土力学与地基基础课程介绍

合集下载

《土力学》课程标准和课程描述

《土力学》课程标准和课程描述

《土力学》课程标准和课程描述《土力学与地基基础》学习领域课程标准一、课程简介(一)课程名称:土力学与地基基础(二)适用专业:工程测量技术(三)课程性质:专业课《土力学与地基基础》学习领域是“工程测量技术”专业课程之一,是学生从事工程测量相关岗位工作的必修课程。

它的功能是通过系统学习和训练,使学生掌握土质、土力学方面的知识。

(四)开发思路:学习《土力学与地基基础》这门课程使学生了解工程地质基本概念,掌握土力学的基本概念和基本原理,结合有关结构设计理论,分析而后解决一般的地基问题。

本课程理论性强,专业性强,实践性强的特点,掌握精、宽、深的尺度,以刚性基础,联合基础,扩展基础,桩基础设计为主线,加强土力学理论的学习,在土力学基本理论的指导下,完成基础设计和地基处理工程的实践活动,再以实践充实理论。

二、课程目标使学生掌握有关土的物理力学性质及工程性质,地基应力,强度的基本概念、基本计算原理和实际计算;掌握土压力及边坡稳定的主要概念,基本原理和计算方法;掌握天然地基上刚性基础,联合基础、扩展基础,桩基的设计原理、方法及基础方案的选择;熟悉特殊土地基、山区地基以及地震区地基的特征和分布,掌握其处理措施。

三、课程内容和要求土力学与地基基础学习领域(56学时)四、学习情境教学方案设计学习情境一土的物理性质与工程分类(8学时)学习情境二土中应力计算(8学时)学习情境三地基变形计算(8学时)学习情境五土压力与土坡稳定(8学时)学习情境六天然地基上的浅基础设计(8学时)五、实施要求(一)教学要求1.通过多个有机联系的具体的工作任务开展教学,以行动为导向,强化学生是行动的主体;2.以引导的形式切入,理论讲授简洁明了,切忌长篇大论;3.每一次课、每一个情境(或单元)开始学习之前,必须让学生先明确学习目标;4.知识学习与任务演练相融合,切忌理论与实践相分离;5.教师应侧重启迪和开发学生的智慧,培养学生独立学习、独立工作的能力,教师的角色是引导,而不应是传统的指导;6.每次课前,教师必须注重教学方法、教学过程的准备;7.注重学习目标与实际学习效果的关系,加强与学生的互动和交流,随时了解学生掌握情况的动态;8.在教学过程中随时进行职业素质教育和职业安全教育,如工具材料摆放、完工清理、保管责任、书写打印要求及行为语言等。

