热管、转轮、板式换热器热回收的比较
转轮热回收与乙二醇热回收的比较分析
转轮热回收与乙二醇热回收对比分析一、转轮热回收和乙二醇热回收工作原理转轮热回收:以轮芯作为换热媒介,转轮使用定制的蜂窝状金属材料,表面涂有一层特殊等级的吸附材料分子筛干燥剂。
将转轮置于风道之间,从而使其分成两部分。
来自空调房间不新鲜空气从一半转轮排出,室外空气以相反的方向从另一半转轮进入。
同时,轮子缓慢旋转(约20RPM)。
金属层从较热(冷)空气流吸收存储热量(冷量),并释放到较冷(较热)部分,显热发生转移。
附着干燥剂的金属片将来自高湿度的空气流里的湿气冷凝后,通过干燥剂吸收(同时释放热量),再蒸发(吸热),将湿气释放到低湿度的气流里,这个过程将潜热转移。
乙二醇热回收:以换热器和乙二醇溶液作为换热媒介在排风侧将排风中的冷量(热量)通过换热器传递给乙二醇溶液,降低(提高)乙二醇溶液的温度,然后通过循环泵将被冷却(加热)的乙二醇溶液输送到新风侧的换热器中,降低(提高)新风温度,减少系统的负荷和整个空调系统的运行成本。
二、关键部件外形图转轮热回收转轮:乙二醇热回收换热器三、关键部件材质转轮热回收转轮:可选用进口优质产品美国百瑞(Bry-Air)热回收转轮,美国百瑞(Bry-Air)热回收转轮为能量回收领域的领先品牌。
其特点如下:1、独有分子筛技术:百瑞热回收转轮的基材采用铝箔材料,在铝箔表面覆盖不可移动式分子筛干燥剂;相比采用其他材料覆盖在铝箔上的其他热回收转轮,美国百瑞(Bry-Air)热回收转轮在铝箔表面覆盖低微孔尺寸佛石干燥剂,仅容许水分子通过,拒绝所有其他污染物,其结果是污染物只留在排风中。
2、百瑞转轮内置净化装置:消除了交叉污染,做到新风和排风气流的隔离,防止新风排风的交叉污染;净化装置具备严格的空气流隔离功能,以防止细菌、灰尘和污染物从排风侧携带到新风侧,净化装置和迷宫式密封系统把交叉污染的排风浓度限制在0.04%。
3、清洁扇:转轮采用可调整式内置清洁扇清洗部件;免除清洁烦恼,降低运行成本。
电厂烟气余热回收换热器比较
电厂烟气余热回收换热器比较电厂烟气余热回收换热器比较1.前言当前节能已经成为能源行业的一个共同话题,而余热资源的回收和利用亦是节能的重点话题。
而作为耗能大户的发电企业,更是有大量的余热无法得到有效回收和利用,被白白浪费。
其中,烟气热损失是各项热损失中最大的一项,一般在5%~8%之间,占锅炉总热损失的80%或更高。
因此急需寻找一条科学的烟气回收途径,使烟气中的余热得到高效的回收利用,降低能耗,同时对于我国实现节能减排、环保发展战略也具有着重要的现实意义。
而在余热回收中不可或缺的装置便是换热器,所以,一直以来余热回收利用换热器的强化传热技术就备受世界各国的关注,使得新型高效节能的换热器层出不穷。
自20世纪60年代起国外便开始实验与研究热管换热器技术,在80年代开始了方形板片板壳式换热器的使用,而我国自1985年起,开始引进国外的“烟气深度冷却余热利用”技术,引发了国内烟气回收余热利用换热器的研究。
进入21世纪后,针对行业中的关键技术,国内制造商加大了研究力度和投入,并且随着国内材料技术、外扩展受热面技术及火电行业整体技术水平的提高,我国烟气余热利用换热器制造开始进入技术创新和突破的新时期。
制造和运用更加先进的换热器,更加高效地回收余热,减少能耗,合理高效地利用有限的资源,已成为一个重要的课题。
2.换热器的介绍与工作原理换热器在电厂烟气余热回收中的利用十分普遍,目前国内外的余热回收装置主要有:板式换热器、GGH换热器、热管换热器、热媒体换热器、低压省煤器等,介绍及工作原理如下:2.1、板式换热器板式交换器,在表面上具有一定的波纹,并且由许多金属片叠装而组成的一种换热器,这一种换热十分新型亦十分高效。
这一种换热器的每个金属板片间都有薄矩形通道,通过板片进行热量交换,可以通过结构来区分板式换热器,在电厂中使用的换热器主要分为两类①可拆卸板式换热器②焊接板式换热器,而第二种即焊接板式换热器中,在现在应用更加广泛的是全焊式板式换热器的换热板片,它以不锈钢为原材料,再通过特有的模具进行加工,压制而做成。
十三种类型换热器结构原理及特点(图文并茂)
十三种类型换热器结构原理及特点(图文并茂)一、板式换热器的构造原理、特点:板式换热器由高效传热波纹板片及框架组成。
板片由螺栓夹紧在固定压紧板及活动压紧板之间,在换热器内部就构成了许多流道,板与板之间用橡胶密封。
压紧板上有本设备与外部连接的接管。
板片用优质耐腐蚀金属薄板压制而成,四角冲有供介质进出的角孔,上下有挂孔。
人字形波纹能增加对流体的扰动,使流体在低速下能达到湍流状态,获得高的传热效果。
并采用特殊结构,保证两种流体介质不会串漏。
板式换热器结构图二、螺旋板式换热器的构造原理、特点:螺旋板式换热器是一种高效换热器设备,适用汽-汽、汽-液、液-液,对液传热。
它适用于化学、石油、溶剂、医药、食品、轻工、纺织、冶金、轧钢、焦化等行业。
结构形式可分为不可拆式(Ⅰ型)螺旋板式及可拆式(Ⅱ型、Ⅲ型)螺旋板式换热器。
