导数计算练习题

合集下载

导数定义练习题

导数定义练习题

导数定义练习题首先,让我们回顾一下导数的定义。

在微积分中,导数表示函数在某一点处的变化率。

给定函数 f(x),它在 x 点处的导数可以通过以下定义来计算:f'(x) = lim(h→0) [f(x+h) - f(x)] / h其中,h 是无限趋近于0的增量。

本文将通过一些练习题来帮助我们更好地理解和应用导数的定义。

1. 求函数 f(x) = 2x^2 在 x = 1 处的导数。

解答:根据导数的定义,我们可以得到:f'(1) = lim(h→0) [f(1+h) - f(1)] / h代入函数 f(x) = 2x^2:f'(1) = lim(h→0) [2(1+h)^2 - 2(1)^2] / h= lim(h→0) [2(1+2h+h^2) - 2] / h= lim(h→0) [2+4h+2h^2-2] / h= lim(h→0) [4h+2h^2] / h= lim(h→0) 4 + 2h= 4所以,函数 f(x) = 2x^2 在 x = 1 处的导数为 4。

2. 求函数 g(x) = sin(x) 在x = π/4 处的导数。

解答:根据导数的定义,我们有:g'(π/4) = lim(h→0) [g(π/4+h) - g(π/4)] / h代入函数 g(x) = sin(x):g'(π/4) = lim(h→0) [sin(π/4+h) - sin(π/4)] / h我们可以利用三角函数的和差公式以及极限的性质来简化计算。

根据三角函数的和差公式,我们有:sin(π/4+h) = sin(π/4)cos(h) + cos(π/4)sin(h)代入该公式,我们可以得到:g'(π/4) = lim(h→0) [(sin(π/4)cos(h) + cos(π/4)sin(h)) - sin(π/4)] / h化简上式,我们得到:g'(π/4) = lim(h→0) [sin(π/4)cos(h)/h + cos(π/4)sin(h)/h - sin(π/4)/h]根据极限的性质,我们知道lim(h→0) sin(h)/h = 1。

导数与极值最大值与最小值问题练习题

导数与极值最大值与最小值问题练习题

导数与极值最大值与最小值问题练习题在微积分中,导数与极值问题是一类经典且重要的题型。

通过求取导数,我们可以确定函数的极值点,即最大值和最小值。

本文将给出一些导数与极值问题的练习题,帮助读者加深对该类型问题的理解与应用。

练习题一:求函数f(x) = x^3 - 6x^2 + 9x + 2的极值点。

解析:首先,我们需要求出函数的导数f'(x)。

对于f(x) = x^3 - 6x^2 + 9x + 2,导数为f'(x) = 3x^2 - 12x + 9。

接下来,我们将导数f'(x)置为零,求得极值点。

即,3x^2 - 12x + 9= 0。

通过求解这个方程,我们得到x = 1和x = 3两个解。

然后,我们需要分别计算这两个x值对应的函数值f(x)。

当x = 1时,f(x) = 1^3 - 6(1)^2 + 9(1) + 2 = 6;当x = 3时,f(x) = 3^3 - 6(3)^2 + 9(3)+ 2 = -2。

综上所述,在函数f(x) = x^3 - 6x^2 + 9x + 2中,极小值为-2,极大值为6,对应的x值分别为1和3。

练习题二:求函数g(x) = e^x - 4x的极值点。

解析:与前一题类似,我们首先求取函数g(x) = e^x - 4x的导数g'(x)。

根据指数函数的导数性质以及常数倍规则,我们有g'(x) = e^x - 4。

将导数g'(x)置为零,求得极值点。

即,e^x - 4 = 0。

通过求解这个方程,我们得到x = ln(4)。

接下来,计算x = ln(4)对应的函数值g(x)。

g(x) = e^x - 4x = e^(ln(4)) - 4(ln(4)) = 4 - 4ln(4)。

因此,在函数g(x) = e^x - 4x中,存在唯一的极值点x = ln(4),对应的极值为4 - 4ln(4)。

练习题三:求函数h(x) = x^4 - 8x^2 + 16的极值点。

题目:一次函数的导数计算练习题(绝对经典全面)

题目:一次函数的导数计算练习题(绝对经典全面)

