最新离散数学第十五章格与布尔代数简
离散数学中的代数系统和布尔代数
离散数学是数学的一个重要分支,研究的是离散结构和离散对象的性质。
代数系统和布尔代数是离散数学中的两个重要概念。
代数系统是研究集合上的运算的一种数学结构。
它由集合和一组运算所组成,其中运算可以是两个对象相互运算得到一个新的对象,也可以是一个对象自身经过某种运算得到一个新的对象。
代数系统包括了很多种类,例如群、环、域等等。
其中,布尔代数是代数系统的一种重要类型。
布尔代数是一种二元代数系统,它研究的是关于真值和逻辑运算的代数。
在布尔代数中,我们考虑的对象是命题,而运算包括了与、或、非等等。
布尔代数主要用于逻辑运算和电路设计中。
布尔代数中的命题可以用真和假来表示,它们分别对应于数学中的1和0。
与、或、非等运算在布尔代数中也有对应的符号,分别是∧、∨、¬。
这些符号在逻辑运算中扮演重要角色。
布尔代数的运算有很多有趣的性质。
比如,与运算满足交换律、结合律、分配律等等;或运算满足交换律、结合律、分配律等等;非运算满足逆运算和恒等律。
这些性质使得布尔代数具有很强的推理和运算能力。
布尔代数在逻辑运算中有着广泛的应用。
在计算机科学中,布尔代数被用于电路设计和逻辑推理;在人工智能领域,布尔代数被用于知识表示和推理;在运筹学中,布尔代数被用于约束求解和优化问题。
布尔代数的应用广泛而深入,是离散数学中的重要工具之一。
总结起来,离散数学中的代数系统和布尔代数是两个重要的概念。
代数系统研究的是集合上的运算,而布尔代数研究的是关于真值和逻辑运算的代数。
布尔代数具有许多有趣的性质和广泛的应用,是离散数学中的一个重要工具。
格与布尔代数课件2
= {y | y≤x1} ∪ {y | y≤x2} = f(x1) ∨2 f(x2)
存在一个从A1到A2的映射f,使得对 x1,x2 A, 有f(x1∨1x2)=f(x1)∨2f(x2),f(x1∧1x2)=f(x1)∧2f(x2) ∴f 是 A1 到 A2 的格同态。
吸收律:a∨(a∧b) = a、a∧(a∨b) = a
证明:幂等律 ∵ a≤a,∴ a是a的上界,而a∨a是a的最小上界, ∴a∨a≤a ,又 ∵ a≤a ∨a,
由反对称性得:a∨a = a 由对偶原理得,a∧a = a
第15页,共28页。
证明:吸收律 ∵ a ≤a a ∧b ≤a ∴ a∨(a ∧ b)≤a∨a, a∨(a ∧ b)≤a
解:< I+ , D>是格 ∵整除关系是偏序关系,对a,bI, a、b的最小上界等于a、b的最小公倍数, a、b的最大上界等于a、b的最大公约数。
第3页,共28页。
< P(S) , > 是格
∵子集关系是偏序关系,对a,b P(S),
a、b的最小上界等于a∪b,
a、b的最大上界等于a∩b。
<<=S{S<n61, ,D,1D>>>,是<2格,2,>,<偏3,序3>关,<系1,6的>,哈<1斯,2>图,<如1,下3>1:,2<2,6>,<3,6>}
{a,b,c}
a
{a,b} {a,c} {b,c}
离散数学课件13.4布尔代数
有限布尔代数的表示定理
定理13.11 若B是有限布尔代数,则 B含有2n个元(n∈N), 并且B与<P(S),∩,∪,~,,S>同构, 其中S是一个n元集合.
举例
格S12,gcd.lcm是布尔代数吗? 解: S12={1,2,3,4,6,12}的元素个数6, 不是2的整数幂, 故不是布尔代数. 不难看出2没有补元,因为 2∨x=lcm(2,x)=12当且仅当 x=12, 而12的补元是1而不是2.
例
集合代数<P(S),∩,∪,~,,S>是 布尔代数.
开关代数<{0,1},∧,∨,¬,0,1>是 布尔代数,其中∧为与运算,∨为或 运算, ¬为非运算.