土力学及地基基础教程

土力学及地基基础教程

土力学及地基基础教程
简介
这份教程旨在介绍土力学以及地基基础的基本概念和原理。

我们将深入探讨土的力学性质,包括土壤的组成和分类,以及土体内部的应力分布和变形特性。

我们还将讨论地基基础的设计和施工过程,以确保建筑物的稳定性和安全性。

土力学基础知识
土的组成和分类
- 土体的主要组成部分包括颗粒、水分和空隙。

- 土壤可以根据颗粒的大小和组成来进行分类,常见的分类包括砂、粉土、黏土等。

应力分布和变形特性
- 土体内部存在不同方向上的应力分布,包括垂直应力和水平应力。

- 土壤的变形特性包括压缩、剪切和扩张等。

地基基础设计与施工
地基基础的作用
- 地基基础是建筑物的支撑结构,承受建筑物的荷载并将其传递到地下。

- 合理设计的地基基础能够确保建筑物的稳定性和安全性。

地基基础设计的考虑因素
- 设计地基基础时需要考虑土壤的承载能力、稳定性和变形特性。

- 还需要考虑建筑物的荷载、地下水位以及周围环境等因素。

地基基础施工过程
- 地基基础的施工包括场地勘察、基础开挖、地基处理和基础施工等步骤。

- 施工过程要进行详细的检测和监测,以确保地基基础的质量和稳定性。

结论
土力学和地基基础是建筑工程中非常重要的领域。

了解土壤的力学特性和地基基础的设计原则,可以为建筑物的建设提供指导和
保证。

希望这份教程能够帮助读者对土力学和地基基础有更深入的了解。

注意:本文档所述内容仅供参考,请务必在实际应用中结合专业知识进行判断和决策。

《土力学与地基基础》课件

《土力学与地基基础》课件
《土力学与地基基础》 PPT课件
土力学与地基基础是土木工程中的重要学科,它涉及了如何评估土壤的力学 性质和如何建造稳固的基础设施。
定义
土力学是研究土壤的力学性质及其相互作用的学科,而地基基础则是指土壤上承受建筑物荷载的基础结构。
重要性
土力学与地基基础对于建筑物的安全性和稳定性至关重要。它们的正确设计 和施工能够有效地减少土地沉陷和结构损坏的风险。
土的力学性质
土壤具有复杂的力学性质,包括承载力、剪切强度、压缩性等。了解土壤的 这些性质可以帮助我们更好地设计基础工程。
地基基础的分类
地基基础可以分为浅基与深基,浅基包括基础板、隔离墩和地下连续墙等。 深基则包括桩基、墙基和地下连续墙等。
地基基础施工步骤
1
勘察
进行土壤勘察,了解地下土层的性质、厚度和承载能力。
总结与要点
土力学
了解土壤的性质与行为,对基础设计和施工至关重要。
地基基础
为建筑物提供稳固的基础支撑,确பைடு நூலகம்安全和稳定性。
工程实例
学习实际案例,加深对土力学与地基基础的理解与应用。
2
设计
根据勘察结果进行基础设计,选择适当的基础类型和尺寸。
3
施工
进行基础施工,包括挖掘基坑、浇筑混凝土等工序。
土力学与地基工程实例
土力学实验室
利用土力学实验室测试土壤的力 学性质,以支持工程设计和施工 决策。
深基施工
进行复杂工程的基础施工,如高 层建筑和桥梁,确保结构的稳定 性和安全性。
挡土墙
设计和建造挡土墙以支撑土堆或 防止土壤的侵蚀,保护下方区域 免受土壤压力的影响。

《土力学与地基基础》课程

《土力学与地基基础》课程

《土力学与地基基础》课程
土力学与地基基础是一门涵盖研究土力学和地基基础原理及施工算法的课程。

通俗地说,它既是一门讲授地基力学原理的应用课程,又是一门讲授建筑基础的设计课程。

土力学专注于研究地基力学,首先要对土的结构形态、力学特性、力学模型、基础地
面应力以及土的自重等特性、状态和构造特性有深入的了解,以确定地基基础的各种参数,再进行彸体土层及基础计算,旨在评价和优选适宜地基基础类型,以及提供进行结构和基
础设计的基础。

地基基础是建筑物及其结构构件与地表相接触、相连接、相承受和传递荷载所必需的
部分。

它既是建筑物结构物与地表相联系及传递力的起支点,又是建筑物结构物状态的保证。

其次,确定地基的类型、容重以及基础的桩架、桩身以及顶灰的设计布局,就是在地
基基础课程中所讲授的。

本课程将教给学生如何根据地基力学和地基基础技术,正确地解决地基和建筑物各种
计算问题,包括土体的静态和动态计算问题,以及地基基础的几何及构造设计常见的方法。

让学生充分了解国家相关规范以及应用于地基基础设计中的现代技术,有较强的应用能力,解决实践中的工程问题。

B本课程的目的在于,使学生掌握建筑和其他结构构件与地表相接触、相连接、相承
受和传递荷载时所要符合的地基力学和地基基础技术原理和方法,建立科学、正确、规范
地进行地基基础设计的理论知识基础和工程实践能力。

《土力学与地基基础》教案

《土力学与地基基础》教案

《土力学与地基基础》教案第一章:土的性质与分类1.1 教学目标了解土的组成、性质和分类,掌握土的三相指标及土的密度、含水率和塑性指数的概念。

学会使用土工试验仪器进行土的物理性质试验。

理解土的工程特性及其对地基基础的影响。

1.2 教学内容土壤的组成与结构土壤的物理性质:密度、含水率、塑性指数土壤的力学性质:抗剪强度、压缩性、渗透性土的分类与工程特性土工试验:密度试验、含水率试验、塑性指数试验1.3 教学方法课堂讲授:讲解土壤的性质、分类和工程特性。