题目:一次函数的导数计算练习题(绝对经典全面)一次函数的导数计算练题(绝对经典全面)题目一已知函数 f(x) = 3x + 2,求 f(x) 的导数。

解答一f'(x) = 3题目二已知函数 g(x) = -4x + 5,求 g(x) 的导数。

解答二g'(x) = -4题目三已知函数 h(x) = 2x^2 + 3x - 1,求 h(x) 的导数。

解答三h'(x) = 4x + 3题目四已知函数 k(x) = (1/2)x^2 - 4x + 7,求 k(x) 的导数。

解答四k'(x) = x - 4题目五已知函数 m(x) = 4x^3 + 2x^2 + 3x - 1,求 m(x) 的导数。

解答五m'(x) = 12x^2 + 4x + 3题目六已知函数 n(x) = -5x^2 + 6x - 2,求 n(x) 的导数。

解答六n'(x) = -10x + 6题目七已知函数 p(x) = (1/3)x^3 + x^2 - 2x + 5,求 p(x) 的导数。

解答七p'(x) = x^2 + 2x - 2题目八已知函数 q(x) = -2x^3 + 3x^2 - x + 4,求 q(x) 的导数。

解答八q'(x) = -6x^2 + 6x - 1题目九已知函数 r(x) = 5x^2 - 4x + 3,求 r(x) 的导数。

解答九r'(x) = 10x - 4题目十已知函数 s(x) = -x^2 + 3x - 2,求 s(x) 的导数。

解答十s'(x) = -2x + 3以上是一次函数的导数计算练题(绝对经典全面)。

(完整版)导数的计算练习题及答案

(完整版)导数的计算练习题及答案

【巩固练习】一、选择题1.设函数310()(12)f x x =-,则'(1)f =( )A .0B .―1C .―60D .602.(2014 江西校级一模)若2()2ln f x x x =-,则'()0f x >的解集为( )A.(0,1)B.()(),10,1-∞-C. ()()1,01,-+∞D.()1,+∞3.(2014春 永寿县校级期中)下列式子不正确的是( )A.()'23cos 6sin x x x x +=-B. ()'1ln 22ln 2x x x x -=- C. ()'2sin 22cos 2x x = D.'2sin cos sin x x x x x x -⎛⎫= ⎪⎝⎭ 4.函数4538y x x =+-的导数是( ) A .3543x + B .0 C .3425(43)(38)x x x ++- D .3425(43)(38)x x x +-+- 5.(2015 安徽四模)已知函数()f x 的导函数为'()f x ,且满足关系式2'()3(2)ln f x x xf x =++,则'(2)f 的值等于( )A. 2B.-2C.94 D.94- 6.设曲线1(1)1x y x x +=≠-在点(3,2)处的切线与直线ax+y+1=0垂直,则a=( ) A .2 B .12 C .―12D .―2 7.23log cos (cos 0)y x x =≠的导数是( )A .32log tan e x -⋅B .32log cot e x ⋅C .32log cos e x -⋅D .22log cos e x 二、填空题8.曲线y=sin x 在点,12π⎛⎫ ⎪⎝⎭处的切线方程为________。

