6.圆柱与圆锥整理知识点

合集下载

苏教版六年级数学下册第二单元知识点归纳

苏教版六年级数学下册第二单元知识点归纳

第二单元(圆柱和圆锥)知识点归纳 第一课时:1. 圆柱的特点:上下两个面是相同的圆形,圆柱的侧面是曲面,上下一样粗。

2. 圆锥有一个顶点,一个底面和一个侧面,底面是一个圆,侧面是一个曲面。

3. 围成圆柱的面还有一个曲面,叫做圆柱的侧面,圆柱的两个底面之间的距离叫做圆柱的高,圆柱有无数条高。

4. 以圆锥的顶点到底面圆心的距离是圆锥的高,圆锥有一条高。

第二课时:1. 圆柱的侧面积=底面周长(π×R )×高2. 圆柱的底面积(S )=π×r 23. 圆柱的表面积=侧面积+底面积×2第四课时1.圆柱的体积=底面积×高第五课时1. 体积是以外面量的,容积是以里面量的,容器的体积比它的容积大2. 圆柱的高不变,直径、半径扩大几倍,体积扩大原来体积的平方倍。

第六课时:1.圆锥的体积=底面积×高×13 ,不能忘记13。

第七课时:1.很多题目都会用等底等高的圆柱和圆锥的体积之间的关系去求圆柱和圆锥的体积。

(体积之和是几份?找准总份数、体积之差是几份,然后找到对应量,最后用总份数对应的量÷总份数=一份对应的量)2.圆锥的体积也是与它等底等高的长方体体积的1 33.已知圆锥的体积,要先求出和这个圆锥等底等高的圆柱的体积乘3,再除以底面积,最后求出高。

与求体积除以3相反。

培优:1.一个圆锥形容器里倒了一半高度的水,高是容器的一半,水面底面半径就是容器底面半径的一半,即12,则设容器的高度为h,水面高度为12h,所以得出结论:水面高是容器的一半,水面底面积是容器底面积的14;水的体积则是圆锥容器的18。

2.往圆柱形容器里加水,水的体积=底面积(水)×高(水),容器的容积=底面积(容)×高(容),因为底面积(水)和底面积(容)是一样的,则可以把底面积看成a,转化成:水的体积=a×高(水),容器的容积= a×高(容),所以,水的体积占容器容积水的体积容器的容积=a×高(水)a×高(容)=高(水)高(容),(根据分数的性质,分子和分母同时除以相同的数),所以水的体积占容器容积的比就是水面的高度占容器高度的比。

圆柱与圆锥整理复习

圆柱与圆锥整理复习
项目
知 识 要 点
基 础 练 习
圆 柱
圆 锥
底 面
两个大小 相等的圆
一个圆
1、判断。 (1)圆柱和圆锥都有无数条高。 ( ) (2)底面是两个完全相等的圆,侧面是一个曲面的物体一定是 圆 柱体。 ( ) 2、选择。 圆柱的侧面展开不可能是( )。 A、长方形 B、梯形 C、正方形 D、平行四边形


侧 面
V= sh
圆锥体积等于与它等底等高的圆柱体积的1/3
实 验
圆锥
侧 面
底 面

平 面
曲 面
展开
从顶点到底面圆心之间的距离
只有一条
一 个 圆
扇 形
圆柱
底面
平面
两个大小相同的圆
两个底面之间的距离

有无数条,长度相等
切拼
V=sh
b=r
h=h
长 方 体
a=
c
S表=s侧+2s底
a=c=h
底面积

底面积×高
圆柱与圆锥的体积之间有什么关系?
等底等高圆柱体积是圆锥体积的3倍
等底等高圆锥体积是圆柱体积的三分之一
圆柱和圆锥的体积计算
V=sh
V=Πr2 h
已知底面积s、高h
已知底面 半径r、高h
圆 锥 体 积
圆柱体积
v= sh
3
1
v= Πr2 h
3
1
联系
圆锥的体积等于与它等底等高的圆柱体积的 。
基 础 练 习
3、在一个底面半径是10厘米的圆柱形杯子中装一些水,再把一个底面半径是3厘米的圆锥形铅锤完全放入水中,水面上升0.3厘米。求铅锤的高。
拓展练习

(完整版)圆柱圆锥知识点总结

(完整版)圆柱圆锥知识点总结

圆柱圆锥知识点总结主要内容圆柱和圆锥的认识、圆柱的表面积考点分析1、圆柱上、下两个面叫做圆柱的底面,它们是完全相同的两个圆。

形成圆柱的面还有一个曲面,叫做圆柱的侧面.圆柱两个底面之间的距离叫做圆柱的高.2、圆锥的底面是个圆,圆锥的侧面是一个曲面。

从圆锥的顶点到底面圆心的距离是圆锥的高.3、把圆柱的侧面展开得到一个长方形,这个长方形的长等于圆柱底面的周长,宽等于圆柱的高.4、圆柱的侧面积 = 底面周长×高5、圆柱的表面积 = 侧面积 + 底面积× 2典型例题例1、(圆柱和圆锥的特征)圆柱和圆锥分别有什么特点?分析与解:长方体和正方体的六个面都是平面图形(长方形或正方形),而圆柱和圆锥除了底面是平面图例2、半径3厘米直径10米分析与解:根据圆的面积和周长计算公式计算圆柱和圆锥的底面周长和底面积。

圆柱:底面周长 3。

14 × 3 × 2 = 18。

84(厘米)底面积 3。

14 × 3 ²= 28.26(平方厘米)圆锥:底面周长 3.14 × 10 = 31。

4(米)底面积 3.14 ×(10÷2)²= 78。

5(平方米)点评:圆柱和圆锥的底面都是圆,在计算它们的周长和面积时只要按照圆的周长和面积计算公式进行计算.例3、判断:圆柱和圆锥都有无数条高.错误解法:正确分析与解:圆柱有无数条高,圆锥只有一条高。

