初二级竞赛专题因式分解

合集下载

八年级数学竞赛专题复习 因式分解的常用方法(无答案)

八年级数学竞赛专题复习   因式分解的常用方法(无答案)

因式分解的常用方法把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解。

因式分解的方法多种多样,现将初中阶段因式分解的常用方法总结如下: 一、提公因式法.如多项式),(c b a m cm bm am ++=++其中m 叫做这个多项式各项的公因式, m 既可以是一个单项式,也可以是一个多项式.【例1】分解因式322x x x -- 解:原式()221x x x =--二、运用公式法.运用公式法,即用))((,)(2),)((223322222b ab a b a b a b a b ab a b a b a b a +±=±±=+±-+=- 写出结果.【例2】分解因式2244a ab b ++ 解:原式()22a b =+三、分组分解法.(一)分组后能直接提公因式 【例3】分解因式:bn bm an am +++分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a ,后两项都含有b ,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。

解:原式=)()(bn bm an am +++=)()(n m b n m a +++ 每组之间还有公因式! =))((b a n m ++思考:此题还可以怎样分组?此类型分组的关键:分组后,每组内可以提公因式,且各组分解后,组与组之间又有公因式可以提。

【例4】分解因式:bx by ay ax -+-5102解法一:第一、二项为一组 解法二:第一、四项为一组;第三、四项为一组。

第二、三项为一组。

解:原式=)5()102(bx by ay ax -+- 原式=)510()2(by ay bx ax +-+- =)5()5(2y x b y x a --- =)2(5)2(b a y b a x --- =)2)(5(b a y x -- =)5)(2(y x b a --练习1:分解因式255m n mn m +--解:原式()()()()255555m m mn n m m n m m n m =--+=---=--(二)分组后能直接运用公式 【例5】分解因式:ay ax y x ++-22分析:若将第一、三项分为一组,第二、四项分为一组,虽然可以提公因式,但提完后就能继续分解,所以只能另外分组。

因式分解—2024全国初中数学重点高中自招竞赛试题精选精编(解析版)

因式分解—2024全国初中数学重点高中自招竞赛试题精选精编(解析版)

因式分解学校:___________姓名:___________班级:___________考号:___________一、填空题1(2024·全国·八年级竞赛)若x=1,则1+x+x(1+x)+x(1+x)2+x(1+x)3+⋅⋅⋅+x(1+x)2013+x(1+ x)2014=.【答案】22015【分析】本题考查了提取公因式法,整式化简求值,熟练掌握提取公因式法是解答本题的关键.将所求代数式反复提取公因式(x+1),得到(1+x)2015,再将x=1代入即得答案.【详解】解:当x=1时,原式=(1+x)[1+x+x(1+x)+x(1+x)2+x(1+x)3+⋅⋅⋅+x(1+x)2012+x(1+x)2013]=(1+x)2[1+x+x(1+x)+x(1+x)2+x(1+x)3+⋅⋅⋅+x(1+x)2011+x(1+x)2012]=⋯=1+x2015=22015.故答案为:22015.2(2024·全国·七年级竞赛)若a、b是正整数,且756a=b3,则a的最小值是.【答案】98【分析】本题主要考查了因式分解、有理数乘方等知识点,掌握因式分解的应用是解题的关键.先将756因式分解,然后表示出a的最小值即可解答.【详解】解:∵756=33×22×7,756a=b3,∴a=b3756=b333×22×7,∴a min=2×72=98.故答案为98.3(2024·全国·八年级竞赛)已知a、b为正整数,且满足ab+a+b=2011,则满足条件的有序实数对(a, b)的组数是.【答案】4【分析】本题主要考查因式分解的应用,将ab+a+b+1=2012变形为a+1b+1=22×503,根据a、b为正整数得a+1≥2,b+1≥2,再分类讨论即可求解【详解】解:∵ab+a+b+1=2012,∴a+1b+1=22×503,又a、b为正整数,∴a+1≥2,b+1≥2,∴a+1=2b+1=1006,a+1=4b+1=503,a+1=503b+1=4,a+1=1006b+1=2,共4组,即有序实数对(a,b)共有4组.4(2024·全国·八年级竞赛)设a2+2a-1=0,b4-2b2-1=0,且1-ab2≠0,则ab2+b2-3a+12a2015=.【答案】-1【分析】本题考查了分式的化简求值,将a 2+2a -1=0与b 4-2b 2-1=0的差进行因式分解,得到a +b 2 a -b 2+2 =0,推出a 与b 的关系,并判断其是否满足1-ab 2≠0,最后将其代入ab 2+b 2-3a +12a2015中化简求解,即可解题.【详解】解:a 2+2a -1 -b 4-2b 2-1 =0,a +b 2 a -b 2+2 =0,若a -b 2+2=0,则b 2=a +2,则1-ab 2=1-a a +2 =-a 2+2a -1 =0,矛盾.所以a +b 2=0,即b 2=-a ,所以ab 2+b 2-3a +12a 2015=-a 2-a -3a +12a 2015=-a 2+2a +2a -12a 2015=-2a 2a 2015=-1.故答案为:-1.5(2024·全国·八年级竞赛)若m 2=n +2015,n 2=m +2015m ≠n ,则m 3-2mn +n 3的值为.【答案】-2015【分析】本题考查整式的化简求值,利用m 2=n +2015与n 2=m +2015m ≠n 的差,结合平方差公式进行因式分解,得出m +n =-1,将m 3-2mn +n 3变形为含m +n 的式子,再将m +n =-1代入式子,即可解题.【详解】解:由题知,m 2-n 2=n -m ,则m +n =-1,又m 3-2mn +n 3=m m 2-n -n m -n 2 =2015m +n =-2015.故答案为:-2015.6(2024·全国·八年级竞赛)已知多项式a 2+7ab +kb 2-5a +43b -24分解因式后能够变成两个含有a 、b 的一次因式的乘积,则实数k 的值为.【答案】-18【分析】本题考查了因式分解,多项式乘以多项式,二元一次方程组的求解,根据因式分解结合多项式乘以多项式可得m +n =7①,mn =k ②,3n -8m =43③,利用加减消元法求解二元一次方程组得到m ,n 的值,即可求出最后结果.【详解】解:a 2+7ab +kb 2-5a +43b -24可分解为a +bm +3 a +nb -8 ,∴a +bm +3 a +nb -8=a 2+mab +3a +nab +mnb 2+3nb -8a -8mb -24=a 2+m +n ab +mnb 2-5a +3n -8m b -24,∵a 2+7ab +kb 2-5a +43b -24,∴m +n =7①,mn =k ②,3n -8m =43③,③-3×①得:-8m -3m =43-3×7,解得:m =-2,将m =-2代入①得:n =9,∴k =mn =-18,故答案为:-18.7(2024·全国·八年级竞赛)已知:x =2012t +801,y =2012t +803,z =2012t +805,则x 2+y 2+z 2-xy -yz -zx =.【答案】12【分析】本题主要考查了因式分解的应用,先求出x -y =-2,y -z =-2,x -z =-4,再根据完全平方公式把原式因式分别为12x -y 2+y -z 2+z -x 2,据此代值计算即可.【详解】解:∵x =2012t +801,y =2012t +803,z =2012t +805,∴x -y =-2,y -z =-2,x -z =-4x 2+y 2+z 2-xy -yz -zx=12x 2-2xy +y 2 +12y 2-2yz +z 2 +12x 2-2xz +z 2 =12x -y 2+y -z 2+z -x 2=12-2 2+-2 2+-4 2=124+4+16 =12,故答案为:12.8(2024·全国·八年级竞赛)分解因式:1-m 2-n 2+2mn =.【答案】(1+m -n )(1-m +n )【分析】本题考查了分组分解法进行因式分解,利用添括号把1-m 2-n 2+2mn 后三项放一起,得到1-m 2-2mn +n 2,利用完全平方公式进行因式分解,得到1-m -n 2,再利用平方差公式因式分解即可求解,掌握分组分解法是解题的关键.【详解】解:原式=1-m -n 2,=1+m -n 1-m +n ,故答案为:1+m -n 1-m +n .9(2024·全国·七年级竞赛)若2x -3 +y -2 2=0,则x 2-2xy +y 2=.【答案】14/0.25【分析】根据非负数的性质求出x =32,y =2.再把字母的值代入x 2-2xy +y 2=x -y 2进行求解即可,此题考查了求代数式的值、完全平方公式和非负数的性质,求出字母的值是解题的关键.【详解】解:∵2x -3 +y -2 2=0,2x -3 ≥0,y -2 2≥0,∴2x -3 =0,y -2 2=0,∴2x -3=0,y -2=0,∴x =32,y =2.∴x 2-2xy +y 2=x -y 2=32-2 2=14,故答案为:1410(2024·全国·八年级竞赛)已知△ABC 的三边为a 、b 、c ,且满足1a -1b +1c =1a -b +c,则△ABC 的形状为.【答案】等腰三角形【分析】本题考查因式分解,等腰三角形的判定,先将分式变形得出bc -ac +ab abc =1a -b +c,得出abc =a -b +c ab -c a -b ,再进行因式分解,进而得出a =b 或b =c ,即可得出答案.【详解】∵1a -1b +1c =1a -b +c,∴bc -ac +ab abc =1a -b +c,∴abc =a -b +c ab -c a -b=ab a -b -c a -b 2+abc -c 2a -b ,a -b ab -c a -b -c 2=0,a -b ab -ac +bc -c 2 =0,∴a -b b -c a +c =0,∴a =b 或b =c .故答案为:等腰三角形.11(2024·全国·八年级竞赛)已知a 2+b 2=2,x 2+y 2=1003,则多项式(ax +by )2+(bx -ay )2的值为.【答案】2006【分析】本题考查了整体代入求多项式的值,整式的混合运算,分组法因式分解等知识.先将(ax +by )2+(bx -ay )2进行计算得到a 2x 2+b 2x 2+b 2y 2+a 2y 2,再利用分组因式分解得到a 2+b 2 x 2+y 2 ,整体代入即可求解.【详解】解:(ax +by )2+(bx -ay )2=a 2x 2+b 2y 2+2abxy +b 2x 2+a 2y 2-2abxy =a 2x 2+b 2x 2+b 2y 2+a 2y 2=x 2a 2+b 2 +y 2a 2+b 2 =a 2+b 2 x 2+y 2 =2×1003=2006.12(2015·全国·八年级竞赛)若n 为整数,且n 2+9n +30是自然数,则n =.【答案】-14或-7或-2或5【分析】本题主要考查了因式分解的应用,解二元一次方程组,设n 2+9n +30=p (p 为非负整数),则可推出2n +9 2+39=4p 2,进而得到2p +2n +9 2p -2n -9 =39,再由题意可得2p +2n +9和2p -2n -9都是整数,再由39=-1×-39 =1×39,由此得到2p +2n +9=12p -2n -9=39或2p +2n +9=392p -2n -9=1 或2p +2n +9=32p -2n -9=13 或2p +2n +9=132p -2n -9=3 ,解方程组即可得到答案.【详解】解:设n 2+9n +30=p (p 为非负整数),∴n 2+9n +30=p 2,∴4n 2+36n +120=4p 2∴2n +9 2+39=4p 2,∴4p 2-2n +9 2=39,∴2p +2n +9 2p -2n -9 =39,∵n ,p 都为整数,∴2p +2n +9和2p -2n -9都是整数,∵39=1×39=3×13∴2p+2n+9=12p-2n-9=39或2p+2n+9=392p-2n-9=1或2p+2n+9=32p-2n-9=13或2p+2n+9=132p-2n-9=3,解得p=10n=-14或p=10n=5或p=4n=-7或p=4n=-2∴n=-14或-7或-2或5,故答案为:-14或-7或-2或5.13(2024·全国·九年级竞赛)分解因式:a2-b2-2a+1=.【答案】(a-1+b)(a-1-b)【分析】先分组,得到(a2-2a+1)-b2,运用完全平方公式变形得到(a-1)2-b2,再根据平方差公式分解因式.【详解】a2-b2-2a+1=(a2-2a+1)-b2=(a-1)2-b2=(a-1+b)(a-1-b),故答案为:(a-1+b)(a-1-b).【点睛】此题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解,因式分解常用的方法有:提公因式法,公式法,十字相乘法,分组分解法,因式分解必须分解到每个因式都不能分解为止.14(2024·全国·八年级竞赛)正整数a、b满足ab+a+b=90,则ab=.【答案】72【分析】本题考查因式分解的应用,根据条件可得a+1b+1=91,然后由a、b为正整数,可得a+1>1且b+1>1,进而求出a,b的值,代入求值即可.【详解】解:∵ab+a+b=90,∴ab+a+b+1=91,即a+1b+1=91,又∵a、b为正整数,∴a+1>1且b+1>1∴a+1=7b+1=13,a+1=13b+1=7,解得:a=6 b=12或a=12b=6,∴ab=6×12=72,故答案为:72.15(2024·全国·八年级竞赛)分解因式:2x3-12x2y+18xy2=.【答案】2x x-3y2【分析】本题主要考查提公因式法,公式法分解因式,先提取公因式2x,再运用完全平方公式进行分解因式即可求解,掌握分解因式的方法是解题的关键.【详解】解:2x3-12x2y+18xy2=2x(x2-6xy+9y2)=2x x-3y2,故答案为:2x x-3y2.二、单选题16(2024·全国·八年级竞赛)若a=20072+20072×20082+20082,则关于a的说法正确的是( ).A.是正整数,而且是偶数B.是正整数,而且是奇数C.不是正整数,而是无理数D.无法确定【答案】B【分析】设n=2007,将根号下的整式通过加添项凑成完全平方式,去掉根号,再根据整式的性质进行判断正负性和奇偶性,本题考查了运用完全平方公式分解因式,解题的关键是:熟练掌握完全平方公式,及加添项的分解因式技巧.【详解】设n=2007,a=n2+n2n+12+n+12=n2-2n n+1+n+12+2n n+1+n2n+12=n+1-n2+2n n+1+n n+12=1+2n n+1+n n+12=1+n n+12=1+n n+1∵n n+1是偶数,∴1+n n+1是奇数,选项B符合题意,故选:B.17(2024·全国·九年级竞赛)任意正整数n都能够分解成两个正整数的乘积,若相乘的这两个正整数之差的绝对值最小,则分别记为a、b a≤b,并规定f n=ab.例如:f6 =23,f7 =17,f12=34,现有下列说法:①f2 =12;②f24=38;③若n是一个完全平方数,则f n =1;④若n是一个完全立方数,即n=a3(a是正整数),则f n=1a.其中正确的有( ).A.1个B.2个C.3个D.4个【答案】B【分析】此题主要考查了完全平方数,分解因数,新定义的理解和应用,掌握分解因数的方法是解本题的关键.①将2分解因数,进而找出2的两个因数即可得出结论;②将24分解因数,进而找出24的两个因数即可得出结论;③根据题意找出n的符合题意的分解即可得出结论;;④利用“相乘的这两个正整数之差的绝对值最小”举出反例,进而确定此说法错误即可.【详解】解:①∵2=1×2,∴f2 =12,此说法正确;②24可以分解成1×24,2×12,3×8或4×6,因为24-1>12-2>8-3>6-4,所以4×6是24的符合题意的分解,所以f24=23,故错误;③∵n是一个完全平方数,设n=x2x>0,∴x×x是n的符合题意的分解,则f n =1,此说法正确;④若n是一个完全立方数,即n=a3(a是正整数),∵a是正整数,如64=43=8×8,f64=88≠18,则f n =1a不一定成立,此说法错误.综上所述,有两个正确,故答案为:B .18(2024·全国·八年级竞赛)三位数abc 的平方的末三位数恰好是abc ,这样的三位数abc有()A.0个B.1个C.2个D.多于2个【答案】C【分析】本题考查分解因式的应用,掌握提取公因式分解是解题的关键.【详解】由题意知abc 2-abc =abc abc-1 是1000的倍数,∵1000=8×125,abc ,abc-1=1,∴(1)8整除abc 且125整除abc -1 ;(2)125整除abc 且8整除(abc-1),由(1)得abc =376,由(2)得abc=625,∴共有两个,故选C .19(2024·全国·八年级竞赛)已知实数m 、n 、p 满足m 2-2p =7,n 2-6m =-17,p 2+2n =-1,则m +n +p 的值等于( ).A.2 B.4 C.3 D.5【答案】C【分析】本题考查了因式分解的完全平方公式,代数式求值,熟练掌握完全平方公式是解答本题的关键,先将三式相加,并移项配方成三个完全平方式,即可得到答案.【详解】将m 2-2p =7,n 2-6m =-17,p 2+2n =-1三式相加,得m 2-2p +n 2-6m +p 2+2n =7-17-1整理得m 2-6m +9+n 2+2n +1+p 2-2p +1=0即(m -3)2+(n +1)2+(p -1)2=0∴m =3,n =-1,p =1,∴m +n +p =3.20(2024·全国·八年级竞赛)已知在△ABC 中,a 、b 、c 是三边的长,且a 2-12b 2-c 2+4ab +8bc =0,那么b a +c 的值是( ).A.14 B.12 C.34 D.1【答案】B【分析】本题考查完全平方公式,平方差公式因式分解,根据完全平方公式变形得出a +2b 2-4b -c 2=0,得出a +2b +4b -c a +2b -4b +c =0,求出a -2b +c =0,再代入求值即可得出答案.【详解】解:∵a 2-12b 2-c 2+4ab +8bc =0,∴a 2+4ab +4b 2 -16b 2-8bc +c 2 =0,a +2b2-4b -c 2=0,a +2b +4b -c a +2b -4b +c =0,∵a +b -c >0,∴a +6b -c ≠0,∴a -2b +c =0,∴b a +c =12.故选:B .21(2024·全国·八年级竞赛)已知a 、b 、c 分别是△ABC 的三边,则a 2+b 2-c 2 2-4a 2b 2为()A.正数B.负数C.零D.无法确定【答案】B【分析】本题主要考查了因式分解,三角形三边的关系,先利用平方差公式和完全平方公式把原式分解因式得到a +b +c a +b -c a -b +c a -b -c ,再根据三角形中,任意两边之差小于第三边,任意两边之和大于第三边推出a 2+b 2-c 2 2-4a 2b 2<0即可得到答案.【详解】解:a 2+b 2-c 2 2-4a 2b2=a 2+b 2+2ab -c 2 a 2+b 2-2ab -c 2 =a +b 2-c 2 a -b 2-c 2=a +b +c a +b -c a -b +c a -b -c ,∵a 、b 、c 分别是△ABC 的三边,∴a +b +c >0,a +b -c >0,a +c -b >0,a -b -c <0,∴a +b +c a +b -c a -b +c a -b -c <0,∴a 2+b 2-c 2 2-4a 2b 2<0故选:B .22(2024·全国·八年级竞赛)若多项式x 2+mx +12因式分解得x +3 x +n ,则m +n =()A.8B.9C.10D.11【答案】D【分析】本题考查了因式分解的定义和多项式的乘法运算.根据因式分解的定义,列出等式,利用等式性质分别求出m 和n 的值,再求解即可.【详解】解:由已知,x +3 x +n =x 2+3+n x +3n =x 2+mx +12故可得,3+n =m ,3n =12,∴n =4,m =3+n =7,∴m +n =4+7=11,故选:D三、解答题23(2024·全国·八年级竞赛)有n (n ≥2且为整数)支乒乓球队进行单循环赛,每支参赛队同其他各队都进行一场比赛.如果用a i 和b i 分别表示第i (i =1,2,3,⋯,n )支球队在整个赛程中胜与负的局数求证:a 21+a 22+⋯+a 2n =b 21+b 22+⋯+b 2n .【答案】见解析【分析】本题考查了等式证明问题,利用平方差公式进行因式分解,作差比较是非常常用的方法.找出比赛规则下隐含的条件a i +b i =n -1,且a 1+a 2+⋯+a n =b 1+b 2+⋯+b n 是证题的关键.【详解】证明:∵比赛没有平局,且所有球队胜的总场数与负的总场数相等,∴a i +b i =n -1,且a 1+a 2+⋯+a n =b 1+b 2+⋯+b n .∴a 2i -b 2i =a i +b i a i -b i =n -1 a i -b i ,∵a 21+a 22+⋯+a 2n -b 21+b 22+⋯+b 2n =a 21-b 21 +a 22-b 22 +⋯+a 2n -b 2n=a 1+b 1 a 1-b 1 +a 2+b 2 a 2-b 2 +⋯+a n +b n a n -b n=n -1 a 1-b 1 +n -1 a 2-b 2 +⋯+n -1 a n -b n =n -1 a 1-b 1+a 2-b 2+⋯+a n -b n =n -1 a 1+a 2+⋯+a n -b 1-b 2-⋯-b n =n -1 a 1+a 2+⋯+a n -b 1+b 2+⋯+b n =0;∴a 21+a 22+⋯+a 2n =b 21+b 22+⋯+b 2n .24(2024·全国·九年级竞赛)中国古代数学家秦九韶和古希腊数学家海伦分别提出了一般三角形面积的计算方法:①S =14a 2b 2-a 2+b 2-c 222;②S =p p -a p -b p -c .(其中a 、b 、c 为三角形的三边长,p =a +b +c2,S 为面积)(1)请证明:14a 2b 2-a 2+b 2-c 222=p p -a p -b p -c ;(2)如图,线段MN =6,点B 在MN 上,且MB =4,点A 是线段MB 上一点,分别以A 、B 为圆心,AM 、BN 的长为半径画圆,⊙A 和⊙B 交于点P ,直接写出△PAB 的面积的最大值:.【答案】(1)见解析(2)3【分析】本题考查了乘法公式的应用,二次函数的图象与性质.(1)对被开方数的字母因式利用乘法公式变形即可完成;(2)设AB =a ,则PA =4-a ,利用S =p p -a p -b p -c 表示出面积,再利用二次函数知识即可求解.【详解】(1)证明:∵14a 2b 2-a 2+b 2-c 222 =14ab +a 2+b 2-c 22 ab -a 2+b 2-c 22=14×(a +b )2-c 22×c 2-(a -b )22=14×(a +b +c )(a +b -c )2×(c +a -b )(c -a +b )2=a +b +c 2⋅a +b -c 2⋅c +a -b 2⋅c +b -a 2,∵p =a +b +c 2,∴a +b -c =2p -2c ,c +a -b =2p -2b ,c +b -a =2p -2a ,∴a +b +c 2⋅a +b -c 2⋅c +a -b 2⋅c +b -a 2=p (p -c )(p -b )(p -a ),∴14a 2b 2-a 2+b 2-c 22 2=p p -a p -b p -c ;(2)解:设AB=a,则PA=MB-AB=4-a,PB=BN=MN-MB=2,∴p=12MN=3,∴S=33-a3-23-4-a=3(-a2+4a-3)=-3(a-2)2+3,而对于-3(a-2)2+3,当a=2时,它有最大值3,∴S有最大值3;故答案为:3.25(2024·全国·八年级竞赛)在实数范围内因式分解:(1)-2x3+26x2y-3xy2;(2)a4+a2-6;(3)4(b+1)4-4b2-8b-3.【答案】(1)-x2x-3y2(2)a+2a-2a2+3(3)2b2+4b+12【分析】本题考查了实数范围内的因式分解,熟练掌握因式分解的方法是解答本题的关键.(1)先提取公式因,再利用完全平方公式的方法进行因式分解即可;(2)利用完全平方公式和平方差公式的方法进行因式分解即可;(3)利用完全平方公式的方法进行因式分解即可.【详解】(1)解:-2x3+26x2y-3xy2=-x2x2-26xy+3y2=-x2x2-26xy+3y2=-x2x-3y2;(2)a4+a2-6=a2-2a2+3=a+2a-2a2+3;(3)4(b+1)4-4b2-8b-3=4b+14-4b+12+1=2b+12-12=2b2+4b+12.26(2024·全国·八年级竞赛)已知a=xm2+1+2008,b=xm2+1+2009,c=xm2+1+2010,且abc=6,求abc+bca+cab-1a-1b-1c的值.【答案】1 2【分析】本题考查了分式化简求值,根据题意得出a-b=-1,b-c=-1,c-a=2是解题关键.【详解】解:依题意得:a-b=-1,b-c=-1,c-a=2,原式=a2+b2+c2-bc-ca-ababc=2a2+2b2+2c2-2bc-2ca-2ab2abc=a-b2+b-c2+c-a22abc=-12+-12+222×6=12.27(2024·全国·八年级竞赛)设a,b,c,d都是正整数,且a5=b4,c3=d2,c-a=33,求d+b的值.【答案】5937或375【分析】本题主要考查了幂的乘方、因式分解的应用、解方程组等知识点,灵活运用相关知识成为解题的关键.设a5=b4=m20,c3=d2=n6,则a=m4,b=m5,c=n2,d=n3,进而得到c-a=n2-m4=33;再根据题意因式分解可得n+m2n-m2=33×1=11×3,再分为n+m2=33n-m2=1或n+m2=11n-m2=3两种情况求得m、n,进而求得b、d,最后求和即可.【详解】解:设a5=b4=m20,c3=d2=n6,则a=m4,b=m5,c=n2,d=n3.∵c-a=n2-m4=33,∴n+m2n-m2=33×1=11×3.∵a,b,c,d均为正整数,∴m,n也为正整数,∴n+m2=33n-m2=1或n+m2=11n-m2=3,∴n=17m=4或n=7m=2,∴b=1024d=4913或b=32d=343,∴b+d=5937或375.故答案为:5937或375.28(2024·全国·八年级竞赛)已知a+b=3,x+y=5,ax+by=7.求a2+b2xy+ab x2+y2的值.【答案】56【分析】本题主要考查了因式分解的应用,先把所求式子因式分解成ay+bxax+by,再由一直条件式得到ax+ay+bx+by=15,进而求出ay+bx=8,据此可得答案.【详解】解:a2+b2xy+ab x2+y2=a2xy+b2xy+abx2+aby2=ax ay+bx+by bx+ay=ay+bxax+by,∵a+b=3,x+y=5∴a+bx+y=15,∴ax+ay+bx+by=15,∵ax+by=7,∴ay+bx=8,∴原式=8×7=56.29(2024·全国·八年级竞赛)已知:4a-b是11的倍数,其中a,b是整数,求证:40a2+2ab-3b2能被121整除.【答案】证明见解析【分析】本题考查了因式分解,整数的整除性,熟练掌握因式分解是解答本题的关键.设4a-b=11n,则b =4a-11n,先将代数式40a2+2ab-3b2因式分解,再将b的值代入并化简得121n2a-3n,即能证明结论.【详解】设4a-b=11n,则b=4a-11n,40a2+2ab-3b2=4a-b10a+3b=11n10a+34a-11n=121n2a-3n.故40a2+2ab-3b2能被121整除.30(2021·全国·九年级竞赛)因式分解x4+x2+2ax+1-a2【答案】x2+x+1-ax2-x+a+1【分析】利用“配方法”即先配方,再利用平方差公式分解即可.【详解】解:x4+x2的特点,添上x2,-x2两项,原式=x4+2x2+1-x2+2ax-a2=x2+12-(x-a)2=x2+x+1-ax2-x+a+1【点睛】本题考查了因式分解,解题的关键是掌握完全平方公式,平方差公式.。