9.设y=(2x+a)2,且2'|20x y ==,则a=________。

10.31sin x x '⎛⎫-= ⎪⎝⎭____________,()2sin 25x x '+=⎡⎤⎣⎦____________。

经典求导练习题

经典求导练习题

经典求导练习题在本文中,将给出一系列经典求导练习题,通过解答这些问题,我们可以加深对求导运算的理解和应用能力。

以下是各种类型的求导题目,每个题目后都有详细的步骤和解析。

1. 简单的多项式求导问题:给定函数 f(x) = 3x^2 + 5x - 2,求 f'(x)。

解析:首先,根据求导法则,对于多项式函数来说,求导后指数减1,系数不变。

因此,对 f(x) 进行求导,得到 f'(x) = 6x + 5。

2. 反函数求导问题:给定函数 f(x) = ln(x),求 f'(x)。

解析:我们知道,ln(x) 的反函数是e^x,且根据反函数求导法则,反函数的导数等于原函数的导数的倒数。

因此,f'(x) = 1/x。

3. 三角函数求导问题:给定函数 f(x) = sin(x),求 f'(x)。

解析:根据三角函数的求导法则,sin(x) 的导函数是cos(x),因此,f'(x) = cos(x)。

4. 复合函数求导问题:给定函数 f(x) = (2x + 1)^3,求 f'(x)。

解析:这是一个复合函数求导的例子。

根据链式法则,复合函数的导数等于外函数对内函数求导的结果乘以内函数对自变量的导数。

应用链式法则,我们可以得到 f'(x) = 3(2x + 1)^2 * 2 = 6(2x + 1)^2。

5. 指数函数和对数函数求导问题:给定函数 f(x) = e^x,求 f'(x)。

解析:根据指数函数的求导法则,e^x 的导数等于其本身,因此f'(x) = e^x。

6. 隐函数求导问题:已知方程 x^2 + y^2 = 25,求当 x = 3 时,y 对 x 的导数。

解析:对方程两边同时求导,并利用隐函数求导法则,我们可以解得 dy/dx = -x/y。

当 x = 3 时,插入方程得到 y = 4,因此 dy/dx = -3/4。

通过以上一些经典求导练习题的解答,我们可以巩固和应用求导运算的方法和原则。

导数计算练习题

导数计算练习题

山东省泰安第一中学2011级(数学)学案(选修1)第18课时精品文档导数计算练习题已知f x x 2,则f 3等于()0 B. 2xC. 6D. 9f x 0的导数是()B. 1C.不存在D .不确疋y 饭的导数是( )3x 2B. ^x 2C. 1D . 2-323#x曲线 y x n 在x 2处的导数是12,则n 等于()1B. 2C . 3D . 4若f x 奴,则f 1等于(B.-C. 3D .-33y x 2的斜率等于2的切线方程是( )2x y 1 0 B. 2x y 1 0 或 2x y 12x y 1 0D. 2x y 0在曲线y x 2上的切线的倾斜角为一 的点是()1、 A.2、 A.3、A. 4、 A. 5、A. 6、A. C. 7、4 0,0 B. 2,48、 (理科) sinx 是可导函数,则 y x 等于(16A. f sin xB. f sin xcosxC. f sinx sinxD. f cosx cosx9、(理科)函数y 223x 2的导数是(6x C. 8 2 x 3x 26x 1x 3x 26x山东省泰安第一中学2011级(数学)学案(选修1)第18课时精品文档10、曲线y 4x X3在点1, 3处的切线方程是(A. y 7x 4B. y 7x 2C. y X 4D. y11、点在曲线23上移动’设点处切线的倾斜角为,则角的取值范围是()A.0,—2 0,- U 乞2 4D.12、求函数y 1 2x2在点X 1处的导数。

13、求在抛物线2y X上横坐标为3的点的切线方程。

14、求曲线y 疔上点(1,1)处的切线方程。

15、求下列各函数的导数(1) 3X22~~2XX3(仮1)(十1)(x 1)72?山东省泰安第一中学2011级(数学)学案(选修1)第18课时⑺ y (X a)(x b)16、求下列各函数的导数x n in Xlog^/x5x1 x1 2(6)17、求下列各函数的导数精品文档(1) xin X(1) xsin x cosx山东省泰安第一中学2011级(数学)学案(选修1)第18课时y x 2si n1健康文档 放心下载 放心阅读x8 2 x 3x 218、 (理科) 求下列各函数的导数 (1) (12x5 x ) (23x 2)j1 5x 2T x 2~a 2lOg a (1 X 2)In x 2(8) sin nx (9) ・ nsin x(10)y sin nx (11)y, X In tan- 2精品文档(12)。

导数的计算练习题

导数的计算练习题

导数的概念及运算知识与方法:1. 常见基本初等函数的导数公式和:0'=C (C 为常数); 1)'(-=n n nx x , n ∈N +; x x cos )'(sin =;x x sin )'(cos -=;x x e e =)'(; a a a x x ln )'(=; xx 1)'(ln =; 111(l o g )l o g ln a a x e x a x '=⋅=. 2.常用导数运算法则:法则1 )()()]()(['''x v x u x v x u ±=±. 法则2 [()()]'()()()'()u x v x u x v x u x v x '=+ . 法则3 )0)(()()()()()(])()([2≠'-'='x v x v x v x u x v x u x v x u 3.复合函数的导数法则:设函数u =g (x )在点x 处有导数()x u g x ''=,函数f (u )在点x 处的u 处有导数()u y f u ''=;则复合函数y =f [(x )]在点x 处也有导数,且.x u x y y u '''=⋅也可简述为:复合函数对自变量的导数,等于已知函数对中间变量的导数乘以中间变量对自变量的导数.1. 下列求导运算正确的是 ( )e x x xx x A x 3x 222log 3)D.(3 -2xsinx )cosx (x C. 2ln 1)B.(log 11)1.(='='='+='+2. 3(21)y x =+在0x =处的导数是 ( )A. 0B. 1C. 3D. 63. 函数n m mx y -=2的导数为34x y =',则 ( )A.m = 1,n = 2B.m =-1,n=2C.m =-1,n =-2D.m =1,n =-2 4.已知2)3(,2)3(-='=f f 则3)(32lim3--→x x f x x 的值为 ( )A. -4B. 0C. 8D. 不存在5.一点沿直线运动,如果由始点起经过t 秒后的距离为43215243s t t t =-+,那么速度为零的时刻是( )A .1秒末 B .0秒 C .4秒末 D .0,1,4秒末6.过原点作曲线y =e x 的切线,则切点的坐标为 ,切线的斜率为 。