实验教学:指导学生使用土工试验仪器进行土的物理性质试验。

案例分析:分析实际工程案例,理解土壤性质对地基基础的影响。

第二章:土力学基本理论2.1 教学目标掌握土力学的基本概念、原理和定律,包括剪切强度理论、压缩理论和小应变弹性理论。

学会运用土力学理论分析土壤的力学行为。

土力学的基本概念:应力、应变、应力路径剪切强度理论:抗剪强度、库仑定律、莫尔-库仑准则压缩理论:压缩性、压缩系数、压缩模量小应变弹性理论:弹性模量、泊松比、弹性应变2.3 教学方法课堂讲授:讲解土力学的基本概念、原理和定律。

数值分析:运用数值方法分析土壤的力学行为。

案例分析:分析实际工程案例,运用土力学理论解决问题。

第三章:地基基础设计原理3.1 教学目标掌握地基基础的设计原理和方法,包括浅基础、深基础和地下工程的设计。

学会运用土力学和结构力学的知识进行地基基础的设计。

3.2 教学内容浅基础设计原理:承载力计算、基础尺寸确定、沉降计算深基础设计原理:桩基础、沉井基础、地下连续墙地下工程设计原理:隧道、地铁、地下室3.3 教学方法课堂讲授:讲解地基基础的设计原理和方法。

数值分析:运用数值方法分析地基基础的设计问题。

案例分析:分析实际工程案例,运用土力学和结构力学的知识进行地基基础设计。

第四章:地基承载力与稳定性分析掌握地基承载力和稳定性的分析方法,包括极限平衡法、数值方法和实验方法。

学会运用地基承载力和稳定性分析方法解决实际工程问题。

土力学与地基基础

土力学与地基基础

干密度的最大值称为最大干密度,此时相应的含水率称为最优含水率。 一、粘性土的击实特性
峰值——最优含水率
二、无粘性土的击实特性:风干和饱和状态下击实效果较好。
粘性土无粘性土Fra bibliotek§8 地基土(岩)的工程分类
一、岩石的工程分类
岩石坚硬程度分类
类别
强度(MPa)
代表性岩石
硬质岩石
≥30
花岗岩、闪长岩、玄武岩、石灰岩、石英砂岩、硅 质砾岩、花岗片麻岩、石英岩等
稍密 15≥N63.5>10
松散 10≥N63.5
碎石土的密实度
碎石土密实度野外鉴别方法
密实度 骨架颗粒含量和排列 骨架颗粒含量大于总重的70%,呈交 错排列, 连续接触。 骨架颗粒含量大于总重的60%~70%, 呈交错排列, 大部分接触。 可挖性 锹镐挖掘困难,用撬棍方 能撬动,井壁一般较稳定。 可钻性 钻进极困难,冲击钻探时, 钻杆、吊锤跳动剧烈,孔 壁较稳定。 钻进较困难,冲击钻探时, 钻杆、吊锤跳动不剧烈, 孔壁有塌陷现象。
洪积物常呈现不规则交错的层理构造,如具有夹层、尖灭或透镜体
等产状。
⑷冲积土—河流流水的地质作用将两岸基岩及其上部覆盖的坡积、洪 积物质剥蚀后搬运、沉积在河流坡降平缓地带形成的沉积物。
⑸其他沉积土—除了上述四种成因类型的沉积物外,还有海洋沉积物、 湖泊沉积物、冰川沉积物及风积物等,它们是分别由海洋,湖泊、 冰川及风等的地质作用形成的.
单粒结构
蜂窝结构
絮状结构
五、土的构造 在同一土层中的物质成分和颗粒大小等都相近的各部分之间的相互 关系的特征称为土的构造。 •层状构造、分散构造、裂隙构造。
§4 土的三相比例指标
三相简图

土力学与地基基础

土力学与地基基础
地基与基础示意图
基础应埋置在良好的持力层 上。
地基的分类
按地质情况分
土基
岩基 天然地基 人工地基
按现场施工分
建筑物地基应满足的两个基本条件:
地基的强度条件。要求建筑物的地基应有 足够的承载力,在荷载作用下,不发生剪切 破坏或失稳 地基的变形条件。要求建筑物的地基不产 生过大的变形(包括沉降、沉降差、倾斜和 局部倾斜),保证建筑物正常使用。

地基与基础

地基基础是建立在土力学基础上的设计 理论与计算方法,和土力学密不可分的。 研究地基基础工程,必然涉及到大量的 土力学问题。 地基与基础是两个完全不同的概念。

地 基
建筑物下方承受建筑物全部 荷载的地层称为地基。
位于基础底面下方的土层称 为持力层。
持力层以下的土层称为下卧 层,强度低于持力层的下卧 层称为软弱下卧层。