正确解答:错误点评:圆柱两个底面之间的距离叫做圆柱的高。

两个底面之间有无数个对应的点,圆柱有无数条高。

从圆锥的顶点到底面圆心的距离是圆锥的高。

顶点和底面圆心都是唯一的点,所以圆锥只有一条高.例4、(圆柱的侧面积)体育一个圆柱,底面直径是5厘米,高是12厘米。

求它的侧面积。

分析与解:高沿着圆柱侧面的一条高剪开,将侧面展开,就得到一个长方形.这个长方形的长等于圆柱底面的周长,宽等于圆柱的高。

因此,用圆柱的底面周长乘圆柱的高就得到这个长方形的面积,即圆柱的侧面积。

圆柱体与圆锥体知识点

圆柱体与圆锥体知识点

圆柱体与圆锥体知识点圆柱体与圆锥体是几何学中的重要概念,它们在日常生活和工程设计中都有广泛的应用。

本文将详细介绍圆柱体与圆锥体的定义、性质、公式及其应用。

一、圆柱体的定义和性质圆柱体是由两个平行且相等的圆面和它们之间的侧面组成的几何体。

圆柱体的侧面是一个矩形,其两条边分别与两个圆面的切线垂直相交。

以下是圆柱体的一些性质:1. 所有生成圆柱体的平行直线都与底面圆相切。

2. 圆柱体的两个底面圆半径相等。

3. 圆柱体的侧面积等于底面周长乘以高度。

4. 圆柱体的体积等于底面积乘以高度。

二、圆柱体的公式1. 底面积公式:圆柱体的底面积等于底面圆的半径平方乘以π。

公式表示为:底面积= πr^2,其中r为底面圆的半径。

2. 侧面积公式:圆柱体的侧面积等于底面周长乘以高度。

公式表示为:侧面积= 2πrh,其中r为底面圆的半径,h为圆柱体的高度。

3. 全面积公式:圆柱体的全面积等于底面积加上两倍的侧面积。

体的高度。

4. 体积公式:圆柱体的体积等于底面积乘以高度。

公式表示为:体积 = 底面积 × h,其中h为圆柱体的高度。

三、圆锥体的定义和性质圆锥体是由一个圆锥面和一个平面封闭的几何体。

圆锥体的底面是一个圆,其顶点与底面圆的中心相连。

以下是圆锥体的一些性质:1. 所有生成圆锥体的平行直线都与底面圆相交。

2. 圆锥体的侧面积等于底面周长乘以母线长。

3. 圆锥体的体积等于底面积乘以高度除以3。

四、圆锥体的公式1. 底面积公式:圆锥体的底面积等于底面圆的半径平方乘以π。

公式表示为:底面积= πr^2,其中r为底面圆的半径。

2. 侧面积公式:圆锥体的侧面积等于底面周长乘以母线长除以2。

公式表示为:侧面积= πrl/2,其中r为底面圆的半径,l为母线长。

3. 全面积公式:圆锥体的全面积等于底面积加上侧面积。

公式表示为:全面积= πr(r+l),其中r为底面圆的半径,l为母线长。

4. 体积公式:圆锥体的体积等于底面积乘以高度除以3。

六年级下学期 圆柱与圆锥 详细知识点总结+重难点题型训练+详细答案 很全面

六年级下学期 圆柱与圆锥 详细知识点总结+重难点题型训练+详细答案 很全面

圆柱与圆锥【考点要求】1、认知圆柱与圆锥,掌握它们的各部分特征2、理解并掌握圆柱的侧面积和表面积的计算方法,并会正确计算3、理解并掌握圆柱与圆锥的体积的计算方法,会运用公式计算体积、容积,解决有关的简单的实际问题。

【基础知识回顾】考点一、圆柱的各部分名称,展开图一、圆柱的各部分名称,展开图1、底面、侧面、高:(1)圆柱的两个圆面叫做底面,圆柱的两个底面都是圆,并且大小一样;(2)周围的面叫做侧面,圆柱的侧面是曲面;(3)两个底面之间的距离叫做高,圆柱的高有无数条;拿一张长反省的硬纸,贴在木棒上,快速转动,转动起来的形状就是个一个圆柱。

2、圆柱的侧面展开图:圆柱的侧面展开图是一个长方形,长方形的长相当于圆柱的底面周长,长方形的宽相当于圆柱的高。

【练习一】1、点的运动可以形成(),线的运动可以形成一个(),面的运动可以形成()。

长方形绕一条边旋转一周可以形成()2、圆柱由()个面组成,分别是()()()组成,上下底面都是(),侧面的展开是一个()。

3、圆柱的侧面展开是一个长方形,长方形的长等于圆柱的(),长方形的宽等于圆柱的()4、如右图,以长方形的长为轴,旋转一周,得到的立体图形是(),那么,得到的这个立体图形的高是()厘米,底面周长是()厘米。

3厘米6厘米5、判断(1)长方体中最多有4个面可能是正方形()(2)一个圆柱,如果底面直径和高相等,则圆柱的侧面展开是正方形()(3)如果一个物体上、下底面是面积相等的两个圆,那么这个物体一定是圆柱()。

考点二、圆柱的表面积π+2πrh=2πr(r+h)二、圆柱的表面积=2个圆的面积+1个侧面积=2r21、圆柱的侧面积=底面周长×高=πdh=2πrh因为圆柱的侧面展开是一个长方形,长方形的长等于圆柱的底面周长,长方形的宽等于圆柱的高,所以长方形的面积就是圆柱的侧面积=底面周长×高π×22、圆柱的2个底面积:S=r2π+2πrh=2πr(r+h)3、圆柱的表面积:2个底面积+1个侧面积=2r2注意:有时题目计算表面积时,并不是三个面的面积都要计算,要结合具体题目具体分析,比如,通风管就只用计算侧面积即可,无盖的水桶就只用计算侧面积和1个底面积4、圆柱的截断与拼接:(1)把一个圆柱截成两个圆柱,增加的表面积是两个底面积;(2)把两个同样粗细的圆柱拼成一个圆柱,减少的表面积是两个底面积。