螺旋板式换热器结构图三、列管式换热器的构造原理、特点:列管式换热器(又名列管式冷凝器),按材质分为碳钢列管式换热器,不锈钢列管式换热器和碳钢与不锈钢混合列管式换热器三种,按形式分为固定管板式、浮头式、U型管式换热器,按结构分为单管程、双管程和多管程,传热面积1~500m2,可根据用户需要定制。
列管式换热器结构图四、管壳式换热器的构造原理、特点:管壳式换热器是进行热交换操作的通用工艺设备。
广泛应用于化工、石油、石油化工、电力、轻工、冶金、原子能、造船、航空、供热等工业部门中。
特别是在石油炼制和化学加工装置中,占有极其重要的地位。
换热器的型式。
管壳式换热器结构图五、容积式换热器的构造原理、特点:钢衬铜热交换器比不锈钢热交换器经济,并且技术上有保证。
它利用了钢的强度和铜的耐腐蚀性,即保证热交换器能承受一定工作压力,又使热交换器出水质量好。
钢壳内衬铜的厚度一般为1.0mm。
钢衬铜热交换器必须防止在罐内形成部分真空,因此产品出厂时均设有防真空阀。
此阀除非定期检修是绝对不能取消的。
部分真空的形成原因可能是排出不当,低水位时从热交换器,或者排水系统不良。
浅谈热管换热器在空调热回收中的应用
浅谈热管换热器在空调热回收中的应用作者:王志亮来源:《数字化用户》2013年第12期【摘要】空调热回收对节能减排有重要意义。
本文论述了几种常见的空调系统利用排风对新风进行预处理的热回收装置,对其节能方式加以分析,最后阐述了影响空调热回收系统的几种常见因素,对热管换热器在空调热回收的应用进行了总结。
【关键字】空调热回收系统影响因素节能分析当前在我国经济高速发展的背景下,空调越来与普及,空调系统产生的余热大量浪费使得其总能耗越来越高,所以,预热与废热回收潜力得以充分挖掘与利用是降低空调系统能耗有效途径之一。
一、常见的四种排风热回收设备(一)转轮式全热交换器转轮式热交换器主要有转轮和驱动马达、机壳以及控制部分组成。
转轮式热交换器的新风和排风分别在两个半部对向通过回转着的转轮转芯部分,以轮芯为能量传替介质,在高温气体中吸收能量并从低温气体中放出,以能量从不同空间之间转换的方式达到调节温度。
如果用吸湿材料制作转轮,转轮在回收显热的同时还能起到回收潜热的作用,因此称为全热换热器。
(二)板翅式显热换热器板翅式热交换器是应用板式换热原理工作的换热器。
室内空调排风与新风呈正交叉方式流经板翅式显热换热器,高温天气新风从排风捕获冷量给室内降温;寒冷天气新风从排风中捕获热量给室内增温。
(三)热管式热交换器热管式热交换器主要由若干个热管组成。
热交换器由分别通过热气流和冷气流的两个部分构成。
热管由内部充注冷媒的密闭真空金属管组成,一旦热管一端(冷凝端)受热,在外界热量的作用下,管中液体短时间内气化,并在在差压的作用下流向热管的另一端,然后这些气体对外界放出热量并冷凝成液体,然后这些液体再通过管内壁金属网的毛细抽吸力作用返回到热管原端(冷凝端),并再次受热气化,这样的工作过程不断循环,热量就源源不断的从热管的此断传递到彼断。
(四)中间冷媒换热器这种换热器是冷媒装在排风和新风中间,故称为中间冷媒换热器,其换热过程比较简单:即在新风和排风侧分别装有气液换热器,排风侧的空气将系统中的冷媒加热(或冷却)。
燃气锅炉烟气余热回收利用技术分析
燃气锅炉烟气余热回收利用技术分析发表时间:2018-07-23T17:48:12.747Z 来源:《知识-力量》2018年8月上作者:李言[导读] 燃气锅炉排放出的烟气温度较高,设备温度损失较大,为了提升燃气热能利用率,热力公司需合理应用燃气锅炉烟气余热回收利用技术。
(西安市热力总公司,陕西省西安市 710016)摘要:燃气锅炉排放出的烟气温度较高,设备温度损失较大,为了提升燃气热能利用率,热力公司需合理应用燃气锅炉烟气余热回收利用技术。
现阶段,可采用的烟气余热回收利用技术有利用换热器回收烟气余热技术、利用热泵回收烟气余热技术两种,前者的技术装置有间接接触式余热回收换热器、直接接触式余热回收换热器两种,后者的技术装置有电压缩式热泵、吸收式热泵两种。
在实际应用过程中,根据烟气余热回收级数可分为单级余热回收供热型和双级余热回收供热型两种。
关键词:燃气锅炉;烟气余热;回收利用技术在环保型社会建设过程中,生态环保已成为各个行业发展的战略制高点,如何降低生产过程中污染物的排放量,实现对于生产资源的循环高效利用,是现阶段生产工艺优化的目标。
燃气锅炉是集中供热系统中的关键性设备,一般来说,设备运行时的排烟温度是比较高的,其中蒸汽型燃气锅炉的排烟温度可达200℃至250℃,热水型燃气锅炉的排烟温度可达115℃至180℃,在这一过程中,面临着较大的温度损失[1]。
为了减少燃气锅炉排烟造成的热量损失,热力公司一般会采用常规省煤器及空气预热器等烟气余热回收设备,不过这些设备仅能回收部分热量,燃气锅炉运行时的供热效率只能达到80%至90%,还有10%左右的天然气热值无法回收利用。
针对这一现状,人们加大了对于燃气锅炉烟气余热回收利用技术的研究,并将有效技术推广在工业实践中。
1. 燃气锅炉烟气余热回收利用技术1.1利用换热器回收烟气余热技术换热器是常见的燃气锅炉烟气余热回收利用设备,根据换热方式的不同,这一设备可分为两种类型:①间接接触式余热回收换热器。