初中竞赛专题训练 因式分解的公式法、配项法和拆项法

初中竞赛专题训练  因式分解的公式法、配项法和拆项法

因式分解的公式法、配项法和拆项法一.概念公式1.因式分解公式(1)平方差公式 22()()a b a b a b -+-=;(2)完全平方公式 2222()a ab b a b ±+±=.(3)立方和公式 3322()()a b a b a ab b ++-+=;(4)立方差公式 3322()()a b a b a ab b --++=;(5)三数和平方公式22222()()a b c ab bc ac a b c +++++++=; (6)两数和立方公式3223333()a a b ab b a b ++++=; (7)两数差立方公式3223333()a a b ab b a b -+--=. 2.配项法3.拆项法二.公式法例3 分解因式:⑴ab b a -5;⑵)()(44n m b n m a +-+.例4分解因式:(1) 38x +(2) 30.12527b -例5分解因式:(1) 34381a b b -(2) 76a ab -例6. 若,求的值。

例7. 已知:,求2016ω的值。

三.配项法拆项法换元法等例8.把下列各式因式分解⑴444x y +⑵x 4+4⑶4224x x y y ++练习: 把下列各式因式分解⑴x 4+x 2+1⑵x 4+64⑶x 4-7x-2⑷66x y -例9. 把下列各式因式分解⑴2222()(10)25a b a b ++-+⑵(1)(3)(5)(x 7)9x x x ++++-,⑶(1)(2)(3)(x 4)24x x x -----⑷22(x 1)(x 2)12x x ++++-⑸22(x 32)(4x 83)90x x ++++-⑹2222(x 48)3(x 48)2x x x x ++++++例10把下列各式因式分解⑴3333a b c abc ++-⑵33386x y z xyz ---;⑶15141321x x x x x ++++++.例11.证明四个连续正整数的积与1的和是一个完全平方:四.作业练习一.1、代数式x 4-81,x 2-9,x 2-6x +9的公因式为( )A 、x +3B 、(x +3)2C 、x -3D 、x 2+92、若9x 2-m x y +16y 2是一个完全平方式,则m=( )A 、12B 、24C 、±12D 、±243、若-b ax x -+221分解成)7)(4(21+--x x ,则a 、b 的值为( )A 、3或28B 、3和-28C 、-23和14D 、-23和-144、下列变形是因式分解的是( )A 、x 2+x -1=(x +1)(x -1)+x ,B 、(3a 2-b 2)2=9a 4-6a 2b 2+b 4C 、x 4-1=(x 2+1)(x +1)(x -1),D 、3x 2+3x =3x 2(1+x 1)5、若81-k x 4=(9+ 4x 2)(3+2x )(3-2x ),则k 的值为( )A 、1B 、4C 、8D 、166、下列多项式不能用完全平方公式分解的是( )A 、91a 2+32ab +b 2 B 、a 2-6a +36 C 、-4x 2+12x y -9y 2D 、x 2+x +41 7、在有理数范围内把y 9-y 分解因式,设结果中因式的个数为n,则n=(), A 、3, B 、4 C 、5 D 、68、下列多项式不含因式a+b 的是( )A 、a 2+2ab +b 2B 、a 2-b 2C 、a 2+b 2D 、(a+b)49、下列分解因式错误的是( )A 、4x 2-12x y+9y 2=(2x-3y)2,B 、3x 2y+6x y 2+3y 3=3y(x 2+2x y+y 2)=3y(x +y)2C 、5x 2-125y 4=5(x -y 2)(x +y 2)D 、-81x 2+y 2=-(9x -y)(9x +y)10、下列分解因式正确的是( )A 、(x -3)2-y 2=x 2-6x +9-y 2,B 、a 2-9b 2=(a+9b)(a -9b)C 、4x 6-1=(2x 3+1)(2x 3-1),D 、2x y -x 2-y 2=(x -y)211:分解因式:⑴22)(4)(n m n m --+;⑵ 36)(12)(2+---n m n m⑶2242499xy x y --⑷22222)(624b a b a +-12.分解因式:⑴ 22)(9))(2(6)2(n m n m m n n m +++--- .⑵ 4224168b b a a +-;⑶ 1)2(2)2(222++++m m m m .⑷ 63244914b b a a +-⑸ 1)2(6)2(92+---b a b a13.已知2=+b a ,求222121b ab a ++的值.14.已知1=-y x ,2=xy ,求32232xy y x y x +-的值.15. 已知x 和y 满足方程组⎩⎨⎧=-=+346423y x y x ,求代数式2249y x -的值。