圆柱圆锥题型整理

圆柱圆锥题型整理

圆柱和圆锥题型总结一、瓶子正倒放不论是正放还是倒放,瓶子的容积不变,正放酒的高度加上倒放时空余部分的高度,就是瓶子的高度一个容积为2500ml的饮料瓶,当瓶子正放时瓶内的饮料高为16cm,把瓶盖拧紧倒立,无饮料的部分高为4cm,瓶中有饮料多少L?有一种酒瓶,容积为286立方厘米,当瓶口向上时,瓶内酒的高度是18厘米,当瓶口向下时,余下部分的高度是4厘米,瓶内酒有多少毫升?一个药瓶,它的瓶身呈圆柱形(不包括瓶颈),如图所示,它的容积为26.4cm3,瓶子正放时,瓶内药水液面高6cm,瓶子倒放时,空余部分高2cm,则瓶内药水的体积是多少立方厘米?一满瓶饮料,爸爸喝了一些后液面高度是10cm,若把瓶盖拧紧后倒置放平,空余部分高8cm,已知饮料瓶的内直径是6cm,这瓶饮料原有多少毫升?二、切割问题1.圆柱切割一个圆柱形木块按图甲中的方式切成形状、大小四块,表面积增加了96cm2,按图乙的方式切成形状、大小相同的三块,表面积增加了50.24cm2,若把它削成一个最大的圆锥,体积减少多少立方厘米?把一个高为5cm的圆柱从直径处沿高剖成两个半圆柱,这两个半圆柱的表面积比原来增加80cm2,原来圆柱的体积是多少立方厘米?2.削成最大的圆柱(圆锥)三、浸水问题1、完全浸没物体体积=水上升体积一个高40厘米的圆柱形水桶,底面半径是20厘米,这个桶盛有半桶水,小红将一块石头完全浸入水桶中,水面比原来上升了3厘米,这块石头的体积是多少?在一个底面直径是40厘米的圆柱形水桶里,浸没了一根半径是10厘米的圆柱形铁块.当铁块从水桶里取出后,水面下降了8厘米,这根圆柱形铁块的长是多少厘米?一个圆柱形容器内,放有一个长方体铁块,现在打开一个水龙头往容器中注水3分钟,水恰好没过铁块的顶面;又过了18分钟后,水灌满了容器.已知容器的高度是50cm,铁块的高度是20cm,那么铁块的底面积与容器底面积的比是多少?在一个底面直径10厘米圆柱体形杯中装有水,水里浸没一个底面半径是2厘米的圆锥形铅锤,当铅锤取出时,水面下降2厘米,铅锤的高是多少厘米?一个底面半径是6厘米的圆柱形容器(厚度不计)里面装有一些水,水中浸没着一个高9厘米的圆锥形铅锥.当铅锤从水中取出后,水面下降了0.5厘米.这个铅锤的底面积是多少?一个圆柱形铁盒,底面半径是10厘米,高是18.84厘米,现在圆柱形铁盒正立在桌上,铁盒中盛有部分水,水面高度是12.56厘米.如果往这个铁盒中放入若干个长3.14厘米,宽1.57厘米,高1厘米的长方体铁块,至少加入多少个铁块后,使水刚好不外溢?一个底面直径为20厘米的圆柱形容器中装有水,水中放着一个底面直径为12厘米,高为5厘米的圆锥体铅锤,当铅锤从水中取出后,容器中水面高度下降了几厘米?有一个底面积是300平方厘米,高10厘米的圆柱体容器,里面盛有5厘米深的水。

圆柱的知识整理

圆柱的知识整理

圆柱的知识整理LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】三圆柱和圆锥一、圆柱1、圆柱的形成:圆柱是以长方形的一边为轴旋转而得到的。

圆柱也可以由长方形卷曲而得到。

(两种方式:1.以长方形的长为底面周长,宽为高;2.以长方形的宽为底面周长,长为高。

其中,第一种方式得到的圆柱体体积较大。

)2、圆柱的高是两个底面之间的距离,一个圆柱有无数条高,他们的数值是相等的3、圆柱的特征:(1)底面的特征:圆柱的底面是完全相等的两个圆。

(2)侧面的特征:圆柱的侧面是一个曲面。

(3)高的特征:圆柱有无数条高4、圆柱的切割:①横切:切面是圆,表面积增加2倍底面积,即S增=2πr2?②竖切(过直径):切面是长方形(如果h=2R,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S增=4rh5、圆柱的侧面展开图:①沿着高展开,展开图形是长方形,如果h=2πr,展开图形为正方形②不沿着高展开,展开图形是平行四边形或不规则图形③无论怎么展开都得不到梯形6、圆柱的相关计算公式:底面积:S底=πr2?底面周长:C底=πd=2πr侧面积:S侧=2πrh表面积:S表=2S底+S侧=2πr2+2πrh体积:V柱=πr2h考试常见题型:①已知圆柱的底面积和高,求圆柱的侧面积,表面积,体积,底面周长②已知圆柱的底面周长和高,求圆柱的侧面积,表面积,体积,底面积③已知圆柱的底面周长和体积,求圆柱的侧面积,表面积,高,底面积④已知圆柱的底面面积和高,求圆柱的侧面积,表面积,体积⑤已知圆柱的侧面积和高,求圆柱的底面半径,表面积,体积,底面积以上几种常见题型的解题方法,通常是求出圆柱的底面半径和高,再根据圆柱的相关计算公式进行计算无盖水桶的表面积=侧面积+一个底面积油桶的表面积=侧面积+两个底面积烟囱通风管的表面积=侧面积只求侧面积:灯罩、排水管、漆柱、通风管、压路机、卫生纸中轴、薯片盒包装侧面积+一个底面积:玻璃杯、水桶、笔筒、帽子、游泳池侧面积+两个底面积:油桶、米桶、罐桶类二、圆锥1、圆柱的形成:圆锥是以直角三角形的一直角边为轴旋转而得到的圆锥也可以由扇形卷曲而得到2、圆锥的高是两个顶点与底面之间的距离,与圆柱不同,圆锥只有一条高3、圆锥的特征:(1)底面的特征:圆锥的底面一个圆。