空调热回收系统热回收影响因素探析
空调热回收系统热回收影响因素探析随着我国社会经济水平的不断提升,空调的普及率在不断增加,空调系统也成为了耗能最大的系统之一,让我国原本就稀缺的能源供应更加紧张,全国有很多偏远地区不能正常供电,在影响当地人民日常生活的同时也阻碍了工业的发展,因此根据终端节能的观点来进行空调热回收系统的节能对我国能源的充分利用具有重大意义。
首先对空调热回收系统及热回收节能的相关概念作了阐述,在此基础上,从三个方面研究了空调热回收影响因素,即回风量和风管漏风对空调热回收的影响、建筑物的密封性对空调热回收的影响以及空调热回收装置自身的影响。
标签:空调系统;热回收;影响因素;回风量;风管漏风1空调热回收系统及热回收节能概述我国经济的持续快速发展使得人们的生活水平不断提升,人居环境中空调和通风的能耗也越来越多,在节约能源方面,一方面需要将空调设备的使用效率提高,另一方面要对空调废热和余热具有的回收潜力进行充分的发掘然后适当利用,这是很关键的节能方法。
空调系统进行能量消耗时的特点之一是排热和需热两种处理过程同时存在,冬季时候高湿高温的排风可以对新风进行加热加湿,夏季时候低湿低温的排风可以对新风进行干燥和冷却,通过对这种特点的合理利用,空调系统能够通过热回收而达到能源的充分有效利用。
空调热回收系统可以让排风与新风进行热量和冷量的互相交换,排风所具有的热量或冷量可以尽可能传递给新风,这样可以使得新风的供冷量或加热量有效的减少,从而实现废气利用。
空调热回收装置大致可以分为显热回收装置和全热回收装置两种。
显热回收装置通过板式换热器、热管式换热器、板翅式显热换热器以及中间热媒式换热器的使用来进行热回收,其中板式换热器结构比较简单,运行可靠安全并且不具备传动设备,适用于新风管道和排风管道相距比较近的情况,板翅式换热器比较适合汽修类的换热,通过传热面积的增加来使得传热系数增大,相比板式换热器具有比较高的传热效率,热管式换热器通过管内工质的变换来进行热回收,换热效果能大幅度提高,而中间热媒式换热器的温差损耗较大,从而换热效率比较落后;全热回收装置适用于新风具有较高的湿度的情况,通过静止型板翅式全热交换器和转轮全热交换器来进行工作,前者结构比较简单,交叉污染少,运行安全可靠而且使用时间长,而后者具有较高的热回收效率,但是因为有传动设置因而具有较大的动力能耗。
热管、转轮,板换的比较
热管、转轮、板式换热器热回收的比较随着我国经济实力的增长和人民物质文化生活水平的不断提高;高层建筑的迅速发展,高气密化、高隔热化影响到人们的工作和生活环境,人们对室空气品质的要求也越来越高,都渴望拥有一个健康、舒适的室环境,特别是经历了SARS、PM2.5的袭击,人们越来越注重室空气品质,对引进室外新风换气提出了更高的要求,但是换气必然会带来能量的损失,引入新风需要消耗更多的能量,因此需要考虑一种有效的节能方法,通过热回收装置使新风和排风进行热交换。
热交换器是空气调节和余热回收的关键装置。
一、各类热交换器的性能与利用分析目前的热交换器有显热和全热回收两种形式。
不同形式的性能、效率和利用方式,设备费的高低、维护保养的难易也各不相同,它们的综合比较如下表所示:下面介绍几种常用的热交换器。
1. 转轮式全热换热器转轮式换热器的表面为蜂窝状,涂上一层吸附材料作干燥剂。
将转轮置于风道之间,使其分成两部分。
来自空调房间的排风从一侧排出,室外空气以相反的方向从另一侧进入。
为加大换热面积,轮子缓慢旋转(10~12转/分)。
轮子的一半从较热空气中吸收存储热量,旋转到另一侧时,释放热量,使热量发生转移。
附着表面的干燥剂将来自高湿度的空气流里的湿气冷凝后,通过干燥剂吸收,旋转到另一侧时,将湿气释放到低湿度的气流里,这个过程将潜热转移。
换热器旋转体的两侧设有隔板,使新风与排风逆向流动。
转轮芯片用特殊的纸或铝箔制成,其表面涂上吸湿性涂层,形成热、湿交换的载体,它以10-12r/min的速度旋转,先把排风中的冷热量收集在蓄热体(转轮芯)里,然后传递给新风,空气以2.5-3.5m/s的流速通过蓄热体,靠新风与排风的温差和蒸汽分压差来进行热湿交换。
所以,既能回收显热,又能回收潜热。
1)转轮换热器的功能与适用围2)转轮换热器的主要优缺点:3) 影响转轮换热器效率的因素:a. 空气流速:空气流过转轮时的迎风面流速越大,效率越低,反之效率则高,推荐风速2~4m/s。
三种热回收形式比较
三种热回收形式比较标签:热管式换热器热管转轮换热器板式换热器热管换热器热管式换热器采用热管作为换热元件,热管是在高真空的管子里充入最佳工质,利用饱和工质相变时产生的气化潜热传递热量,传热能力是铜的一万倍,因此被称作“超热导体”。
热管无运动部件,性质稳定,无须维修,使用寿命长(12年以上),工作特别可靠,这也是热管被用于宇宙空间的主要原因(在那里很难维修)。
以下是在通风空调系统中三种换热器形式的比较:一、热管换热器1.翅片为光滑表面,气流左右逆流通过,可以得到最大的换热效果,换热效率60~70%。
2.结构上不受气流速度的限制,不容易脏堵,换热效率稳定。
3.进、排气流分隔严密,完全没有交叉污染。