因式分解(竞赛题)含问题详解

因式分解(竞赛题)含问题详解

因式分解运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.例1 分解因式:(1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4;(2)x3-8y3-z3-6xyz;解 (1)原式=-2x n-1y n(x4n-2x2ny2+y4)=-2x n-1y n[(x2n)2-2x2ny2+(y2)2]=-2x n-1y n(x2n-y2)2=-2x n-1y n(x n-y)2(x n+y)2.(2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z)=(x-2y-z)(x2+4y2+z2+2xy+xz-2yz).例2 分解因式:a3+b3+c3-3abc.本题实际上就是用因式分解的方法证明前面给出的公式(6).分析我们已经知道公式(a+b)3=a3+3a2b+3ab2+b3的正确性,现将此公式变形为a3+b3=(a+b)3-3ab(a+b).这个式也是一个常用的公式,本题就借助于它来推导.解原式=(a+b)3-3ab(a+b)+c3-3abc=[(a+b)3+c3]-3ab(a+b+c)=(a+b+c)[(a+b)2-c(a+b)+c2]-3ab(a+b+c)=(a+b+c)(a2+b2+c2-ab-bc-ca).说明公式(6)是一个应用极广的公式,用它可以推出很多有用的结论,例如:我们将公式(6)变形为a3+b3+c3-3abc显然,当a+b+c=0时,则a3+b3+c3=3abc;当a+b+c>0时,则a3+b3+c3-3abc≥0,即a3+b3+c3≥3abc,而且,当且仅当a=b=c时,等号成立.如果令x=a3≥0,y=b3≥0,z=c3≥0,则有等号成立的充要条件是x=y=z.这也是一个常用的结论.※※变式练习1分解因式:x15+x14+x13+…+x2+x+1.分析这个多项式的特点是:有16项,从最高次项x15开始,x的次数顺次递减至0,由此想到应用公式a n-b n来分解.解因为x16-1=(x-1)(x15+x14+x13+…x2+x+1),所以说明在本题的分解过程中,用到先乘以(x-1),再除以(x-1)的技巧,这一技巧在等式变形中很常用.2.拆项、添项法因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解.例3 分解因式:x3-9x+8.分析本题解法很多,这里只介绍运用拆项、添项法分解的几种解法,注意一下拆项、添项的目的与技巧.解法1 将常数项8拆成-1+9.原式=x3-9x-1+9=(x3-1)-9x+9=(x-1)(x2+x+1)-9(x-1)=(x-1)(x2+x-8).解法2 将一次项-9x拆成-x-8x.原式=x3-x-8x+8=(x3-x)+(-8x+8)=x(x+1)(x-1)-8(x-1)=(x-1)(x2+x-8).解法3 将三次项x3拆成9x3-8x3.原式=9x3-8x3-9x+8=(9x3-9x)+(-8x3+8)=9x(x+1)(x-1)-8(x-1)(x2+x+1)=(x-1)(x2+x-8).解法4 添加两项-x2+x2.原式=x3-9x+8=x3-x2+x2-9x+8=x2(x-1)+(x-8)(x-1)=(x-1)(x2+x-8).说明由此题可以看出,用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无一定之规,主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分解诸方法中技巧性最强的一种.※※变式练习1分解因式:(1)x9+x6+x3-3;(2)(m2-1)(n2-1)+4mn;(3)(x+1)4+(x2-1)2+(x-1)4;(4)a3b-ab3+a2+b2+1.解 (1)将-3拆成-1-1-1.原式=x9+x6+x3-1-1-1=(x9-1)+(x6-1)+(x3-1)=(x3-1)(x6+x3+1)+(x3-1)(x3+1)+(x3-1)=(x3-1)(x6+2x3+3)=(x-1)(x2+x+1)(x6+2x3+3).(2)将4mn拆成2mn+2mn.原式=(m2-1)(n2-1)+2mn+2mn=m2n2-m2-n2+1+2mn+2mn=(m2n2+2mn+1)-(m2-2mn+n2)=(mn+1)2-(m-n)2=(mn+m-n+1)(mn-m+n+1).(3)将(x2-1)2拆成2(x2-1)2-(x2-1)2.原式=(x+1)4+2(x2-1)2-(x2-1)2+(x-1)4=[(x+1)4+2(x+1)2(x-1)2+(x-1)4]-(x2-1)2=[(x+1)2+(x-1)2]2-(x2-1)2=(2x2+2)2-(x2-1)2=(3x2+1)(x2+3).(4)添加两项+ab-ab.原式=a3b-ab3+a2+b2+1+ab-ab=(a3b-ab3)+(a2-ab)+(ab+b2+1)=ab(a+b)(a-b)+a(a-b)+(ab+b2+1)=a(a-b)[b(a+b)+1]+(ab+b2+1)=[a(a-b)+1](ab+b2+1)=(a2-ab+1)(b2+ab+1).说明(4)是一道较难的题目,由于分解后的因式结构较复杂,所以不易想到添加+ab-ab,而且添加项后分成的三项组又无公因式,而是先将前两组分解,再与第三组结合,找到公因式.这道题目使我们体会到拆项、添项法的极强技巧所在,同学们需多做练习,积累经验.3.换元法换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰.例4 分解因式:(x2+x+1)(x2+x+2)-12.分析将原式展开,是关于x的四次多项式,分解因式较困难.我们不妨将x2+x看作一个整体,并用字母y来替代,于是原题转化为关于y的二次三项式的因式分解问题了.解设x2+x=y,则原式=(y+1)(y+2)-12=y2+3y-10=(y-2)(y+5)=(x2+x-2)(x2+x+5)=(x-1)(x+2)(x2+x+5).说明本题也可将x2+x+1看作一个整体,比如今x2+x+1=u,一样可以得到同样的结果,有兴趣的同学不妨试一试.例5 分解因式:(x2+3x+2)(4x2+8x+3)-90.分析先将两个括号内的多项式分解因式,然后再重新组合.解原式=(x+1)(x+2)(2x+1)(2x+3)-90=[(x+1)(2x+3)][(x+2)(2x+1)]-90=(2x2+5x+3)(2x2+5x+2)-90.令y=2x2+5x+2,则原式=y(y+1)-90=y2+y-90=(y+10)(y-9)=(2x2+5x+12)(2x2+5x-7)=(2x2+5x+12)(2x+7)(x-1).说明对多项式适当的恒等变形是我们找到新元(y)的基础.※※变式练习1.分解因式:(x2+4x+8)2+3x(x2+4x+8)+2x2.解设x2+4x+8=y,则原式=y2+3xy+2x2=(y+2x)(y+x)=(x2+6x+8)(x2+5x+8)=(x+2)(x+4)(x2+5x+8).说明由本题可知,用换元法分解因式时,不必将原式中的元都用新元代换,根据题目需要,引入必要的新元,原式中的变元和新变元可以一起变形,换元法的本质是简化多项式.1.双十字相乘法分解二次三项式时,我们常用十字相乘法.对于某些二元二次六项式(ax2+bxy+cy2+dx+ey+f),我们也可以用十字相乘法分解因式.例如,分解因式2x2-7xy-22y2-5x+35y-3.我们将上式按x降幂排列,并把y当作常数,于是上式可变形为2x2-(5+7y)x-(22y2-35y+3),可以看作是关于x的二次三项式.对于常数项而言,它是关于y的二次三项式,也可以用十字相乘法,分解为即:-22y2+35y-3=(2y-3)(-11y+1).再利用十字相乘法对关于x的二次三项式分解所以,原式=[x+(2y-3)][2x+(-11y+1)]=(x+2y-3)(2x-11y+1).上述因式分解的过程,实施了两次十字相乘法.如果把这两个步骤中的十字相乘图合并在一起,可得到下图:它表示的是下面三个关系式:(x+2y)(2x-11y)=2x2-7xy-22y2;(x-3)(2x+1)=2x2-5x-3;(2y-3)(-11y+1)=-22y2+35y-3.这就是所谓的双十字相乘法.用双十字相乘法对多项式ax2+bxy+cy2+dx+ey+f进行因式分解的步骤是:(1)用十字相乘法分解ax2+bxy+cy2,得到一个十字相乘图(有两列);(2)把常数项f分解成两个因式填在第三列上,要求第二、第三列构成的十字交叉之积的和等于原式中的ey,第一、第三列构成的十字交叉之积的和等于原式中的dx.例1 分解因式:(1)x2-3xy-10y2+x+9y-2;(2)x2-y2+5x+3y+4;(3)xy+y2+x-y-2;(4)6x2-7xy-3y2-xz+7yz-2z2.解 (1)原式=(x-5y+2)(x+2y-1).(2)原式=(x+y+1)(x-y+4).(3)原式中缺x2项,可把这一项的系数看成0来分解.原式=(y+1)(x+y-2).(4)原式=(2x-3y+z)(3x+y-2z).说明 (4)中有三个字母,解法仍与前面的类似.2.求根法我们把形如an x n+an-1x n-1+…+a1x+a(n为非负整数)的代数式称为关于x的一元多项式,并用f(x),g(x),…等记号表示,如f(x)=x2-3x+2,g(x)=x5+x2+6,…,当x=a时,多项式f(x)的值用f(a)表示.如对上面的多项式f(x) f(1)=12-3×1+2=0;f(-2)=(-2)2-3×(-2)+2=12.若f(a)=0,则称a为多项式f(x)的一个根.定理1(因式定理) 若a是一元多项式f(x)的根,即f(a)=0成立,则多项式f(x)有一个因式x-a.根据因式定理,找出一元多项式f(x)的一次因式的关键是求多项式f(x)的根.对于任意多项式f(x) 要求出它的根是没有一般方法的,然而当多项式f(x)的系数都是整数时,即整系数多项式时,经常用下面的定理来判定它是否有有理根.定理2的根,则必有p是a0的约数,q是an的约数.特别地,当a=1时,整系数多项式f(x)的整数根均为an的约数.我们根据上述定理,用求多项式的根来确定多项式的一次因式,从而对多项式进行因式分解.例2 分解因式:x3-4x2+6x-4.分析这是一个整系数一元多项式,原式若有整数根,必是-4的约数,逐个检验-4的约数:±1,±2,±4,只有f(2)=23-4×22+6×2-4=0,即x=2是原式的一个根,所以根据定理1,原式必有因式x-2.解法1 用分组分解法,使每组都有因式(x-2).原式=(x3-2x2)-(2x2-4x)+(2x-4)=x2(x-2)-2x(x-2)+2(x-2)=(x-2)(x2-2x+2).解法2 用多项式除法,将原式除以(x-2),所以原式=(x-2)(x2-2x+2).说明在上述解法中,特别要注意的是多项式的有理根一定是-4的约数,反之不成立,即-4的约数不一定是多项式的根.因此,必须对-4的约数逐个代入多项式进行验证.※※变式练习1. 分解因式:9x4-3x3+7x2-3x-2.分析因为9的约数有±1,±3,±9;-2的约数有±1,±为:所以,原式有因式9x2-3x-2.解 9x4-3x3+7x2-3x-2=9x4-3x3-2x2+9x2-3x-2=x2(9x3-3x-2)+9x2-3x-2=(9x2-3x-2)(x2+1)=(3x+1)(3x-2)(x2+1)说明若整系数多项式有分数根,可将所得出的含有分数的因式化为整系数因式,如上题中的因式可以化为9x2-3x-2,这样可以简化分解过程.总之,对一元高次多项式f(x),如果能找到一个一次因式(x-a),那么f(x)就可以分解为(x-a)g(x),而g(x)是比f(x)低一次的一元多项式,这样,我们就可以继续对g(x)进行分解了.3.待定系数法待定系数法是数学中的一种重要的解题方法,应用很广泛,这里介绍它在因式分解中的应用.在因式分解时,一些多项式经过分析,可以断定它能分解成某几个因式,但这几个因式中的某些系数尚未确定,这时可以用一些字母来表示待定的系数.由于该多项式等于这几个因式的乘积,根据多项式恒等的性质,两边对应项系数应该相等,或取多项式中原有字母的几个特殊值,列出关于待定系数的方程(或方程组),解出待定字母系数的值,这种因式分解的方法叫作待定系数法.例3 分解因式:x2+3xy+2y2+4x+5y+3.分析由于(x2+3xy+2y2)=(x+2y)(x+y),若原式可以分解因式,那么它的两个一次项一定是x+2y+m和x+y+n的形式,应用待定系数法即可求出m和n,使问题得到解决.解设x2+3xy+2y2+4x+5y+3=(x+2y+m)(x+y+n)=x2+3xy+2y2+(m+n)x+(m+2n)y+mn,比较两边对应项的系数,则有解之得m=3,n=1.所以原式=(x+2y+3)(x+y+1).说明本题也可用双十字相乘法,请同学们自己解一下.※※变式练习1.分解因式:x4-2x3-27x2-44x+7.分析本题所给的是一元整系数多项式,根据前面讲过的求根法,若原式有有理根,则只可能是±1,±7(7的约数),经检验,它们都不是原式的根,所以,在有理数集内,原式没有一次因式.如果原式能分解,只能分解为(x2+ax+b)(x2+cx+d)的形式.解设原式=(x2+ax+b)(x2+cx+d)=x4+(a+c)x3+(b+d+ac)x2+(ad+bc)x+bd,所以有由bd=7,先考虑b=1,d=7有所以原式=(x2-7x+1)(x2+5x+7).说明由于因式分解的唯一性,所以对b=-1,d=-7等可以不加以考虑.本题如果b=1,d=7代入方程组后,无法确定a,c的值,就必须将bd=7的其他解代入方程组,直到求出待定系数为止.本题没有一次因式,因而无法运用求根法分解因式.但利用待定系数法,使我们找到了二次因式.由此可见,待定系数法在因式分解中也有用武之地.四、巩固练习:1. 分解因式:(x2+xy+y2)-4xy(x2+y2).分析本题含有两个字母,且当互换这两个字母的位置时,多项式保持不变,这样的多项式叫作二元对称式.对于较难分解的二元对称式,经常令u=x+y,v=xy,用换元法分解因式.解原式=[(x+y)2-xy]2-4xy[(x+y)2-2xy].令x+y=u,xy=v,则原式=(u2-v)2-4v(u2-2v)=u4-6u2v+9v2=(u2-3v)2=(x2+2xy+y2-3xy)2=(x2-xy+y2)2.五、真题精解:1)已知多项式ax3+bx2+cx+d除以x-1时的余数是1,除以x-2时的余数是3,那么,它除以(x-1)(x-2)时所得的余数是什么?(第12届“希望杯”试题)解:设原式=(x-1)(x-2)(ax+k)+(mx+n),当x=1时,原式=1,即m+n=1;当x=2时,原式=3,即2m+n=3,解此关于m、n的方程组得m=2,n=-1,故原式除以(x-1)(x-2)时的余数为x-12)k为何值时,多项式x2-2xy+ky2+3x-5y+2能分解成两个一次因式的积?(天津市竞赛试题)解:原式中不含y的项为x2+3x+2可分解为 (x+1)(x+2),故可设原式=[(x+1)+ay][(x+2)+by],将其展开得:x2+(a+b)xy+aby2+3x+(2a+b)y+2,与原式对比系数得:a+b=-2, ab=k, 2a+b=-5,解之得a=-3,b=1,k=-3 3)如果x3+ax2+bx+8有两个因式x+1和x+2,求a+b的值。

八年级数学(竞赛)因式分解

八年级数学(竞赛)因式分解

第一讲 分解方法的延拓——换元法与主元法因式分解是针对多项式的一种恒等变形,提公因式法、公式法,分组分解法是因式分解的基本方法,通常根据多项式的项数来选择分解的方法.一些复杂的因式分解问题.常用到换元法和主元法.所谓换元,即对结构比较复杂的多项式,若把其中某些部分看成一个整体,用新字母代替(即换元),则能使复杂的问题简单化、明朗化,在减少多项式项数,降低多项式结构复杂程度等方面有独到作用.所谓主元,即在解多变元问题时,选择其中某个变元为主要元素,视其他变元为常量,将原式重新整理成关于这个字母的按降幂排列的多项式,则能排除字母间的干扰,简化问题的结构.例题求解【例1】分解因式:10)3)(4(2424+++-+x x x x = .(第12届“五羊杯”竞赛题)思路点拨 视24x x +为一个整体.用一个新字母代替,从而能简化式子的结构.【例2】 多项式xyz y z x y z x x z z y y x 2222222-++-+-因式分解后的结果是( ).A .(y -z)(x+y)(x -z)B .(y -z)(x -y)(x +z)C . (y+z)(x 一y)(x+z)D .(y 十z)(x+y)(x 一z) (上海市竞赛题)思路点拨 原式是一个复杂的三元三次多项式,直接分解有一定困难,把原式整理成关于某个字母按降幂排列的多项式,改变其结构,寻找分解的突破口.【例3】把下列各式分解因式:(1)(x+1)(x +2)(x+3)(x+6)+ x 2; (天津市竞赛题)(2)1999x 2一(19992一1)x 一1999; (重庆市竞赛题)(3)(x+y -2xy)(x+y -2)+(xy -1)2; (“希望杯”邀请赛试题)(4)(2x -3y)3十(3x -2y)3-125(x -y)3. (第13届“五羊杯”竞赛题)思路点拔 (1)是形如abcd+e 型的多项式,分解这类多项式时,可适当把4个因式两两分组,使得分组相乘后所得的有相同的部分;(2)式中系数较大,不妨把数用字母表示;(3)式中x+y ;xy 多次出现,可引入两个新字母,突出式子特点;(4)式前两项与后一项有密切联系.【例4】把下列各式分解因式:(1)a 2(b 一c)+b 2(c -a)+c 2 (a 一b); (2)x 2+xy -2y 2-x+7y -6.思路点拨 (1)式字母多次数高,可尝试用主元法;(2)式是形如ax 2+bxy+cy 2+dx+ey+f 的二元二次多项式,解题思路宽,用主元法或分组分解法或用待定系数法分解.【例5】证明:对任何整数 x 和y ,下式的值都不会等于33.x 5+3x 4y -5x 3y 2一15x 2y 3+4xy 4+12y 5.(莫斯科奥林匹克八年级试题)思路点拨 33不可能分解为四个以上不同因数的积,于是将问题转化为只需证明原式可分解为四个以上因式的乘积即可.注:分组分解法是因式分解的量本方法,体现了化整体为局部、又统揽全局的思想.如何恰当分组是解题的关键,常见的分组方法有:(1)按字母分组;(2)按次数分组; (3)按系数分组.为了能迅速解决一些与代教式恒等变形相关的问题,读者因熟悉如下多项式分解因式后的结果:(1)))((2233b ab a b a b a +±=± ;(2)))((3222333ac bc ab c b a c b a abc c b a ---++++=-++学历训练1.分解因式:(x 2+3x)2-2(x 2+3x)-8= .2.分解因式:(x 2+x+1)(x 2+x+2)-12= .3.分解因式:x 2-xy -2y 2-x -y= .4.已知二次三项式82--mx x 在整数范围内可以分解为两个一次因式的积,则整数m 的可能取值为 .5.下列各式分解因式后,可表示为一次因式乘积的是( ).A .2727923-+-x x xB .272723-+-x x xC .272734-+-x x xD .279323-+-x x x (第13届“希望杯”邀请赛试题)6.若51-=+b a ,13=+b a ,则53912322+++b ab a 的值为( ). A .92 B .32 C .54 D .0 7.分解因式:(1)(x 2+4x+8)2+3x(x 2+4x+8)+2x 2; (2)(2x 2-3x+1)2一22x 2+33x -1;(3)x 4+2001x 2+2000x+2001; (4)(6x -1)(2 x -1)(3 x -1)( x -1)+x 2;(5)bc ac ab c b a 54332222+++++; (6)613622-++-+y x y xy x .8.分解因式:22635y y x xy x ++++= .9.分解因式:333)()2()2(y x y x -----= .10.613223+-+x x x 的因式是( )A .12-xB .2+xC .3-xD .12+xE .12+x11.已知c b a >>,M=a c c b b a 222++,N=222ca bc ab ++,则M 与N 的大小关系是( )A .M<NB .M> NC .M =ND .不能确定12.把下列各式分解因式:(1)22212)16)(1(a a a a a ++-++; (2)91)72)(9)(52(2---+a a a ; (黄冈市竞赛题)(3)2)1()21(2)3()1(-+-++-+++y x y x xy xy xy ; (天津市竞赛题)(4)4242410)13)(14(x x x x x ++++-;(第13届“五羊杯”竞赛题)(5)z y xy xyz y x z x x 222232242-++--. (天津市竞赛题)17.已知乘法公式:))((43223455b ab b a b a a b a b a +-+-+=+; ))((43223455b ab b a b a a b a b a ++++-=-. 利用或者不利用上述公式,分解因式:12468++++x x x x (“祖冲之杯”邀请赛试题)18.已知在ΔABC 中,010616222=++--bc ab c b a (a 、b 、c 是三角形三边的长).求证:b c a 2=+第二讲 分解方法的延拓——配方法与待定系数法在数学课外活动中,配方法与待定系数法也是分解因式的重要方法。

初中数学 竞赛中常用的因式分解

初中数学 竞赛中常用的因式分解

板块一:换元【例 1】 分解因式:2222(48)3(48)2x x x x x x ++++++【例 2】 (“希望杯”培训试题)分解因式:22(52)(53)12x x x x ++++-【巩固】 分解因式:(1)(3)(5)(7)15x x x x +++++【巩固】 分解因式:(1)(2)(3)(4)24a a a a -----【巩固】 分解因式:22(1)(2)12x x x x ++++-【例 3】 证明:四个连续整数的乘积加1是整数的平方.【巩固】 若x ,y 是整数,求证:()()()()4234x y x y x y x y y +++++是一个完全平方数.【例 4】 (湖北黄冈数学竞赛题)分解因式2(25)(9)(27)91a a a +---【巩固】 分解因式22(32)(384)90x x x x ++++-【例 5】 分解因式:22224(31)(23)(44)x x x x x x --+--+-【巩固】 分解因式:2(2)(2)(1)a b ab a b ab +-+-+-【巩固】 分解因式:21(1)(3)2()(1)2xy xy xy x y x y +++-++-+- 【例 6】 (重庆市竞赛题)分解因式:44(1)(3)272x x +-+-【巩固】 分解因式:4444(4)a a ++-板块二:因式定理因式定理:如果x a =时,多项式1110...n n n n a x a x a x a --++++的值为0,那么x a -是该多项式的一个因式.有理根:有理根p c q=的分子p 是常数项0a 的因数,分母q 是首项系数n a 的因数. 【例 7】 分解因式:32252x x x ---【巩固】 分解因式:65432234321x x x x x x ++++++【巩固】 分解因式:43265332x x x x ++--【巩固】 分解因式:322392624x x y xy y -+-【例 8】 分解因式:32()()x a b c x ab bc ca x abc -+++++-【巩固】 分解因式:32()(32)(23)2()l m x l m n x l m n x m n +++-+---+板块三:待定系数法如果两个多项式恒等,则左右两边同类项的系数相等.即,如果 12112112101210n n n n n n n n n n n n a x a x a x a x a b x b x b x b x b --------+++++=+++++那么n n a b =,11n n a b --=,…,11a b =,00a b =.【例 9】 用待定系数法分解因式:51x x ++【巩固】 421x x -+是否能分解成两个整系数的二次因式的乘积?【巩固】 631x x +-能否分解为两个整系数的三次因式的积?【例 10】 分解因式:43223x x x x ++-+ 板块四:轮换式与对称式对称式:x y 、的多项式x y +,xy ,22x y +,33x y +,22x y xy +,…在字母x 与y 互换时,保持不变.这样的多项式称为x y 、的对称式.类似地,关于x y z 、、的多项式x y z ++,222x y z ++,xy yz zx ++,333x y z ++,222222x y x z y z y x z x z y +++++,xyz ,…在字母x y z 、、中任意两字互换时,保持不变. 这样的多项式称为x y z 、的对称式.轮换式:关于x y z 、、的多项式x y z ++,222x y z ++,xy yz zx ++,333x y z ++,222x y y z z x ++,222xy yz zx ++,xyz …在将字母x y z 、、轮换(即将x 换成y ,y 换成z ,z 换成x )时,保持不变.这样的多项式称为x y z 、、的轮换式.显然,关于x y z 、、的对称式一定是x y z 、、的轮换式. 但是,关于x y 、,z 的轮换式不一定是对称式.例如,222x y y z z x ++就不是对称式.次数低于3的轮换式同时也是对称式.两个轮换式(对称式)的和、差、积、商(假定被除式能被除式整除)仍然是轮换式(对称式).【例 11】分解因式:222()()()x y z y z x z x y -+-+- 【例 12】分解因式:222222()()()xy x y yz y z zx z x -+-+- 【例 13】分解因式:24(5)(6)(10)(12)3x x x x x ++++- 【例 14】要使()()()()1348x x x x m -+--+为完全平方式,则常数m 的值为________ 【例 15】分解因式:22(68)(1448)12x x x x +++++ 【例 16】分解因式:22222()4()x xy y xy x y ++-+ 【例 17】分解因式:32252x x x --- 【例 18】分解因式:326116x x x +++ 【例 19】用待定系数法分解:541x x ++ 【例 20】分解因式:333()()()a b c b c a c a b -+-+-。