布尔代数有以下性质.
定埋13.10 设<B,∧,∨,',0,1>是布尔代数, 则有:
a∈B,(a’)’=a(双重否定律), a,b∈B, (a∨b)'=a'∧b'
布尔格、布尔代数
定义13.12 如果格<L,∧,∨,0,1>是有 补分配格,则称L为布尔格,也叫做布 尔代数. 由于布尔代数L中的每个元都有唯一 的补元,求补运算也可以看成是L中的 一元运算. 因此,布尔代数L可记为<L,∧,∨,',0,1>, 其中'表示求补运算.
布尔代数的等价定义
定义13.13(公理化定义): 有两个二元运算的代 数B,*, 称为布尔代数,如果对任意元素 a,b,cB,成立
•此类布尔表达式可用带3个基本元件的电路来实 现.3个基本元件是:
①反相器
x
x’
②与门
x xy
y
③或门
x xy
y
实例之一
•实例1: 三人委员会表决某个提案,如有两张赞 成票即获通过,实现上述过程的表决机器的控制 电路如下图所示:
离散数学格与布尔代数
§7.1 格
例 < P(S) , >是格 表示为<P(S), , * > 又可表示为< P(S) ,∪,∩>
例 <Z+,≤>,或 <Z+,|> <Z+, , * > <Z+, LCM,GCD>
§7.2 格——代数系统
格〈L,≤〉中自然存在两个运算 和 * ,从而 派生出一个代数系统〈L,,*〉
6
<S15,|>,
2
2019/10/5
30
10
15
3
5
1
§7.1 格
例 判断图中的哈斯图表示的偏序集是否构成格,说明为什么。
d c
b a
(a)
e d
c b
a (b)
f
d
e
d
e
c
b
c
a (c)
a
b
(d)
e
c
d
a
b
(e)
2019/10/5
§7.1 格
例 设Z+为正整数集合,对于a,b Z+,关系“≤”定义为: a≤b当 且仅当a整除b。则偏序集<Z+,≤>构成格,
并、交 运算的性质
定理1 设〈L,≤〉是一个格,并运算与交运算 * 满足 如下性质:
L1 a a = a
a*a=a
(幂等律)
L2 a b = b a a * b = b * a (交换律)
L3 (a b) c = a (b c)
《离散数学》课程教学大纲
《离散数学》课程教学大纲课程编号:06082002 适用专业:计算机科学与技术学时数:60学分数:4 开课学期:第 2 学期先修课程:线性代数、高级语言程序设计(C语言)执笔者:傅彦、顾小丰、刘启和、王庆先、王丽杰编写日期:2011.03 审核人(教学副院长):周世杰一、课程性质和目标(用小四号黑体字)授课对象:本科生课程类别:学科基础课教学目标(本课程对实现培养目标的作用;学生通过学习该课程后,在思想、知识、能力和素质等方面应达到的目标):离散数学是一门理论兼实际应用的综合性学科,即具有严备的理论基础,又具备应用科学的特点。
它是计算机科学和其他应用科学的基础理论课。
在课堂教学中,不仅要求学生掌握离散数学具体内容,更重要的是强调离散数学课程的思想,特别是离散数学中逻辑的概念可以说是贯穿到整个教学中;通过课后实验,学生不仅能够加深对离散数学知识的进一步理解,而且还可以从实验中提高自己的实践动手能力和编程能力,最关键的是提高学生学习离散数学的兴趣和了解离散数学与其他课程之间的关系。
通过本课程学习,培养和训练学生的抽象思维能力和严格的逻辑推理的能力,使学生了解离散数学在计算机学科和日常生活中的作用,为学生今后处理离散信息以及用计算机处理大量的日常事物和科研项目,从事计算机科学和应用打下坚实基础,特别是对那些从事计算机科学与理论研究的高层次计算机人员来说,更是一门必不可少的基础理论工具。
二、课程内容安排和要求(用小四号黑体字)(一)教学内容、要求及教学方法(用五号宋体加粗)第1章集合论 2学时掌握:集合的基本概念(集合的概念及表示、集合与元素的关系、集合与集合的关系、几个特殊的集合)、集合的运算。
理解:集合的应用。
了解:粗糙集简介(粗糙集合研究现状、知识与知识库、粗糙集的基本概念、成员关系,粗相等和粗包含)(本部分自学)。
教学方法:问题+实例的讲授式教学方法第2章计数问题 2学时理解:基本原理(乘法原理、加法原理)、排列与组合(排列问题、组合问题)、容斥原理与鸽笼原理了解:递归关系、离散概率简介、计数问题的应用。
离散数学-格和布尔代数
的次序图如下