4.没有运行费用,基本无需维修,寿命长(12年以上)。
二、板式换热器气流是单数层进气,双数层排气,气流在层之间流动,会使换热膜片扰动,气流大时,产生强大的阻力和噪声,甚至吹破膜片,为降低噪声和摩擦力,只能做成叉流,限制在高风速时使用。
缺点:1、在大风量下,厂家很难保证按国家标准的尺寸制作。
2、冷凝水不易排出,导致霉菌滋生。
外界温度低于 -10℃时,不易使用2、逆流:叉流:顺流的换热效率=1:0.75:0.5。
三、转轮换热器转轮为接触式换热,每分钟转动10~12圈,转轮在高温区中吸收热量,转到冷区中放出热量,为了提高换热效果,就要使膜片做成波纹状(不利于灰尘的清除),需要动力装置,换热效率=热交换效率+混合效率-耗功≌ 60~70%。
缺点为:1、在热区中吸收热量的热轮转到冷区时,由于速度较快,露水不一定释放完毕,与灰尘易形成灰垢附着在换热器表面,增大阻力,降低热回收效率。
2、气流与转动方向成900夹角,产生不平衡力矩,转轮两侧在过渡季节灰尘附着不一样,使重量不一样,转轮在向上转和向下转时重量也不一样,使电机受力不平衡,容易烧毁电机。
3、需精心维护,有运动部件,有能源要求,有交叉污染,不能有效排出冷凝水。
热管、转轮、板式换热器热回收的比较
ⅳ.安装的位置应便于芯体更换
本文来源:中国热回收网
热管、转轮、板式换热器热回收的比较
随着我国经济实力的增长和人民物质文化生活水平的 不断提高;高层建筑的迅速发展,高气密化、高隔热化影响 到人们的工作和生活环境,人们对室内空气品质的要求也越 来越高,都渴望拥有一个健康、舒适的室内环境,特别是经 历了 SARS 的袭击,人们越来越注重室内空气品质,对引进 室外新风换气提出了更高的要求,但是换气必然会带来能量 的损失,引入新风需要消耗更多的能量,因此需要考虑一种 有效的节能方法,通过热回收装置使新风和排风进行热交 换。热交换器是空气调节和余热回收的关键装置。
⑵热管换热器的结构决定了它是典型的逆流换热,热管 又几乎是等温运行,因此热管换热器具有很高的效率。
⑶因冷热气体的换热在热管的外表面进行,容易扩展受 热面积。
⑷冷热气体中间用隔板隔开,没有泄漏,因此没有交叉 污染问题。
⑸由于流体流动通道宽敞,阻力损失小。 ⑹每根热管完全独立,维修方便。 ⑺从环境的适应性,余热回收效率、压力损失、防止堵 塞、清洗、寿命等综合指标看,热管换热器占据优势。
1.设备体积较大,需占用较多 建筑空间
2.没有传动设备,不消耗电力 2.易脏堵,不易清洗,阻力大。
3.不需要中间热媒
3.大风量时,选用有局限性
4.设备费低
4.1 板式换热器设计选用时应注意:
i.仅适用一般空调工程,当排风中含有有害成份时,不 宜选用。
ii.因阻力损失较大,为了在过渡季节能利用新风,减少 能耗,在换热器旁应设计旁通风管,以便让新风从旁通通过。
缺点
3.4 设计注意事项:
a.低温热管适用于温度-40℃~80℃,全年可使用,回收 冷量时,角度与热量相反。
第六章 热回收装置及过滤器
图6.15 热管式热回收器
应用热管换热器回收空调排风的能量时应注意: 1)就热管换热器的安装来说,务必使其中的热管保持水平 状态,绝不能将它呈垂直状态放置,因为那样会使热管 的吸热、放热效应停止。 2)对排风的要求为含尘量要小,且不含腐蚀性物质,否则 应采取空气过滤措施。 3)冷端与热端之间的隔板,宜采用双层结构,以防止漏风 而造成交叉污染。 4)当热气流的含湿量较大时,应设计冷凝水排除装置。 5)启动热管换热器时一般应使冷、热气流同时通过换热器。 如果不能做到,则应开启时先开冷气流,关闭时先关热 气流。 6)一般来说,热管换热器冬季回收排风中的热量比较有利, 夏季回收排风中冷量效果要差些。
(2)过滤效率 空气净化设备过滤掉的微粒量与进风中的微粒量之比,称 为过滤效率。影响空气过滤器效率的因素主要有: ①尘粒粒径。尘粒越大,惯性作用越明显,过滤效率越高 ;尘粒越小,布朗运动产生的过滤效果越明显。 ②滤料纤维的粗细和密实性的影响。在同样密实条件下, 纤维直径越小,接触面积越大,从而过滤效果越好。纤维越 密实,过滤效率越高,但阻力越大。 ③过滤风速。风速越大时,阻力也随之增大。风速过大时甚 至可使附着的尘粒吹出。所以在高效过滤器中为了充分利用 扩散作用和减小阻力,都取极小过滤风速。 ④附尘影响。附着在纤维表面上的尘粒,将会使阻力也有 所上升。阻力过大,既不经济又使空调系统风量降低,而且 阻力过大,会使气流冲破滤料,所以过滤器需要经常清洗。
1)空气流速:空气通过转轮时的迎风面流速越大,效 率越低,反之效率越高,推荐风速2-3m/s;
2)转轮两侧气流入口处,需加装空气过滤器。
3)在使用时必须考虑转轮上是否会出现结霜、结冰现 象;必要时应在新风管上设空气预热器,并在热回收 器内设置温度自控装置,当温度达到霜点,就发出信 号关闭新风阀门或开启预热器。
九种换热器的工作原理、优缺点及注意事项(动图详解)
九种换热器的工作原理、优缺点及注意事项(动图详解)按照换热器的传热方式,换热器可分为三大类:直接接触式换热器,也叫混合式换热器,是冷热流体进行直接接触并换热的设备。
