,即∠BAC =∠EAD ,在ΔABC 和ΔAED 中,{∠C =∠D ,∠BAC =∠EAD ,AB =AE ,所以ΔABC ≌ΔAED (AAS).6.解析:(1)先求出∠DOC ,继而得出∠AOD.(2)分别求出∠AOB 和∠DOC 的度数,可得∠AOB =∠DOC.(3)(2)的关系依然成立,根据同角的余角相等可得.(1)解:因为∠DOC =∠DOB-∠BOC =90°-65°=25°,所以∠AOD =∠AOC +∠DOC =90°+25°=115°. (2)证明:因为∠DOC =25°,∠AOB =∠AOC-∠BOC =90°-65°=25°,所以∠AOB =∠DOC. (3)解:成立.因为∠AOB =∠AOC-∠BOC =90°-∠BOC ,∠COD =∠BOD-∠BOC =90°-∠BOC ,所以∠AOB =∠COD.。
2024-2025学年北师版中学数学八年级上册7.2.2定义与命题教学课件
![2024-2025学年北师版中学数学八年级上册7.2.2定义与命题教学课件](https://img.taocdn.com/s3/m/1a7d28680a4c2e3f5727a5e9856a561252d32190.png)
1
2
a
∴ ∠1=90°(垂直的定义),
又∵ b ∥ c(已知),
∴ ∠2=∠1=90°(两直线平行,同位角等),
∴ a ⊥ c(垂直的定义).
课堂小结
命题Βιβλιοθήκη 分类公理:公认的真 命题
定理:经过证明 的真命题
证明:推理的过程
当堂检测
1.“两点之间,线段最短”这个语句是( B )
A.定理 B.公理
C.定义 D.只是命题
2.“同一平面内,不相交的两条直线叫做平行线”
这个语句是( C )
A.定理
B.公理 C.定义 D.只是命题
3.下列命题中,属于定义的是( D ) A.两点确定一条直线; B.同角的余角相等; C.互补的两个角是邻补角; D.点到直线的距离是该点到这条直线的垂线段的长度.
4.下列句子中,是定理的是( B,C ),是公理的 是( A ). A.若a=b,b=c,则a=c;
第七章 平行线的证明
第七章 平行线的证明
7.2 定义与命题 第2课时
学习目标
1.了解公理、定理与证明的概念并了解本套教材所采用的 公理.(重点) 2.体会命题证明的必要性,体验数学思维的严谨性.(难点)
新课导入
【思考】如何证实一个命题是真命题呢?
用我们以前学 过的观察,实 验,验证特例
等方法.
哦……那可 怎么办
证明: ∵直线AB与直线CD相交于点O (已知), ∴ ∠AOB与∠COD都是平角 ( 平角的定义), ∴ ∠AOC+∠AOD=180°, ∠BOD+∠AOD=180 °( 补角的定义 ), ∴ ∠AOC =∠BOD ( 同角的补角相等).
随堂训练
已知:b∥c, a⊥b .
7.2定义与命题(教案)2023-2024学年北师大版八年级数学上册
![7.2定义与命题(教案)2023-2024学年北师大版八年级数学上册](https://img.taocdn.com/s3/m/0221302ff342336c1eb91a37f111f18583d00c34.png)
三、教学难点与重点
1.教学重点
-理解命题的定义及其基本结构。核心内容是命题的题设和结论,以及如何从具体实例中抽象出命题。
-举例:从“如果一个数是偶数,那么它能被2整除”这个实例中,强调“如果一个数是偶数”是题设,“那么它能被2整除”是结论。
-掌握命题的分类,包括真命题、假命题、逆命题、逆否命题和对偶命题。
-举例:真命题如“两直线平行,内错角相等”;假命题如“所有奇数都是质数”;逆命题是将原命题的题设和结论对调等。
-学会运用已知条件和基本事实进行命题证明。
-举例:使用欧几里得几何的基本公理证明“等腰三角形的底角相等”。
-理解并掌握命题的否定方法。
7.2上册
一、教学内容
本节选自2023-2024学年北师大版八年级数学上册第7章第2节“定义与命题”。教学内容主要包括以下几部分:
1.命题的定义:让学生了解什么是命题,以及命题的基本结构,如题设和结论。
2.命题的分类:介绍真命题、假命题、逆命题、逆否命题、对偶命题等概念,并通过实例进行解释。
3.命题的证明:引导学生学会运用已知条件和基本事实,通过推理得出命题的结论。
4.命题的否定:讲解如何对命题进行否定,以及否定的方法和规律。
本节课将结合实际例子,让学生在实际操作中掌握命题的相关概念和性质,培养他们的逻辑思维能力和推理能力。
二、核心素养目标
本节课的核心素养目标主要包括以下几方面:
1.培养学生的逻辑思维能力:通过分析、判断命题的真假,提高学生运用逻辑推理解决问题的能力。
首先,导入新课环节,通过提问学生们日常生活中的真假陈述,成功引起了他们对命题的兴趣。这个环节的设计让学生们意识到数学与生活息息相关,从而激发了他们的学习热情。
北师大版八年级数学上册教学设计:7.2定义与命题(2)
![北师大版八年级数学上册教学设计:7.2定义与命题(2)](https://img.taocdn.com/s3/m/7e1d1ad8f705cc17552709f6.png)
体会公理化思想和方法,了解本教材所采用的公理。
教法学法
引导、启发,合作交流
教学环节
教学过程
设计意图
回顾引入
新知探究
1.什么叫做定义?举例说明。
2.什么叫命题?举例说明。
观察下列命题,发现它们的结构有什么共同特征?
(1)如果两个三角形的三条边对应相等,那么这两个三角形全等。
(2)如果一个三角形是等腰三角形,那么这个三角形的两个底角相等。
巩固训练
归纳小结
探究真假命题的验证:
说明一个命题是假命题,通常举出一个反例就可以了,使之具备命题的条件,而不具有命题的结论,这种例子称为反例,但是要说明一个命题是正确的无论验证多少个特例,也无法保证命题的正确性.如何验证命题的正确性呢?