-1 的次序图如下
6 2 1 3 2
1 3 6
若 < L; > 是一个偏序集,则对于任意元素 l1, l2, l3 L,有以 下六个关系式成立: l1 l1 若 l1 l2,l2 l1,则 l1 = l2 若 l1 l2,l2 l3,则 l1 l3 l1 l1 若 l1 l2,l2 l1,则 l1 = l2 (7-1) (7-2) (7-3) (7-1) (7-2)
60以上说明与格一样布尔代数也是一个代数系统该代数系统可取交换律分配律同一律和互补律作为公二元运算是一元运算若这些运算满足交换律分配律同一律和互补律则称称作集合代数它是一个布尔代数
第二部分 抽象代数
0
第七章
格和布尔代数
格是 Birkhoff (1884 - 1944) 在 20 世纪 30 年代提出的,格的提出 以子集为背景。 历史上最初出现的格是英国数学家 George Boole 于 1854 年提出 的,是他在研究命题演算中发现的,通常称为布尔格或布尔代 数。 格和布尔代数的理论成为计算机硬件设计和通讯系统设计中的 重要工具。格论是计算机语言的指称语义的理论基础。格是一 种特殊的偏序集,也可以看作是有两个二元运算的代数系统, 布尔代数是一种特殊的格。在保密学、开关理论、计算机理论 和逻辑设计以及其他一些科学和工程领域中,都直接应用了格 与布尔代数。 1
7.2 格及其性质
一、格的定义
定义7-5 设 < L; > 是一个偏序集,如果 L 中任意两个元素都 存在着最大下界和最小上界,则称 < L; > 是格。 由于每对元素的最大下界和最小上界唯一,故引入记号: l1 l2 = glb(l1, l2),l1 l2 = lub(l1, l2), 其中 和 均可看作是集合 L 上的二元运算,分别称为交和并。 注:若 < L; > 是一个格,则意味着 < L; > 也是一个形为 < L; , > 的代数系统,其中 和 是 L 上的两个二元运算, 对于任意 l1, l2 L,l1 l2 表示在偏序 “ ” 意义下,l1 和 l2 的最小上界,l1 l2 表示 l1 和 l2 的最大下界。
离散数学格与布尔代数
6
<S15,|>,
2
2019/10/12
30
10
15
3
5
1
§7.1 格
例 判断图中的哈斯图表示的偏序集是否构成格,说明为什么。
d c
b a
(a)
e d
c b
a (b)
f
d
e
d
e
c
b
c
a (c)
a
b
(d)
e
c
d
a
b
(e)
2019/10/12
§7.1 格
例 设Z+为正整数集合,对于a,b Z+,关系“≤”定义为: a≤b当 且仅当a整除b。则偏序集<Z+,≤>构成格,
Input A B Cin
00 0 00 1 01 0 01 1 10 0 10 1 11 0 11 1
Output S Cout
00 10 10 01 10 01 01 11
S A BCin A BCin A BCin A BCin
Cout A B Cin A B Cin A B Cin A B Cin
§7.2 格——代数系统
证〈L,≤〉为要求的格
a,b∈L,(a * b)* a = a*(a * b)=(a * a)*b=a*b,
故a*b≤a,
L3
L1
同理a*b≤b,因此a*b是{a,b}的下界,
又设c是{a,b}的任一下界,即c≤a,c≤b,则a * c=c,b * c=c,于是(a * b)* c=a *(b * c)=a * c=c,即c≤a * b, 所以a * b是{a,b}的最大下界,即a * b=inf{a,b},
离散数学近世代数代数结构
重点:
代数结构的判定与构造,代数结构关系:同态、同构 难点:
同态基本定理
第六页,共39页
代数运算、代数结构
S是非空集合,映射 f: SnS称为S上的n元运算。 写法: f(a,b)=c可改写为: a f b=c 例如,在集合R上,对任意两个数所进行的普通加法
什么是代数结构
由集合以及集合上的运算组成的数学结构 称为代数结构(也称为代数系统). 代数结构是抽象代数的一个主要内容. 研究的中心问题:
集合上的抽象运算及运算的性质和结构。
第三页,共39页
关于代数结构
研究意义:研究抽象代数结构的基本特征和基本结构,
不仅能深化代数结构的理论研究,也能扩展其应用领 域。
∴★是满足结合律的.