通常情况下,直接接触的两种流体是气体和汽化压力较低的液体;蓄能式换热器的工作原理,是利用固体物质的导热特性,具体而言,热介质先将固体物质加热到一定温度,冷介质再从固体物质获得热量,通过此过程可实现热量的传递;间壁式换热器,也是利用了中介物的热传导,冷、热两种介质被固体间壁隔开,并通过间壁进行热量交换。
对于供热企业而言,间壁式换热器的应用最为广泛。
根据结构的不同,它还可划分为管式换热器、板式换热器和热管换热器。
01管壳式换热器管壳式换热器又称列管式换热器。
是以封闭在壳体中管束的壁面作为传热面的间壁式换热器。
这种换热器结构较简单,操作可靠,可用各种结构材料(主要是金属材料)制造,能在高温、高压下使用,是目前应用最广的类型。
▲管壳式换热器根据所采用的补偿措施,管壳式换热器可分为固定管板式换热器、浮头式换热器、U型管式换热器、填料函式换热器等四种类型。
02固定管板式换热器固定管板式换热器是管壳式换热器的一种。
固定管板式换热器两端的管板采用焊接的方式与壳体连接,主要由外壳、管板、管束、顶盖(封头)等部件构成。
▲固定管板式换热器固定管板式换热器的优点是:◆结构简单;◆在相同的壳体直径内,排管数最多,旁路最少;◆每根换热管都可以进行更换,且管内清洗方便。
固定管板式换热器的缺点是:◆壳程不能进行机械清洗;◆当换热管与壳体的温差较大(大于50℃)时会产生温差应力,解决措施是在壳体上设置膨胀节,因而壳程压力受膨胀节强度的限制不能太高;◆只适用于流体清洁且不易结垢,两流体温差不大或温差较大但壳程压力不高的工作场合。
03浮头式换热器浮头换热器是管壳式换热器的一种,它有一端管板不与外壳相连,可以沿轴向进行自由浮动,也称为浮头。
浮头由浮动管板、钩圈和浮头端盖组成,是可拆连接,管束可从壳体内抽出。
热管、转轮、板式、乙二醇热回收的比较
1. 引言建筑离不开能源,尤其是现代建筑物,更是能源消耗大户。
在国民经济各部门中,建筑业能源消耗占总能耗的比例很大,一般在40%左右,我国也占到了27.6%。
建筑能耗包括采暖、通风、空调、热水供应、照明、电梯、烹饪等能耗。
建筑能耗在建筑业能耗中占了绝大部分,约80%以上;其中大部分能量是用于采暖、通风与空调。
建筑中有可能回收的热量有排风热量、内区热量、冷凝器排出热量、排水热量等。
这些热量品位比较低,因此需要采用特殊措施来回收。
废热资源蕴藏在各种生产过程中,据日本291个工厂(其中钢铁、石油、化工类工厂占90%)的调查的结果表明,每年总废热量为345.8×1012kJ,相当于11.8×106t标准煤的发热量。
可见废热资源相当丰富。
由于它们的品位非常低,因此,废热利用对象主要是采暖、热水供应、供冷等民用热用户,在建筑中的废热主要有通风与空调系统的排风、建筑内区的人员、灯光、设备热量、制冷设备冷凝侧排出的热量等。
建筑中废热的应用需借助热回收技术。
目前在国外的通风空调系统中,普遍都设有热回收装置。
在瑞典的节能规范中,明确规定,在需要供热时,当建筑需热量要依靠加热器来提供,而排风传给室外空气中的热能每年超过50Kwh时,必须装设热回收装置。
新风能耗在空调通风系统中,占了较大的比例。
例如,办公楼建筑大约可占到空调总能耗的17%~23%。
为保证空调房间室内空气品质,不能以削减新风量来节省能量,而且还可能需要增加新风量的供应。
建筑中有新风进入,必有等量的室内空气排出。
这些排风相对于新风来说,含有热量(冬季)或冷量(夏季)。
有许多建筑中,排风是有组织的,不是无组织的从门窗等缝隙挤出的。
这样有可能从排风中回收热量或冷量,以减少新风的能耗。
如何直接从排风中回收热量,以降低通风能耗,是一项重要的节能措施。
2. 各种热回收装置的分析与比较2.1转轮式热交换器与热回收系统。
图1为转轮式热交换器与热回收系统。
转轮式、溶液吸收式、热管、板式热回收比较
转轮式、溶液吸收式、热管、板式热回收比较1.转轮式热回收:是一种蓄热能量回收设备。
分为显热回收和全热回收两种。
显热回收转轮的材质一般为铝箔,全热回收转轮材质为具有吸湿表面的铝箔材料或其他蓄热吸湿材料。
转轮作为蓄热芯体,新风通过转轮的一个半圆,而同时排风通过转轮的另一半圆,新风和排风以相反的方向交替流过转轮。
新风和排风间存在着温度差和湿度差,转轮不断地在高温高湿侧吸收热量和水分,并在低温低湿侧释放,来完成全热交换。
转轮在电动机的驱动下以10r/min的速度旋转,排风从热交换器的上侧通过转轮排到室外。
在这个过程中,排风中的大多数的全热保存在转轮中,而脏空气却被排出。
而室外的空气从转轮的下半部分进入,通过转轮,室外的空气吸收转轮保存的能量,然后供应给室内。
当转轮低于4r/min的速度旋转时,效率明显下降。
转轮换热器的特点是设备结构紧凑、占地面积小,节省空间、热回收效率高、单个转轮的迎风面积大,阻力小。
适合于风量较大的空调系统中。
(南社百科有详细介绍)2.溶液吸收式热回收:以溴化锂、氯化锂等吸湿溶液为循环媒介的全热回收装置。
盐溶液能够去除室内的多种污染物,可避免新风和排风的交叉污染。
分级思想的采用,提高了全热回收装置的热回收效率。
如:溶液热回收型新风机。