(完整)初中数学竞赛因式分解专题

(完整)初中数学竞赛因式分解专题

初中数学竞赛专题——因式分解多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍.1.运用公式法在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)a2-b2=(a+b)(a-b);(2)a2±2ab+b2=(a±b)2;(3)a3+b3=(a+b)(a2-ab+b2);(4)a3-b3=(a-b)(a2+ab+b2).下面再补充几个常用的公式:(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);(7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数;(8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数;(9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数.运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.例1 分解因式:(1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4;(2)x3-8y3-z3-6xyz;(3)a2+b2+c2-2bc+2ca-2ab;(4)a7-a5b2+a2b5-b7.解 (1)原式=-2x n-1y n(x4n-2x2ny2+y4)=-2x n-1y n[(x2n)2-2x2ny2+(y2)2]=-2x n-1y n(x2n-y2)2=-2x n-1y n(x n-y)2(x n+y)2.(2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z)=(x-2y-z)(x2+4y2+z2+2xy+xz-2yz).(3)原式=(a2-2ab+b2)+(-2bc+2ca)+c2=(a-b)2+2c(a-b)+c2=(a-b+c)2.本小题可以稍加变形,直接使用公式(5),解法如下:原式=a2+(-b)2+c2+2(-b)c+2ca+2a(-b)=(a-b+c)2(4)原式=(a7-a5b2)+(a2b5-b7)=a5(a2-b2)+b5(a2-b2)=(a2-b2)(a5+b5)=(a+b)(a-b)(a+b)(a4-a3b+a2b2-ab3+b4)=(a+b)2(a-b)(a4-a3b+a2b2-ab3+b4)例2 分解因式:a3+b3+c3-3abc.本题实际上就是用因式分解的方法证明前面给出的公式(6).分析我们已经知道公式(a+b)3=a3+3a2b+3ab2+b3的正确性,现将此公式变形为a3+b3=(a+b)3-3ab(a+b).这个式也是一个常用的公式,本题就借助于它来推导.解原式=(a+b)3-3ab(a+b)+c3-3abc=[(a+b)3+c3]-3ab(a+b+c)=(a+b+c)[(a+b)2-c(a+b)+c2]-3ab(a+b+c)=(a+b+c)(a2+b2+c2-ab-bc-ca).说明公式(6)是一个应用极广的公式,用它可以推出很多有用的结论,例如:我们将公式(6)变形为a3+b3+c3-3abc显然,当a+b+c=0时,则a3+b3+c3=3abc;当a+b+c>0时,则a3+b3+c3-3abc≥0,即a3+b3+c3≥3abc,而且,当且仅当a=b=c时,等号成立.如果令x=a3≥0,y=b3≥0,z=c3≥0,则有等号成立的充要条件是x=y=z.这也是一个常用的结论.例3 分解因式:x15+x14+x13+…+x2+x+1.分析这个多项式的特点是:有16项,从最高次项x15开始,x的次数顺次递减至0,由此想到应用公式a n-b n来分解.解因为x16-1=(x-1)(x15+x14+x13+…x2+x+1),所以说明在本题的分解过程中,用到先乘以(x-1),再除以(x-1)的技巧,这一技巧在等式变形中很常用.2.拆项、添项法因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解.例4 分解因式:x3-9x+8.分析本题解法很多,这里只介绍运用拆项、添项法分解的几种解法,注意一下拆项、添项的目的与技巧.解法1 将常数项8拆成-1+9.原式=x3-9x-1+9=(x3-1)-9x+9=(x-1)(x2+x+1)-9(x-1)=(x-1)(x2+x-8).解法2 将一次项-9x拆成-x-8x.原式=x3-x-8x+8=(x3-x)+(-8x+8)=x(x+1)(x-1)-8(x-1)=(x-1)(x2+x-8).解法3 将三次项x3拆成9x3-8x3.原式=9x3-8x3-9x+8=(9x3-9x)+(-8x3+8)=9x(x+1)(x-1)-8(x-1)(x2+x+1)=(x-1)(x2+x-8).解法4 添加两项-x2+x2.原式=x3-9x+8=x3-x2+x2-9x+8=x2(x-1)+(x-8)(x-1)=(x-1)(x2+x-8).说明由此题可以看出,用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无一定之规,主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分解诸方法中技巧性最强的一种.例5 分解因式:(1)x9+x6+x3-3;(2)(m2-1)(n2-1)+4mn;(3)(x+1)4+(x2-1)2+(x-1)4;(4)a3b-ab3+a2+b2+1.解 (1)将-3拆成-1-1-1.原式=x9+x6+x3-1-1-1=(x9-1)+(x6-1)+(x3-1)=(x3-1)(x6+x3+1)+(x3-1)(x3+1)+(x3-1)=(x3-1)(x6+2x3+3)=(x-1)(x2+x+1)(x6+2x3+3).(2)将4mn拆成2mn+2mn.原式=(m2-1)(n2-1)+2mn+2mn=m2n2-m2-n2+1+2mn+2mn=(m2n2+2mn+1)-(m2-2mn+n2)=(mn+1)2-(m-n)2=(mn+m-n+1)(mn-m+n+1).(3)将(x2-1)2拆成2(x2-1)2-(x2-1)2.原式=(x+1)4+2(x2-1)2-(x2-1)2+(x-1)4=[(x+1)4+2(x+1)2(x-1)2+(x-1)4]-(x2-1)2=[(x+1)2+(x-1)2]2-(x2-1)2=(2x2+2)2-(x2-1)2=(3x2+1)(x2+3).(4)添加两项+ab-ab.原式=a3b-ab3+a2+b2+1+ab-ab=(a3b-ab3)+(a2-ab)+(ab+b2+1)=ab(a+b)(a-b)+a(a-b)+(ab+b2+1)=a(a-b)[b(a+b)+1]+(ab+b2+1)=[a(a-b)+1](ab+b2+1)=(a2-ab+1)(b2+ab+1).说明 (4)是一道较难的题目,由于分解后的因式结构较复杂,所以不易想到添加+ab-ab,而且添加项后分成的三项组又无公因式,而是先将前两组分解,再与第三组结合,找到公因式.这道题目使我们体会到拆项、添项法的极强技巧所在,同学们需多做练习,积累经验.3.换元法换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰.例6 分解因式:(x2+x+1)(x2+x+2)-12.分析将原式展开,是关于x的四次多项式,分解因式较困难.我们不妨将x2+x看作一个整体,并用字母y来替代,于是原题转化为关于y的二次三项式的因式分解问题了.解设x2+x=y,则原式=(y+1)(y+2)-12=y2+3y-10=(y-2)(y+5)=(x2+x-2)(x2+x+5)=(x-1)(x+2)(x2+x+5).说明本题也可将x2+x+1看作一个整体,比如今x2+x+1=u,一样可以得到同样的结果,有兴趣的同学不妨试一试.例7 分解因式:(x2+3x+2)(4x2+8x+3)-90.分析先将两个括号内的多项式分解因式,然后再重新组合.解原式=(x+1)(x+2)(2x+1)(2x+3)-90=[(x+1)(2x+3)][(x+2)(2x+1)]-90=(2x2+5x+3)(2x2+5x+2)-90.令y=2x2+5x+2,则原式=y(y+1)-90=y2+y-90=(y+10)(y-9)=(2x2+5x+12)(2x2+5x-7)=(2x2+5x+12)(2x+7)(x-1).说明对多项式适当的恒等变形是我们找到新元(y)的基础.例8 分解因式:(x2+4x+8)2+3x(x2+4x+8)+2x2.解设x2+4x+8=y,则原式=y2+3xy+2x2=(y+2x)(y+x)=(x2+6x+8)(x2+5x+8)=(x+2)(x+4)(x2+5x+8).说明由本题可知,用换元法分解因式时,不必将原式中的元都用新元代换,根据题目需要,引入必要的新元,原式中的变元和新变元可以一起变形,换元法的本质是简化多项式.例9分解因式:6x4+7x3-36x2-7x+6.解法1 原式=6(x4+1)+7x(x2-1)-36x2=6[(x4-2x2+1)+2x2]+7x(x2-1)-36x2=6[(x2-1)2+2x2]+7x(x2-1)-36x2=6(x2-1)2+7x(x2-1)-24x2=[2(x2-1)-3x][3(x2-1)+8x]=(2x2-3x-2)(3x2+8x-3)=(2x+1)(x-2)(3x-1)(x+3).说明本解法实际上是将x2-1看作一个整体,但并没有设立新元来代替它,即熟练使用换元法后,并非每题都要设置新元来代替整体.解法2原式=x2[6(t2+2)+7t-36]=x2(6t2+7t-24)=x2(2t-3)(3t+8)=x2[2(x-1/x)-3][3(x-1/x)+8]=(2x2-3x-2)(3x2+8x-3)=(2x+1)(x-2)(3x-1)(x+3).例10 分解因式:(x2+xy+y2)-4xy(x2+y2).分析本题含有两个字母,且当互换这两个字母的位置时,多项式保持不变,这样的多项式叫作二元对称式.对于较难分解的二元对称式,经常令u=x+y,v=xy,用换元法分解因式.解原式=[(x+y)2-xy]2-4xy[(x+y)2-2xy].令x+y=u,xy=v,则原式=(u2-v)2-4v(u2-2v)=u4-6u2v+9v2=(u2-3v)2=(x2+2xy+y2-3xy)2 =(x2-xy+y2)2.。

因式分解难题竞赛题

因式分解难题竞赛题

因式分解难题竞赛题一、已知多项式 x4 + ax3 + bx2 + cx + d 的因式分解中含有一个因式 (x - 2)2,且当 x = 1 时,多项式的值为 1。

则下列哪个选项可能是该多项式的因式分解形式?A. (x - 2)2(x2 + 4x + 7)B. (x - 2)2(x2 + 5x + 8)C. (x - 2)2(x2 + 3x + 5)D. (x - 2)2(x2 + 6x + 9)(答案:C)二、多项式 x3 + ax2 + bx + c 分解因式后有一个因式是 x + 1,且当 x = 2 时,多项式值为 0;当 x = -2 时,多项式值为 -27。

下列哪个选项是该多项式的因式分解?A. (x + 1)(x2 - x + 3)B. (x + 1)(x2 - 2x - 3)C. (x + 1)(x2 - 3x + 9)D. (x + 1)(x2 - x - 9)(答案:C)三、多项式 x4 - ax3 + bx2 - ax + 1 在进行因式分解时,有一个因式是 x2 + 1,且常数项为 1。

下列哪个选项可能是该多项式的另一个因式?A. x2 - ax - 1B. x2 - ax + 2C. x2 - ax - 2D. x2 - ax + 3(答案:A)四、已知多项式 2x4 - 11x3 + 19x2 - 11x + 2 可以完全分解,且含有一个二次因式。

下列哪个选项是该多项式的一个因式?A. x2 - 5x + 1B. x2 - 4x + 2C. x2 - 3x + 1D. x2 - 6x + 2(答案:B)五、多项式 x3 + ax2 + bx + c 有一个因式 x - 1,且满足 x = 0 时多项式为 -6,x = 2 时多项式为 0。

下列哪个选项是该多项式的因式分解?A. (x - 1)(x2 + x - 6)B. (x - 1)(x2 + 2x - 6)C. (x - 1)(x2 + 3x - 6)D. (x - 1)(x2 + 4x - 6)(答案:A)六、多项式 x4 + 6x3 + ax2 + bx + c 有一个因式 (x + 1)(x + 2),且常数项 c 为正数。

初二竞赛题数学最难因式分解

初二竞赛题数学最难因式分解

初二竞赛题数学最难因式分解一.填空题(共10小题)1.已知x+y=10,xy=16,则x2y+xy2的值为.2.两位同学将一个二次三项式分解因式,一位同学因看错了一次项系数而分解成2(x﹣1)(x﹣9);另一位同学因看错了常数项分解成2(x﹣2)(x ﹣4),请你将原多项式因式分解正确的结果写出来:.3.若多项式x2+mx+4能用完全平方公式分解因式,则m的值是.4.分解因式:4x2﹣4x﹣3= .5.利用因式分解计算:2022+202×196+982= .6.△ABC三边a,b,c满足a2+b2+c2=ab+bc+ca,则△ABC的形状是.7.计算:12﹣22+32﹣42+52﹣62+…﹣1002+1012= .8.定义运算a★b=(1﹣a)b,下面给出了关于这种运算的四个结论:①2★(﹣2)=3②a★b=b★a③若a+b=0,则(a★a)+(b★b)=2ab④若a★b=0,则a=1或b=0.其中正确结论的序号是(填上你认为正确的所有结论的序号).9.如果1+a+a2+a3=0,代数式a+a2+a3+a4+a5+a6+a7+a8= .10.若多项式x2﹣6x﹣b可化为(x+a)2﹣1,则b的值是.二.解答题(共20小题)11.已知n为整数,试说明(n+7)2﹣(n﹣3)2的值一定能被20整除.12.因式分解:4x2y﹣4xy+y.13.因式分解(1)a3﹣ab2(2)(x﹣y)2+4xy.14.先阅读下面的内容,再解决问题,例题:若m2+2mn+2n2﹣6n+9=0,求m和n的值.解:∵m2+2mn+2n2﹣6n+9=0∴m2+2mn+n2+n2﹣6n+9=0∴(m+n)2+(n﹣3)2=0∴m+n=0,n﹣3=0∴m=﹣3,n=3问题:(1)若x2+2y2﹣2xy+4y+4=0,求xy的值.(2)已知△ABC的三边长a,b,c都是正整数,且满足a2+b2﹣6a﹣6b+18+|3﹣c|=0,请问△ABC是怎样形状的三角形?15.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“和谐数”.如4=22﹣02,12=42﹣22,20=62﹣42,因此4,12,20这三个数都是和谐数.(1)36和2016这两个数是和谐数吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的和谐数是4的倍数吗?为什么?(3)介于1到200之间的所有“和谐数”之和为.16.如图1,有若干张边长为a的小正方形①、长为b宽为a的长方形②以及边长为b的大正方形③的纸片.(1)如果现有小正方形①1张,大正方形③2张,长方形②3张,请你将它们拼成一个大长方形(在图2虚线框中画出图形),并运用面积之间的关系,将多项式a2+3ab+2b2分解因式.(2)已知小正方形①与大正方形③的面积之和为169,长方形②的周长为34,求长方形②的面积.(3)现有三种纸片各8张,从其中取出若干张纸片,每种纸片至少取一张,把取出的这些纸片拼成一个正方形(按原纸张进行无空隙、无重叠拼接),求可以拼成多少种边长不同的正方形.17.(1)有若干块长方形和正方形硬纸片如图1所示,用若干块这样的硬纸片拼成一个新的长方形,如图2.①用两种不同的方法,计算图2中长方形的面积;②由此,你可以得出的一个等式为:.(2)有若干块长方形和正方形硬纸片如图3所示.①请你用拼图等方法推出一个完全平方公式,画出你的拼图;②请你用拼图等方法推出2a2+5ab+2b2因式分解的结果,画出你的拼图.18.已知a+b=1,ab=﹣1,设s1=a+b,s2=a2+b2,s3=a3+b3,…,sn=an+bn(1)计算s2;(2)请阅读下面计算s3的过程:因为a+b=1,ab=﹣1,所以s3=a3+b3=(a+b)(a2+b2)﹣ab(a+b)=1×s2﹣(﹣1)=s2+1= 你读懂了吗?请你先填空完成(2)中s3的计算结果,再用你学到的方法计算s4.(3)试写出sn﹣2,sn﹣1,sn三者之间的关系式;(4)根据(3)得出的结论,计算s6.19.(1)利用因式分解简算:9.82+0.4×9.8+0.04(2)分解因式:4a(a﹣1)2﹣(1﹣a)20.阅读材料:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0∴(m﹣n)2+(n﹣4)2=0,∴(m﹣n)2=0,(n﹣4)2=0,∴n=4,m=4.根据你的观察,探究下面的问题:(1)已知x2+2xy+2y2+2y+1=0,求x﹣y的值.(2)已知△ABC的三边长a、b、c都是正整数,且满足a2+b2﹣6a﹣8b+25=0,求△ABC的最大边c的值.(3)已知a﹣b=4,ab+c2﹣6c+13=0,则a﹣b+c= .21.仔细阅读下面例题,解答问题:例题:已知二次三项式x2﹣4x+m有一个因式是(x+3),求另一个因式以及m的值.解:设另一个因式为(x+n),得x2﹣4x+m=(x+3)(x+n),则x2﹣4x+m=x2+(n+3)x+3n∴n+3=﹣4m=3n 解得:n=﹣7,m=﹣21∴另一个因式为(x﹣7),m的值为﹣21.问题:(1)若二次三项式x2﹣5x+6可分解为(x﹣2)(x+a),则a= ;(2)若二次三项式2x2+bx﹣5可分解为(2x﹣1)(x+5),则b= ;(3)仿照以上方法解答下面问题:已知二次三项式2x2+5x﹣k有一个因式是(2x﹣3),求另一个因式以及k的值.22.分解因式:(1)2x2﹣x;(2)16x2﹣1;(3)6xy2﹣9x2y﹣y3;(4)4+12(x﹣y)+9(x﹣y)2.23.已知a,b,c是三角形的三边,且满足(a+b+c)2=3(a2+b2+c2),试确定三角形的形状.24.分解因式(1)2x4﹣4x2y2+2y4(2)2a3﹣4a2b+2ab2.25.图①是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)图②中的阴影部分的面积为;(2)观察图②请你写出三个代数式(m+n)2、(m﹣n)2、mn之间的等量关系是.(3)若x+y=7,xy=10,则(x﹣y)2= .(4)实际上有许多代数恒等式可以用图形的面积来表示.如图③,它表示了.(5)试画出一个几何图形,使它的面积能表示(m+n)(m+3n)=m2+4mn+3n2.26.已知a、b、c满足a﹣b=8,ab+c2+16=0,求2a+b+c的值.27.已知:一个长方体的长、宽、高分别为正整数a、b、c,且满足a+b+c+ab+bc+ac+abc=2006,求:这个长方体的体积.28.(x2﹣4x)2﹣2(x2﹣4x)﹣15.29.阅读下列因式分解的过程,再回答所提出的问题:1+x+x(x+1)+x(x+1)2=(1+x)[1+x+x(x+1)]=(1+x)2(1+x)=(1+x)3(1)上述分解因式的方法是,共应用了次.(2)若分解1+x+x(x+1)+x(x+1)2+…+x(x+1)2004,则需应用上述方法次,结果是.(3)分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n为正整数).30.对于多项式x3﹣5x2+x+10,如果我们把x=2代入此多项式,发现多项式x3﹣5x2+x+10=0,这时可以断定多项式中有因式(x﹣2)(注:把x=a 代入多项式能使多项式的值为0,则多项式含有因式(x﹣a)),于是我们可以把多项式写成:x3﹣5x2+x+10=(x﹣2)(x2+mx+n),(1)求式子中m、n的值;(2)以上这种因式分解的方法叫试根法,用试根法分解多项式x3﹣2x2﹣13x﹣10的因式.。