正确的命题称为真命题,不正确的命题称为假命题。
读一读
介绍《几何原本》、公理、定理等知识:
教师讲解与学生习读相结合。培养学生公理化思想和方法,养成科学、严谨思维习惯。
培养学生逻辑思维能力,推理能力。
归纳本节课所学知识,对本节课有一个系统的认识,从而能准确地区分命题的真假性,了解命题结构中的条件与结论。
板
书
设
计
7.2定义与命题(2)
回顾引入:……公理、定理:……
命题的结构:……证明:……
命题的类型:……归纳小结:……
7.两角及其夹边对应相等的两个三角形全等。
8.三边对应相等的两个三角形全等。
等式和不等式的有关性质也可看作公理。
定理(P169略)
例题:(P169略)
定理:对顶角相等。
了解命题中的真假命题、公理、定理的含义,通过学习学会区分命题的条件、结论。
学会判别真、假命题,理解反例、证明等概念。
八年级上册数学 7.2定义与命题(2)教案
![八年级上册数学 7.2定义与命题(2)教案](https://img.taocdn.com/s3/m/1c4dbd015901020207409cb7.png)
7.2 定义与命题 (2)教学目标:知识技能1.了解真命题和假命题的概念。
2.会在简单的情况下判别一个命题的真假。
3.了解公理和定理的含义。
过程与方法1.从生活命题引入数学命题,并通过小组活动,让学生在自己提出问题、自己解决问题的过程中经历知识的产生过程, 并在这个过程中了解类比、归纳、分类等思维方法。
2.在学生总结命题、真命题、定理和公理之间的关系中,感受数学知识间的内在联系。
3.通过对真假命题的判断,初步体验举反例、推理说明等数学方法。
情感态度与价值观让学生在推理中感觉到数学的有用性。
教学重点:命题的真假的概念和判别。
教学难点判别命题的真假其实已涉及证明。
教学过程一、复习1、定义:对名称和术语的含义加以描述,作出明确的规定,也就是给出它们的定义.2、命题的定义:判断一件事情的句子,叫做命题3、命题的结构:每个命题都由条件和结论两部分组成.条件是已知事项,结论是由已知事项推断出的事项.4、命题的特征:一般地,命题可以写成“如果……,那么……”的形式,其中“如果”引出的部分是条件,“那么”引出的部分是结论.把下列命题改写成“如果┄┄那么┄┄”的形式,并指出命题的条件和结论1、相等的角是对顶角;2、钝角大于它的补角;3、两直线平行,同位角相等;二、新授课想一想如何证实一个命题是真命题呢?生1:用学过的观察、实习法生2:这些方法往往不可靠生3:能不能根据已知的真命题来证明呢?生4:那已知的真命题又是怎么证明的?生5:…….公认的真命题称为公理.推理的过程叫证明。
经过证明的真命题称为定理.本套教材选用如下命题作为公理:1.两点确定一条直线。
2.两点之间线段最短。
3.两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;4.两条平行线被第三条直线所截,同位角相等;5.两边及其夹角对应相等的两个三角形全等;6.两角及其夹边对应相等的两个三角形全等;7.三边对应相等的两个三角形全等;8.全等三角形的对应边相等,对应角相等.定理 同角(等角)的补角相等。
北师大版八年级数学上册:7-2定义与命题(教案)
![北师大版八年级数学上册:7-2定义与命题(教案)](https://img.taocdn.com/s3/m/5bd581d4d1d233d4b14e852458fb770bf78a3bcc.png)
2.增强学生的数学抽象素养:引导学生从具体实例中提炼出数学命题,培养他们对数学概念、定理的抽象理解和运用。
3.提升学生的数学建模素养:通过命题在实际问题中的应用,使学生学会运用数学语言和符号来描述现实问题,建立数学模型,提高解决实际问题的能力。
3.命题的分类:根据命题之间的关系,将命题分为真命题、假命题和不确定命题,并通过实例进行分析。
4.命题的证明:引导学生学会运用已知定理、公理和定义来证明命题的正确性,培养他们的逻辑推理能力。
5.命题的应用:通过实际例题,让学生学会运用命题来解决问题,提高他们运用数学知识解决实际问题的能力。
二、核心素养目标
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《定义与命题》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要判断一个陈述是否正确的情况?”比如,有人说“所有的鸟都有翅膀”,这是不是一个正确的陈述呢?这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索命题的奥秘。
-举例:命题“如果一个整数既是4的倍数也是6的倍数,那么它一定是12的倍数”,需要通过分析4、6和12的公倍数来理解。
-理解命题否定的逻辑:对于简单命题的否定,学生可能会混淆概念,需要通过具体的例子和逻辑解释来帮助学生理解。
-举例:解释“不是所有的猫都怕水”这个否定命题的逻辑结构,与原命题“所有的猫都怕水”的区别。
4.培养学生的数学运算素养:在命题的证明过程中,加强学生对数学运算规则和方法的理解,提高他们的运算速度和准确性。
2024年北师大版八年级上册教学设计第七章7.2 定义与命题
![2024年北师大版八年级上册教学设计第七章7.2 定义与命题](https://img.taocdn.com/s3/m/097639271611cc7931b765ce05087632311274ef.png)
第1课时定义与命题课时目标1.掌握定义、命题的含义,并感受其在数学和生活中的广泛应用.2.理解命题的结构,会将命题写成“如果……那么……”的形式,会区分命题的条件和结论,并判断其真假.3.通过观察、猜想、推理的过程,发展学生的探索意识与合作交流的意识,关注现实,培养学生进行思考的能力和质疑精神.学习重点掌握定义、命题的含义,并感受其在数学和生活中的广泛应用.学习难点理解命题的结构,会将命题写成“如果……那么……”的形式,会区分命题的条件和结论,并判断其真假.课时活动设计情境引入通过多媒体播放图片,创设小华和小刚对话的场景,让学生发现有关的数学问题.小华与小刚正在津津有味地阅读《我们爱科学》.小华:哈!这个黑客终于被逮住了.小刚:是的,现在的因特网广泛运用于我们的生活中,给我们带来了方便,但……小华:这个黑客是个小偷吧?小刚:可能是个喜欢穿黑衣服的贼.设计意图:创设这个情境,激发和引导学生更主动地参与课堂交流,感受到为了进行有效交流必须引入定义和命题.用这种形式引入,让学生及早融入课堂,积极思考,也作为本节课的一个贯穿的背景.更重要的是,希望学生初步感受定义的重要性.探究新知教师引导学生回答下面问题.1.阅读下面的内容,并填一填.(1)“具有中华人民共和国国籍的人,叫做中华人民共和国公民”是“中华人民共和国公民”的定义;(2)“两点之间线段的长度,叫做这两点之间的距离”是“两点之间的距离”的定义;(3)“无限不循环小数被称为无理数”是“无理数”的定义;(4)“由不在同一直线上的若干线段首尾顺次连接所组成的平面图形叫做多边形”是“多边形”的定义;(5)“有两条边相等的三角形叫做等腰三角形”是“等腰三角形”的定义.