基本概念


重力水-存在于地下水位以下 、土颗粒电分子引力范围以外 的水,因为在本身重力作用下 运动,故称为重力水。 毛细水-受到水与空气交界面 处表面张力的作用、存在于地 下水位以上的透水层中自由水 (图2.4所示)。 土的毛细现象是指土中水 在表面张力作用下,沿着细的 孔隙向上及向其他方向移动的 现象。
基础的分类
• 按使用的材料分为:灰土基础、砖基础、毛 石基、混凝土基础、钢筋混凝土基础; • 按埋置深度可分为:浅基础、深基础; • 按受力性能可分为:刚性基础和柔性基础; • 按构造形式可分为:条形基础、独立基础、 满堂基础和桩基础。
2、土的三相组成
土是岩石经风化、剥 蚀、破碎、搬运、沉积 等过程的产物,是由固 体颗粒、水和气体组成 的三相分散体系。 固体颗粒(骨架)
矿物质 固体颗粒 有机质

土力学与地基基础课程介绍

土力学与地基基础课程介绍

《土力学与地基基础》课程介绍
《土力学与地基基础》是建筑工程技术专业的专业课,通过该课程的学习使学生掌握土力学的基本原理和基本概念,了解有关结构设计理论知识分析和解决一般地基基础问题,要求学生能根据上部结构的要求,运用土力学的基本原理,进行一般建筑物的基础设计。

课程作用:
该课程是建筑工程技术专业的一门必修课、专业技术核心课、考试课。

先导课程有建筑材料、建筑力学与结构、建筑识图与构造,后续课
程有建筑工程施工技术、施工组织与管理、建筑工程计量与计价。

通过本课程的学习,使学生能通过各种手段进行工程地质勘察;能
熟练阅读并正确理解地质勘察报告. 能够通过土工试验和常见的的土的
鉴别等实践环节掌握主要指标的测定。

能够运用分层总和法和规范法计
算地基最终沉降量。

能根确定基础的种类;具备无筋扩展基础、钢筋混凝土基础的构造知识及
施工工艺;能确定各种基础的施工方案. 能够掌握地基处理的方法及分类.
根据该课程内容和建筑工程技术专业学生特点,课程教学中灵活运
用案例分析、分组讨论、启发引导等教学方法,引导学生积极思考、乐
于实践、注重学生德智体全面发展;通过学生参与课程建设、案例情境
模拟教学、参与工程实践、参加职业资格考试和技能大赛,培养学生发
现、分析和解决问题的基本能力,培养团队协作精神和创新能力。

课程目标设计如下表:。

土力学与地基基础课程标准

土力学与地基基础课程标准

《土力学与地基基础》课程教学标准一、课程简介2.课程简介《土力学与地基基础》课程是建筑工程技术专业的专业基础课,其主要作用一是为后续课程《平法识图与钢筋计算》、《建筑施工组织》、《建筑工程计量与计价》等奠定基础,二是为将来的就业——建筑施工技术奠定土力学与地基基础方面的知识和能力,如分析和处理实际施工过程中遇到的一般土质及地基处理等问题的能力、识读建筑结构基础施工图的能力等。

二、本课程的性质与任务本课程的性质:《土力学及地基基础》是培养建筑工程技术专业高技能人才重要基础课程,是建筑工程技术专业进行职业能力培养必修课程。

本课程的任务:本课程包括土的分类及性质、土应力计算、地基变形计算、土坡稳定、岩土勘察、深浅基础、地基处理等内容。

通过学习,掌握地基基础的设计方法,掌握浅基础、深基础的计算过程,理解基础的构造要求,能正确识读基础结构施工图,并能处理建筑施工中的一般地基问题。

三、课程教学目的要求(一)知识目标1、掌握土的物理性质及分类;2、掌握土应力及地基变形的计算;3、掌握土坡稳定性的条件,能够分析挡土墙;4、掌握岩土勘察的流程及验槽所需注意的事项;5、掌握浅基础、深基础的计算过程及设计方法;6、掌握地基处理的各种方法。

(二)能力目标1、具有对地基基础计算进行理论简化的能力;2、具有对边坡稳定性进行受力分析的能力;3、具有对岩土工程勘察流程进行有序工作的能力;4、具有对实际工程中地基基础进行处理的能力;5、具有通过实训课以增强工程实践和综合职业的能力。