(完整版)因式分解(竞赛题)含答案

(完整版)因式分解(竞赛题)含答案

因式分解1、导入:有两个人相约到山上去寻找精美的石头,甲背了满满的一筐,乙的筐里只有一个他认为是最精美的石头。

甲就笑乙:“你为什么只挑一个啊?”乙说:“漂亮的石头虽然多,但我只选一个最精美的就够了。

”甲笑而不语,下山的路上,甲感到负担越来越重,最后不得已不断地从一筐的石头中挑一个最差的扔下,到下山的时候他的筐里结果只剩下一个石头!启示:人生中会有许多的东西,值得留恋,有的时候你应该学会去放弃。

二、知识点回顾:1.运用公式法 在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如: (1)a2-b2=(a+b)(a-b); (2)a2±2ab+b2=(a±b)2; (3)a3+b3=(a+b)(a2-ab+b2); (4)a3-b3=(a-b)(a2+ab+b2). 下面再补充几个常用的公式: (5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2; (6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca); (7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数; (8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数;(9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数. 运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.三、专题讲解 例1 分解因式: (1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4;(2)x3-8y3-z3-6xyz; 解 (1)原式=-2x n-1y n(x4n-2x2ny2+y4) =-2x n-1y n[(x2n)2-2x2ny2+(y2)2] =-2x n-1y n(x2n-y2)2 =-2x n-1y n(x n-y)2(x n+y)2.(2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z) =(x-2y-z)(x2+4y2+z2+2xy+xz-2yz). 例2 分解因式:a 3+b 3+c 3-3abc . 本题实际上就是用因式分解的方法证明前面给出的公式(6). 分析 我们已经知道公式(a+b)3=a 3+3a 2b+3ab 2+b 3 的正确性,现将此公式变形为a 3+b 3=(a+b)3-3ab(a+b). 这个式也是一个常用的公式,本题就借助于它来推导. 解 原式=(a+b)3-3ab(a+b)+c 3-3abc =[(a+b)3+c 3]-3ab(a+b+c) =(a+b+c)[(a+b)2-c(a+b)+c 2]-3ab(a+b+c) =(a+b+c)(a 2+b 2+c 2-ab -bc -ca). 说明 公式(6)是一个应用极广的公式,用它可以推出很多有用的结论,例如:我们将公式(6)变形为a 3+b 3+c 3-3abc 显然,当a+b+c=0时,则a 3+b 3+c 3=3abc ;当a+b+c >0时,则a 3+b 3+c 3-3abc≥0,即a 3+b 3+c 3≥3abc,而且,当且仅当a=b=c 时,等号成立. 如果令x=a 3≥0,y=b 3≥0,z=c 3≥0,则有 等号成立的充要条件是x=y=z .这也是一个常用的结论.※※变式练习 1分解因式:x 15+x 14+x 13+…+x 2+x+1. 分析 这个多项式的特点是:有16项,从最高次项x 15开始,x 的次数顺次递减至0,由此想到应用公式a n -b n 来分解. 解 因为 x 16-1=(x -1)(x 15+x 14+x 13+…x 2+x+1), 所以 说明 在本题的分解过程中,用到先乘以(x -1),再除以(x -1)的技巧,这一技巧在等式变形中很常用. 2.拆项、添项法 因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解. 例3 分解因式:x3-9x+8. 分析本题解法很多,这里只介绍运用拆项、添项法分解的几种解法,注意一下拆项、添项的目的与技巧. 解法1 将常数项8拆成-1+9. 原式=x3-9x-1+9 =(x3-1)-9x+9 =(x-1)(x2+x+1)-9(x-1) =(x-1)(x2+x-8). 解法2 将一次项-9x拆成-x-8x. 原式=x3-x-8x+8 =(x3-x)+(-8x+8) =x(x+1)(x-1)-8(x-1) =(x-1)(x2+x-8). 解法3 将三次项x3拆成9x3-8x3. 原式=9x3-8x3-9x+8 =(9x3-9x)+(-8x3+8) =9x(x+1)(x-1)-8(x-1)(x2+x+1) =(x-1)(x2+x-8). 解法4 添加两项-x2+x2. 原式=x3-9x+8 =x3-x2+x2-9x+8 =x2(x-1)+(x-8)(x-1) =(x-1)(x2+x-8). 说明由此题可以看出,用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无一定之规,主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分解诸方法中技巧性最强的一种.※※变式练习 1分解因式: (1)x9+x6+x3-3; (2)(m2-1)(n2-1)+4mn; (3)(x+1)4+(x2-1)2+(x-1)4; (4)a3b-ab3+a2+b2+1. 解 (1)将-3拆成-1-1-1. 原式=x9+x6+x3-1-1-1 =(x9-1)+(x6-1)+(x3-1) =(x3-1)(x6+x3+1)+(x3-1)(x3+1)+(x3-1) =(x3-1)(x6+2x3+3) =(x-1)(x2+x+1)(x6+2x3+3). (2)将4mn拆成2mn+2mn. 原式=(m2-1)(n2-1)+2mn+2mn =m2n2-m2-n2+1+2mn+2mn =(m2n2+2mn+1)-(m2-2mn+n2) =(mn+1)2-(m-n)2 =(mn+m-n+1)(mn-m+n+1). (3)将(x2-1)2拆成2(x2-1)2-(x2-1)2. 原式=(x+1)4+2(x2-1)2-(x2-1)2+(x-1)4 =[(x+1)4+2(x+1)2(x-1)2+(x-1)4]-(x2-1)2 =[(x+1)2+(x-1)2]2-(x2-1)2 =(2x2+2)2-(x2-1)2=(3x2+1)(x2+3). (4)添加两项+ab-ab. 原式=a3b-ab3+a2+b2+1+ab-ab =(a3b-ab3)+(a2-ab)+(ab+b2+1) =ab(a+b)(a-b)+a(a-b)+(ab+b2+1) =a(a-b)[b(a+b)+1]+(ab+b2+1) =[a(a-b)+1](ab+b2+1) =(a2-ab+1)(b2+ab+1). 说明(4)是一道较难的题目,由于分解后的因式结构较复杂,所以不易想到添加+ab-ab,而且添加项后分成的三项组又无公因式,而是先将前两组分解,再与第三组结合,找到公因式.这道题目使我们体会到拆项、添项法的极强技巧所在,同学们需多做练习,积累经验. 3.换元法 换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰. 例4 分解因式:(x2+x+1)(x2+x+2)-12. 分析将原式展开,是关于x的四次多项式,分解因式较困难.我们不妨将x2+x看作一个整体,并用字母y来替代,于是原题转化为关于y的二次三项式的因式分解问题了. 解设x2+x=y,则 原式=(y+1)(y+2)-12=y2+3y-10 =(y-2)(y+5)=(x2+x-2)(x2+x+5) =(x-1)(x+2)(x2+x+5). 说明本题也可将x2+x+1看作一个整体,比如今x2+x+1=u,一样可以得到同样的结果,有兴趣的同学不妨试一试. 例5 分解因式:(x2+3x+2)(4x2+8x+3)-90. 分析先将两个括号内的多项式分解因式,然后再重新组合. 解原式=(x+1)(x+2)(2x+1)(2x+3)-90 =[(x+1)(2x+3)][(x+2)(2x+1)]-90 =(2x2+5x+3)(2x2+5x+2)-90. 令y=2x2+5x+2,则 原式=y(y+1)-90=y2+y-90 =(y+10)(y-9) =(2x2+5x+12)(2x2+5x-7) =(2x2+5x+12)(2x+7)(x-1). 说明对多项式适当的恒等变形是我们找到新元(y)的基础.※※变式练习 1.分解因式:(x2+4x+8)2+3x(x2+4x+8)+2x2. 解设x2+4x+8=y,则 原式=y2+3xy+2x2=(y+2x)(y+x) =(x2+6x+8)(x2+5x+8) =(x+2)(x+4)(x2+5x+8). 说明由本题可知,用换元法分解因式时,不必将原式中的元都用新元代换,根据题目需要,引入必要的新元,原式中的变元和新变元可以一起变形,换元法的本质是简化多项式. 1.双十字相乘法 分解二次三项式时,我们常用十字相乘法.对于某些二元二次六项式(ax2+bxy+cy2+dx+ey+f),我们也可以用十字相乘法分解因式. 例如,分解因式2x2-7xy-22y2-5x+35y-3.我们将上式按x降幂排列,并把y当作常数,于是上式可变形为2x2-(5+7y)x-(22y2-35y+3), 可以看作是关于x的二次三项式.的二次三项式,也可以用十字相乘法,分解为 对于常数项而言,它是关于y 即:-22y2+35y-3=(2y-3)(-11y+1).的二次三项式分解 再利用十字相乘法对关于x 所以,原式=[x+(2y-3)][2x+(-11y+1)] =(x+2y-3)(2x-11y+1). 上述因式分解的过程,实施了两次十字相乘法.如果把这两个步骤中的十字相乘图合并在一起,可得到下图: 它表示的是下面三个关系式: (x+2y)(2x-11y)=2x2-7xy-22y2; (x-3)(2x+1)=2x2-5x-3;(2y-3)(-11y+1)=-22y2+35y-3. 这就是所谓的双十字相乘法. 用双十字相乘法对多项式ax2+bxy+cy2+dx+ey+f进行因式分解的步骤是: (1)用十字相乘法分解ax2+bxy+cy2,得到一个十字相乘图(有两列); (2)把常数项f分解成两个因式填在第三列上,要求第二、第三列构成的十字交叉之积的和等于原式中的ey,第一、第三列构成的十字交叉之积的和等于原式中的dx. 例1 分解因式: (1)x2-3xy-10y2+x+9y-2; (2)x2-y2+5x+3y+4; (3)xy+y2+x-y-2; (4)6x2-7xy-3y2-xz+7yz-2z2. 解 (1)原式=(x-5y+2)(x+2y-1).(2) 原式=(x+y+1)(x-y+4).来分解. (3)原式中缺x2项,可把这一项的系数看成0 原式=(y+1)(x+y-2). (4) 原式=(2x-3y+z)(3x+y-2z). 说明 (4)中有三个字母,解法仍与前面的类似.2.求根法 我们把形如a n x n+a n-1x n-1+…+a1x+a0(n为非负整数)的代数式称为关于x的一元多项式,并用f(x),g(x),…等记号表示,如 f(x)=x2-3x+2,g(x)=x5+x2+6,…, 当x=a时,多项式f(x)的值用f(a)表示.如对上面的多项式f(x) f(1)=12-3×1+2=0; f(-2)=(-2)2-3×(-2)+2=12. 若f(a)=0,则称a为多项式f(x)的一个根. 定理1(因式定理) 若a是一元多项式f(x)的根,即f(a)=0成立,则多项式f(x)有一个因式x-a. 根据因式定理,找出一元多项式f(x)的一次因式的关键是求多项式f(x)的根.对于任意多项式f(x)要求出它的根是没有一般方法的,然而当多项式f(x)的系数都是整数时,即整系数多项式时,经常用下面的定理来判定它是否有有理根. 定理2 的根,则必有p是a0的约数,q是a n的约数.特别地,当a0=1时,整系数多项式f(x)的整数根均为a n的约数. 我们根据上述定理,用求多项式的根来确定多项式的一次因式,从而对多项式进行因式分解. 例2 分解因式:x3-4x2+6x-4. 分析 这是一个整系数一元多项式,原式若有整数根,必是-4的约数,逐个检验-4的约数:±1,±2,±4,只有 f(2)=23-4×22+6×2-4=0,即x=2是原式的一个根,所以根据定理1,原式必有因式x-2. 解法1 用分组分解法,使每组都有因式(x-2). 原式=(x 3-2x 2)-(2x 2-4x)+(2x-4) =x 2(x-2)-2x(x-2)+2(x-2) =(x-2)(x 2-2x+2). 解法2 用多项式除法,将原式除以(x-2), 所以原式=(x-2)(x 2-2x+2). 说明 在上述解法中,特别要注意的是多项式的有理根一定是-4的约数,反之不成立,即-4的约数不一定是多项式的根.因此,必须对-4的约数逐个代入多项式进行验证.※※变式练习 1. 分解因式:9x 4-3x 3+7x 2-3x-2. 分析 因为9的约数有±1,±3,±9;-2的约数有±1,±为: 所以,原式有因式9x 2-3x-2. 解 9x 4-3x 3+7x 2-3x-2 =9x 4-3x 3-2x 2+9x 2-3x-2 =x 2(9x 3-3x-2)+9x 2-3x-2 =(9x 2-3x-2)(x 2+1) =(3x+1)(3x-2)(x 2+1) 说明 若整系数多项式有分数根,可将所得出的含有分数的因式化为整系数因式,如上题中的因式可以化为9x2-3x-2,这样可以简化分解过程. 总之,对一元高次多项式f(x),如果能找到一个一次因式(x-a),那么f(x)就可以分解为(x-a)g(x),而g(x)是比f(x)低一次的一元多项式,这样,我们就可以继续对g(x)进行分解了. 3.待定系数法 待定系数法是数学中的一种重要的解题方法,应用很广泛,这里介绍它在因式分解中的应用. 在因式分解时,一些多项式经过分析,可以断定它能分解成某几个因式,但这几个因式中的某些系数尚未确定,这时可以用一些字母来表示待定的系数.由于该多项式等于这几个因式的乘积,根据多项式恒等的性质,两边对应项系数应该相等,或取多项式中原有字母的几个特殊值,列出关于待定系数的方程(或方程组),解出待定字母系数的值,这种因式分解的方法叫作待定系数法. 例3 分解因式:x2+3xy+2y2+4x+5y+3. 分析由于 (x2+3xy+2y2)=(x+2y)(x+y), 若原式可以分解因式,那么它的两个一次项一定是x+2y+m和x+y+n的形式,应用待定系数法即可求出m和n,使问题得到解决. 解设 x2+3xy+2y2+4x+5y+3 =(x+2y+m)(x+y+n) =x2+3xy+2y2+(m+n)x+(m+2n)y+mn, 比较两边对应项的系数,则有 解之得m=3,n=1.所以原式=(x+2y+3)(x+y+1). 说明本题也可用双十字相乘法,请同学们自己解一下.※※变式练习 1.分解因式:x4-2x3-27x2-44x+7.分析本题所给的是一元整系数多项式,根据前面讲过的求根法,若原式有有理根,则只可能是±1,±7(7的约数),经检验,它们都不是原式的根,所以,在有理数集内,原式没有一次因式.如果原式能分解,只能分解为(x2+ax+b)(x2+cx+d)的形式. 解设 原式=(x2+ax+b)(x2+cx+d) =x4+(a+c)x3+(b+d+ac)x2+(ad+bc)x+bd, 所以有有 由bd=7,先考虑b=1,d=7 所以 原式=(x2-7x+1)(x2+5x+7). 说明由于因式分解的唯一性,所以对b=-1,d=-7等可以不加以考虑.本题如果b=1,d=7代入方程组后,无法确定a,c的值,就必须将bd=7的其他解代入方程组,直到求出待定系数为止. 本题没有一次因式,因而无法运用求根法分解因式.但利用待定系数法,使我们找到了二次因式.由此可见,待定系数法在因式分解中也有用武之地.四、巩固练习:1. 分解因式:(x2+xy+y2)-4xy(x2+y2). 分析本题含有两个字母,且当互换这两个字母的位置时,多项式保持不变,这样的多项式叫作二元对称式.对于较难分解的二元对称式,经常令u=x+y,v=xy,用换元法分解因式. 解原式=[(x+y)2-xy]2-4xy[(x+y)2-2xy].令x+y=u,xy=v,则 原式=(u2-v)2-4v(u2-2v) =u4-6u2v+9v2 =(u2-3v)2 =(x2+2xy+y2-3xy)2 =(x2-xy+y2)2.五、反思总结。