(完整版)六年级数学下册圆柱与圆锥知识点

(完整版)六年级数学下册圆柱与圆锥知识点

六年级数学下册《圆柱与圆锥》知识点六年级数学下册《圆柱与圆锥》知识点知识点1。

圆柱是由两个底面和一个侧面三部分组成的。

2.(1)圆柱的两个圆面叫做底面。

(2)底面各部分的名称:圆柱的底面圆的圆心、半径、直径和周长分别叫做圆柱的底面圆心、底面半径、底面直径和底面周长。

(3)底面的特征:圆柱底面是完全相同的两个圆.3。

(1)圆柱周围的面叫做侧面。

(2)特征:圆柱的侧面是曲面。

4.(1)圆柱两个底面之间的距离叫做圆柱的高。

(2)一个圆柱有无数条高。

5。

把圆柱平行于底面进行切割,切面是和底面大小相同的两个圆;把圆柱沿底面直径垂直于底面进行切割,切面是两个完全相同的长方形。

6。

圆柱的侧面展开图是一个长方形,这个长方形的长等于圆柱底面的周长,宽等于圆柱的高。

7.在圆柱的上下底面周长上任取一点分别为A、B,连接AB(使AB不是圆柱的高),沿着AB将圆柱的侧面剪开,圆柱展开后是一个平行四边形.8。

温馨提示:圆柱的底面是圆形,面不是椭圆。

9.温馨提示:沿高剪开时,圆柱的侧面展开图是一个长方形。

10。

从圆柱的上下两个底面观察会得到圆;从圆柱的正面或侧面观察会得到长方形(或正方形).11。

如果圆柱的侧面展开图是个长方形,那么该圆柱的底面周长大约是其底面直径长度的3倍。

如果圆柱的侧面展开图是个正方形,那么该圆柱的高大约是其底面直径长度的3倍。

12。

圆柱的侧面积=底面周长×高.如果用字母S表示圆柱的侧面积,用C表示底面周长,用h表示高,则圆柱的侧面积的计算公式是S=Ch13。

(1)已知圆柱的底面直径和高,可以根据公式:S=πdh直接求出圆柱的侧面积。

(2)已知圆柱的底面半径和高,可以根据公式:S=2πrh直接求出圆柱的侧面积。

14。

圆柱的表面积是指圆柱的侧面积和两个底面的面积之和。

15.圆柱的表面积=圆柱的侧面积+底面积×2,用字母表示为S表=S侧+2S底。

16.(1)已知圆柱的底面半径和高,可以根据公式:S表=2πrh+2πr2直接求出圆柱的表面积。

小学圆柱圆锥知识点总结

小学圆柱圆锥知识点总结

小学圆柱圆锥知识点总结
一、圆柱的定义和性质
1. 定义:圆柱是由两个平行并且等圆的底面以及连接这两个底面的侧面组成的几何体。

2. 性质:
- 圆柱的底面是两个相同的圆,其半径为r;
- 圆柱的侧面是一条沿着两个圆周运动的直线;
- 圆柱的高度为h;
- 圆柱的体积为V = πr²h;
- 圆柱的表面积为S = 2πr² + 2πrh。

二、圆锥的定义和性质
1. 定义:圆锥是由一个圆锥面和一个平面底面组成的几何体。

2. 性质:
- 圆锥的底面是一个圆,其半径为r;
- 圆锥的侧面是由底面到顶点的直线组成;
- 圆锥的高度为h;
- 圆锥的体积为V = (1/3)πr²h;
- 圆锥的表面积为S = πr² + πrl。