(三)素质目标1、通过对土应力及地基基础计算能力的训练,培养学生理论联系实际、结构严谨、一丝不苟的思维方式;2培养认真负责的工作作风和工作方法,在工程设计和施工中具有严肃的科学精神和态度;3、培养遵循设计规范而创新的能力,设计规范是工程技术人员必须严格遵守和执行综合性技术法律法规,要用发展的观点来灵活应用,处理遵守与创新能力的矛盾;4、培养学生能够对多种因素进行综合分析与综合应用的能力,并在工程设计和施工中,对待综合性技术问题,能够采用多途径解决工程技术方法的能力。

土力学与地基基础

土力学与地基基础

一、名词解释1. 土力学:是研究土体在力的作用下的应力-应变或应力-应变-时间关系和强度的应用学科,是工程力学的一个分支。

为工程地质学研究土体中可能发生的地质作用提供定量研究的理论基础和方法。

主要用于土木、交通、水利等工程。

2.地基:地基是指建筑物下面支承基础的土体或岩体。

3.基础:是指建筑物地面以下的承重结构,如基坑、承台、框架柱、地梁等。

4.软弱下卧层:在持力层以下受力层范围内存在软土层,其承载力比持力层承载力小得多,该软土层称为软弱下卧层。

5. 土体:土体不是由单一而均匀的土组成的,而是由性质各异、厚薄不等的若干土层以特定的上下次序组合在一起。

因而土体不是简单的土层组合.而是与工程建筑的安全、经济和正常使用有关的土层组合体。

6.界限粒径:界限粒组的物理意义是划分粒组的分界尺寸7. 土的颗粒级配:又称(粒度)级配。

由不同粒度组成的散状物料中各级粒度所占的数量。

常以占总量的百分数来表示。

8.界限含水量:通常是指土的液限、塑限和缩限。

众所周知,液限和塑限是粘性土极为重要的指标,是粘性土工程分类的主要依据,和天然含水量一起,是估价土的工程特性的主要参数。

9. 土的灵敏度:是指原状土强度与扰动土强度之比ST=原状土强度/扰动土强度。

10.自重应力:是岩土体内由自身重量引起的应力。

11.基底压力:建筑物的荷载通过自身基础传给地基,在基础底面与地基之间便产生了荷载效应(接触应力)。

12.基底附加压力:是指建筑物建造后,基底接触压力与基底处土自重应力之差,一般将其作为作用于弹性半空间表面上的局部荷载,并根据弹性理论来求算地基中的附加应力。

13.地基附加应力:是指荷载在地基内引起的应力增量。

14. 土的压缩性:是指土受压时体积压缩变小的性质。

15. 土的固结:是指松散沉积物转变为固结岩石的过程。

16.压缩系数:是描述物体压缩性大小的物理量。

17.压缩模量Es:是指在侧限条件下受压时压应力6与相应应变qz之比值。

土力学与地基基础 PPT

土力学与地基基础 PPT

曲率系数: Cc=(d30)2/(d60× d10)
有效粒径 ——小于某粒径的土粒质量累计百分数为10%时相应 的粒径。
限定粒径 ——小于某粒径的土粒质量累计百分数为60%时相应 的粒径。
中值粒径 ——小于某粒径的土粒质量累计百分数为30%时相应 的粒径。
任务一土的成因与组成
土中水 结合水
自由水
任务二土的物理性质指标
的含水量,亦称为土的含水率。即:
w mW 100% ms
任务二土的物理性质指标
土的基本指标
2、土的土的密度ρ和重度
单位体积内土的质量称为土的密度ρ ,单位体积内土所受 的重力(重量)称为土的重度 。
m/V g
任务二土的物理性质指标
土的基本指标
3、土的比重Gs
土粒质量与同体积的4℃时纯水的质量之比,称为土粒比重 (无量纲),亦称为土粒相对密度。即:
建构筑物中将结构所承受的各种荷载传递到地基上的结构组成部分 称为基础。
二、地基与基础研究的内容
地基与基础是一门实用性很强的学科,其研究内容 涉及土质学、土力学、结构设计、施工技术以及与 工程建设相关的各种技术问题。
二、地基与基础研究的内容
为了保证建筑物的安全和正常使用,在地基基础设计中 ,须满足以下3个技术条件:
三、地基与基础理论的发展
▪ 1773年 ▪ 1857年 ▪ 1885年
▪ 1925年 ▪ 1936年 ▪ 1949年
• 法国的库仑-砂土抗剪强度理论与土压力理论 英国朗肯—朗肯土压力理论
法国布新奈斯克(Boussinesq)—弹性半空间解 美国太沙基—《土力学》专著与有效应力原理 美国召开第一次国际土力学及基础工程会议 我国土力学研究进入发展阶段