(完整)初中数学竞赛因式分解专题.doc

(完整)初中数学竞赛因式分解专题.doc

初中数学竞赛专题——因式分解多式的因式分解是代数式恒等形的基本形式之一,它被广泛地用于初等数学之中,是我解决多数学的有力工具.因式分解方法灵活,技巧性,学些方法与技巧,不是掌握因式分解内容所必需的,而且于培养学生的解技能,展学生的思能力,都有着十分独特的作用.初中数学教材中主要介了提取公因式法、运用公式法、分分解法和十字相乘法.本及下一在中学数学教材基上,因式分解的方法、技巧和用作一步的介.1.运用公式法在整式的乘、除中,我学若干个乘法公式,将其反向使用,即因式分解中常用的公式,例如:(1)a 2-b2=(a+b)(a -b) ;(2)a 2± 2ab+b2=(a ± b) 2;(3)a 3 3 2 2 +b =(a+b)(a -ab+b ) ;(4)a 3 3 2 2 -b =(a -b)(a +ab+b ) .下面再充几个常用的公式:(5)a 2+b2+c2+2ab+2bc+2ca=(a+b+c) 2;(6)a 3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);(7)a n-b n=(a -b)(a n-1 +a n-2 b+a n-3b2+⋯ +ab n-2 +b n-1 ) 其中 n 正整数;(8)a n n n-1 n-2b+an-3 2 n-2n-1) ,其中 n 偶数;-b =(a+b)(a -a b -⋯ +ab -b(9)a n+b n=(a+b)(a n-1 -a n-2 b+a n-3 b2 -⋯ -ab n-2+b n-1) ,其中 n 奇数.运用公式法分解因式,要根据多式的特点,根据字母、系数、指数、符号等正确恰当地公式.例 1 分解因式:(1)-2x5n-1 y n+4x3n-1 y n+2-2x n-1 y n+4;(2)x 3-8y3-z3-6xyz ;(3)a 2+b2+c2-2bc+2ca -2ab;7 5 2 2 57(4)a -a b +a b -b .解(1) 原式 =-2x n-1 y n(x 4n-2x2ny2+y4)=-2x n-1 y n[(x 2n) 2 -2x 2ny2+(y 2) 2]=-2x n-1 y n(x 2n-y2) 2n-1 nn 2 n 2=-2x y (x -y) (x +y) .(2) 原式 =x3+( -2y) 3+( -z) 3-3x( -2y)( - Z)=(x -2y-z)(x 2+4y2+z2+2xy+xz -2yz) .(3) 原式 =(a 2 -2ab+b 2)+( -2bc+2ca)+c 21=(a -b) 2+2c(a -b)+c 2=(a -b+c) 2.本小可以稍加形,直接使用公式(5) ,解法如下:原式 =a2+( - b) 2+c2+2( -b)c+2ca+2a( -b)=(a -b+c) 2(4) 原式 =(a 7 5 2 2 5 7 -a b )+(a b -b )=a 5(a 2-b2)+b 5(a 2-b2) =(a 2-b2)(a 5+b5)=(a+b)(a4 3 2 2 3 4 - b)(a+b)(a -a b+a b -ab +b )2 43 2 2 3 4=(a+b) (a - b)(a - a b+a b -ab +b )例2 分解因式: a3+b3+c3-3abc.本上就是用因式分解的方法明前面出的公式(6) .分析我已知道公式(a+b) 3=a3+3a2b+3ab2+b3的正确性,将此公式形3 3 3a +b =(a+b) -3ab(a+b) .个式也是一个常用的公式,本就借助于它来推.3 3解原式 =(a+b) -3ab(a+b)+c -3abc= [ (a+b)3+c 3] -3ab(a+b+c)=(a+b+c) [ (a+b) 2 -c(a+b)+c 2] -3ab(a+b+c)=(a+b+c)(a 2+b2+c2 -ab-bc -ca) .明公式 (6) 是一个用极广的公式,用它可以推出很多有用的,例如:我将公式 (6) 形3 3 3a +b +c -3abc3 3 3;当 a+b+c> 0 3 3 3 3 3 3然,当 a+b+c=0 , a +b +c =3abc , a +b +c -3abc ≥ 0,即 a +b +c ≥3abc,而且,当且当 a=b=c ,等号成立.如果令x=a3≥ 0, y=b3≥ 0, z=c3≥ 0,有等号成立的充要条件是 x=y=z .也是一个常用的.例 3 分解因式: x15 +x14+x13+⋯+x2+x+1.2分析个多式的特点是:有 16 ,从最高次 x15开始, x 的次数次减至 0,由此想到用公式 a n -b n 来分解.解因x16-1=(x -1)(x 15+x14+x 13+⋯ x2+x+1) ,所以明在本的分解程中,用到先乘以(x -1) ,再除以 (x -1) 的技巧,一技巧在等式形中很常用.2.拆、添法因式分解是多式乘法的逆运算.在多式乘法运算,整理、化常将几个同合并一,或将两个符号相反的同相互抵消零.在某些多式分解因式,需要恢复那些被合并或相互抵消的,即把多式中的某一拆成两或多,或者在多式中添上两个符合相反的,前者称拆,后者称添.拆、添的目的是使多式能用分分解法行因式分解.例4 分解因式: x3 -9x+8.分析本解法很多,里只介运用拆、添法分解的几种解法,注意一下拆、添的目的与技巧.解法 1 将常数8 拆成 -1+9.33=(x -1) - 9x+92=(x -1)(x +x+1) -9(x -1)2=(x -1)(x +x-8) .解法 2 将一次 -9x 拆成 -x-8x .原式 =x3-x-8x+83=(x -x)+( -8x+8)=x(x+1)(x -1) -8(x -1)2解法 3 将三次x3拆成 9x3-8x3.原式 =9x 3 3-8x -9x+8=(9x 3 3+8)- 9x)+( -8x2=9x(x+1)(x -1) - 8(x -1)(x+x+1)2=(x -1)(x +x-8) .3解法 4 添加两项 -x 2+x 2. 原式 =x 3 -9x+8322=x -x +x -9x+8 =x 2 (x - 1)+(x -8)(x -1) =(x -1)(x 2+x-8) .说明 由此题可以看出,用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无一定之规, 主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分解诸方法中技巧性最强的一种.例 5 分解因式:(1)x 9+x 6+x 3-3;(2)(m 2-1)(n 2 -1)+4mn ;(3)(x+1)4+(x 2-1) 2+(x -1) 4;(4)a 3b-ab 3+a 2+b 2 +1.解 (1) 将 -3 拆成 -1-1-1.96 3原式 =x +x +x - 1- 1-1=(x 963-1)+(x -1)+(x -1)=(x 363333-1)(x +x +1)+(x -1)(x +1)+(x-1)=(x 3-1)(x6+2x3+3)=(x -1)(x 2+x+1)(x 6+2x 3+3) . (2) 将 4mn 拆成 2mn+2mn .22原式 =(m -1)(n -1)+2mn+2mn2 222=mn -m-n +1+2mn+2mn2222=(m n +2mn+1)-(m -2mn+n)=(mn+1) 22-(m-n)=(mn+m-n+1)(mn -m+n+1).(3) 将 (x 2-1) 2 拆成 2(x 2-1) 2-(x 2-1) 2.原式 =(x+1) 4+2(x 2222+(x -1) 4 -1) -(x -1)=[ (x+1) 422422+2(x+1) (x -1) +(x -1) ] - (x -1)=[ (x+1) 22222+(x - 1) ] -(x -1)22222+1)(x 2+3) .=(2x +2) -(x - 1) =(3x (4) 添加两项 +ab-ab .332 2原式 =a b-ab +a +b +1+ab-ab=(a 3b- ab 3)+(a 2-ab)+(ab+b 2+1)=ab(a+b)(a -b)+a(a -b)+(ab+b 2+1)42=a(a -b) [ b(a+b)+1]+(ab+b+1)2=[a(a -b)+1](ab+b+1)=(a 2 2+ab+1) .-ab+1)(b说明 (4) 是一道较难的题目,由于分解后的因式结构较复杂,所以不易想到添加+ab-ab,而且添加项后分成的三项组又无公因式,而是先将前两组分解,再与第三组结合,找到公因式.这道题目使我们体会到拆项、添项法的极强技巧所在,同学们需多做练习,积累经验.3.换元法换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰.例6 分解因式: (x 2+x+1)(x 2+x+2) -12.分析将原式展开,是关于x 的四次多项式,分解因式较困难.我们不妨将x2+x 看作一个整体,并用字母y 来替代,于是原题转化为关于y 的二次三项式的因式分解问题了.解设 x2+x=y,则原式 =(y+1)(y+2)- 12=y2+3y-10=(y -2)(y+5)=(x2+x-2)(x2+x+5)=(x -1)(x+2)(x2+x+5).说明本题也可将2看作一个整体,比如今2x +x+1 x +x+1=u,一样可以得到同样的结果,有兴趣的同学不妨试一试.例 7 分解因式:(x 2+3x+2)(4x 2+8x+3) -90.分析先将两个括号内的多项式分解因式,然后再重新组合.解原式 =(x+1)(x+2)(2x+1)(2x+3)-90=[(x+1)(2x+3)][(x+2)(2x+1)]-90=(2x 2+5x+3)(2x 2+5x+2) -90.令y=2x2+5x+2,则原式 =y(y+1) -90=y 2+y-90=(y+10)(y -9)=(2x 2+5x+12)(2x 2+5x-7)=(2x 2+5x+12)(2x+7)(x -1) .说明对多项式适当的恒等变形是我们找到新元(y) 的基础.例 8 分解因式:(x 2+4x+8)2+3x(x 2+4x+8)+2x 2.解设 x2+4x+8=y ,则5原式 =y2+3xy+2x 2=(y+2x)(y+x)=(x 2+6x+8)(x 2 +5x+8)=(x+2)(x+4)(x 2+5x+8) .说明由本题可知,用换元法分解因式时,不必将原式中的元都用新元代换,根据题目需要,引入必要的新元,原式中的变元和新变元可以一起变形,换元法的本质是简化多项式.例9 分解因式: 6x4+7x3-36x2-7x+6.解法 1 原式 =6(x 4+1) + 7x(x 2 -1) -36x24 2 2 2 2=6[(x -2x +1)+2x ] +7x(x -1) -36x=6[(x 2 2]+7x(x2 2 - 1)2+2x -1) -36x=6(x 2 2+7x(x2 2 -1) -1) -24x=[2(x 2- 1) -3x][ 3(x 2-1)+8x]=(2x 2 -3x-2)(3x 2+8x-3)=(2x+1)(x -2)(3x -1)(x+3) .2说明本解法实际上是将 x -1 看作一个整体,但并没有设立新元来代替它,即熟练使用换元法后,并非每题都要设置新元来代替整体.解法 2原式 =x2 [6(t 2+2)+7t -36]=x2 (6t 2+7t -24)=x 2(2t - 3)(3t+8)=x2 [2(x -1/x) -3][3(x - 1/x)+8]2 2+8x-3)=(2x - 3x-2)(3x=(2x+1)(x -2)(3x -1)(x+3).例10 分解因式: (x 2+xy+y 2) -4xy(x 2+y2 ) .分析本题含有两个字母,且当互换这两个字母的位置时,多项式保持不变,这样的多项式叫作二元对称式.对于较难分解的二元对称式,经常令 u=x+y ,v=xy ,用换元法分解因式.解原式 =[(x+y) 2 2 2.令 x+y=u, xy=v ,则-xy] -4xy[(x+y) -2xy]2 2 2原式 =(u -v) -4v(u -2v)=u4-6u2v+9v22 2=(u -3v)6=(x 2+2xy+y 2 -3xy) 2=(x 22 2.-xy+y )7。

因式分解(竞赛题)含答案

因式分解(竞赛题)含答案

因式分解运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.例1 分解因式:(1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4;(2)x3-8y3-z3-6xyz;解 (1)原式=-2x n-1y n(x4n-2x2ny2+y4)=-2x n-1y n[(x2n)2-2x2ny2+(y2)2]=-2x n-1y n(x2n-y2)2=-2x n-1y n(x n-y)2(x n+y)2.(2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z)=(x-2y-z)(x2+4y2+z2+2xy+xz-2yz).例2 分解因式:a3+b3+c3-3abc.本题实际上就是用因式分解的方法证明前面给出的公式(6).分析我们已经知道公式(a+b)3=a3+3a2b+3ab2+b3的正确性,现将此公式变形为a3+b3=(a+b)3-3ab(a+b).这个式也是一个常用的公式,本题就借助于它来推导.解原式=(a+b)3-3ab(a+b)+c3-3abc=[(a+b)3+c3]-3ab(a+b+c)=(a+b+c)[(a+b)2-c(a+b)+c2]-3ab(a+b+c)=(a+b+c)(a2+b2+c2-ab-bc-ca).说明公式(6)是一个应用极广的公式,用它可以推出很多有用的结论,例如:我们将公式(6)变形为a3+b3+c3-3abc显然,当a+b+c=0时,则a3+b3+c3=3abc;当a+b+c>0时,则a3+b3+c3-3abc≥0,即a3+b3+c3≥3abc,而且,当且仅当a=b=c时,等号成立.如果令x=a3≥0,y=b3≥0,z=c3≥0,则有等号成立的充要条件是x=y=z.这也是一个常用的结论.※※变式练习1分解因式:x15+x14+x13+…+x2+x+1.分析这个多项式的特点是:有16项,从最高次项x15开始,x的次数顺次递减至0,由此想到应用公式a n-b n来分解.解因为x16-1=(x-1)(x15+x14+x13+…x2+x+1),所以说明在本题的分解过程中,用到先乘以(x-1),再除以(x-1)的技巧,这一技巧在等式变形中很常用.2.拆项、添项法因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解.例3 分解因式:x3-9x+8.分析本题解法很多,这里只介绍运用拆项、添项法分解的几种解法,注意一下拆项、添项的目的与技巧.解法1 将常数项8拆成-1+9.原式=x3-9x-1+9=(x3-1)-9x+9=(x-1)(x2+x+1)-9(x-1)=(x-1)(x2+x-8).解法2 将一次项-9x拆成-x-8x.原式=x3-x-8x+8=(x3-x)+(-8x+8)=x(x+1)(x-1)-8(x-1)=(x-1)(x2+x-8).解法3 将三次项x3拆成9x3-8x3.原式=9x3-8x3-9x+8=(9x3-9x)+(-8x3+8)=9x(x+1)(x-1)-8(x-1)(x2+x+1)=(x-1)(x2+x-8).解法4 添加两项-x2+x2.原式=x3-9x+8=x3-x2+x2-9x+8=x2(x-1)+(x-8)(x-1)=(x-1)(x2+x-8).说明由此题可以看出,用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无一定之规,主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分解诸方法中技巧性最强的一种.※※变式练习1分解因式:(1)x9+x6+x3-3;(2)(m2-1)(n2-1)+4mn;(3)(x+1)4+(x2-1)2+(x-1)4;(4)a3b-ab3+a2+b2+1.解 (1)将-3拆成-1-1-1.原式=x9+x6+x3-1-1-1=(x3-1)(x6+x3+1)+(x3-1)(x3+1)+(x3-1)=(x3-1)(x6+2x3+3)=(x-1)(x2+x+1)(x6+2x3+3).(2)将4mn拆成2mn+2mn.原式=(m2-1)(n2-1)+2mn+2mn=m2n2-m2-n2+1+2mn+2mn=(m2n2+2mn+1)-(m2-2mn+n2)=(mn+1)2-(m-n)2=(mn+m-n+1)(mn-m+n+1).(3)将(x2-1)2拆成2(x2-1)2-(x2-1)2.原式=(x+1)4+2(x2-1)2-(x2-1)2+(x-1)4=[(x+1)4+2(x+1)2(x-1)2+(x-1)4]-(x2-1)2=[(x+1)2+(x-1)2]2-(x2-1)2=(2x2+2)2-(x2-1)2=(3x2+1)(x2+3).(4)添加两项+ab-ab.原式=a3b-ab3+a2+b2+1+ab-ab=(a3b-ab3)+(a2-ab)+(ab+b2+1)=ab(a+b)(a-b)+a(a-b)+(ab+b2+1)=a(a-b)[b(a+b)+1]+(ab+b2+1)=[a(a-b)+1](ab+b2+1)=(a2-ab+1)(b2+ab+1).说明(4)是一道较难的题目,由于分解后的因式结构较复杂,所以不易想到添加+ab-ab,而且添加项后分成的三项组又无公因式,而是先将前两组分解,再与第三组结合,找到公因式.这道题目使我们体会到拆项、添项法的极强技巧所在,同学们需多做练习,积累经验.3.换元法换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰.例4 分解因式:(x2+x+1)(x2+x+2)-12.分析将原式展开,是关于x的四次多项式,分解因式较困难.我们不妨将x2+x看作一个整体,并用字母y来替代,于是原题转化为关于y的二次三项式的因式分解问题了.解设x2+x=y,则原式=(y+1)(y+2)-12=y2+3y-10=(y-2)(y+5)=(x2+x-2)(x2+x+5)说明本题也可将x2+x+1看作一个整体,比如今x2+x+1=u,一样可以得到同样的结果,有兴趣的同学不妨试一试.例5 分解因式:(x2+3x+2)(4x2+8x+3)-90.分析先将两个括号内的多项式分解因式,然后再重新组合.解原式=(x+1)(x+2)(2x+1)(2x+3)-90=[(x+1)(2x+3)][(x+2)(2x+1)]-90=(2x2+5x+3)(2x2+5x+2)-90.令y=2x2+5x+2,则原式=y(y+1)-90=y2+y-90=(y+10)(y-9)=(2x2+5x+12)(2x2+5x-7)=(2x2+5x+12)(2x+7)(x-1).说明对多项式适当的恒等变形是我们找到新元(y)的基础.※※变式练习1.分解因式:(x2+4x+8)2+3x(x2+4x+8)+2x2.解设x2+4x+8=y,则原式=y2+3xy+2x2=(y+2x)(y+x)=(x2+6x+8)(x2+5x+8)=(x+2)(x+4)(x2+5x+8).说明由本题可知,用换元法分解因式时,不必将原式中的元都用新元代换,根据题目需要,引入必要的新元,原式中的变元和新变元可以一起变形,换元法的本质是简化多项式.1.双十字相乘法分解二次三项式时,我们常用十字相乘法.对于某些二元二次六项式(ax2+bxy+cy2+dx+ey+f),我们也可以用十字相乘法分解因式.例如,分解因式2x2-7xy-22y2-5x+35y-3.我们将上式按x降幂排列,并把y当作常数,于是上式可变形为2x2-(5+7y)x-(22y2-35y+3),可以看作是关于x的二次三项式.对于常数项而言,它是关于y的二次三项式,也可以用十字相乘法,分解为即:-22y2+35y-3=(2y-3)(-11y+1).再利用十字相乘法对关于x的二次三项式分解所以,原式=[x+(2y-3)][2x+(-11y+1)]=(x+2y-3)(2x-11y+1).上述因式分解的过程,实施了两次十字相乘法.如果把这两个步骤中的十字相乘图合并在一起,可得到下图:它表示的是下面三个关系式:(x+2y)(2x-11y)=2x2-7xy-22y2;(x-3)(2x+1)=2x2-5x-3;(2y-3)(-11y+1)=-22y2+35y-3.这就是所谓的双十字相乘法.用双十字相乘法对多项式ax2+bxy+cy2+dx+ey+f进行因式分解的步骤是:(1)用十字相乘法分解ax2+bxy+cy2,得到一个十字相乘图(有两列);(2)把常数项f分解成两个因式填在第三列上,要求第二、第三列构成的十字交叉之积的和等于原式中的ey,第一、第三列构成的十字交叉之积的和等于原式中的dx.例1 分解因式:(1)x2-3xy-10y2+x+9y-2;(2)x2-y2+5x+3y+4;(3)xy+y2+x-y-2;(4)6x2-7xy-3y2-xz+7yz-2z2.解 (1)原式=(x-5y+2)(x+2y-1).(2)原式=(x+y+1)(x-y+4).(3)原式中缺x2项,可把这一项的系数看成0来分解.原式=(y+1)(x+y-2).(4)原式=(2x-3y+z)(3x+y-2z).说明 (4)中有三个字母,解法仍与前面的类似.2.求根法我们把形如an x n+an-1x n-1+…+a1x+a(n为非负整数)的代数式称为关于x的一元多项式,并用f(x),g(x),…等记号表示,如f(x)=x2-3x+2,g(x)=x5+x2+6,…,当x=a时,多项式f(x)的值用f(a)表示.如对上面的多项式f(x)f(1)=12-3×1+2=0;f(-2)=(-2)2-3×(-2)+2=12.若f(a)=0,则称a为多项式f(x)的一个根.定理1(因式定理) 若a是一元多项式f(x)的根,即f(a)=0成立,则多项式f(x)有一个因式x-a.根据因式定理,找出一元多项式f(x)的一次因式的关键是求多项式f(x)的根.对于任意多项式f(x) 要求出它的根是没有一般方法的,然而当多项式f(x)的系数都是整数时,即整系数多项式时,经常用下面的定理来判定它是否有有理根.定理2的根,则必有p是a0的约数,q是an的约数.特别地,当a=1时,整系数多项式f(x)的整数根均为an的约数.我们根据上述定理,用求多项式的根来确定多项式的一次因式,从而对多项式进行因式分解.例2 分解因式:x3-4x2+6x-4.分析这是一个整系数一元多项式,原式若有整数根,必是-4的约数,逐个检验-4的约数:±1,±2,±4,只有f(2)=23-4×22+6×2-4=0,即x=2是原式的一个根,所以根据定理1,原式必有因式x-2.解法1 用分组分解法,使每组都有因式(x-2).原式=(x3-2x2)-(2x2-4x)+(2x-4)=x2(x-2)-2x(x-2)+2(x-2)=(x-2)(x2-2x+2).解法2 用多项式除法,将原式除以(x-2),所以原式=(x-2)(x2-2x+2).说明在上述解法中,特别要注意的是多项式的有理根一定是-4的约数,反之不成立,即-4的约数不一定是多项式的根.因此,必须对-4的约数逐个代入多项式进行验证.※※变式练习1. 分解因式:9x4-3x3+7x2-3x-2.分析因为9的约数有±1,±3,±9;-2的约数有±1,±为:所以,原式有因式9x2-3x-2.解 9x4-3x3+7x2-3x-2=9x4-3x3-2x2+9x2-3x-2=x2(9x3-3x-2)+9x2-3x-2=(9x2-3x-2)(x2+1)=(3x+1)(3x-2)(x2+1)说明若整系数多项式有分数根,可将所得出的含有分数的因式化为整系数因式,如上题中的因式可以化为9x2-3x-2,这样可以简化分解过程.总之,对一元高次多项式f(x),如果能找到一个一次因式(x-a),那么f(x)就可以分解为(x-a)g(x),而g(x)是比f(x)低一次的一元多项式,这样,我们就可以继续对g(x)进行分解了.3.待定系数法待定系数法是数学中的一种重要的解题方法,应用很广泛,这里介绍它在因式分解中的应用.在因式分解时,一些多项式经过分析,可以断定它能分解成某几个因式,但这几个因式中的某些系数尚未确定,这时可以用一些字母来表示待定的系数.由于该多项式等于这几个因式的乘积,根据多项式恒等的性质,两边对应项系数应该相等,或取多项式中原有字母的几个特殊值,列出关于待定系数的方程(或方程组),解出待定字母系数的值,这种因式分解的方法叫作待定系数法.例3 分解因式:x2+3xy+2y2+4x+5y+3.分析由于(x2+3xy+2y2)=(x+2y)(x+y),若原式可以分解因式,那么它的两个一次项一定是x+2y+m和x+y+n的形式,应用待定系数法即可求出m和n,使问题得到解决.解设x2+3xy+2y2+4x+5y+3=(x+2y+m)(x+y+n)=x2+3xy+2y2+(m+n)x+(m+2n)y+mn,比较两边对应项的系数,则有解之得m=3,n=1.所以原式=(x+2y+3)(x+y+1).说明本题也可用双十字相乘法,请同学们自己解一下.※※变式练习1.分解因式:x4-2x3-27x2-44x+7.分析本题所给的是一元整系数多项式,根据前面讲过的求根法,若原式有有理根,则只可能是±1,±7(7的约数),经检验,它们都不是原式的根,所以,在有理数集内,原式没有一次因式.如果原式能分解,只能分解为(x2+ax+b)(x2+cx+d)的形式.解设原式=(x2+ax+b)(x2+cx+d)=x4+(a+c)x3+(b+d+ac)x2+(ad+bc)x+bd,所以有由bd=7,先考虑b=1,d=7有所以原式=(x2-7x+1)(x2+5x+7).说明由于因式分解的唯一性,所以对b=-1,d=-7等可以不加以考虑.本题如果b=1,d=7代入方程组后,无法确定a,c的值,就必须将bd=7的其他解代入方程组,直到求出待定系数为止.本题没有一次因式,因而无法运用求根法分解因式.但利用待定系数法,使我们找到了二次因式.由此可见,待定系数法在因式分解中也有用武之地.四、巩固练习:1. 分解因式:(x2+xy+y2)-4xy(x2+y2).分析本题含有两个字母,且当互换这两个字母的位置时,多项式保持不变,这样的多项式叫作二元对称式.对于较难分解的二元对称式,经常令u=x+y,v=xy,用换元法分解因式.解原式=[(x+y)2-xy]2-4xy[(x+y)2-2xy].令x+y=u,xy=v,则原式=(u2-v)2-4v(u2-2v)=u4-6u2v+9v2=(u2-3v)2=(x2+2xy+y2-3xy)2=(x2-xy+y2)2.五、真题精解:1)已知多项式ax3+bx2+cx+d除以x-1时的余数是1,除以x-2时的余数是3,那么,它除以(x-1)(x-2)时所得的余数是什么?(第12届“希望杯”试题)解:设原式=(x-1)(x-2)(ax+k)+(mx+n),当x=1时,原式=1,即m+n=1;当x=2时,原式=3,即2m+n=3,解此关于m、n的方程组得m=2,n=-1,故原式除以(x-1)(x-2)时的余数为x-12)k为何值时,多项式x2-2xy+ky2+3x-5y+2能分解成两个一次因式的积?(天津市竞赛试题)解:原式中不含y的项为x2+3x+2可分解为 (x+1)(x+2),故可设原式=[(x+1)+ay][(x+2)+by],将其展开得:x2+(a+b)xy+aby2+3x+(2a+b)y+2,与原式对比系数得:a+b=-2, ab=k, 2a+b=-5,解之得a=-3,b=1,k=-3 3)如果x3+ax2+bx+8有两个因式x+1和x+2,求a+b的值。