三、圆柱和圆锥的应用
1. 在日常生活中,圆柱和圆锥经常被用来制作容器和器皿。

例如,铅笔筒、花瓶、圆锥形的帽子等都是圆柱和圆锥的典型应用。

2. 在工程建筑中,圆柱和圆锥也有着广泛的应用。

例如,建筑物中的柱子和锥形的塔尖都是圆柱和圆锥结构。

4. 在数学问题中,圆柱和圆锥的概念也经常被用来解决问题。

例如,通过计算圆柱和圆锥的体积和表面积来求解实际问题。

小学生在学习圆柱和圆锥的过程中,可以通过观察实物和图形来加深对这两种几何体的理解。

老师可以通过示范和练习来帮助学生掌握圆柱和圆锥的相关知识,鼓励他们通过实际的应用来体会几何知识的重要性。

希望本文的介绍对小学生学习圆柱和圆锥有所帮助。

圆柱和圆锥知识点归纳总结

圆柱和圆锥知识点归纳总结

圆柱和圆锥知识点归纳总结一、圆柱1.定义及性质圆柱是由一个平行于底面的曲线(母线)围绕着一个平行于母线的轴旋转而成的立体图形。

圆柱具有以下性质:a.圆柱的底面是一个圆,轴与底面圆相交于圆心。

b.圆柱的侧面是一个长方形,其面积等于底面圆的周长乘以母线的长度。

c.圆柱的体积等于底面圆的面积乘以母线的长度。

2.圆柱的表面积和体积计算公式a. 表面积计算公式:S = 2πr² + 2πrh,其中r为底面圆半径,h为母线的长度。

b.体积计算公式:V=πr²h,其中r为底面圆半径,h为母线的长度。

3.圆柱的投影a.圆柱的平行截面是一个与底面圆相似的圆。

b.圆柱的垂直截面是一个矩形。

4.圆柱的应用a.圆柱广泛应用于日常生活中的容器,如杯子、筒子、桶等。

b.圆柱也是建筑中常用的结构形式,如圆柱形的支柱、柱子等。

二、圆锥1.定义及性质圆锥是由一个平行于底面的点(顶点)与一个与底面相交的曲线(母线)围成的立体图形。

圆锥具有以下性质:a.圆锥的底面是一个圆,顶点与底面圆的圆心相重。

b.圆锥的侧面是一个三角形,其面积等于底面圆的周长乘以母线的长度的一半。

c.圆锥的体积等于底面圆的面积乘以母线的长度的一半。

2.圆锥的表面积和体积计算公式a. 表面积计算公式:S = πr² + πrl,其中r为底面圆半径,l为母线的长度。

b.体积计算公式:V=1/3πr²h,其中r为底面圆半径,h为母线的长度。

3.圆锥的投影a.圆锥的平行截面是与底面圆相似的圆。

b.圆锥的垂直截面是一个等腰三角形。

4.圆锥的应用a.圆锥广泛应用于日常生活中的容器,如冰淇淋蛋筒。

b.圆锥也是建筑中常用的结构形式,如锥形的尖塔、圆锥形的钟楼等。

总结:圆柱和圆锥是几何学中重要的几何体,具有许多相似的性质和计算公式。

它们在日常生活和建筑中有着广泛的应用,对于理解立体几何形状和计算体积、表面积都具有重要意义。

深入学习和理解圆柱和圆锥的知识,有助于解决实际问题和提升数学能力。

人教版六年级数学下册第三单元《圆柱和圆锥》知识点梳理

人教版六年级数学下册第三单元《圆柱和圆锥》知识点梳理

人教版六年级数学下册第三单元《圆柱和圆锥》知识点梳理一、圆柱1、圆柱的形成:圆柱是以长方形的一边为轴旋转而得到的。

圆柱也可以由长方形卷曲而得到。

(两种方式:1.以长方形的长为底面周长,宽为高;2.以长方形的宽为底面周长,长为高。

其中,第一种方式得到的圆柱体体积较大。

)2、圆柱的高是两个底面之间的距离,一个圆柱有无数条高,他们的数值是相等的3、圆柱的特征:(1)底面的特征:圆柱的底面是完全相等的两个圆。

(2)侧面的特征:圆柱的侧面是一个曲面。

(3)高的特征:圆柱有无数条高4、圆柱的切割:①横切:切面是圆,表面积增加2倍底面积,即S 增=2πr²②竖切(过直径):切面是长方形(如果h=2R,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S增=4rh5、圆柱的侧面展开图:①沿着高展开,展开图形是长方形,如果h=2πr,展开图形为正方形②不沿着高展开,展开图形是平行四边形或不规则图形③无论怎么展开都得不到梯形6、圆柱的相关计算公式:底面积:S底=πr²底面周长:C底=πd=2πr侧面积:S侧=2πrh表面积:S表=2S底+S侧=2πr²+2πrh体积:V柱=πr²h考试常见题型:①已知圆柱的底面积和高,求圆柱的侧面积,表面积,体积,底面周长②已知圆柱的底面周长和高,求圆柱的侧面积,表面积,体积,底面积③已知圆柱的底面周长和体积,求圆柱的侧面积,表面积,高,底面积④已知圆柱的底面面积和高,求圆柱的侧面积,表面积,体积⑤已知圆柱的侧面积和高,求圆柱的底面半径,表面积,体积,底面积以上几种常见题型的解题方法,通常是求出圆柱的底面半径和高,再根据圆柱的相关计算公式进行计算无盖水桶的表面积=侧面积+一个底面积油桶的表面积=侧面积+两个底面积烟囱通风管的表面积=侧面积只求侧面积:灯罩、排水管、漆柱、通风管、压路机、卫生纸中轴、薯片盒包装侧面积+一个底面积:玻璃杯、水桶、笔筒、帽子、游泳池侧面积+两个底面积:油桶、米桶、罐桶类二、圆锥1、圆柱的形成:圆锥是以直角三角形的一直角边为轴旋转而得到的圆锥也可以由扇形卷曲而得到2、圆锥的高是两个顶点与底面之间的距离,与圆柱不同,圆锥只有一条高3、圆锥的特征:(1)底面的特征:圆锥的底面一个圆。

圆柱与圆锥讲义

圆柱与圆锥讲义

第三单元圆柱与圆锥知识点一:圆柱的认识【知识点讲解】1.圆柱的特征。

圆柱是由两个底面和一个侧面围成的。

它的底面是完全相同的两个圆,侧面是一个曲面。

圆柱的侧面沿高展开后是一个长方形〔或正方形〕,这个长方形〔或正方形〕的长〔或边长〕等于圆柱的底面周长,宽〔或边长〕等于圆柱的高。

2、圆柱的高:圆柱两个底面之间的距离叫做圆柱的高。

圆柱有无数条高。

要点提示:圆柱的侧面展开图可能是长方形、正方形,也可能是其他形状的图形,但不可能得到梯形。

【稳固练习】1、填空。

〔1〕圆柱的上下两个底面都是〔〕,它们的面积〔〕。

〔2〕把圆柱的侧面沿高剪开,展开图是一个长方形,圆柱的底面周长就是它的〔〕,圆柱的高就是它的〔〕。

〔3〕当圆柱的〔〕和〔〕相等时,它的侧面沿高展开后是一个正方形。

〔4〕圆柱有〔〕条高。

2.选择正确的答案填在〔〕里〔1〕下面物体的形状,不是圆柱体的是〔〕①日光灯管②汽油桶③粉笔〔2〕把圆柱的侧面展开不能得到〔〕①长方形②正方形③平行四边形④梯形〔3〕下面〔〕图形是圆柱的展开图。

〔单位:cm〕3.圆柱的侧面展开后可以是一个形,这个长方形面积是4.圆柱展开后可以看做一个形和两个形组成。

5.想一想,连一连。

6、一个圆柱的侧面沿高展开后是一个长12.56cm,宽6.28cm的长方形,求这个圆柱的底面半径。

能力提高一个底面周长是9.42cm,高是5cm的圆柱,沿底面直径把它切割成两个半圆柱后,切割面的面积一共是多少平方厘米?知识点二:圆柱的外表积【知识点讲解】1.圆柱的侧面积=底面周长×高,用字母表示为:S侧=Ch。

2.圆往的外表积:圆柱的外表积=侧面积+2×底面积,即S表= S侧+2 S底。

注意:求用料多少,一般采用进一法取值,以保证原材料够用.【稳固练习】1.圆柱展开后可以看做一个形和两个形组成。

所以外表积 = 2个面积 + 一个面积。

2.一个圆柱的底面半径是3厘米,高是2厘米,这个圆柱的底面周长是〔〕厘米,底面积是〔〕平方厘米,侧面积是〔〕平方厘米,外表积是〔〕平方厘米3.一个圆柱的侧面展开得到一个长方形,长方形的长是9.42厘米,宽是3厘米,这个圆柱体的侧面积是〔〕平方厘米,外表积是〔〕平方厘米。