第十二页,共39页
交换律
设有代数系统(S,*),如果对于a,b S,有a*b =
b*a,则称此代数系统的运算“ * ”满足交换律。
例:在整合集合 I 上定义运算 :
对任何
其中的 +a ,,b 分I别,a 是通b 常a 数b 的 ( 加a 法 b 和)乘法。 可以满足交换律吗?第十Leabharlann ,共39页代数系统的基本概念
如果两个代数系统有相同个数的运算符,每个相对应的 运算符的元数是相同的,则称这两个代数系统是同类
型的。 定义:两个代数系统(U,)与(U,*) ,如果满足下
列条件: ① U U; ② 若a U,bU,则a*b =a b;则称(U,*)是
(U,)的子系统或子代数 。
第二十三页,共39页
定理:设代数系统(U,),运算“ ”满足结合律,且 存在幺元 e,那么对任意固定的 xU,若 x 有逆元,则
离散数学chap6 格与布尔代数
a≥b
a≤c
a≥c.
b≤c
b≥c
(4) a≤a∨b a∧b≤a
b≤a∨b a∧b≤b
(5) a≤c
a≥c
a∨b≤c
a∧b≥c (P234 例1)
b≤c
b≥c
(6) a≤b c≤d
a≥b a∨c≤b∨d
a∧c≤b∧d c≥d
a∧c≥b∧d a∨c≥b∨d
(7)保序性 b≤c a∨b≤a∨c a∧b≤a∧c
两个格同构时,其哈斯图是相同的,仅是标记不同。
2)同态的性质
定理(保序性)设f是格‹A1, ≤1›到‹A2, ≤2›的格同态,则 对x,yA,若x ≤1 y,则必有f(x) ≤2 f(y)
证:∵x≤1y,∴x ∧1 y = x (格性质) f(x∧1 y)=f(x),∴f(x)∧2 f(y)=f(x) f(x) ≤2 f(y) 格同态必保序,但反之未必,保序的映射未必同态 。 定理:设‹A1, ≤ 1›和‹A2, ≤ 2›是格,f是A1到A2的双射, 则f是‹A1, ≤ 1›到‹A2, ≤ 2›的格同构
第一式显然成立
a≤a
a∧b≤a
∴a∨(a∧b) ≤a
∴a=a∨(a∧b)
5.格的等价原理 〈A,≤〉格. 先有引理. Thm6-1.1 (1)引理:〈A,∨,∧〉代数系统,若∨.∧满足吸收性,则
∨.∧满足幂等性。 证:a,b∈A. a∨(a∧b)=a a∧(a∨b)=a.
b用a∨b代替 (∵两式中b是相互独立的。) ∴a∨(a∧(a∨b))=a.
即 a∨a=a.