初二因式分解竞赛例题精选及练习题

初二因式分解竞赛例题精选及练习题

(3) x 2 +6xy + 9y 2 -\6a 2 +8^-1 (4) a 2 -6ab+\2b + 9b 2 -4a因式分解练习丿一.提公因式法. 二、运用公式法. (-)分组后能直接提公因式例1、分解因式:am + an + bin + bn 例 2、分解因式:2ax -1 Oay + 5by-bx 练习:分解因式1、a 2 -ab + ac —bc(二)分组后能直接运用公式例3、分解因式:x 2 -y 2 +ax + ay综合练习:(1) x 3 +x 2y-xy 2 -y 3 (2) ax 2 - bx 2 +bx-ax + a-b练习:分解因式3、%2 -x-9y 2 -3y 4、x 2 -y 2 -z 2 -2yz三、分组分解法. 例4、分解因式:a 2-2ab + b2-c 2(5) /一2/+/一9 (6) 4a2x-4a2y-h2x + h2y (3) x2+6xy + 9y2 -\6a2 +8^-1 (4) a2 -6ab+\2b + 9b2 -4a(7)x2-2xy-xz + yz + y2(8)a2-2a + b2 -2b + 2ab + \ (9)y(y-2)一(m -1)(/7? +1) (10) (a + c)(a -c) + b(b一2a)(11) a2(b + c) + b2(a + c) + c2(a+ b) + 2abc (12) a3 +b3 +c3—3abc四、十字相乘法例5、分解因式:x2 +5x +6例6、分解因式:x2 -7x + 6 练习5、分解因式⑴ x2+i4x + 24(2)/-15“ + 36(3) x2+4.v-5练习6、分解因式⑴,+x — 2 (2) y2-2y-15 (3) x2-10x-24例7、分解因式:3X2-1L V +1O练习7、分解因式:(1) 5X2+7X-6 (2) 3X2-7X+2 (3)10X2-17X +3 (4) —6b+iiy + io例8、分解因式:a2-Sab-128b2练习8^ 分解因式(1) x2 - 3xy + 2y2⑵〃『一+ ⑶ a2 -ab-6b2例9、2x2 -7xy + 6y2例10、x2y2 -3^ + 2练习9、分解因式:(1) 15x2+7^-4y2(2) a2x2-6ax +8综合练习10、(1) 8A-6 -7x3 -1 (2) 12x2-lixy-15y2 (3) (x + y)2-3(x+y) —10(4)(a + by一4"一4Z? + 3综合练习10、(1) 8A-6 -7x3 -1 (2) 12x2-lixy-15y2(6) m 2 -4mn + 4n 2— 3m + 6n + 2 (7) x 2 + 4xy + 4y 2 -2x -4y-3 (8) 5(" + b),+23(/—庆)一10(么一方)'(9) 4A 2 -4xy-6x + 3y + y 2 -10 (10) 12(x + y)2 +H(x 2 -y 2) + 2(x- y)2例11、分解因式:兀2 _3巧_i0y2+兀+ 9『_2练习 11、分解因式⑴亍+4x + 6y-5 (2) x 2 +xy-2y 2-x + ly-6 (3) x 2 +xy-6y 2 +x + 13y-6 (4) a 2 +ab-6b 2+ 5a + 35b - 36 例 12、分解因式(1) x 2 - 3xy-\0y 2 + x + 9y - 2 (2) +xy-6y ,+x + 13y-6 练习 12、分解因式(1) x 2 +xy — 2y 2 -x + 7y-6(5) x 2y 2 -5x 2y-6x 2 (2) 6x 2 - 7xy-3y 2 -xz + 7yz-2z 2七、换元法。

初中数学因式分解(含答案)竞赛题精选

初中数学因式分解(含答案)竞赛题精选

初中数学因式分解(一)因式分解是代数式恒等变形的基本形式,是解决数学问题的有力工具.是掌握因式分解对于培养学生解题技能,思维能力,有独特作用.1.运用公式法整式乘法公式,反向使用,即为因式分解(1)a2-b2=(a+b)(a-b);(2)a2±2ab+b2=(a±b)2;(3)a3+b3=(a+b)(a2-ab+b2);(4)a3-b3=(a-b)(a2+ab+b2).几个常用的公式:(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);(7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数;(8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数;(9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数.分解因式,根据多项式字母、系数、指数、符号等正确恰当地选择公式.例1 分解因式:(1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4; (2)x3-8y3-z3-6xyz;(3)a2+b2+c2-2bc+2ca-2ab;(4)a7-a5b2+a2b5-b7.例2 分解因式:a3+b3+c3-3abc.例3 分解因式:x15+x14+x13+…+x2+x+1.2.拆项、添项法因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解.例4 分解因式:x3-9x+8.例5 分解因式:(1)x9+x6+x3-3; (2)(m2-1)(n2-1)+4mn;(3)(x+1)4+(x2-1)2+(x-1)4; (4)a3b-ab3+a2+b2+1.3.换元法换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰.例6 分解因式:(x2+x+1)(x2+x+2)-12.例8 分解因式:(x2+4x+8)2+3x(x2+4x+8)+2x2.例9分解因式:6x4+7x3-36x2-7x+6.例10 分解因式:(x2+xy+y2)-4xy(x2+y2).练习一1.分解因式:(2)x10+x5-2;(4)(x5+x4+x3+x2+x+1)2-x5.2.分解因式:(1)x3+3x2-4;(2)x4-11x2y2+y2;(3)x3+9x2+26x+24;(4)x4-12x+323.3.分解因式:(1)(2x2-3x+1)2-22x2+33x-1; (2)x4+7x3+14x2+7x+1;(3)(x+y)3+2xy(1-x-y)-1;(4)(x+3)(x2-1)(x+5)-20.初中数学因式分解(一)答案多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍.1.运用公式法在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)a2-b2=(a+b)(a-b);(2)a2±2ab+b2=(a±b)2;(3)a3+b3=(a+b)(a2-ab+b2);(4)a3-b3=(a-b)(a2+ab+b2).下面再补充几个常用的公式:(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);(7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数;(8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数;(9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数.运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.例1 分解因式:(1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4;(2)x3-8y3-z3-6xyz;(3)a2+b2+c2-2bc+2ca-2ab;(4)a7-a5b2+a2b5-b7.解 (1)原式=-2x n-1y n(x4n-2x2ny2+y4)=-2x n-1y n[(x2n)2-2x2ny2+(y2)2]=-2x n-1y n(x2n-y2)2=-2x n-1y n(x n-y)2(x n+y)2.(2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z)=(x-2y-z)(x2+4y2+z2+2xy+xz-2yz).(3)原式=(a2-2ab+b2)+(-2bc+2ca)+c2=(a-b)2+2c(a-b)+c2=(a-b+c)2.本小题可以稍加变形,直接使用公式(5),解法如下:原式=a2+(-b)2+c2+2(-b)c+2ca+2a(-b)=(a-b+c)2(4)原式=(a7-a5b2)+(a2b5-b7)=a5(a2-b2)+b5(a2-b2)=(a2-b2)(a5+b5)=(a+b)(a-b)(a+b)(a4-a3b+a2b2-ab3+b4)=(a+b)2(a-b)(a4-a3b+a2b2-ab3+b4)例2 分解因式:a3+b3+c3-3abc.本题实际上就是用因式分解的方法证明前面给出的公式(6).分析我们已经知道公式(a+b)3=a3+3a2b+3ab2+b3的正确性,现将此公式变形为a3+b3=(a+b)3-3ab(a+b).这个式也是一个常用的公式,本题就借助于它来推导.解原式=(a+b)3-3ab(a+b)+c3-3abc=[(a+b)3+c3]-3ab(a+b+c)=(a+b+c)[(a+b)2-c(a+b)+c2]-3ab(a+b+c)=(a+b+c)(a2+b2+c2-ab-bc-ca).说明公式(6)是一个应用极广的公式,用它可以推出很多有用的结论,例如:我们将公式(6)变形为a3+b3+c3-3abc显然,当a+b+c=0时,则a3+b3+c3=3abc;当a+b+c>0时,则a3+b3+c3-3abc≥0,即a3+b3+c3≥3abc,而且,当且仅当a=b=c时,等号成立.如果令x=a3≥0,y=b3≥0,z=c3≥0,则有等号成立的充要条件是x=y=z.这也是一个常用的结论.例3 分解因式:x15+x14+x13+…+x2+x+1.分析这个多项式的特点是:有16项,从最高次项x15开始,x的次数顺次递减至0,由此想到应用公式a n-b n来分解.解因为x16-1=(x-1)(x15+x14+x13+…x2+x+1),所以说明在本题的分解过程中,用到先乘以(x-1),再除以(x-1)的技巧,这一技巧在等式变形中很常用.2.拆项、添项法因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解.例4 分解因式:x3-9x+8.分析本题解法很多,这里只介绍运用拆项、添项法分解的几种解法,注意一下拆项、添项的目的与技巧.解法1 将常数项8拆成-1+9.原式=x3-9x-1+9=(x3-1)-9x+9=(x-1)(x2+x+1)-9(x-1)=(x-1)(x2+x-8).解法2 将一次项-9x拆成-x-8x.原式=x3-x-8x+8=(x3-x)+(-8x+8)=x(x+1)(x-1)-8(x-1)=(x-1)(x2+x-8).解法3 将三次项x3拆成9x3-8x3.原式=9x3-8x3-9x+8=(9x3-9x)+(-8x3+8)=9x(x+1)(x-1)-8(x-1)(x2+x+1)=(x-1)(x2+x-8).解法4 添加两项-x2+x2.原式=x3-9x+8=x3-x2+x2-9x+8=x2(x-1)+(x-8)(x-1)=(x-1)(x2+x-8).说明由此题可以看出,用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无一定之规,主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分解诸方法中技巧性最强的一种.例5 分解因式:(1)x9+x6+x3-3;(2)(m2-1)(n2-1)+4mn;(3)(x+1)4+(x2-1)2+(x-1)4;(4)a3b-ab3+a2+b2+1.解 (1)将-3拆成-1-1-1.原式=x9+x6+x3-1-1-1=(x9-1)+(x6-1)+(x3-1)=(x3-1)(x6+x3+1)+(x3-1)(x3+1)+(x3-1)=(x3-1)(x6+2x3+3)=(x-1)(x2+x+1)(x6+2x3+3).(2)将4mn拆成2mn+2mn.原式=(m2-1)(n2-1)+2mn+2mn=m2n2-m2-n2+1+2mn+2mn=(m2n2+2mn+1)-(m2-2mn+n2)=(mn+1)2-(m-n)2=(mn+m-n+1)(mn-m+n+1).(3)将(x2-1)2拆成2(x2-1)2-(x2-1)2.原式=(x+1)4+2(x2-1)2-(x2-1)2+(x-1)4=[(x+1)4+2(x+1)2(x-1)2+(x-1)4]-(x2-1)2=[(x+1)2+(x-1)2]2-(x2-1)2=(2x2+2)2-(x2-1)2=(3x2+1)(x2+3).(4)添加两项+ab-ab.原式=a3b-ab3+a2+b2+1+ab-ab=(a3b-ab3)+(a2-ab)+(ab+b2+1)=ab(a+b)(a-b)+a(a-b)+(ab+b2+1)=a(a-b)[b(a+b)+1]+(ab+b2+1)=[a(a-b)+1](ab+b2+1)=(a2-ab+1)(b2+ab+1).说明 (4)是一道较难的题目,由于分解后的因式结构较复杂,所以不易想到添加+ab-ab,而且添加项后分成的三项组又无公因式,而是先将前两组分解,再与第三组结合,找到公因式.这道题目使我们体会到拆项、添项法的极强技巧所在,同学们需多做练习,积累经验.3.换元法换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰.例6 分解因式:(x2+x+1)(x2+x+2)-12.分析将原式展开,是关于x的四次多项式,分解因式较困难.我们不妨将x2+x看作一个整体,并用字母y来替代,于是原题转化为关于y的二次三项式的因式分解问题了.解设x2+x=y,则原式=(y+1)(y+2)-12=y2+3y-10=(y-2)(y+5)=(x2+x-2)(x2+x+5)=(x-1)(x+2)(x2+x+5).说明本题也可将x2+x+1看作一个整体,比如今x2+x+1=u,一样可以得到同样的结果,有兴趣的同学不妨试一试.例7 分解因式:(x2+3x+2)(4x2+8x+3)-90.分析先将两个括号内的多项式分解因式,然后再重新组合.解原式=(x+1)(x+2)(2x+1)(2x+3)-90=[(x+1)(2x+3)][(x+2)(2x+1)]-90=(2x2+5x+3)(2x2+5x+2)-90.令y=2x2+5x+2,则原式=y(y+1)-90=y2+y-90=(y+10)(y-9)=(2x2+5x+12)(2x2+5x-7)=(2x2+5x+12)(2x+7)(x-1).说明对多项式适当的恒等变形是我们找到新元(y)的基础.例8 分解因式:(x2+4x+8)2+3x(x2+4x+8)+2x2.解设x2+4x+8=y,则原式=y2+3xy+2x2=(y+2x)(y+x)=(x2+6x+8)(x2+5x+8)=(x+2)(x+4)(x2+5x+8).说明由本题可知,用换元法分解因式时,不必将原式中的元都用新元代换,根据题目需要,引入必要的新元,原式中的变元和新变元可以一起变形,换元法的本质是简化多项式.例9分解因式:6x4+7x3-36x2-7x+6.解法1 原式=6(x4+1)+7x(x2-1)-36x2=6[(x4-2x2+1)+2x2]+7x(x2-1)-36x2=6[(x2-1)2+2x2]+7x(x2-1)-36x2=6(x2-1)2+7x(x2-1)-24x2=[2(x2-1)-3x][3(x2-1)+8x]=(2x2-3x-2)(3x2+8x-3)=(2x+1)(x-2)(3x-1)(x+3).说明本解法实际上是将x2-1看作一个整体,但并没有设立新元来代替它,即熟练使用换元法后,并非每题都要设置新元来代替整体.解法2原式=x2[6(t2+2)+7t-36]=x2(6t2+7t-24)=x2(2t-3)(3t+8)=x2[2(x-1/x)-3][3(x-1/x)+8]=(2x2-3x-2)(3x2+8x-3)=(2x+1)(x-2)(3x-1)(x+3).例10 分解因式:(x2+xy+y2)-4xy(x2+y2).分析本题含有两个字母,且当互换这两个字母的位置时,多项式保持不变,这样的多项式叫作二元对称式.对于较难分解的二元对称式,经常令u=x+y,v=xy,用换元法分解因式.解原式=[(x+y)2-xy]2-4xy[(x+y)2-2xy].令x+y=u,xy=v,则原式=(u2-v)2-4v(u2-2v)=u4-6u2v+9v2=(u2-3v)2=(x2+2xy+y2-3xy)2=(x2-xy+y2)2.。