《土力学与地基基础》课件

《土力学与地基基础》课件

地基承载力计算方法:极限 平衡法、弹性半空间法等
地基承载力定义:地基所能 承受的最大压力
地基承载力验算:根据设计要 求,计算地基承载力是否满足
要求
地基承载力影响因素:土质、 地下水位、地基深度等
地基变形类型: 沉降、侧向位移、 倾斜等
地基变形计算方 法:弹性半空间 法、有限元法等
地基变形控制措施: 加强地基处理、采 用桩基础等
添加标题
破坏阶段:土在外力 作用下产生的应力和 应变达到极限,土体 破坏
抗剪强度:土抵抗剪切破坏的能力 摩擦角:土颗粒之间的摩擦力 影响因素:土的颗粒大小、形状、排列方式等 应用:地基承载力计算、边坡稳定分析等
土的压缩性:土在压力作用下体积减小 的性质
固结过程:包括初始固结、次固结、超 固结等阶段
膨胀土地基的特点: 吸水膨胀、失水收 缩
膨胀土地基的危害: 地基不均匀沉降、 开裂、变形
膨胀土地基的处理 方法:换填、强夯、 注浆、化学加固等
工程实例:某高速公路 膨胀土地基处理工程, 采用换填法进行地基处 理,取得了良好的效果。
汇报人:
保证建筑物安全
地基处理方法:包括换填法、强夯法、挤密法、注浆法等 方案选择依据:根据场地条件、工程要求、经济性等因素综合考虑 优化方法:采用数值模拟、试验研究等手段进行优化 案例分析:结合实际工程案例,分析地基处理方案的选择与优化过程
监测内容:沉 降、位移、应
力、应变等
监测方法:仪 器监测、现场 观测、试验检
测等
质量评价标准: 地基承载力、 变形控制、稳
定性等
案例分析:某 工程地基处理 工程监测与质
量评价实例
PART EIGHT
软土地基的特点:含水量高、压缩性高、抗剪强度低

土木工程课程:土力学与地基基础

土木工程课程:土力学与地基基础

土木工程课程:土力学与地基基础关键信息项:1、课程名称:土力学与地基基础2、课程目标3、教学内容4、教学方法5、考核方式6、教材选用7、课程时间安排11 课程目标本课程旨在使学生掌握土力学与地基基础的基本理论和知识,具备分析和解决土力学与地基基础相关工程问题的能力。