定理(格的等价定理)〈A,∨,∧〉代数系统,∨.∧满足交换性, 结合性,吸收性,则A上存在偏序关系≤,使〈A,≤〉是一个格。 注: 有了格可引出代数系统〈A,∨,∧〉,反之,
离散数学知识点
说明:定义:红色表示。
定理性质:橙色表示。
公式:蓝色表示。
算法:绿色表示页码:灰色表示数理逻辑:1.命题公式:命题,联结词(,,,,),合式公式,子公式2.公式的真值:赋值,求值函数,真值表,等值式,重言式,矛盾式3.范式:析取范式,极小项,主析取范式,合取范式,极大项,主合取范式4.联结词的完备集:真值函数,异或,条件否定,与非,或非,联结词完备集5.推理理论:重言蕴含式,有效结论,P规则,T规则,CP规则,推理6.谓词与量词:谓词,个体词,论域,全称量词,存在量词7.项与公式:项,原子公式,合式公式,自由变元,约束变元,辖域,换名,代入8.公式语义:解释,赋值,有效的,可满足的,不可满足的9.前束范式:前束范式10.推理理论:逻辑蕴含式,有效结论,-规则(US),+规则(UG),-规则(ES),+规则(EG), 推理集合论:1.集合: 集合, 外延性原理, , , , 空集, 全集, 幂集, 文氏图, 交, 并, 差, 补,对称差2.关系: 序偶, 笛卡尔积, 关系, domR, ranR, 关系图, 空关系, 全域关系, 恒等关系3.关系性质与闭包:自反的, 反自反的, 对称的, 反对称的, 传递的,自反闭包r(R),对称闭包s(R), 传递闭包t(R)4.等价关系: 等价关系, 等价类, 商集, 划分5.偏序关系:偏序, 哈斯图, 全序(线序), 极大元/极小元, 最大元/最小元, 上界/下界6.函数: 函数, 常函数, 恒等函数, 满射,入射,双射,反函数, 复合函数7.集合基数:基数, 等势, 有限集/无限集, 可数集, 不可数集代数结构:1.运算及其性质:运算,封闭的,可交换的,可结合的,可分配的,吸收律, 幂等的,幺元,零元,逆元2.代数系统:代数系统,子代数,积代数,同态,同构。
3.群与子群:半群,子半群,元素的幂,独异点,群,群的阶数,子群,平凡子群,陪集,拉格朗日(Lagrange)定理4.阿贝尔群和循环群:阿贝尔群(交换群),循环群,生成元5.环与域:环,交换环,含幺环,整环,域6.格与布尔代数:格,对偶原理,子格,分配格,有界格,有补格,布尔代数,有限布尔代数的表示定理图论:1.图的基本概念:无向图、有向图、关联与相邻、简单图、完全图、正则图、子图、补图,握手定理,图的同构2.图的连通性:通路,回路,简单通路,简单回路(迹)初级通路(路径),初级回路(圈),点连通,连通图,点割集,割点,边割集,割边,点连通度,边连通度,弱连通图,单向连通图,强连通图,二部图(二分图) 3. 图的矩阵表示:关联矩阵,邻接矩阵,可达矩阵4. 欧拉图与哈密顿图:欧拉通路、欧拉回路、欧拉图、半欧拉图,哈密顿通路、哈密顿回路、哈密顿图、半哈密顿图5. 无向树与根树:无向树,生成树,最小生成树,Kruskal ,根树,m 叉树,最优二叉树,Huffman 算法6. 平面图:平面图,面,欧拉公式,Kuratoski 定理数理逻辑:命题:具有确定真值的陈述句。
第15章 格与布尔代数PPT课件
2020/11/1413Fra bibliotek对偶原理
对于格<L, ≤ >的任何命题,将保联运算与保交运 算分别换成对偶格<L, ≥>的保交运算和保联运算, 将命题中的“ ≤ ”换成对偶格<L, ≥>中的 “≥”,得到的一个关于对偶格<L, ≥>中的命题, 称这个命题为对偶命题。
容易证明,关于格<L, ≤ >的任何真命题,其对应 的对偶命题在对偶格<L, ≥>中也是真命题,把这 个原理称为对偶原理。
a ≤ b ac ≤ bc
(13)分配不等式:
a (b*c) ≤ (ab) * (ac);
a* (bc)≥(a*b) (a*c)
2020(/111/144 )模不等式:
17
定义15.2.3
设代数系统<L, , >是一个格,S L,若S满足: (1)S≠Φ; (2)运算和对子集S都是封闭的; 则称<S, , >是<L, , >的子格,简称S是L的 子格。
(j)中2元素子集{e, f}不存在最小上界,
(k)中2元素子集{a, b}不存在最大下界,
(l)中2元素子集{d, e}不存在最大下界。
2020/11/14
8
定义15.2.2
设<L, ∧, ∨>是具有两个二元运算的代数系统, 如果运算∧和∨满足交换律、结合律和吸收律,则 称<L, ∧, ∨>为格。 把由代数系统定义的格称为代数格。
第15章 格与布尔代数
1 偏序格与代数格
2 集合格的的表性示质方法 3 子格与格同态
4
布尔代数
2020/11/14
1
偏序格
比较右边两个哈 斯图的不同?