溶液全热回收装置的采用,充分回收室内排风的能量,有效地降低了新风处理能耗;制冷循环的制冷量和排热量均得到了有效的利用,新风机的性能系数明显提高。
新风机的工作介质—吸湿溶液,可以去除室内的多种污染物,能够避免新风和室内排风之间的交叉污染。
新风的潜热负荷由溶液系统承担,夏季不再需要7℃的冷水满足新风除湿要求,空调系统中不存在冷凝水的表面,也消除了室内一大污染源。
另一方面,新风机性能系数的提高,为新风量的增加提供了条件,能够进一步改善室内空气品质。
工作原理:1、溶液全热回收装置主要由热交换器和溶液泵组成。
热交换器由填料和溶液槽组成,填料用于增加溶液和空气的有效接触面积,溶液槽用于蓄存溶液。
关于转轮式,板式,热管式换热器的比较
关于转轮式,板式,热管式换热器的比较转轮式换热器是一种蓄热能量回收设备。
分为显热回收和全热回收两种。
显热回收转轮的材质一般为铝箔,全热回收转轮材质为具有吸湿表面的铝箔材料或其他蓄热吸湿材料(如陶瓷纤维等)。
转轮作为蓄热芯体,新风通过转轮的一个半圆,而同时排风通过转轮的另一半圆。
随着转轮不断地旋转,新风和排风以这种方式交替通过转轮。
由于新风和排风之间存在温度差和湿度差,转轮不断地在高温、高湿侧吸收热量和水分,并在低温低、湿侧释放,完成热量和湿度(全热式)的交换。
一个蜂窝状的转轮在电动机的驱动下,以10r/min的速度旋转,回风从热交换器的上侧通过转轮排到室外。
在这个过程中,回风中的大多数的全热(热和湿)保存在转轮中,而脏空气却被排出。
另一方面,室外的空气从转轮的下半部分进入,通过转轮,室外的空气吸收转轮保存的能量,冬天进行预热,夏天进行预冷,然后供应给室内。
转轮换热器的特点是:设备结构紧凑、占地面积小,节省空间;热回收效率高;单个转轮的迎风面积大,阻力小。
在大风量空调系统热回收中应用较多。
静止型板式换热器属于一种空气与空气直接交换式的换热器,它不需要通过中间媒质进行换热,也没有转动系统,因此,静止型板式换热器(也叫固定式换热器)是一种比较理想的能量回收设备。
静止型板式换热器是在其隔板两侧的两股气流存在温差和水蒸气分压力差时,进行显热或全热回收的。
在板式换热器中,波状翅片既起辅助传热的作用,又起支撑和导流作用。
根据翅片所形成的流道和气流方向的不同,板翅式换热器可分为叉流式、逆流式和顺流式。
静止板式换热器的特点是密封性好,混风率低;热回收效率高;无运转部件,运行平稳可靠。
在空调系统热回收中应用最为广泛。
热管换热器必须采用全金属结构,工艺比较复杂,因此重量大,价格较贵。
热管式换热器主要用于工业项目,造价较高,冬夏季需要转换。
热管式热回收机组安装需要注意很多事项:当水平安装时,低温侧上倾5°~7°,由于热管换热器,全年使用,冬季的低温侧,夏季成高温侧,用手动方法进行转换,使其下倾10°~14°,比较麻烦。
热管换热器在空调热回收中的应用
盘管热环式换热器是一种空气+ 液体热 交换器,由布置在新风、排风管道上的两个
2 常用空调热回收装置
在空调热回收系统中,目前较为常用的 有转轮式换热器、 板式换热器、 盘管热环式换 热器、热泵和热管换热器. 2 . 1 转轮式换热器 转轮式换热器是一种全热换热 ,由转 轮、 传动机构、 外壳、 风机与再生用电加热器 组成,其原理是在旋转过程中使排风与新风 逆向流经转轮并各自 释放或吸收热量,其优 点是热回收效率较高, 可达 7既 一 % ,管理 80 维护简单,在多数情况下不失为一种较理想 的除湿设备,但缺点是体积较大占用了较多 的建筑空间, 使用期间 应考虑出现凝结水、 结 冰带来的不良后果,以及集中的新风与排风 要求给系统布置造成的不便。 2 .2 板式换热器 板式换热器分平板式显热换热和板翅式 全热换热器两种,是较为理想的排气能量回 收装置, 其优点为结构简单, 排风互不接 新、 触, 无交叉污染, 无转动部件, 运行可靠, 使 用寿命长。其缺点是通过气流受到露点温度 的限制,凝结水、结冰现象使其寿命下降。 2 . 3 盘管热环式换热器
中图分类号:T MS
文献标识码: A
文章编号: 1672一 3791(2007)04(a)一 0023一 01
1 引言 近年来, 随着空调的普及空调的耗能已 成为人们的关注焦点,空调耗能已经占到了 整个建筑耗能的3 %一 % , 0 0 4 而且在空调系 统中,大部分空调回风经冷却和再热后作为 送风送到空调房间,而其余的回风则排出室 外。这部分回风携带的热( 冷) 量就白白浪费 了,同时送风进入空调房间时必须经过加热 (冷却)处理, 需要消耗相当多的能量,因而研 究如何将空调系统回风热(冷)量回收, 再用于 空调系统,对空调系统节能将具有重要的意
热管回收装置在空调系统中的应用
污染 , 因此 流 过 的气 体 必 须 是 无 害 物 质 , 外 设 备 装 置 另 较大 , 占有 较 多 面积 和空 间 , 管 固 定 , 传 动 设 备 , 接 带 消
耗 一定的动能。
却 和再 热后 作 为 送 风 送 到 空 调 房 间 , 其 余 的 回风 则 而
热 管 回 收 装 置 在空 凋 系统 中 的应 用
6 3
送 风
内 . 毫外 l } l