教师通过上述例子,引出定义的含义.证明时,为了交流的方便,必须对某些名称和术语形成共同的认识.为此,就要对名称和术语的含义加以描述,作出明确的规定,也就是给出它们的定义.2.从本册数学课本中找找有哪些定义?设计意图:这里的例子,既有几何概念方面的定义,也有代数方面的定义,还有生活中的定义,力图让学生认识到定义在工作、学习、生活中的广泛应用,达成定义的必要性以及科学性、准确性、简洁性、唯一性的共识;然后通过在教材上找定义,体验定义的无所不在,突显教材在学习中的指导作用.鼓励学生自己动脑思考并与小组的其他同学相互讨论,对学生的答案给予肯定,激发他们学习数学的兴趣.探究新知下列各语句中,哪些语句对事情作出了判断,哪些没有?(1)任何一个三角形一定有一个角是直角;(2)对顶角相等;(3)无论n为怎样的自然数,式子n2-n+11的值都是质数;(4)如果两条直线都和第三条直线平行,那么这两条直线也互相平行;(5)你喜欢数学吗?(6)作线段AB=CD.学生组内合作,互相交流讨论.教师引导,通过上述例子引出命题的概念.解:(1)(2)(3)(4)作出了判断,(5)(6)没有作出判断.教师总结:判断一件事情的句子叫做命题.如果一个句子没有对某一件事情作出任何判断,那么它就不是命题.命题是一个陈述句.设计意图:让学生在经历活动环节和独立思考的基础上道出对命题的认识和理解,表示判断的句子都是命题,而不管判断是否正确.不表示判断的句子就不是命题,在此过程中培养学生的表达能力和总结能力.探究新知观察下列命题,你能发现这些命题有什么共同的结构特征?(1)如果一个三角形是等腰三角形,那么这个三角形的两个底角相等;(2)如果a=b,那么a2=b2;(3)如果两个三角形中有两边和一个角分别相等,那么这两个三角形全等.学生组内合作,互相交流讨论.教师引导,总结交流结果.教师总结:一般地,每个命题都由条件和结论两部分组成,条件是已知的事项,结论是由已知事项推断出的事项.命题通常可以写成“如果……那么……”的形式,其中“如果”引出的部分是条件,“那么”引出的部分是结论.设计意图:这些命题都是“如果…那么……”的形式,让学生进一步体会命题的含义,并概括出命题的结构特征:有“如果……那么……”的结构,进而明晰命题的条件和结论,使学生更好地认识命题及其结构.典例精讲例指出下列命题的条件和结论,其中哪些命题是错误的?你是如何判断的?(1)如果两个角相等,那么它们是对顶角;(2)如果a≠b,b≠c,那么a≠c;(3)全等三角形的面积相等;(4)如果室外气温低于0℃,那么地面上的水一定会结冰.学生分组进行讨论交流,教师展示答案.解:(1)条件:两个角相等;结论:它们是对顶角.例:等腰三角形的两个底角相等,但它们不是对顶角,所以命题不正确.(2)条件:a≠b,b≠c;结论:a≠c.例:a=c=3,b=1,同样满足条件a≠b,b≠c.所以命题不正确.(3)条件:两个三角形全等;结论:这两个三角形的面积相等.命题正确.(4)条件:室外气温低于0℃;结论:地面上的水一定会结冰.例:结冰需要一个过程,在室外温度低于0℃时才刚刚开始结冰.所以命题不正确.教师总结:正确的命题称为真命题,不正确的命题称为假命题.要说明一个命题是假命题,常常可以举出一个例子,使它具备命题的条件,而不具有命题的结论,这种例子称为反例.设计意图:明晰了命题的结构之后,自然应让学生结合实例分析命题的条件和结论.在这样的分析过程中,必然会思考这些命题的真假.巩固学生分析命题的条件和结论,进一步引导学生体会:要说明一个命题是假命题,通常举出一个反例就可以了.同时,与前面内容相呼应:要说明一个命题是正确的,无论验证多少个特殊的例子,也无法保证命题的正确性.巩固训练1.指出下列命题的条件和结论,并判断是真命题还是假命题.(1)互为补角的两个角相等;(2)如果a=b,那么a+c=b+c;(3)如果两个长方形的周长相等,那么这两个长方形的面积相等.解:(1)条件:两个角互为补角;结论:这两个角相等.假命题.(2)条件:a=b;结论:a+c=b+c.真命题.(3)条件:两个长方形的周长相等;结论:这两个长方形的面积相等.假命题.2.分别把下列命题写成“如果……,那么……”的形式.(1)两点确定一条直线;(2)在同一平面内,垂直于同一条直线的两条直线平行;(3)内错角相等.解:(1)如果经过两点画直线,那么只能画出一条直线.(2)在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线互相平行.(3)如果两个角是内错角,那么这两个角相等.设计意图:旧知识和新知识的结合体,巩固真命题与假命题的概念,学会用举反例来证明假命题,体会命题的完备性,促进了学生对教学内容的整体理解和把握,同时也加深对“如果……,那么……”形式的理解与掌握,培养学生的核心素养.课堂小结1.定义和命题的概念.2.命题的条件和结论.3.判断真假命题.设计意图:通过回顾本节所学的知识,加深学生对本节所学内容的理解,培养学生善于反思的习惯.课堂8分钟.1.教材第167页习题7.2第2,3题.2.七彩作业.教学反思第2课时公理、定理和证明课时目标1.了解真命题的证明,通过实例感受证明的过程与格式.2.初步感受公理化思想,并了解本套教科书所采用的基本事实.3.阅读有关《原本》和公理化的资料,感受公理化方法对数学发展和促进人类文明进步的价值.学习重点了解公理、定理与证明的概念并了解本套教材所采用的基本事实.学习难点体会命题证明的必要性,体验数学思维的严谨性.课时活动设计复习回顾1.回忆我们上次学习到了哪些知识?对名称和术语的含义加以描述,作出明确的规定,也就是给出它们的定义.判断一件事情的句子,叫做命题.如果一个句子没有对某一件事情作出任何判断,那么它就不是命题.一般地,每个命题都由条件和结论两部分组成.条件是已知的事项,结论是由已知事项推断出的事项.命题通常可以写成“如果……那么……”的形式,其中“如果”引出的部分是条件,“那么”引出的部分是结论.正确的命题称为真命题,不正确的命题称为假命题.要说明一个命题是假命题,常常可以举出一个例子,使它具备命题的条件,而不具有命题的结论,这种例子称为反例.2.举一个反例就可以说明一个命题是假命题,那么如何证实一个命题是真命题呢?设计意图:开门见山,引导学生回忆命题引出下面活动.情境引入公元前3世纪,人们已经积累了大量的数学知识,在此基础上,古希腊数学家欧几里得(公元前300年前后)编写了一本书,书名叫做《原本》.为了说明每一结论的正确性,他在编写这本书时进行了大胆创造:挑选了一部分数学名词和一部分公认的真命题作为证实其他命题的出发点和依据,其中的数学名词称为原名,公认的真命题称为公理.除了公理外,其他命题的真假都需要通过演绎推理的方法进行判断.演绎推理的过程称为证明,经过证明的真命题称为定理.每个定理都只能用公理、定义和已经证明为真的命题来证明.已学的八条基本事实有:1.两点确定一条直线.2.两点之间线段最短.3.同一平面内,过一点有且只有一条直线与已知直线垂直.4.两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行(简述为:同位角相等,两直线平行).5.