离散数学布尔代数与逻辑
离散数学布尔代数与逻辑离散数学是数学的一个分支,研究离散的、离散的结构和离散的现象。
而布尔代数是离散数学的重要组成部分,是代数学中关于二元关系的理论。
同时,与布尔代数密切相关的是逻辑学,研究命题的真值、论证的正确性以及推理的方法。
一、布尔代数基础布尔代数是一种逻辑代数,它使用逻辑运算符号和变量,描述和分析命题逻辑关系。
在布尔代数中,变量只有两个取值,即真(用1表示)和假(用0表示)。
布尔代数的基本运算包括逻辑与、逻辑或和逻辑非。
逻辑与表示当且仅当两个变量都为真时,结果为真;逻辑或表示当至少有一个变量为真时,结果为真;逻辑非表示当某个变量为真时,结果为假,反之亦然。
在布尔代数中,可以使用真值表来描述和分析布尔函数的取值情况。
布尔函数是指由布尔代数运算符组成的表达式,它接受一个或多个输入变量,并产生一个输出变量。
布尔函数在逻辑电路设计、计算机科学、编程等领域中有广泛的应用。
通过真值表分析布尔函数的取值规律,可以优化逻辑电路的设计和布尔函数的运算。
二、逻辑学与命题逻辑逻辑学是研究推理和论证的科学,其中命题逻辑是逻辑学的一个重要分支。
命题逻辑的基本概念是命题,它是陈述句,可以被判断为真或假。
命题逻辑使用逻辑连接词和命题变量来组成复合命题,并通过逻辑运算符来描述复合命题之间的关系。
逻辑连接词包括逻辑与、逻辑或、逻辑非、蕴涵和等价。
逻辑与表示两个命题同时为真时,复合命题为真;逻辑或表示两个命题至少有一个为真时,复合命题为真;逻辑非表示命题的否定,即真变为假,假变为真;蕴涵表示如果第一个命题为真,则第二个命题为真,否则为假;等价表示两个命题具有相同的真值。
逻辑学通过推理规则和推理方法来分析和判断复合命题的真假。
其中包括代入规则、假言推理、拒取否定、双重否定等推理规则。
通过应用这些推理规则,可以推导出逻辑上正确的结论,并解决实际问题中的逻辑推理和决策问题。
三、离散数学中的应用离散数学是计算机科学和信息技术的基础学科,广泛应用于计算机算法、数据结构、数据库、图论等领域。
布尔代数
任何有限布尔代数的基数为2n, n是自然数。
设B是有限代数系统,A是B中所有原子的集合。 则:B≅P(A), ∴|B|=|P(A)|=2|A|
等势的布尔代数系统均同构
设B1和B2是有限布尔代数,且|B1|=|B2|;A1,A2分别是相应 的原子的集合。由同构关系的传递性,只需证明: P(A1)≅P(A2)。
则称ϕ是B1到B2的同态映射。(若ϕ是双射,则是同构)
其实,上述3个等式不是独立的。
(2)+(3)⇒(1): ϕ(a∨b)=ϕ(((a∨b)')')= -ϕ((a∨b)')= -ϕ(a'∧ b')= -(ϕ(a')⋂ϕ(b'))= -(-ϕ(a)⋂-ϕ(b))=ϕ(a)⋃ϕ(b) 同理:(1)+(3)⇒(2)
有限布尔代数的表示定理的证明
ϕ: B → P(A), ∀x∈B, ϕ(x)=T(x)是同态映射。
ϕ(x∧y) = T(x∧y) = {b|b∈A, b≼x∧y} = {b|(b∈A, b≼x)且 (b∈A, b≼y)} = {b|b∈A,b≼x}⋂{b|b∈A,b≼y} = T(x)⋂T(y) = ϕ(x)⋂ϕ(y) 令x=a1 ∨ a2 ∨ … ∨ an , y=b1 ∨ b2 ∨ … ∨ bm 。 则x ∨ y= a1 ∨ … ∨ an ∨ b1 ∨ … ∨ bm , 显然:ϕ(x∨y) = T(x∨y) = T(x)⋃T(y) = ϕ(x) ⋃ ϕ(y) 设x'是x在B中的补元。注意: ϕ(x)⋃ϕ(x')=ϕ(x ∨ x')=ϕ(1)=A 且 ϕ(x)⋂ϕ(x')=ϕ(x ∧ x')=ϕ(0)=∅ ∴ϕ(x') = ∼ϕ(x)