高效 传 热 元 件 , 可 以 将 大 量 热 量 通 过 其 很 小 的 截 面 它 积长 距 离 地 传 输 而 无 需 外 加 动 力 。热 管 以 其 构 思 巧 妙 , 输 温 差 小 适 用 温 度 范 围 广 , 调 控 管 内 热 流 密 度 传 可 等 众 多 优 良 特 性 , 能 量 回 收 和 余 热 利 用 方 面 已 显 示 在 出其 独 特 的 作 用 , 暖 通 空 调 实 际 应 用 过 程 中 , 常 采 在 通 用不锈钢或 铜作 为热 管壳 体 , 甲醇 、 酮 、 等 作 为 工 丙 水
近年 来 , 着 空 调 的 普 及 空 调 的 耗 能 已 成 为 人 们 随 的关 注 焦 点 , 调 耗 能 已 经 占 到 了 整 个 建 筑 耗 能 的 空 3 % 4 % 。 且 在 空 调 系 统 中 , 部 分 空 调 回风 经 冷 0 0 而 大
参 数 , 且 能 使 效 率 达 到 7 % 一8 % 以 上 [ ] 但 是 转 而 0 0 3。
转 轮有 自净 作 用 , 转 速 控 制 , 适 应 不 同 的 室 外 空 气 对 能
布 的< 共 建 筑 节 能 设 计 标 准 》 , 公 中 明确 提 出 了 设 计 在 技 术 经 济 分 析合 理 时 应优 先 考 虑 采 用排 风 能 量 的 热 回 收 , 强 制 规 定 了一 些 必 须 采 用 热 回收 装 置 的 系统 。 并
高速列车上的热管式热回收系统.
高速列车上的热管式热回收系统近年来我国高速列车发展迅速,但还存在不少问题,如车内人员密度大,空间相对较小,空气品质不佳,车内旅客往往会出现胸闷、头晕等症状。
于是,乘客对车厢内空气品质的要求越来越高,只有增加新风量才是改善车内空气品质最直接有效的方法。
但是,由于室外空气焓值和气温与室内空气焓值和气温存在差异,新风送入车厢内之前需要经过空调系统的处理,势必要消耗热量和加湿量。
在不同室温下,新风带来的显热和潜热占冷负荷的百分比为22.3%~36.0%。
由此可见,新风带来的显热和潜热占了空调装置冷负荷的很大一部分。
另一方面,为保持室内压力,需要将车厢内空气排入大气,如果直接排出,将会造成排风中能量的白白浪费。
因此,如果在空调系统中设置热管式热回收系统,使新风与排风进行热量的交换,将排风带走的能量尽可能地转移给新风,以减少新风负荷,将是一种节约能源的有效措施。
1.新风量的确定由于空调车厢基本处于一个密闭的状态,空调车厢内每人必须保证有一定的新风量,以满足卫生要求。
目前,运行中的列车空调车厢所需新风量的大小主要是根据室内允许CO2的浓度作为控制指标。
我国空调车车内CO2控制标准为:容积浓度小于或等于0.15%。
但是,CO2不能作为衡量空气品质的唯一指标,影响人的舒适及健康的气体还包括空气中的CO2、SO2、NO2、CO以及臭气、粉尘和各类复杂的有机污染物等。
ASHRAE62-1989R认为用以确定新风量的污染物来自人员和室内气体污染源两个方面,所以室内最小新风量指标按每人最小新风量指标Rp与每平方米地板所需最小新风量指标Rb之和确定。
把这种方法应用于铁路空调客车中,即可以按式(1)计算最小新风量:Vmin=RpP+RbA(1)式中:Vmin—列车最小新风量,m3/s;Rp—每人所需要的新风量,m3/(人·s);P—车厢内人员数,人;Rb—单位车厢地板面积所需要新风量,m3/(m2·s);A—车厢地板面积,m2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热管、转轮、板式换热器热回收的比较
随着我国经济实力的增长和人民物质文化生活水平的不断提高;高层建筑的迅速发展,高气密化、高隔热化影响到人们的工作和生活环境,人们对室内空气品质的要求也越来越高,都渴望拥有一个健康、舒适的室内环境,特别是经历了SARS的袭击,人们越来越注重室内空气品质,对引进室外新风换气提出了更高的要求,但是换气必然会带来能量的损失,引入新风需要消耗更多的能量,因此需要考虑一种有效的节能方法,通过热回收装置使新风和排风进行热交换。
热交换器是空气调节和余热回收的关键装置。
一、各类热交换器的性能与利用分析
目前的热交换器有显热和全热回收两种形式。
不同形式的性能、效率和利用方式,设备费的高低、维护保养的难易也各不相同,它们的综合比较如下表所示:
下面介绍几种常用的热交换器。
1. 转轮式全热换热器
转轮式换热器的表面为蜂窝状,涂上一层吸附材料作干燥剂。
将转轮置于风道之间,使其分成两部分。
来自空调房间的排风从一侧排出,室外空气以相反的方向从另一侧进入。
为加大换热面积,轮子缓慢旋转(10~12转/分)。
轮子的一半从较热空气中吸收存储热量,旋转到另一侧时,释放热量,使热量发生转移。
附着表面的干燥剂将来自高湿度的空气流里的湿气冷凝后,通过干燥剂吸收,旋转到另一侧时,将湿气释放到低湿度的气流里,这个过程将潜热转移。
换热器旋转体的两侧设有隔板,使新风与排风逆向流动。