过直线外一点有且只有一条直线与这条直线平行.6.两边及其夹角分别相等的两个三角形全等.7.两角及其夹边分别相等的两个三角形全等.8.三边分别相等的两个三角形全等.此外,数与式的运算律和运算法则、等式的有关性质,以及反映大小关系的有关性质都可以作为证明的依据.例如,如果a=b,b=c,那么a=c,这一性质也可以作为证明的依据,称为“等量代换”.又如,如果a>b,b>c,那么a>c,这一性质同样可以作为证明的依据.设计意图:经历实际情境,初步体会公理化思想和方法,了解本教材所采用的基本事实,让学生对真假命题有一个清楚的认识,从而进一步了解定理、公理的概念.培养学生的语言表达能力.探究新知定理证明学生组内合作,互相交流完成下面问题,教师及时指导,规范学生证明过程的书写.1.定理:同角的补角相等.已知:℃B和℃C是℃A的补角,求证:℃B=℃C.证明:℃℃B和℃C是℃A的补角,℃℃B=180°-℃A,℃C=180°-℃A.℃℃B=℃C(等量代换).℃同角的补角相等.2.定理:同角的余角相等.已知:℃B和℃C是℃A的余角,求证:℃B=℃C.证明:℃℃B和℃C是℃A的余角,℃℃B=90°-℃A,℃C=90°-℃A.℃℃B=℃C(等量代换).℃同角的余角相等.设计意图:通过学生合作交流,培养了学生互助交流的意识;让学生初步感受证明推理的过程,体会证明的思路,体验书写的过程以及数学的严谨性.典例精讲例已知:如图,直线AB与直线CD相交于点O,℃AOC与℃BOD是对顶角.求证:℃AOC=℃BOD.证明:℃直线AB与直线CD相交于点O,℃℃AOB与℃COD都是平角(平角的定义).℃℃AOC=℃BOD都是℃AOD的补角(补角的定义).℃℃AOC=℃BOD(同角的补角相等).由例题得到定理:对顶角相等.设计意图:让学生进一步体会证明的思路与书写的过程.巩固训练已知:如图,℃ABC.求证:AB+BC>AC,BC+CA>AB,CA+AB>BC.证明:℃AC是以点A,点C为端点的线段,℃AB+BC>AC(两点之间线段最短).同理BC+CA>AB,CA+AB>BC.设计意图:让学生进一步感受证明推理的过程,体会证明思路,体验书写的过程以及数学的严谨性.课堂小结1.公理:公认的真命题.2.定理:经过证明的真命题.3.证明:演绎推理的过程.设计意图:通过回顾本节课所学的内容,加深学生对本节所学内容的理解,掌握证明推理的过程,体验数学的严谨性,培养学生反思的习惯.课堂8分钟.1.教材第171页习题7.3第3,4题.2.七彩作业.第2课时公理、定理和证明1.公理:公认的真命题.2.定理:经过证明的真命题.3.证明:演绎推理的过程.教学反思。
八年级数学上册7.2定义与命题第1课时定义与命题教学设计 (新版北师大版)
![八年级数学上册7.2定义与命题第1课时定义与命题教学设计 (新版北师大版)](https://img.taocdn.com/s3/m/e00bf8093a3567ec102de2bd960590c69ec3d8c7.png)
八年级数学上册7.2定义与命题第1课时定义与命题教学设计(新版北师大版)一. 教材分析本节课的内容是北师大版八年级数学上册7.2定义与命题,主要介绍定义与命题的概念及其相互关系。
通过本节课的学习,使学生理解定义与命题的含义,掌握定义与命题的书写格式,能够正确书写定义与命题,并能够分析、判断命题的正确性。
二. 学情分析学生在七年级时已经学习了命题与定理的内容,对命题的概念有一定的了解。
但学生在定义与命题的书写格式、分析判断命题的正确性方面存在困难。
因此,在教学过程中,要注重引导学生理解定义与命题的关系,通过例题讲解,让学生掌握定义与命题的书写格式,提高学生分析判断命题正确性的能力。
三. 教学目标1.理解定义与命题的概念及其相互关系。
2.掌握定义与命题的书写格式。
3.能够正确书写定义与命题。
4.能够分析、判断命题的正确性。
四. 教学重难点1.教学重点:定义与命题的概念及其相互关系,定义与命题的书写格式。
2.教学难点:定义与命题的书写格式,分析判断命题的正确性。
五. 教学方法采用讲授法、例题解析法、小组合作法、问答法等教学方法,引导学生通过自主学习、合作交流,掌握定义与命题的概念及其相互关系,提高分析判断命题正确性的能力。
六. 教学准备1.准备相关定义与命题的例题。
2.准备投影仪、黑板等教学设备。
七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾七年级学习的命题与定理内容,为新课的学习做好铺垫。
2.呈现(10分钟)介绍定义与命题的概念,讲解定义与命题的相互关系。
让学生明确定义与命题的区别与联系。
3.操练(10分钟)让学生根据定义与命题的概念,尝试书写几个简单的定义与命题。
教师选取部分学生的作品进行点评,指出书写格式上的优点与不足。
4.巩固(10分钟)讲解定义与命题的书写格式,强调书写要求。
让学生再次尝试书写定义与命题,并相互检查,纠正错误。
5.拓展(10分钟)分析判断一些给定的命题是否正确。
教师引导学生运用定义与命题的知识,通过逻辑推理分析命题的正确性。
北师大版八年级上册 第七章 7.2.1 定义与命题 教案
![北师大版八年级上册 第七章 7.2.1 定义与命题 教案](https://img.taocdn.com/s3/m/ced0c41df90f76c661371af6.png)
7.2.1定义与命题(教案〕教学目的知识与技能:1.理解定义与命题的概念.2.分清命题的条件和结论,并能判断命题的真假.过程与方法:在实例中体会定义、命题的含义,通过举反例判断一个命题是假命题.情感态度与价值观:通过举反例的方法来判断一个命题是假命题,说明任何事物都是正反两方面的对立统一体.教学重难点【重点】理解命题的概念,找出命题的条件和结论.【难点】正确找出命题的条件和结论.教学准备【老师准备】料想学生在学习本课时中会遇到的困难.【学生准备】复习最近学过的几个重要概念.教学过程一、导入新课上节课我们研究了命题,那么什么叫命题呢?下面大家来想一想:〔出示投影片〕今天我们就来学习“定义与命题〞.二、新知构建〔1〕定义与命题[过渡语]任何学科知识的构建,都离不开用概念表述相关的内容.本课时我们就要从数学的角度认识定义、命题等相关的概念.大家刚刚观察到上面的五个命题中,每个命题都有条件〔condition〕和结论〔conclusion〕两局部组成.条件是的事项,结论是由事项推断出的事项.一般地,命题都可以写成“假如……,那么……〞的形式.其中“假如〞引出的局部是条件,“那么〞引出的局部是结论.如:上面的命题〔1〕中,假如引出的局部“两个三角形的三条边对应相等〞是条件,那么引出的局部“这两个三角形全等〞是结论.有些命题没有写成“假如……,那么……〞的形式,题设和结论不明显.如:“同角的余角相等〞,对于这样的命题,要经过分析才能找出题设和结论,也可以将它们改写成“假如……,那么……〞的形式.如:“同角的余角相等〞可以写成“假如两个角是同一个角的余角,那么这两个角相等〞.注意:命题的题设〔条件〕局部,有时也可用“……〞或者“假设……〞等形式表述,命题的结论局部,有时也可用“求证……〞或“那么……〞等形式表述.师:很好,同学们能举出学过的一些定义吗?