小学数学六年级下册圆柱和圆锥锥(基础知识点提高)

小学数学六年级下册圆柱和圆锥锥(基础知识点提高)

小学数学六年级下册圆柱和圆锥锥(基础知识点提高)圆柱和圆锥第一部分基础部分一、圆柱和圆锥的认识1、图形的形成圆柱是以长方形的一边为轴旋转而得到的,也可以由长方形(或正方形)卷曲而得到;圆锥是以直角三角形的一直角边为轴旋转而得到的,圆锥也可以由扇形卷曲而得到。

2、高的条数:圆柱有无数条高;圆锥只有一条高3、侧面展开图圆柱:沿着高展开,展开图形是长方形,长方形的长等于圆柱底面的周长,长方形的宽等于圆柱的高,当底面周长和高相等时(h=2πR),侧面沿高展开后是一个正方形,展开图形为正方形。

圆锥:侧面展开得到一个扇形4、图形的形成:(1)圆柱:卷曲:也可以由长方形(或正方形)卷曲而得到;旋转:圆柱是以长方形的一边为轴旋转而得到的2)圆锥:卷曲:也可以由扇形卷曲而得到;旋转:以直角三角形的一条直角边为轴旋转得到【例1】:下面()图形是圆柱的展开图。

(单位:cm)易错题】一个圆柱的侧面沿高展开是一个长12.56CM,宽6.28CM的长方形,求这个圆柱的底面半径。

例2】在下图中,以直线为轴旋转,可以得出圆柱体的是()【易错题】1、把长为5cm.宽为3cm的长方形旋转成一个圆柱,则这个圆柱的表面积是多少平方厘米?2、把两条直角边分别是5cm和3cm的直角三角形旋转成一个圆锥,这个圆锥的体积是多少立方厘米?练:】一、选择1、圆柱侧面积的大小是由()决定的。

A圆柱的底面周长B底面直径和高C圆柱的高。

2、下面的材料中,()能做成圆柱。

12cm6.28cmA.1号、2号和3号B.1号、4号和5号C.1号、2号和4号2cm2cm4cm4cm1号2号3号4号5号2、解答题一个长为8m,宽为6m的长方形扭转成一个圆柱,它的侧面积是几何平方米?2、圆柱表面积的计较方法①公式:圆柱的表面积=+S表=S侧+S底×2=2πrh + 2πr2②圆柱表面积计较公式的应用应用1:圆柱的底面半径和高,求圆柱的表面积;应用2:圆柱的底面直径和高,求圆柱的表面积;运用3:已知圆柱的底面周长和高求圆柱的表面积。

人教版六年级数学下册第三单元《圆柱与圆锥》第一讲讲义-含解析(知识精讲+典型例题+同步练习+进门考)

人教版六年级数学下册第三单元《圆柱与圆锥》第一讲讲义-含解析(知识精讲+典型例题+同步练习+进门考)

人教版六年级数学下册第三单元《圆柱与圆锥上》知识点1圆柱的表面积猫小咪和猫小喵发现了一大瓶鱼罐头,他们在密谋着如何解决掉这瓶罐头。

提问鱼罐头的包装盒属于哪种立体图形?认识圆柱总结:1.圆柱的上下两个底面面积相等。

2.周围的面(除底面外)叫做侧面。

思考:将圆柱沿侧面展开后得到什么图形?思考1.圆柱的侧面积=底面周长×高。

S侧=2πrh。

2.圆柱的表面积=圆柱的侧面积+两个底面圆的面积。

S表=2πrh+2πr²思考:一个圆柱体底面半径是1厘米,高是5厘米,那么它的侧面积和表面积分别是多少?(π取3.14)步骤:圆柱的表面积分为几个部分?三部分:两个底面积和一个侧面积。

两个底面积是多少?S底=3.14×1²×2=6.28平方厘米。

侧面积是多少?侧面积=底面周长×高。

S侧=3.14×1×2×5=31.4平方厘米。

圆柱体的表面积是多少?6.28+31.4=37.68平方厘米。

思考:如果把圆柱横着切一刀,它的表面积有什么变化?总结:切一刀表面积增加两个圆的面积。

思考:把一根长1米的圆柱分成3段,表面积增加了48平方厘米,原来圆柱的表面积是多少平方厘米?(π取3)步骤:分成三段增加几个面?(3-1)×2=4个。

圆柱的底面半径是多少厘米?48÷4=12平方厘米。

12÷3=4 4=2×2。

所以半径是2厘米。

原来圆柱的表面积是多少?1米=100厘米2×3×2×100=1200平方厘米1200+12×2=1224平方厘米思考:把一张长方形铁皮按图剪开,正好能制成一个圆柱形水桶(有盖),那么这个水桶的表面积是多少平方厘米?(π取3.14,接头处忽略不计)步骤:水桶的表面积包含哪几部分?两个底面圆的面积和侧面积。

圆柱的底面周长等于右侧小长方形的长还是宽?等于小长方形的长。

冀教版数学六年级下学期第四单元《圆柱和圆锥》单元知识点归纳与教案

冀教版数学六年级下学期第四单元《圆柱和圆锥》单元知识点归纳与教案

四圆柱和圆锥一、认识圆柱、圆柱的组成部分1.圆柱的形成:圆柱是以长方形的一条边为轴旋转得到的;也可以由长方形卷起来得到。

2.生活中常见的圆柱:3.圆柱各部分的名称及其特征:(1)圆柱的上、下两个面都是圆形的,大小相同,叫做底面。

(2)圆柱周围的面是曲面,我们叫它侧面。

(3)圆柱两底之间的距离叫做高,一个圆柱有无数条高,它们都相等。

二、圆柱的侧面以及侧面积的求法1.圆柱的侧面展开图及其形状:(1)沿着高展开,展开图是长方形,长方形的长等于圆柱的底面周长,长方形的宽等于圆柱的高;当底面周长和高相等时(h=2πr),侧面展开图为正方形。