转轮芯片用特殊的纸或铝箔制成,其表面涂上吸湿性涂层,形成热、湿交换的载体,它以10-12r/min 的速度旋转,先把排风中的冷热量收集在蓄热体(转轮芯)里,然后传递给新风,空气以2.5-3.5m/s的流速通过蓄热体,靠新风与排风的温差和蒸汽分压差来进行热湿交换。
所以,既能回收显热,又能回收潜热。
1)转轮换热器的功能与适用范围
2)转轮换热器的主要优缺点:
3) 影响转轮换热器效率的因素:
a. 空气流速:空气流过转轮时的迎风面流速越大,效率越低,反之效率则高,推荐风速2~4m/s。
b. 转轮两侧气流入口处,需要加装空气过滤器。
c. 设计时,必须计算校核转轮上是否会出现结霜、结冰现象;必要时应在新风管上设空气预热器,或在热回收器后设温度自控装置,当温度达霜点,就发出信号关闭新风阀门或开启预热器。
d. 由于全热交换器转轮需要动力,并且增加了阻力,从而增加输送动力和增加投资,因此,必须计算回收效应,当总能耗节约显著时,方可选用。
e. 适用于排风不带有害物或有毒物质的场所。
2. 低温热管换热器
1942年,美国工程师提出了热管原理,20世纪60年代初,开始研究和试制,最早被用于航天器与核反应堆,20世纪70年代,热管换热器作为全新风系统中的热能回收装置而最终在暖通行业中体现出卓越的优越性。
热管是靠自身内部液体的相变来实现热量传递的传热元件,它有以下特点:⑴每根热管都是永久性密封的,传热时没有额外的能量损耗,无运行部件,运行可靠性高。
⑵热管换热器的结构决定了它是典型的逆流换热,热管又几乎是等温运行,因此热管换热器具有很高的效率。
⑶因冷热气体的换热在热管的外表面进行容易扩展受热面积。
⑷冷热气体中间用隔板隔开,没有泄漏,因此没有交叉污染问题。
⑸由于流体流动通道宽敞,阻力损失小。
⑹每根热管完全独立,维修方便。
⑺从环境的适应性,余热回收效率、压力损失、防止堵塞、清洗、寿命等综合指标看,热管换热器占据优势。
工作原理:热管由管壳、吸液芯和端盖组成,在抽成真空的管子里充以适当的工作液,再将其两端密封。
热管既是蒸发器又是冷凝器。
热流吸热的一端是蒸发段,工质吸收热后蒸发汽化,流动至另一端即冷凝段放热液化,并依靠毛细力作用流回蒸发段,自动完成循环。
热管换热器由单根热管集装在一起,中间用隔板将蒸发段与冷凝段分开,热管换热器靠热管内工质的相变完成热量传递。
每一根热管就是一个无动力的制冷循环系统,传热速度是相同金属的数千倍至万倍,0.1℃的温差即有热响应,它最初用于人造卫星上解决向阳面和背阴面的受热不均匀,是人造卫星上必备设备之一。
现在,越来越广泛的用于空气调节和余热回收领域,日本早稻田大学的一位专家说:“日本特别重视节能和环保,而热管技术以其高效的传热性,为节能环保找到了一条新路”。
热管换热器在暖通空调设计手册中均有介绍和选用方法。
1)低温热管换热器的主要优缺点:
2)设计注意事项:
a. 低温热管适用于温度-40℃~80℃,全年可使用,回收冷量时,角度与热量相反。
b. 迎面风速宜采用1.5~3.5 m/s。
c. 冷、热端之间的间隔板,采用双层结构,可杜绝因漏风而造成交叉污染。
d. 换热器可垂直或水平安装,既可以几个并联,也可以几个串联。
e. 当气流的含湿量较大时,(此时有潜热回收,可作为余量)
f. 应设计凝水排除装置。
g. 启动换热器时,应使冷、热气流同时流动,或使冷气流先流动,停止时,应使冷、热气流同时停止,或先停止热气流。
辽宁省能源论证会对于热管换热器的结论为:"该装置是二级加热设备,第一级用KLS系列低温热管换热器回收排风余热来预热新风。
第二级选用通风工程常用的SRZ型空气加热器,二级串联一体,结构新颖,工程实用,是集中供暖、通风于一体的新型节能补风加热机组。
该产品使用的排风余热回收装置是KLS
型热管换热器,这种热管换热器经国家机械委和北京市科委鉴定认为该产品结构紧凑,性能稳定,运行维护方便,该产品已生产300多台,用户反映良好,
所以该机组的核心设备是可靠的。
该产品节能效果显著,可回收排风余热60﹪,投资回收期1-2年。
同时还可以减少环境的污染。
与会专家一致认为,该产品应在我省企业中积极推广使用,在使用过程中积累经验,继续完善提高,有利于我省节能工作的开展”
二、低温热管换热器节能与经济效益分析:
按沈阳地区冬季室外-19℃,室内20℃计算如果排风量为30 000立方米/时,能量损失为37万Kal/h,相当于0.7吨的锅炉每小时产生的热量。
热管换热器每小时可回收的的热量按效率60%计算为22.2万Kal/h。
1. 板式热交换器的工作原理:
利用特殊的纸质材料或铝泊装配成上下各层间隔而成的通道,进风通过单数层通道,排风通过双数层通道,通过空气与层板的接触传递热量,送风与排风逆流时效率最高,但逆流运动时,材料受力最大,容易吹破交换器,所以常采用叉流结构,作成全热时,表面应涂上吸湿性材料。
板式换热器的优缺点:
板式换热器设计选用时应注意:
i. 仅适用一般空调工程,当排风中含有有害成份时,不宜选用。
ii. 因阻力损失较大,为了在过渡季节能利用新风,减少能耗,在换热器旁应设计旁通风管,以便让新风从旁通通过。
iii. 与换热器连接的风管和旁通风管上,必须安装密闭性较好的风阀。
ⅳ.安装的位置应便于芯体更换
本文来源:中国热回收网。