生1:“含有未知数的等式叫做方程〞是“方程〞的定义.生2:“有两边相等的三角形叫做等腰三角形〞是“等腰三角形〞的定义.生3:“在一个方程中,只含有一个未知数,并且未知数的次数是1,这样的整式方程叫做一元一次方程〞是“一元一次方程〞的定义.生4:“具有中华人民共和国国籍的人叫做中华人民共和国公民〞是“中华人民共和国公民〞的定义.师:看来同学们对定义已经有了认识,你能发现“定义〞的根本形式是怎样的吗?生:定义的根本形式都是:“……叫做……〞.[设计意图]通过学生对定义的举例,加强学生对“什么是定义〞的理解.让学生从句子特点与形式上观察,认识定义.2.认识命题思路一[处理方式]独立考虑,仔细品味教材议一议的内容,理解什么是命题.下面的语句中,哪些语句对事情作出了判断?哪些没有?(多媒体出示)(1)任何一个三角形一定有一个角是直角;(2)对顶角相等;(3)无论n为怎样的自然数,式子n2-n+11的值都是质数;(4)假如两条直线都和第三条直线平行,那么这两条直线也互相平行;(5)你喜欢数学吗?(6)作线段AB=CD.生:(1)(2)(3)(4)四个句子作出了判断,(5)(6)两个句子没有作出判断.师:是的,前四个句子作出了判断.像这样的句子,叫做命题.你能否给“命题〞下个定义呢?生:判断一件事情的句子,叫做命题.(老师板书:判断一件事情的句子,叫做命题)[设计意图]让学生初步认识命题,再引导学生以答复以下问题的形式对命题的定义进展总结,从感性思维上升到理性思维,培养学生自我学习的才能.思路二:师:给出命题的定义:命题是判断一件事情的句子.你能举出几个命题的例子吗?出示问题:(1)三条边对应相等的两个三角形一定全等;(2)锐角都小于直角;(3)美丽的天空;(4)所有的质数都是奇数;(5)过直线l外一点P作l的平行线;(6)假如明天是星期五,那么后天是星期六;(7)假设a2=4,求a的值;(8)熊猫有翅膀.【学生活动】小组交流,对提出的问题作出判断,哪些是命题?哪些不是命题?展示交流:生1:(1)(2)(4)(6)都是命题,其余不是.生2:不对,(8)“熊猫有翅膀〞也是命题.师:(质疑)你能说一说为什么吗?生:虽然这句话错了,但它作出了判断.只要是判断一件事情的句子就是命题,不管判断得对错.师:(给出肯定)说得好,谁还能列举出一些命题吗?生1:假如两条平行线被第三条直线所截,那么同位角相等.生2:我是一名学生.师:(作出判断)很好!想一想,定义是命题吗?任何一个命题都是定义吗?(学生考虑一会儿,交流后答复)生:定义一定是命题,但命题不一定是定义.[设计意图]通过对命题与非命题的辨析,让学生理解命题的特点,进一步培养学生的才能.老师强化对命题特点的掌握,也为真、假命题的判断打下根底.最后老师提出的问题让学生将本课时所学的两个知识点进展联络与拓广.(2)条件与结论[过渡语]观察以下命题,这些命题有什么共同的构造特征?〔1〕假如一个三角形是等腰三角形,那么这个三角形的两个底角相等;〔2〕假如a=b,那么a2=b2;(3)假如两个三角形中有两边和一角分别相等,那么这两个三角形全等.【学生活动】先独立考虑,再结合教材第166页想一想的内容,小组内开展交流讨论“命题有什么构造特征〞.展示交流成果:生1:都是用“假如……那么……〞的形式表达的.生2:每个命题都是由条件和结论两局部组成的.生3:条件是的事项,结论是由事项推断出的事项.生4:“假如〞引出的局部是条件,“那么〞引出的局部是结论.(老师板书:条件和结论)师:上题的条件、结论分别是什么?生1:(1)题的条件是一个三角形是等腰三角形,结论是这个三角形的两个底角相等.生2:(2)题的条件是a=b,结论是a2=b2.生3:(3)题的条件是两个三角形中有两边和一角分别相等,结论是这两个三角形全等.一般地,命题都可以写成“假如……那么……〞的形式.其中“假如〞引出的局部是条件,“那么〞引出的局部是结论.有些命题没有写成“假如……那么……〞的形式,条件和结论不明显,如“同角的余角相等〞.对于这样的命题,要经过分析才能找出条件和结论,也可以将它们改写成“假如……那么……〞的形式.[设计意图]对命题的构造进展分析,让学生会区分一个命题的条件和结论.引导学生,当一个命题不好区分条件和结论时,可以先改写成“假如……那么……〞的形式;但改写时不要机械地添上“假如〞和“那么〞,应适当地调整顺序或补充修饰词语,使改写后的语句通顺、完好.(3)、真命题与假命题[过渡语]命题的结论都是正确的吗?老师给出以下四个命题,并提问:(1)假如两个角相等,那么它们是对顶角;(2)假如a≠b,b≠c,那么a≠c;(3)全等三角形的面积相等;(4)三角形三个内角的和等于180°.【学生活动】(1)指出命题的条件和结论;(2)命题中哪些是正确的?哪些是不正确的?你怎么知道它们是不正确的?在学生答复的根底上进展总结,给出真命题、假命题的概念,以及如何判断一个命题是假命题的方法——举出反例.总结:正确的命题称为真命题,不正确的命题称为假命题.要说明一个命题是一个假命题,通常可以举出一个例子,使它具备命题的条件,而不具有命题的结论,这种例子称为反例.(老师板书:真命题、假命题、反例)[设计意图]学生在判断命题的正误时主要根据过去的经历,老师可进一步追问,对于一个不正确的命题,还能怎样判断其错误呢?老师应让学生充分表达自己的判断方法,进而引导学生体会:要说明一个命题是假命题,通常举出一个反例就可以了.[知识拓展]1.在定义中,要提示该事物与其他事物的本质属性的区别.2.根据命题的定义可知只要是对一件事情作出判断的句子都是命题,而不管这个判断正确与否.3.很多情况下,命题的形式并不是“假如……那么……〞的形式,在把命题改写成“假如……那么……〞的形式时,为保证语句的通畅和不改变原意,应对原句进展适当的修改或调整.三、课堂总结 —|||—定义—对名称或术语的含义进行描述,作出明确的规定—命题——||组成每个命题都由条件和结论组成形式都能写成“如果……那么……”的形式真假命题可分为真命题和假命题判断要说明一个命题是假命题,只要举出一个反例即可四、课堂练习1.以下命题中,属于定义的是 ( )C.两直线平行,内错角相等间隔 是该点到这条直线的垂线段的长度解析:A,B,C 分别是一个命题,但不是定义;D 是一个定义.应选D .2.以下语句中,是命题的是()AB上取一点C解析:A,B,D只是对一件事情的表达或询问,不是命题.应选C.3.以下语句中,不是命题的是 ()B.假如ab=0,那么a=0A,B解析:A,B,C分别是命题;D不是命题,是描绘性语言.应选D.4.以下命题是假命题的是 ()A.锐角小于90°C.假设a>b,那么a2>b2D.假设a2≠b2,那么a≠ba=1,b=-3,1>-3,但12=1<(-3)2=9,错误;D.两个数的平方相等,那么两个数相等或互为相反数,因此两个数的平方不相等,那么这两个数既不相等也不互为相反数,正确.应选C.5.以下选项中,可以用来说明命题“假设a2>1,那么a>1〞是假命题的反例是()A.a=-2B.a=-1C.a=1D.a=2解析:选项A,a=-2满足a2>1,而a=-2不满足a>1的要求,是原命题的反例;选项B和选项C,a=±1不满足a2>1,即不满足题设的条件,不是特例,故不是反例;选项D既满足a2>1,也满足a>1,不是反例.