导数概念练习题

导数概念练习题

导数概念练习题导数是微积分的一个重要概念,它描述了函数在某一点处的变化率,即函数在该点处的斜率。

导数的概念在许多学科中都有广泛的应用,如物理学、工程学、经济学等。

下面是一些导数概念的练习题,帮助大家更好地理解这个概念。

已知函数f(x) = x^2 + 2x + 1,求f'(x)。

已知函数f(x) = sin(x),求f'(x)。

已知函数f(x) = log(x),求f'(x)。

已知函数f(x) = e^x,求f'(x)。

已知函数f(x) = x^n,求f'(x)。

已知函数f(x) = x/ln(x),求f'(x)。

解:f'(x) = (ln(x)-1)/(ln(x))^2已知函数f(x) = arctan(x),求f'(x)。

已知函数f(x) = e^(arctan(x)),求f'(x)。

解:f'(x) = e^(arctan(x))*(1/(1+x^2))已知函数f(x) = sin(e^x),求f'(x)。

解:f'(x) = cos(e^x)*e^x已知函数f(x) = x^sin(x),求f'(x)。

解:f'(x) = sin(x)x^(sin(x)-1)(cos(x)-1)以上练习题可以帮助大家理解导数的概念,并掌握一些常见的导数计算方法。

导数是数学中一个非常重要的概念,它描述了一个函数在某一点处的变化率。

求导数是数学分析中的一个基本技能,也是解决许多实际问题中必不可少的工具。

下面是一些求导数的练习题,供大家参考。

(1)θ=sinx,y=cosx。

(x)=3xx=0为函数的极值点。

随着素质教育的不断推进,高中数学课程中引入了越来越多的抽象概念,其中导数概念便是之一。

导数概念作为微积分的核心概念之一,对于高中生而言,是一个极具挑战性的知识点。

因此,本文旨在探讨高中学生对导数概念的理解情况,为教师提供有益的教学参考,从而提高学生对导数概念的理解和掌握程度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导数计算练习题
Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998
导数计算练习题
1、已知()2f x x =,则()3f '等于( )
A .0
B .2x
C .6
D .9
2、()0f x =的导数是( )
A .0
B .1
C .不存在
D .不确定
3、y =的导数是( )
A .23x
B .21
3x C .12- D
4、曲线n y x =在2x =处的导数是12,则n 等于( )
A .1
B .2
C .3
D .
4
5、若()f x =()1f '等于( )
A .0
B .13-
C .3
D .1
3
6、2y x =的斜率等于2的切线方程是( )
A .210x y -+=
B .210x y -+=或210x y --=
C .210x y --=
D .20x y -=
7、在曲线2y x =上的切线的倾斜角为4π
的点是( )
A .()0,0
B .()2,4
C .11,416⎛⎫
⎪⎝⎭
D .11,24⎛⎫ ⎪⎝⎭
8、(理科)设()sin y f x =是可导函数,则x y '等于( )
A .()sin f x '
B .()sin cos f x x '⋅
C .()sin sin f x x '⋅
D .()cos cos f x x '⋅
9、(理科)函数()22423y x x =-+的导数是( )
A .()2823x x -+
B .()2216x -+
C .()()282361x x x -+-
D .()()242361x x x -+-
10、曲线34y x x =-在点()1,3--处的切线方程是( )
A .74y x =+
B .72y x =+
C .4y x =-
D .2y x =-
11、点P 在曲线323
y x x =-+上移动,设点P 处切线的倾斜角为α,则角α的取值范围是( )
A .0,2π⎡⎤⎢⎥⎣⎦
B .30,,24ππ
π⎡⎤⎡
⎫⎪⎢⎥⎢⎣⎦⎣⎭ C .3,4ππ⎡⎫
⎪⎢⎣⎭ D .
3,24ππ⎛⎤ ⎥⎝⎦
12、求函数212y x =-在点1x =处的导数。

13、求在抛物线2y x =上横坐标为3的点的切线方程。

14、求曲线y =上点(1,1)处的切线方程。

15、求下列各函数的导数
(1) 235y x x =-+
(2) 1
y x =+(3) 2
22
2x y x =+
(4) 3
y
=
(5) 1)y
=-
(6) (y x =+(7) ()()y x a x b =--
16、求下列各函数的导数
(1)ln y x x =
(2)ln n y x x =
(3)log a y =(4)1
1x y x +=-
(5)2
51x y x =+ (6)232x y x x =-
- 17、求下列各函数的导数
(1)sin cos y x x x =+
(2)1cos x
y x =-
(3)tan tan y x x x =-
(4)5sin 1cos x
y x =+
18、(理科)求下列各函数的导数
(1)25(1)y x =+
(2)2(23y x =+
(3)y =(4)
y = (5) 2log (1)a y x =+
(6) y =
(7) ln
y = (8) sin y nx =
(9) sin n y x =
(10) sin n y x = (11) ln tan 2
x y = (12)21sin
y x x =健康文档 放心下载 放心阅读。

相关文档
最新文档