通过本课程的学习,学生应达到以下目标:111 理解土的物理性质、力学性质和工程分类,能够进行土的物理指标计算和工程性质评价。

112 掌握土中应力的计算方法,包括自重应力、附加应力的计算,能够分析土中应力分布规律。

113 熟悉土的压缩性和固结理论,能够进行地基沉降计算和预测。

114 掌握土的抗剪强度理论和测试方法,能够进行土坡稳定性分析和挡土墙设计。

115 了解地基基础的类型和设计原则,能够进行浅基础和桩基础的设计计算。

12 教学内容121 土的物理性质与工程分类土的三相组成、土的颗粒级配、土的物理性质指标、土的工程分类方法。

122 土中应力计算土的自重应力计算、基底压力计算、地基中的附加应力计算。

123 土的压缩性与地基沉降计算土的压缩性指标、单向固结理论、地基最终沉降量计算方法。

124 土的抗剪强度莫尔库仑强度理论、土的抗剪强度指标测定方法、土坡稳定性分析。

125 地基承载力地基破坏模式、地基承载力的确定方法。

126 浅基础设计浅基础的类型、基础埋置深度的确定、基础底面尺寸的计算、基础内力分析与配筋设计。

127 桩基础设计桩的类型与特点、单桩竖向承载力的确定、桩基础的设计计算。

13 教学方法131 课堂讲授采用多媒体教学手段,结合工程实例,讲解土力学与地基基础的基本概念、原理和方法。

132 实验教学安排土的物理性质实验、土的压缩实验、土的抗剪强度实验等,使学生通过实验加深对课程内容的理解和掌握。

133 课程设计布置课程设计任务,要求学生综合运用所学知识,完成地基基础的设计计算,培养学生的工程实践能力。

134 案例分析通过分析实际工程中的土力学与地基基础问题,培养学生解决复杂工程问题的能力。

土力学与地基基础概要

土力学与地基基础概要

土力学与地基基础概要一、土力学1. 土体力学性质土体力学性质是指在外力作用下,土体产生的变形、破坏规律和力学特性等方面的性质。

这些力学性质受到土体类型、物理化学性质、组成成分、水分含量等多个因素的影响。

2. 挖掘机械在土体中的行为及作用挖掘机械在土体中的行为及作用是指建筑工程中常见机械设备如挖掘机、装载机、推土机等具体在土体中的动作。

这些机械的作用方式直接影响土体的强度、稳定性和变形等方面的性质。

3. 工程土力学工程土力学是将土力学理论和实际情况相结合,探索土体在建筑工程中主要承受的力学行为和规律。

它涉及土坑开挖、基础设计、抗震设计、地下结构工程等方面。

二、地基基础学科1. 基本概念地基基础是建筑物或其他工程结构安全及稳定的基础,由地基与地面基础组成。

它是在土壤表面之下的部分,作为支撑重载建筑物的关键。

设计和构造地基基础是建筑工程的第一步,影响着工程的稳定性、安全性和经济性等各方面。

2. 地基基础分类地基基础按照其结构、材料及应用等方面可以分为多种类型,主要包括岩石基础、桩基础、地下连续墙、地下室、浅基础等。

选择不同类型的基础,需要考虑地质状况、承载力和建筑物结构等因素。

地基基础设计是建筑工程设计的重要环节。

在进行基础设计时,需分析地质地貌情况、荷载及承载力计算、地基排水及应力状况等因素,从而选择最佳的基础方案。

三、总结土力学和地基基础学科作为土木工程领域的两个关键学科,相互交错、相辅相成,为建筑工程的稳定性、安全性和经济性等方面提供了学科基础和理论支撑。

在实际工程中,科学地运用土力学和地基基础学科原理,可以有效保证工程结构的稳定和安全,为人类社会的长远发展做出贡献。

1、土力学与地基基础

1、土力学与地基基础

理也较发育。在三角洲地带,地下水位很高,水系密布,该区
域内沉积物形成饱和砂土及软粘土,承载能力很低,压缩性很 高,作为建筑物地基应特别慎重。
• 五、海相沉积物
ห้องสมุดไป่ตู้
• 海洋按海水深度不同划分为四个区域,滨海地区是指涨潮时
淹没、落潮时落出的地带;浅海地区称为大陆架,水深0~ 200m,宽度100~200km;陆坡地区水深200~1000m,宽度 200~300km;当水深超过1000m时,为深海地区。不同地区 的沉积物不同。
• 化学风化作用不仅破坏了岩石的结构,而且使化 学成份改变,形成新的矿物。粘土颗粒便是岩石 经化学风化后的产物。 3.生物风化作用:是指生物活动过程中对岩石产生 的破坏作用。如树根生长时施加周围岩石的压力 可超过岩石的强度,使岩石产生裂纹而破坏。活 动在地表浅层的动物如老鼠、蚯蚓等也可使岩石 被碎成土。开山、挖隧道等作用产生的土等。
(9)桥梁、房屋结构的抗震设计,需要研究土的动力特性。
由此可见,土力学这门学科与土木工程专业课的学习和今后的技 术工作有着十分密切的关系。学习这门课程是为了更好地学好专 业课,也是为了今后更好地解决有关土的工程技术问题奠定坚实 的基础。
第一章 工程地质 §1.1 概 述
• 从上面分析可以看出,工程地质与道桥工程的关系极为密切,因 为各种道路和桥梁都是建在地球表面上的,都要与土打交道。建 筑场地的工程地质条件直接影响道桥的设计方案、施工与工程投 资。因此,首先讲一些有关土质学方面的内容。
(1)土的物理、力学、物理化学性质;
(2)宏观与微观结构;
(3)土的压缩性; (4)强度特性; (5)渗透性; (6)动力特性等。 • 为各类土木工程的稳定和安全提供科学的对策。