应选A.五、板书设计第1课时1.定义与命题2.条件和结论3.真命题、假命题、反例六、布置作业〔1〕、教材作业【必做题】教材随堂练习第2题.【选做题】教材习题7.2第3题.〔2〕、课后作业【根底稳固】1.以下语句中,是命题的为 ()CDAB的中点M2.命题“等角的补角相等〞中的“等角的补角〞是()局部 B.是条件,也是结论局部 D.不是条件,也不是结论3.以下说法不正确的选项是()A.“不等式2x>4的解集是x>2〞的条件是“不等式2x>4〞B.“假如x2=y2,那么x=y〞的结论是“x=y〞C.“平行四边形的对角线互相平分〞的条件是“平行四边形〞D.“对顶角相等〞的条件是“对顶角相等〞4.以下语句中:①平角都相等;②等于同一个角的两个角相等吗?③画两条相等的线段;④邻补角的平分线互相垂直;⑤两直线平行,同位角相等;⑥等腰三角形的两底角相等.其中是命题的有()5.以下命题错误的选项是()C.无理数包括正无理数,0,负无理数D.两点之间,线段最短6.要说明命题“绝对值相等的两个实数相等〞是假命题,你举的反例是.【才能提升】7.指出以下命题的条件和结论.(1)假如两条直线相交,那么它们只有一个交点;(2)两条直线被第三条直线所截,假如同旁内角互补,那么两直线平行;(3)等角的补角相等;(4)平行四边形的对边相等.【拓展探究】8.如下图,下面有四个条件:(1)AE=AD,(2)AB=AC,(3)OB=OC,(4)∠B=∠C.请你写出一个由其中两个作为条件,另外两个中的一个作为结论的命题,并判断其真假. 【答案与解析】1.CD,是描绘性语言,它不是命题,错误;B.相等的角是对顶角是命题,正确;C.作平行线,是描绘AB的中点M,是描绘性语言,它不是命题,错误.应选B.)2.A(解析:把命题“等角的补角相等〞改写成“假如两个角是等角的补角,那么这两个角相等〞.“等角的补角〞是条件局部.应选A.)3.D(解析:“对顶角相等〞的条件是“两个角是对顶角〞,而不是“对顶角相等〞,故D选项错误.应选D.)4.B(解析:①④⑤⑥是命题;②③不是命题.所以命题有4个.应选B.)5.C6.|-3|=|3|,但-3≠3(答案不唯一)7.解析:对于条件和结论不非常清楚的命题,我们可以先把其改写成“假如……那么……〞的形式,再找出条件和结论.由于命题的改法不唯一,所以它的条件和结论也不唯一,如命题(3),还可以改写成“假如两个角相等,那么这两个角的补角相等〞.解:(1)条件:两条直线相交;结论:它们只有一个交点. (2)条件:两条直线被第三条直线所截,同旁内角互补;结论:两直线平行. (3)这个命题可以改写成“假如两个角是等角的补角,那么这两个角相等〞.条件:两个角是等角的补角;结论:这两个角相等. (4)这个命题可以改写成“假如一个四边形是平行四边形,那么它的对边相等〞.条件:一个四边形是平行四边形;结论:它的对边相等.8.解析:假如AE=AD,AB=AC,那么∠B=∠C.根据SAS得ΔABE≌ΔACD,推出∠B=∠C即可.解:假如AE=AD,AB=AC,那么∠B=∠C.在ΔABE和ΔACD中,{AE=AD,∠A=∠A,AB=AC,所以ΔABE≌ΔACD,所以∠B=∠C.所以这是真命题.(答案不唯一)。
北师大版八年级上册数学7.2定义与命题教案
![北师大版八年级上册数学7.2定义与命题教案](https://img.taocdn.com/s3/m/7c83386e3868011ca300a6c30c2259010302f35e.png)
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与角的平分线相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示如何利用尺规作图画出一个角的平分线。
3.证明方法:指导学生运用角的平分线定义及基本图形性质进行简单命题的证明。
4.实践应用:结合实际情境,设计相关问题,让学生运用角的平分线知识解决实际问题。
本节课旨在帮助学生掌握角的平分线的定义和性质,培养他们的逻辑思维能力和解题技巧。
二、核心素养目标
1.理解与运用:通过学习角的平分线定义,使学生能够理解并运用角的平分线性质解决相关问题,培养他们的几何直观和空间观念。
5.情感态度:激发学生对几何学的兴趣,培养他们勇于探索、克服困难的意志,形成积极向上的学习态度。
三、教学难点与重点
1.教学重点
-角的平分线的定义:重点讲解角的平分线的概念,使学生理解并掌握角的平分线的表示方法。
-举例:如讲解角的平分线时,可以通过具体图形说明什么是角的平分线,如何用符号表示等。
-角的平分线性质:强调角的平分线上的点到角的两边的距离相等这一核心性质。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解角的平分线的基本概念。角的平分线是从一个角的顶点出发,将这个角平分成两个相等角的射线。它是解决几何问题中非常重要的一部分,可以帮助我们更好地理解和处理角的关系。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何利用角的平分线性质解决实际问题,以及它如何帮助我们找到等边三角形。
北师大数学八年级上册《7.2定义与命题》教学大纲
![北师大数学八年级上册《7.2定义与命题》教学大纲](https://img.taocdn.com/s3/m/b78f50450029bd64793e2c41.png)
教学目标知识与技能: 了解定义、命题、真命题、假命题、定理的含义,会区分命题的条件和结论,了解判断命题真假的方法。
过程与方法: 从具体实例中,探索出定义,并了解定义在现实生活中的重要性; 从具体实例中,了解命题的概念,并会区分命题.情感态度与价值观: 通过从具体例子中提炼数学概念,使学生体会数学与实践的联系.2学情分析本节课是北师大版八年级上册的内容,重点了解定义、命题、真命题、假命题、定理的含义。
会区分命题的条件和结论,对于学生来说,这些概念有点难理解,所以一开始就设计有趣的情境,告诉学生为什么学习本节课。
3重点难点教学重点 :准确地找出命题的条件和结论。
教学难点:准确地找出命题的条件和结论。
4教学过程4.1 第一学时4.1.1教学活动活动1【导入】巧设情境,引入新课请同学们认真阅读课件上宋丹丹与赵本山、儿子与爸爸的对话:1、宋丹丹:他就是~~~ 主动和我接近,没事儿和我唠嗑,不是给我割草就是给我朗诵诗歌,还总找机会向我暗送秋波呢!赵本山:别瞎说,我记着我给你送过笔,送过桌,还给你家送一口大黑锅,我啥时给你送秋波了?秋波是啥玩意? 宋丹丹:秋波是啥玩意你咋都不懂呢,这么没文化。
赵本山:啥呀?宋丹丹:秋波就是秋天的菠菜。
2、儿子:爸爸,什么叫法律? 爸爸:法律就是法国的律师。
儿子:那么什么是法盲?爸爸:法盲就是法国的盲人。
在上面的对话中,你有什么启示?人们在交流时常需要应用许多名称和术语。
为了不产生歧义,对这些名称和术语的含义必须有明确的规定。
这就是我们本节课要学习的内容:定义与命题。
板书:定义与命题。