离散数学 格与布尔代数共89页
66、节制使快乐增加并使享受加强。 ——德 谟克利 特 67、今天应做的事没有做,明天再早也 是耽误 了。——裴斯 泰洛齐 68、决定一个人的一生,以及整个命运 的,只 是一瞬 之间。 ——歌 德 69、懒人无法享受休息之乐。——拉布 克 70、浪费时间是一桩大罪过。——卢梭
离散数学 格与布尔代数
21、没有人陪你走一辈子,所以你要 适应孤 独,没 有人会 帮你一 辈子, 所以你 要奋斗 一生。 22、当眼泪流尽的时候,留下的应该 是坚强 。 23、要改变命运,首先改变自己。
24、勇气很有理由被当作人类德性之 首,因 为这种 德性保 证了所 有其余 的德性 。--温 斯顿. 丘吉尔 。 25、梯子的梯阶从来不是用来搁脚的 ,它只 是让人 们的脚 放上一 段时间 ,以便 让别一 只脚能 够再往 上登。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
集中每对元素都有最小上界和最大下界。 b)所示的哈斯图的偏序集不是格,例如元素b和c没有最
小上界。只要注意到d,e,f中每一个都是上界,但这3个元素 的任何一个关于这个偏序集中的序都不小于其它两个。
格的对偶性原理是成立的:
令<L,≤>是偏序集,且<L,≥>是其对偶的偏序 集。若<L,≤>是格,则<L,≥>也是格,反之亦然。 这是因为,对于L中任意a和b,<L,≤>中LUB{a,b} 等同于<L,≥>中GLB {a,b},<L,≤>中GLB{a,b}等 同于<L,≥>中的LUB{a,b}。若L是有限集,这些性 质易从偏序集及其对偶的哈斯图得到验证。
(结合律)
④ a(ab)=a, a(ab)=a (吸收律)
定理15.1.3 设<L,≤>是格,对任意a,b,cL, 有
①若a≤b和c≤d,则ac≤bd,ac≤bd。 ②若a≤b,则ac≤bc,ac≤bc。 ③c≤a和c≤b c≤ab ④a≤c和b≤c ab≤c
定理15.1.4 设<L,≤>是格,对任意的a,b,cL, 有
注意:并非每个偏序集都是格。如, 设A={2,3,6,8}, “整除”关系R={‹2,2›, ‹2,6›, ‹2,8›, ‹3,3›, ‹3,6›, ‹6,6›, ‹8,8›}是A上的一 个偏序关系,则<A,R>是一个偏序集,但不 是格。因为23不存在,68也不存在。
例 确定下图中每个哈斯图表示的偏序集是 不是格。
(2)如果x∈X是Y的上界且对每一个Y的上 界x'均有x≤x',则称x是Y的最小上界(或上确界 LUB,least upper bound);如果x∈X是Y的下 界且对每一个Y的下界x'均有x'≤x,则称x是Y的最 大下界(或下确界GLB,greatest lower bound )
例:找出下图所示哈斯图的偏序集的子集 {a,b,c},{j,h}和{a,c,d f}的下界和上界。
a(bc)≤(ab)(ac) (ab)(ac)≤a(bc) 通常称上二式为格中分配不等式。
– 3.特殊的格
定义15.1.2 设<L,≤>是格,若L中有最大元和 最小元,则称<L,≤>为有界格。由于最大元存在必 唯一,故一般把格中最大元记为1,最小元记为0。
由定义可知,对任意aL,有 ① 0≤a≤1 ② a0=0, a0=a ③ a1=a, a1=1 由此可知,0是<L,≤>关于的零元,关于的 幺元;1是<L,≤>关于的幺元,关于的零元
15.1 格(lattice)