(2)如果不沿着高展开,展开图形是平行四边形或不规则图形。

(3)无论如何展开都得不到梯形。

2.圆柱的侧面展开后各个部分与圆柱的关系:展开后长方形的长等于圆柱的底面周长,宽等于圆柱的高。

3.圆柱的侧面积=底面的周长×高,即S侧=Ch=πd×h=2πr×h。

三、圆柱的表面积的计算1.圆柱的侧面积加上两个底面的面积就是圆柱的表面积。

巧记小圆柱直挺挺,上、下底面都相同,可以看作是由长方形旋转而成的,还可以看作是由平面卷曲而成的。

易错点:1.圆柱的侧面是曲面,高有无数条,不是1条。

2.高指圆柱两底面之间的距离。

易错点:1.如果底面周长和高相等,展开图为正方形。

2.底面直径和高相等,侧面展开图不是正方形。

巧记规律沿高剪,圆柱侧面展开是长方形,侧面积是底面周长和高的积。

2.圆柱的表面积=2×底面积+侧面积,即S表=S侧+S底×2=2πr×h+2πr2。

3.圆柱的切割引起表面积的变化:(1)横切:切面是圆,表面积增加2个底面积,即S增=2πr2。

(2)竖切(过直径):切面是长方形(如果h=2r,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S增=4rh。

四、圆柱表面积的计算在实际生活中的应用在实际生活中,有时需要计算圆柱的表面积,如制作水桶时,不要上底面;制作圆柱形通风管时,不需要两个底面,这时需要计算圆柱的侧面积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)长方体的体积等于和它等底等高的圆锥体积的3倍。 ( √)
2、填空。
(1)一个圆锥的体积比与它等底等高的圆柱体积少30立 方厘米,这个圆锥体积是( 15 )立方厘米
(2)如图,如果圆柱体积是V立方分米,
那么整个图形的体积是(
a
a
a
)立方分米。
3、在一个底面半径是10厘米的圆柱形杯子中装一些水, 再把一个底面半径是3厘米的圆锥形铅锤完全放入水中, 水面上升0.5厘米,求铅锤的高
圆柱的侧面积和表面积的计算
侧面积
表面积
已知底面 半径r、高h
已知底面 直径d、高h
已知底面 周长c、高h
S=2Πrh 1:
分步解。先求侧面积
和底面积,再把侧面
S=Πdh
积和两个底面积加起 来
2:
S=C h s=2Πr( h+r)
底面积


长方体体积=底面积×高 圆柱体积=底面积×高
V=sh
想一想、填一填:
4、下图中的“博士帽”是用黑色卡纸 做成的,上面是边长30厘米的正方形, 下面是底面直径16厘米、高10厘米的无 底无盖的圆柱。制作20顶这样的“博士 帽”,至少需要多少平方分米黑色卡纸?
博士帽由圆柱侧面积+ 正方形面积组成
二、关于圆柱、圆锥的典型实际问题: 4.熔铸问题:解决把一种几何体熔铸成另一种几何 体的关键就是抓住它们的体积不变(体积相等)
在一个底面直径为42厘米的圆柱形水桶中,放入 一个完全浸在水中,底面直径是20厘米的圆锥形 金属零件,水面上升了2厘米,这个圆锥的体积 是多少?
2厘米
20厘米
8.把一个圆柱体削成一个最大的圆锥体问题: 圆锥与圆柱等底等高,圆锥的体积是圆柱
的1 ,削去部分的体积是圆锥体积的2倍
3
(占圆柱体积的 2 )。 3
1、一堆圆锥形小麦,底面周长是15.7米, 高是3米。如果每立方米小麦重700千克, 这堆小麦重多少千克?
2.一个空心石圆柱如右图。 (1)石柱的实际体积是多少立方分米?
(2)这种石柱每立方分米重3千克。这个石柱 的重量大约是多少吨?
7.物体没入容器装的水中,求放入物体的体积问题
例如:把一个物体没入圆柱形的容器的水中,水 面上升了2厘米(或把物体从水中取出后水面下 降了2厘米),用圆柱的底面积×水面上升(或 下降)的高度(2厘米)
S侧=c h S表= S侧+2S底
1
V=S h
V= 3 S h
圆锥的体积等于与它等底等高的圆柱体积的1 。
3
1.判断。
(1)底面是两个完全相等的圆,侧面是一个曲面的物体一
定是圆柱体。
( ×)
(2)用一个直径是10cm的圆和一个弧长为10cm的扇形正好
可以围成一个圆锥。
( ×)
(3)圆柱和圆锥都有无数条高。
9、 这个长方形和直角三角形如果绕着另一条 边旋转,还能得到圆柱或圆锥吗?如果能,求出 圆柱的表面积和体积,并求出圆锥的体积。
3厘米
6厘米
6厘米
3厘米
返回
用下面这个长方形的纸,卷成一个圆柱,(接头 处不计),分别配上下底面后,有几种卷法,哪一 种卷法的表面积大,哪一种卷法体积大?
18.84厘米
25.12厘米
等高等积:比底 圆柱底是圆锥底的( ),圆锥底是圆柱底的 ( );圆柱底比圆锥底( ),圆锥底比圆柱 底( )。
思 考: 练习3
1、一个圆锥与一个圆柱等底等高, 已知圆锥的体积是 18 立方米, 圆柱的体积是( 54 立方米 )。
2、一个圆锥与一个圆柱等底等体积, 已知圆柱的高是 12 厘米, 圆锥的 高是( 36 厘米)。
1、将一个棱长为6分米的正方体钢材 熔铸成底面半径为3分米的圆柱体,这 个圆柱有多长?
• 2.一个圆柱形零件,底面积是15平方分米,高6 分米。把它铸成一个最大的圆锥形零件,这个 圆锥的体积是多少立方分米?
• (1)如果铸成零件的底面积是15平方分米, 这个零件的高是多少分米?
• (2)如果铸成零件的高是6分米,这个圆锥形 零件的底面积是多少平方分米?
注意:圆的半径、直径和周长中,一种量扩 大(或缩小)n倍,另外两种量也扩大(或缩 小)n倍,但面积要扩大(或缩小)n2 倍。
1
5.有关圆锥的体积计算时,1别忘了3 ,而有 关圆柱的体积时就别乱乘 3 。还要事先看单 位是否统一,一定要记住协调单位。
6.圆柱可以看成是把一个长方形绕着它的一 条边旋转一周得到的立体图形;而圆锥可 以看成是把一个直角三角形绕着一条直角 边旋转一周得到的立体图形。
3、一个圆锥与一个圆柱等高等体积, 已知圆柱的底面积是 314 平方米, 圆锥的底面积是( 942 平方米)。
7、下图中瓶底的面积与杯口的面积相等,将 瓶子中的液体全部倒入杯子中,最多能够倒满 ( )杯。
8.下图中的圆柱形杯子与圆锥形杯子的底 面积相等,把圆锥形杯子装满水后倒进圆柱 形杯子,至少要倒( )杯才能把圆柱形杯 子装满。
圆柱和它等底等高的圆锥体积的关系:
圆柱
削去部分
圆柱和圆 锥体积相 差部分
与圆柱等 底等高的 圆锥
3
2
1