活动2【活动】自学提示:请同学们阅读课本165的内容,找出定义的概念,并能够举出一些我们学过的定义的例子。
活动3【活动】展示自学:1、板书定义的概念:一般地,能清楚地规定某一名称或术语的意义的句子叫做该名称或术语的定义。
2、考考你:(相信自己,你一定行!)3、指出下列句子哪些是定义:(1)两直线平行,内错角相等; (2)两腰相等的梯形叫等腰梯形; (3)有一个角是钝角的三角形是钝角三角形; (4)等腰三角形的两底角相等; (5)平行四边形的对角线互相平分; (6)连结三角形两边中点的线段叫做三角形的中位线。
八年级数学上册 7.2 定义与命题导学案2(新版)北师大版
![八年级数学上册 7.2 定义与命题导学案2(新版)北师大版](https://img.taocdn.com/s3/m/0eed95173968011ca2009107.png)
定义与命题
学习目标:(1)知道如何来验证一个命题是真明题,会区分命题的条件和结论。
(2)理解公理、定理、证明的定义,熟记八大公理。
(3)积极投入,全力以赴,享受合作的快乐。
重点:理解用公理作为依据去推理
难点:理解用公理作为依据去推理
预习指导:
1先精读一遍教材P167-P170用红笔进行勾画知识点,再针对学案二次阅读教材,完成教材助读设置的问题。
2找出自己疑惑和需要讨论的问题,随时记录在预习案上,以便上课讨论:
学习环节:
一。
自学导航
1. 称为公理,例如:
2. 称为证明。
3. 称为定理,
例如
写出并熟记本套教材中所选用的八大公理。
4.将下列命题改成“如果……,那么……”的形式,并指出条件和结论
(1)两角和其中一角的对边对应相等的两个三角形全等;
全等三角形的面积相等
等角的余角相等;
(5)对顶角相等。
每个命题都由两部分组成。
条件是,结论是。
一般的,命题都可以写成的形式,其中“如果”引出的部分是,“那么”引出的部分是。
合作探究
证明:对顶角相等
已知:如图,
求证:
总结证明命题的步骤:
学以致用
1.证明:同角(等角)的补角相等
已知:如图,
求证:
证明:三角形任意两边之和大于第三边反思回顾
五.当堂检测
证明:同角(等角)的余角相等。
北师大版数学八年级上册7.2定义与命题(第二课时)说课稿
![北师大版数学八年级上册7.2定义与命题(第二课时)说课稿](https://img.taocdn.com/s3/m/80ff138cb9f67c1cfad6195f312b3169a451ea29.png)
在教学过程中,我预见到以下可能的问题或挑战:
1.学生可能对四种命题之间的真假关系理解不深,导致混淆;
2.在小组合作中,可能出现部分学生参与度不高的情况;
3.课堂时间安排可能紧张,影响教学内容的完整性。
应对策略如下:
1.通过丰富的实例和互动讨论,加深学生对命题真假关系的理解;
2.在小组活动中,明确每个成员的任务,确保全员参与;
4.设计互动环节,让学生尝试写出各种命题,并在小组内讨论、交流,共同发现四种命题之间的规律。
(三)巩固练习
为了帮助学生巩固所学知识并提升应用能力,我计划设计以下巩固练习或实践活动:
1.个人练习:让学生完成教材中的相关习题,巩固四种命题的写法和真假性质;
2.小组合作:设计富有挑战性的问题,让学生在小组内合作解决,培养他们团队协作和问题解决能力;
板书在教学过程中的作用是帮助学生构建知识框架,直观地呈现教学内容的逻辑关系。为确保板书清晰、简洁且有助于学生把握知识结构,我将:
1.在课前精心设计板书的框架,确保教学内容条理清晰;
2.在课堂上适时更新板书内容,避免一次性书写过多信息;
3.使用箭头、框线等符号来表示不同知识点之间的联系,帮助学生形成知识网络。
作业的目的是让学生在课后进一步巩固所学知识,提高自己的问题解决能力,同时培养他们的自主学习能力和数学思维能力。
五、板书设计与教学反思
(一)板书设计
我的板书设计将采用清晰的层级结构和逻辑顺序,主要内容分为三个部分:命题的基本概念、四种命题的定义和真假关系、实例分析。板书风格简洁明了,突出重点,使用不同颜色的粉笔来区分不同类型的内容,如概念、性质、例子等。
为了激发学生的学习兴趣和动机,我将采取以下策略或活动:
2019—2020年新北师大课标版八年级数学上册《定义与命题(2)》教案1(优质教学设计).doc
![2019—2020年新北师大课标版八年级数学上册《定义与命题(2)》教案1(优质教学设计).doc](https://img.taocdn.com/s3/m/12c3e3bd524de518964b7d7c.png)
《定义与命题(2)》教案教学目标1.了解命题中的真命题、假命题、定理的含义;2.解命题的构成,能区分命题中的条件和结论;3.经历实际情境,初步体会公理化思想和方法,了解本教材所采用的公理;4.培养学生的语言表达能力.学习重点知道什么是公理,什么是定理,什么是证明.学习难点理解证明的步骤和格式,体会证明的严密性.教学过程第一环节:回顾引入活动内容:①什么叫做定义?举例说明.②什么叫命题?举例说明.第二环节:读一读活动内容:①介绍《几何原本》、公理、定理等知识.在数学发展史上,数学家们也遇到过类似的问题.公元前3世纪,人们已经积累了大量知识,在此基础上,古希腊数学家欧几里德(公元前300前后)编写了一本书,书名叫《原本》,为了说明每一结论的正确性,他在编写这本书时进行了大胆创新,挑选了一部分数学名词和一部分公认的真命题作为证实其它命题的起始依据,其中的数学名词称为原名,公认的真命题称为公理,除了公理外,其他真命题的正确性都通过推理的方法证实,推理的过程称为证明,经过证明的真命题称为定理,而证明所需要的定义、公理和其他定理都编写在要证明的这个定理的前面.《原本》问世之前,世界上还没有一本数学书籍象《原本》这样编排,因此,《原本》是一部具有划时代意义的著作.②公理、定理、概念和证明的关系.③介绍本教材的公理.1.两点确定一条直线.2.两点之间线段最短.3.同一平面内,过一点有且只有一条直线与已知直线垂直.4.两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.5.过直线外一点有且只有一条直线与这条直线平行.6.两边及其夹角对应相等的两个三角形全等.7.两角及其夹边对应相等的两个三角形全等.8.三边分别相等的两个三角形全等.此八条基本事实前面已详细探索过,不必验证它们的正确性,可以直接用来证实其它命题的正确性,另外一条我们将在以后认识它.此外等式和不等式的有关性质也可看作公理.比如:如果a=b,b=c,那么a=c.第三环节:课堂反思与小结活动内容:本节课的重点是了解命题中的真假命题、公理、定理的含义,通过学习学会区分命题的条件、结论,学会判别真、假命题,理解反例、证明等概念.。
【最新北师大版精选】北师大初中数学八上《7.2定义与命题》word教案 (2).doc
![【最新北师大版精选】北师大初中数学八上《7.2定义与命题》word教案 (2).doc](https://img.taocdn.com/s3/m/fafd8758f242336c1fb95e04.png)