– 1.格作为偏序集
定义15.1.1 设<L,≤>是一个偏序集,若对任 意a,bL,存在 最大下界(GLB)和最小上界(LUB), 则称<L,≤>为格。
用 ab 表 示 GLB{a,b} , ab 表 示 LUB{a,b} , 并称和分别为L上的交(或积)和并(或和) 运算。这样我们由偏序关系定义了两种二元运算。
例 设n为正整数,Sn为n的正因子的集合, ≤为整除关系,则<Sn,≤>构成格。
因为x,y∈Sn, xy就是x,y的最小公 倍数,xy是x,y的最大公约数。
例 幂集P(A)上的包含关系定义了一个 偏序关系,P(A)中任意两个元素x,y,有
xy =x∪y xy =x∩y 因此,<P(A), >是一个格。
若L是有限集合,称<L,≤>为有限格。
显然,对于ab,有: ①ab≤a和ab≤b,则表明ab是a和b的下界。 ②若c≤a和c≤b,则c≤ab,这表明ab是a和b 的最大下界。
对于ab,有: ①a≤ab和b≤ab,则表明ab是a和b的上界。 ②若a≤c,且b≤c,则ab≤c,这表明ab是a 和b的最小上界。
离散数学第十五章格与布 尔代数简
在介绍格之前,对于我们在前面学过的偏序, 我们要补充两个内容:
1. 哈斯图 2. 最小上界与最大下界
2.最小上界与最大下界
定义 设集合X上有一个偏序关系“≤”且设Y 是X的一个子集。
(1)如果存在一个元素x∈X,对每个y'∈Y 都有y'≤x,则称x是Y的上界(upper bound);如果 均有x≤y',则称x是Y的下界(lower bound)。
ab=0,ab=1 称b为a的补元,记为a'。 由定义可知,若b是a的补元,则a也是b的补 元,即a与b互为补元。 显然,0'=1和1'=0。 一般说来,一个元素可以有其补元,未必唯 一,也可能无补元。
– 2.格的基本性质
定理15.1.1 设<L,≤>是格,对任意a,bL,有 ① ab=ba≤b ② ab=aa≤b ③ ab=aab=b
亦即 a≤bab=bab=a
定理15.1.2 设<L,≤>是格,对任意a,bL,有
① aa=a, bb=b
(等幂律)
பைடு நூலகம்
② ab=ba, ab=ba
(交换律)
③ a(bc)=(ab)c, a(bc)=(ab)c
定理15.1.5 设<L,≤>是有限格,其中 L={a1,a2,···,an},则<L,≤>是有界格。
定义15.1.3 设<L,≤>是格,对任意的a,b,cL, 有
① a(bc)=(ab)(ac) ② a(bc)=(ab)(ac) 则称<L,≤>为分配格,称①和②为格中分配 律。
定义15.1.4 设<L,≤>是有界格,对于aL,存 在bL,使得
从上讨论中,可知两格互为对偶。互为对偶 的两个<L,≤>和<L,≥>有着密切关系,即格<L,≤> 中交运算正是格<L,≥>中的并运算,而格 <L,≤>中的并运算正是格<L,≥>中的交运算。 因此,给出关于格一般性质的任何有效命题,把 关系≤换成≥(或者≥换成≤),交换成并,并换成 交,可得到另一个有效命题,这就是关于格的对 偶性原理。
解: {a,b,c}的上界是e,f,j,h,它唯 一的下界是a。 {j,h}没有上界,它的下界是 a,b,c,d,e,f。 {a,c,d f}的上界是f,h,j,它的 下界是a。
例 在上图所示偏序集中,如果{b,d,g}的最 大下界和最小上界存在,求出这个最大下界和最 小上界。
解: {b,d,g}的上界是g,h,故它的 最小上界是g。 {b,d,g}的下界是a,b,故它的 最大下界是b。