《土力学与地基基础》课程标准

《土力学与地基基础》课程标准

《土力学与地基基础》课程标准一、课程性质和任务课程性质:《土力学与地基基础》是以土力学的基本理论为基础,研究地基与基础工程设计与计算问题的一门学科,是一门理论性和实践性较强、专业技术含量较高的土建类专业课程。

课程目的:学习本课程的目的是让学生掌握土力学中土的物理性质、地基的应力、变形、抗剪强度、地基承载力和土压力的基本概念、基本理论和计算方法,并能根据建筑物的要求和地基勘察资料选择一般地基基础方案,运用土力学的原理进行一般建筑的地基基础设计,为今后的工作打下坚实基础。

二、课程教学内容、学时分配和课程教学基本要求课题一绪论(共1学时,讲授1学时)1.土力学与地基基础的概念(重点)了解土力学基本概念及其内容,并要求对地基与基础有基本认识2.地基与基础在建筑工程中的重要性了解本课程的任务和特点以及在本专业中的地位3.本课程基本内容与特点举例说明地基与基础的重要性课题二土的物理性质及工程分类(共7学时,讲授5学时,实验2学时)1.概述土的成因;土的机构与构造;2.土的组成(重点)土中固相;土中液相;土中气相3.土的物理性质指标(难点)土的三相简图;三相指标的定义;三相指标的换算4.土的物理状态指标(重点)无黏性土的物理状态指标;粉土的物理状态指标;黏性土的物理状态指标5.地基土的工程分类岩石;沙土;粉土;黏性土;人工填土课题三地基中的应力计算(共6学时,讲授4学时,其他2学时)1.概述2.土体自重应力的计算(重点)竖向自重应力的计算;水平自重应力的计算;地下水位变化对自重应力的影响;建筑场地填平时地基应力3.基底压力的计算(重点)基底压应力的分布;基底压力的计算;基底附加压力4.竖向荷载作用下地基附加应力的计算(难点)竖向集中荷载作用下土中附加应力;矩形面积均布荷载作用下土中竖向附加应力的计算;矩形面积三角形分布荷载角点下竖向附加应力;矩形面积梯形分布荷载角点下竖向附加应力;条形荷载作用下土中附加应力课题四土的压缩性与地基沉降计算(共4学时,讲授2学时,实验2学时)1.土的压缩性(重点)基本概念;压缩试验与压缩曲线;压缩指标2.地基变形计算(难点)分层总和法;《建筑地基基础设计规范》推荐法;相邻荷载对地基沉降的影响;地基沉降与实践的关系3.建筑物沉降观测与地基容许变形值建筑物的沉降观测;地基允许变形值教学建议:了解土的压缩性及引起地基土产生压缩的主要原因,掌握土的压缩指标概念及试验测定方法.重点讲授地基规范法计算地基变形,要求强调分层总和法与地基规范法计算地基变形的主要异同点.了解建筑物沉降观测点的布置和技术要求,掌握地基变形分类及其允许值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《土力学与地基基础》课程介绍
《土力学与地基基础》是建筑工程技术专业的专业课,通过该课程的学习使学生掌握土力学的基本原理和基本概念,了解有关结构设计理论知识分析和解决一般地基基础问题,要求学生能根据上部结构的要求,运用土力学的基本原理,进行一般建筑物的基础设计。

课程作用:
该课程是建筑工程技术专业的一门必修课、专业技术核心课、考试课。

先导课程有建筑材料、建筑力学与结构、建筑识图与构造,后续课
程有建筑工程施工技术、施工组织与管理、建筑工程计量与计价。

通过本课程的学习,使学生能通过各种手段进行工程地质勘察;能
熟练阅读并正确理解地质勘察报告。

能够通过土工试验和常见的的土的
鉴别等实践环节掌握主要指标的测定。

能够运用分层总和法和规范法计
算地基最终沉降量。

能根确定基础的种类;具备无筋扩展基础、钢筋混凝土基础的构造知识及施工工艺;能确定各种基础的施工方案。

能够掌握地基处理的方法及分类。

根据该课程内容和建筑工程技术专业学生特点,课程教学中灵活运
用案例分析、分组讨论、启发引导等教学方法,引导学生积极思考、乐
于实践、注重学生德智体全面发展;通过学生参与课程建设、案例情境
模拟教学、参与工程实践、参加职业资格考试和技能大赛,培养学生发现、分析和解决问题的基本能力,培养团队协作精神和创新能力。

课程目标设计如下表:。

相关文档
最新文档