=
1
2/3
1/3
四、注意事项: (一)关于圆锥与圆柱:
等底等高:比体积 圆柱体积是圆锥体积的( ),圆锥体积是圆柱 体积的( );圆柱体积比圆锥体积( ),圆 锥体积比圆锥体积( )。
等底等积:比高 圆柱高是圆锥高的( ),圆锥高是圆柱高的 ( );圆柱高比圆锥高( ),圆锥高比圆柱 高( )。
3.它们的表面积、体积相等吗?
18.84厘米 12.56 厘米
把一张长方形纸围成一个圆柱,侧面积一定相等。
二、把一个正方体削成一个最大的圆柱,再 把这个圆柱削成一个最大的圆锥,它们之间 的体积关系是:
V正 :V柱 :V锥
=12:3π:π
一、关于圆柱、圆锥的典型实际问题 1.求圆柱形通风管(如圆柱形烟囱)所需要的材料 或求圆柱体商品的侧面标签的面积就是求圆柱的侧 面积
4.圆柱(或圆锥)体积扩大或缩小问题: (1)若底面积不变,高扩大(或缩小)n倍,
则体积也扩大(或缩小)n倍; (2)若高不变,底面积扩大(或缩小)n倍,
则体积也扩大(或缩小)n倍; (3)若底面积扩大(或缩小)n倍,高缩小
(或扩大)n倍,则体积不变; (4)若高不变,底面半径(或直径或周长)扩
大(或缩小)n倍,则底面积就扩大(或缩小) n2 倍,那么,体积就扩大(或缩小)n2倍。
π ( 6.28)2 3 3π 9.42(cm3 ) 2Π
2、一个直角三角形三条边的长度分别是 3cm、 4cm 、5cm,以它的一条直角边所在直线为轴 旋转一周所形成的圆锥体积最大是多少?
π 42 3 题:把一根圆柱形木料锯成n 段,需要锯(n-1)次,每锯一次增加2个 底面,因此,这n段木料的表面积之和就比 原来的表面积增加了2×(n-1)×底面积。
h
( ×)
2、选择。
圆柱的侧面展开不可能是( B )。
A、长方形 B 梯形、 C 、正方形 D、平行四边形
3、如图,
(1)当( h=d)时,沿底面直径切开 可得到一个正方形;
(2)当( 形。
h=πd
)时,侧面沿一 条高展开是一个正方
1、判断。
(1)圆锥的体积比与它等底等高的圆柱体积小 。 ( √)
1.如下图,把圆柱切开拼成一个长方体, 已知长方体的长是3.14米,高是2米。 ①这个圆柱体的体积是多少? ②这个圆柱的表面积增加了多少?
2.如上图,一个高3厘米的圆柱体转化成长 方体后表面积增加了12平方厘米,这个 圆柱的体积是多少?
3.如图,把一个底面直径和高都是2dm的圆柱, 切拼成一个近似的长方体,这个长方体底面的长 约是(3.14)dm,宽约是( 1)dm,底面积约是 ( 3.14)dm2,体积约是( 6.28)dm3。
襄州区张家集镇宋营小学 邵秀良
将下面图形分类,说说每类图 形的名称和特征。
底面
侧侧 面面高
底底 面面
顶点



底面
高 底面周长
侧面
底面
项目 圆
知 识要点

圆锥
底 面 两个大小相同的圆
一个圆
侧面 高 公
式 联系
一个曲面, 沿一条高展开是一个 长方形或正方形。
一个曲面; 展开是一个扇形。
两底面之间的距离; 从顶点到底面圆心的距离; 有无数条,都相等。 只有一条。
圆柱和圆锥的体积计算
已知底面 半径r、高h
圆柱体积
圆锥体积
V=Πr2 h
v=
1 3
Πr2 h
已知底面积s、 V=sh
高h
v=
1 3
sh
一、一个长方形(长>宽): 1、以长为底面周长,宽为高围成的圆柱的体积 较大。 2、以长为底面半径,宽为轴旋转而成的圆柱的 体积较大。
2.一个长方形的长是8厘米,宽是5厘米,分别以长 和宽为轴旋转(如图),形成了两个圆柱,比较这两 个圆柱的表面积和体积,哪一个大?大多少?
一台压路机的滚筒宽2米,直径为0.2米。如 果每分钟它滚动10周,前进的路程是多少米? 5分钟压过的路面的面积是多少平方米?
一、关于圆柱、圆锥的典型实际问题: 3.做无盖的圆柱形水桶所需要的材料面积或给圆柱 形水池的内壁和底面铺瓷砖(涂水泥)的面积, 其实就是求圆柱的侧面积加上一个底面的面积。
一个没有盖的圆柱形铁皮水桶,高是24cm, 底面直径是20cm。做这个水桶要用多少平方 厘米?(得数保留整十平方厘米)
4.如图,把底面周长18.84 cm,高10 cm的圆柱切成 若干等份,拼成一个近似的长方体。这个长方体的 底面积是( 28.26 )cm2,表面积是(304.92 )cm2, 体积是( 282.6 )cm3。
相关文档
最新文档