定义与命题(第1课时)教学目标:1.了解定义与命题的含义,会区分某些语句是不是命题.2.用比较数学化的观点来审视生活中或数学学习中遇到的语句特征.3.通过对某些语句特征的判断学会严谨的思考习惯.教学过程:第一环节:情景引入(由学生表演)活动内容:小亮和小刚正在津津有味地阅读《我们爱科学》.小亮说:……小刚说:“是的,现在因特网广泛运用于我们的生活中,给我们带来了方便,但……”小亮说:“……”小刚说:“……”小亮说:“哈!,这个黑客终于被逮住了.”……坐在旁边的两个人一边听着他们的谈话,一边也在悄悄议论着:一人说:“这黑客是个小偷吧?”另一人说:“可能是喜欢穿黑衣服的贼.”……一人说:“那因特网肯定是一张很大的网.”另一人说:“估计可能是英国造的特殊的网.”……(表演结束)教师提出问题:在这个小品中,你得到什么启示?(人与人之间的交流必须在对某些名称和术语有共同认识的情况下才能进行.为此,我们需要给出它们的定义.)①关于“黑客”对话的片断来引入生活中交流时必须对某些名称和术语有共同的认识才能进行;②对定义含义的解释;③举例说明生活中和数学学习中所熟知的定义(学生举例,看哪个小组的举例又多又好);第二环节:命题含义(情景引入)活动内容:①师:如果B处水流受到污染,那么____处水流便受到污染;如果C处水流受到污染,那么____处水流便受到污染;如果D处水流受到污染,那么____处水流便受到污染;②学生自编自练:如果____处水流受到污染,那么____处水流便受到污染.([生甲]如果B处工厂排放污水,那么A、B、C、D处便会受到污染.[生乙]如果B处工厂排放污水,那么E、F、G处也会受到污染的.[生丙]如果C处受到污染,那么A、B、C处便受到污染.[生丁]如果C处受到污染,那么D处也会受到污染的.[生戊]如果E处受到污染,那么A、B处便会受到污染.[生己]如果H处受到污染,我认为是A处的那个工厂或B处的那个工厂排放了污水.因为A处工厂的水向下游排放,B处工厂的污水也向下游排放.……老师归纳:同学们在假设的前提条件下,对某一处受到污染作出了判断.像这样,对事情作出判断的句子,就叫做命题.即:命题是判断一件事情的句子.如:熊猫没有翅膀.对顶角相等.大家能举出这样的例子吗?[生甲]两直线平行,内错角相等.[生乙]无论n为任意的自然数,式子n2-n+11的值都是质数.[生丙]内错角相等.[生丁]任意一个三角形都有一个直角.[生戊]如果两条直线都和第三条直线平行,那么这两条直线也互相平行.[生己]全等三角形的对应角相等.……[师]很好.大家举出许多例子,说明命题就是肯定一个事物是什么或者不是什么,不能同时既否定又肯定,如:你喜欢数学吗?作线段AB=a.平行用符号“∥”表示.这些句子没有对某一件事情作出任何判断,那么它们就不是命题.一般情况下:疑问句不是命题.图形的作法不是命题.)第三环节:反馈练习活动内容:1.你能列举出一些命题吗?答案:能.举例略.2.举出一些不是命题的语句.答案:如:①画线段AB=3 cm.②两条直线相交,有几个交点?③等于同一个角的两个角相等吗?④在射线OA上,任取两点B、C.等等.第四环节:课堂小结活动内容:①定义的含义:对名称和术语的含义加以描述,作出明确的规定,就是它们的定义;②命题的含义:判断一件事情的句子,叫做命题,如果一个句子没有对某一件事情作出任何判断,那么它就不是命题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
找出下述命题中的条件和结论,指出它们哪些是正确的命题?哪些是不正确的命题?你又是如何知道的呢?
(1)如果两个角相等,那么它们是对顶角;
(2)如果a>b,b>c,那么a=c;
作业
P171—习题7.3—1、2
教学
反思
在探讨命题的结构特征和修改命题形式时,有的学生可能会说出比较幼稚、甚至可笑的语句,尽管如此,也应让学生大胆说出自己的意见,避免学生机械模仿,要允许学生有错误,并能在自行改正错误中调整前进。
公理、定理、概念和证明的关系(略)
本教材的公理:
1.两点确定一条直线。
2.两点之间线段最短。
3.同一平面内,过一点有且只有一条直线与已知直线垂直。
4.两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.
5.过直线外一点有且只有一条直线与这条直线平行。
6.两边及其夹角对应相等的两个三角形全等。
7.两角及其夹边对应相等的两个三角形全等。
8.三边对应相等的两个三角形全等。
等式和不等式的有关性质也可看作公理。
定理(P169略)
例题:(P169略)
定理:对顶角相等。
了解命题中的真假命题、公理、定理的含义,通过学习学会区分命题的条件、结论。
学会判别真、假命题,理解反例、证明等概念。
了解命题有真假之分,并且知道怎样去判断真假命题。引导使得学生形成共识。
巩固训练
归纳小结
探究真假命题的验证:
说明一个命题是假命题,通常举出一个反例就可以了,使之具备命题的条件,而不具有命题的结论,这种例子称为反例,但是要说明一个命题是正确的无论验证多少个特例,也无法保证命题的正确性.如何验证命题的正确性呢?
正确的命题称为真命题,不正确的命题称为假命题。
读一读
介绍《几何原本》、公理、定理等知识:
教学难点
体会公理化思想和方法,了解本教材所采用的公理。
教法学法
引导、启发,合作交流
教学环节
教学过程
设计意图
回顾引入
新知探究
1.什么叫做定义?举例说明。
2.什么叫命题?举例说明。
观察下列命题,发现它们的结构有什么共同特征?
(1)如果两个三角形的三条边对应相等,那么这两个三角形全等。
(2)如果一个三角形是等腰三角形,那么这个三角形的两个底角相等。
(3)两角和其中一角的对边对应相等的两个三角形全等;
(4)全等三角形的面积相等。
回顾上节知识,为本节课的展开打好基础。
引导学生对命题的结构进行分析,启发学生判断一个命题的条件和结论。
当一个命题改写成“如果……那么……”的形式时,要注意改写时不要机械地添上“如果”和“那么”,应适当地补充一些修饰语句,使改写后的语句通顺,完整。
(新教材)北师大版精品数学资料
课题
第3课时
时间12月2日
课型
新知探究课
教具
教材、课件
学习
目标
知识与能力
了解真、假命题,定理的含义;区分命题中的条件和结论。
过程与方法
经历实际情境,初步体会公理化思想和方法。
情感态度价值观
了解本教材所采用的公理,培养学生的语言表达能力。
教学重点了解真命题、假命源自、定理的含义;区分命题中的条件和结论。
(3)如果一个四边形的一组对边平行且相等,那么这个四边形是平行四边形。
(4)如果一个四边的对角线相等,那么这个四边形是矩形。
(5)如果一个四边形的两条对角线互相垂直,那么这个四边形是菱形。
命题的结构特征:
(1)上述命题都是“如果……,那么……”的形式。
(2)“如果……”是已知的事项,“那么……”是由已知事项推断出的结论。
教师讲解与学生习读相结合。培养学生公理化思想和方法,养成科学、严谨思维习惯。
培养学生逻辑思维能力,推理能力。
归纳本节课所学知识,对本节课有一个系统的认识,从而能准确地区分命题的真假性,了解命题结构中的条件与结论。
板
书
设
计
7.2定义与命题(2)
回顾引入:……公理、定理:……
命题的结构:……证明:……
命题的类型:……归纳小结:……