(完整版)初二级竞赛专题:因式分解

(完整版)初二级竞赛专题:因式分解

初二级竞赛专题:因式分解一、重要公式1、a2—b2=(a + b)(a —b) ;a n—1=(a —1)( a n-1+ a n-2+ a n-3+・・・ + a2+ a+ 1)2、a2±2ab+b2=(a±b)2;23、x2+ (a+ b)x + ab=(x + a)(x+ b);4、a3+b3=(a+b)(a2—ab+b2); a3—b3=(a—b)(a2+ab+b2);二、因式分解的一般方法及考虑顺序1 、基本方法:提公因式法、公式法、十字相乘法、分组分解法;2、常用方法与技巧:换元法、主元法、拆项法、添项法、配方法、待定系数法。

3、考虑顺序:(1 )提公因式法; (2)十字相乘法; (3 )公式法; (4 )分组分解法; (5 ) 其它常用方法与技巧(简单概括为:提.十.公.分.)。

三、例题1 、添项拆项[例1 ]因式分解:( 1 )x 4+ x2+ 1 ;(2)a3+b3+c3—3abc(1)分析:x4+ 1若添上2x2可配成完全平方公式解:x4+ x2+ 1 = x4+ 2x2+ 1 —x2=(x 2+ 1)2—x2=(x 2+ 1 + x)(x2+ 1 —X)(2)分析:a3+ b3要配成(a + b) 3应添上两项3a2b + 3ab2解:a'+ b' + c?—3abc —a'+ 3a+ 3ab 2 + b'+ c?—3abc —3a—3ab 2 =(a +b)3+ c3—3ab(a + b+ c)=(a+b+c)[(a+b)2—(a+b)c+c2]—3ab(a+b+c) =(a+b+c)(a2+b2+c2—ab—ac—bc)[例2]因式分解:(1) x3—11x+20;(2) a5+a+1( 1 )分析:把中项—11x 拆成—16x+5x 分别与x5,20 组成两组,则有公因式可提。

(注意这里16 是完全平方数)解:x3—11x+20—x3—16x+5x+20—x(x2—16)+5(x+4)=x(x + 4)(x —4) + 5(x + 4) =(x +4)(x2—4x+5)(2)分析:添上—a2和a2两项,分别与a5和a + 1组成两组,正好可以用立方差公式解:a5+a+1—a5—a2+a2+ a+ 1=a 2(a3—1)+a2+a+1=a2(a—1)( a2+a+1)+a2+a+1=(a2+a+1)(a3—a2+1)2、待定系数法[例3]因式分解2x2+3xy—9y2+14x—3y+20解:T2X2+ 3xy —9y2=(2x —3y)(x + 3y),故用待定系数法,可设2x2+3xy—9y2+14x—3y + 20=(2x —3y+a)(x+3y+b),其中a,b是待定的系数,比较右边和左边的x和y两项的系数,得a 2b 143a 3b 32 2•'2x2+ 3xy —9y2+ 14x —3y + 20=(2x —3y + 4)(x + 3y + 5)[另解]原式=2x2+ (3y + 14)x —(9y2+ 3y —20),这是关于x的二次三项式常数项可分解为—(3y —4)(3y + 5),用待定系数法,可设2x2+ (3y + 14)x —(9y2+ 3y —20)=[mx —(3y —4)][nx + (3y + 5)] 比较左、右两边的x2和x项的系数,得m=2, n=12 2-■ 2x2+ 3xy —9y2+ 14x —3y + 20=(2x —3y + 4)(x + 3y + 5)四、填空题1、两个小朋友的年龄分别为a和b,已知a2+ ab=99,则a= _______ ,b= ___ 。

竞赛专题-因式分解

竞赛专题-因式分解

初中数学竞赛辅导 专题一:因式分解 班级 姓名因式分解是中学数学中最重要的恒等变形之一,可以化和为积,因式分解的基本方法有: (1)提公因式法;(2)公式法;(3)分组分解法;即“一提,二套,三分组”因式分解的技巧包括:十字相乘法、双十字相乘法、换元法、添项(拆项)法、待定系数法、利用因式定理分解等.乘法公式: 2222221[()()()]2a b c ab bc ca a b b c c a ++---=-+-+- 33322222213()()()[()()()]2a b c abc a b c a b c ab bc ca a b c a b b c c a ++-=++++---=++-+-+-一、基本方法:1.220091(1)(1)(1)x x x x x x x ++++++++2.分解因式:66a b - 3.分解因式: 326116x x x +++4.分解因式:632827x x -+ 5. (252)(472)(692)(8112)(199419972)(142)(362)(582)(7102)(199319962)⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+6. 444444(34)(74)(394)(54)(94)(414)++++++=类似4444444444(10324)(22324)(34324)(46324)(58324)(4324)(16324)(28324)(40324)(52324)++++++++++=444441111144444444441111144444(2)(4)(6)(8)(10)(1)(3)(5)(7)(9)++++++++++=7. (1)已知3330,0a b c a b c ++=++=,求151515a b c ++的值.(2)33332009200920092009,,a b c d a b c d a b c d +=++=++=+已知求证8.求证:在,m n 都是大于1的整数时,444m n +是合数。

(完整)初中数学竞赛因式分解专题

(完整)初中数学竞赛因式分解专题

初中数学竞赛专题——因式分解多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍.1.运用公式法在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1) a 2-b2=(a+b)(a -b) ;2 2 2(2) a 2± 2ab+b2=(a ± b) 2;3 3 2 2(3) a +b =(a+b)(a -ab+b ) ;(4) a 3-b3=(a-b)(a 2+ab+b2) .下面再补充几个常用的公式:2 2 2 2(5) a +b +c +2ab+2bc+2ca=(a+b+c) ;3 3 3 2 2 2(6) a +b +c -3abc=(a+b+c)(a +b+c -ab-bc-ca) ;(7) a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+⋯+ab n-2+b n-1)其中n 为正整数;(8) a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-⋯+ab n-2-b n-1) ,其中n为偶数;(9) a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-⋯-ab n-2+b n-1),其中n 为奇数.运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.例 1 分解因式:5n-1 n 3n-1 n+2 n-1 n+4(1) -2x y +4x y -2x y ;(2) x 3-8y3-z3-6xyz ;222(3) a +b +c -2bc+2ca-2ab;7 5 2 2 5 7(4) a -ab +a b -b .解(1) 原式=-2x n-1y n(x 4n-2x2ny2+y4)n-1 n 2 2 2 2 2 2=-2x y [(x n) -2x ny +(y ) ]n-1 n 2 2 2=-2x y (x n-y )n-1 n n 2 n 2=-2x y (x -y) (x +y) .(2) 原式=x3+(-2y)3+(-z)3-3x(-2y)( -Z)2 2 2=(x -2y-z)(x +4y +z +2xy+xz -2yz) .22(3) 原式=(a 2-2ab+b2)+( -2bc+2ca)+c2=(a-b) +2c(a -b)+c =(a -b+c)本小题可以稍加变形,直接使用公式(5) ,解法如下:2 2 2 原式=a2+(-b)2+c2+2(-b)c+2ca+2a( -b)=(a -b+c) 2(4) 原式=(a7-a5b2)+(a 2b5-b7)5 2 2 5 2 2=a (a -b )+b (a -b)2 2 5 5=(a -b )(a +b)4 3 2 2 3 4=(a+b)(a - b)(a+b)(a -a b+a b -ab +b)=(a+b) 2(a - b)(a 4-a3b+a2b2-ab3+b4)例 2 分解因式:a+b+c -3abc.本题实际上就是用因式分解的方法证明前面给出的公式(6) .分析我们已经知道公式(a+b) 3=a3+3a2b+3ab2+b3的正确性,现将此公式变形为3 3 3a +b =(a+b) -3ab(a+b) .这个式也是一个常用的公式,本题就借助于它来推导.33解原式=(a+b) -3ab(a+b)+c -3abc= [ (a+b)3+c 3] -3ab(a+b+c)22=(a+b+c) [ (a+b) -c(a+b)+c ] -3ab(a+b+c)222=(a+b+c)(a +b+c -ab-bc -ca) .说明公式(6) 是一个应用极广的公式,用它可以推出很多有用的结论,例如:我们将公式(6) 变形为333a+b +c -3abc显然,当a+b+c=0 时,则a3 +b3+c3=3abc ;当a+b+c> 0 时,则a3+b3+c3-3abc≥0,即a3+b3+c3≥3abc ,而且,当且仅当a=b=c 时,等号成立.如果令x=a3≥0,y=b3≥0,z=c 3≥0,则有等号成立的充要条件是x=y=z .这也是一个常用的结论.例 3 分解因式:x15+x14+x13+⋯+x2+x+1.分析这个多项式的特点是:有16项,从最高次项x15开始,x的次数顺次递减至0,由此想到应用公式a n-b n来分解.解因为16 15 14 13 2x -1=(x -1)(x +x +x +⋯x +x+1) ,所以解法 4 添加两项-x2+x2.原式=x3-9x+83 2 2=x -x +x -9x+82=x2(x - 1)+(x -8)(x -1)=(x -1)(x 2+x-8) .说明由此题可以看出,用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无一定之规,主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分解诸方法中技巧性最强的一种.例 5 分解因式:(1) x 9+x6+x3-3;22(2) (m -1)(n -1)+4mn;(3) (x+1) 4+(x 2-1) 2+(x -1) 4;(4) a 3b-ab3+a2+b2+1.解(1) 将-3拆成-1-1-1.9 6 3 原式=x +x +x -1-1-1963=(x 9-1)+(x 6-1)+(x 3-1)3 6 3 3 3 3=(x 3-1)(x 6+x3+1)+(x 3-1)(x 3+1)+(x 3-1)3=(x -1)(x6+2x3+3)=(x -1)(x 2+x+1)(x 6+2x3+3) .(2) 将4mn拆成2mn+2mn.原式=(m2-1)(n 2-1)+2mn+2mn2 2 2 2=mn -m-n +1+2mn+2mn2 2 2 2=(mn +2mn+1)-(m -2mn+n)22=(mn+1) -(m-n) =(mn+m-n+1)(mn-m+n+1).(3) 将(x 2-1) 2拆成2(x 2-1) 2-(x 2-1) 2.原式=(x+1) 4+2(x 2-1) 2-(x 2-1) 2+(x -1) 44 2 2 4 2 2=[ (x+1) 4+2(x+1) 2(x -1) 2+(x -1) 4] -(x 2-1) 2 =[ (x+1) 2+(x - 1) 2] 2-(x 2-1) 2 =(2x 2+2) 2-(x 2- 1) 2=(3x 2+1)(x 2+3).(4) 添加两项+ab-ab.3 3 2 2原式=a b-ab +a+b +1+ab-ab=(a 3b- ab3)+(a 2-ab)+(ab+b 2+1)2=ab(a+b)(a -b)+a(a -b)+(ab+b +1)2=a(a -b) [ b(a+b)+1]+(ab+b 2+1)2=(2x 2+5x+12)(2x+7)(x -1) .2=[a(a -b)+1](ab+b 2+1)22=(a 2-ab+1)(b 2+ab+1) .说明(4) 是一道较难的题目,由于分解后的因式结构较复杂,所以不易想到添加+ab-ab,而且添加项后分成的三项组又无公因式,而是先将前两组分解,再与第三组结合,找到公因式.这道题目使我们体会到拆项、添项法的极强技巧所在,同学们需多做练习,积累经验.3.换元法换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰.22例 6 分解因式:(x 2+x+1)(x 2+x+2) -12.分析将原式展开,是关于x 的四次多项式,分解因式较困难.我们不妨将x2+x 看作一个整体,并用字母y 来替代,于是原题转化为关于y 的二次三项式的因式分解问题了.解设x2+x=y ,则2原式=(y+1)(y+2) - 12=y2+3y -1022=(y -2)(y+5)=(x 2+x-2)(x 2+x+5)2=(x -1)(x+2)(x 2+x+5) .22说明本题也可将x2+x+1 看作一个整体,比如今x2+x+1=u,一样可以得到同样的结果,有兴趣的同学不妨试一试.例7 分解因式:22(x 2+3x+2)(4x 2+8x+3) -90.分析先将两个括号内的多项式分解因式,然后再重新组合.解原式=(x+1)(x+2)(2x+1)(2x+3) -90 =[(x+1)(2x+3)][(x+2)(2x+1)] -9022=(2x 2+5x+3)(2x 2+5x+2) -90 .令y=2x2+5x+2 ,则2原式=y(y+1) -90=y 2+y-90=(y+10)(y -9)22=(2x 2+5x+12)(2x 2+5x-7)22说明对多项式适当的恒等变形是我们找到新元(y) 的基础.例8 分解因式:(x 2+4x+8)2+3x(x 2+4x+8)+2x 2.2解设x2+4x+8=y ,则原式=y2+3xy+2x 2=(y+2x)(y+x)22=(x 2+6x+8)(x 2+5x+8)2 =(x+2)(x+4)(x2+5x+8) .说明由本题可知,用换元法分解因式时,不必将原式中的元都用新元代换,根据题目需要,引入必要的新元,原式中的变元和新变元可以一起变形,换元法的本质是简化多项式.例9 分解因式:6x4+7x3-36x2-7x+6.4 2 2解法 1 原式=6(x 4+1) +7x(x 2-1) -36x24 2 2 2 2 =6[(x -2x +1)+2x ] +7x(x -1) -36x2 2 2 2=6[(x 2- 1)2+2x 2]+7x(x 2-1) -36x22 2 2 2=6(x 2-1) 2+7x(x 2-1)-24x222=[2(x 2- 1) -3x][ 3(x 2-1)+8x]22=(2x 2-3x-2)(3x 2+8x-3) =(2x+1)(x -2)(3x -1)(x+3) .说明本解法实际上是将x2-1 看作一个整体,但并没有设立新元来代替它,即熟练使用换元法后,并非每题都要设置新元来代替整体.解法222原式=x2[6(t 2+2)+7t -36]=x2(6t 2+7t -24)=x 2(2t -3)(3t+8)2=x2[2(x -1/x) -3][3(x - 1/x)+8]22=(2x 2- 3x-2)(3x 2+8x-3) =(2x+1)(x -2)(3x -1)(x+3) .2 2 2 2例10 分解因式:(x 2+xy+y 2) -4xy(x 2+y2) .分析本题含有两个字母,且当互换这两个字母的位置时,多项式保持不变,这样的多项式叫作二元对称式.对于较难分解的二元对称式,经常令u=x+y ,v=xy ,用换元法分解因式.2 2 2解原式=[(x+y) -xy] -4xy[(x+y) -2xy] .令x+y=u,xy=v ,则2 2 2原式=(u -v) -4v(u -2v)4 2 2=u-6u v+9v22=(u -3v)22=(x +2xy+y -3xy)2 2 2 =(x 2-xy+y 2) 2.说明在本题的分解过程中,用到先乘以(x -1) ,再除以(x -1)的技巧,这一技巧在等式变形中很常用.2.拆项、添项法因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解.3例 4 分解因式:x* 2 3-9x+8.分析本题解法很多,这里只介绍运用拆项、添项法分解的几种解法,注意一下拆项、添项的目的与技巧.解法 1 将常数项8拆成-1+9.3原式=x3-9x-1+93=(x -1) - 9x+9=(x -1)(x 2+x+1) -9(x -1)2=(x -1)(x 2+x-8) .解法 2 将一次项-9x 拆成-x-8x .原式=x3-x-8x+83=(x -x)+( -8x+8)=x(x+1)(x -1) -8(x -1)2=(x -1)(x 2+x-8) .解法 3 将三次项x3拆成9x3-8x3.原式=9x3-8x3-9x+833=(9x 3- 9x)+( -8x3+8)2=9x(x+1)(x -1) - 8(x -1)(x 2+x+1)2=(x -1)(x 2+x-8) .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初二级竞赛专题:因式分解
一、重要公式
22nn-1n-2n-32+a+aa1)+a=(a+b)(a-b);a1)( a-1=(a-+…+a1、+-b222;b) =(a、a±±2ab+b22+(a+b)x+ab=(x、x+a)(x+b);
333223322);
b+aba-b)-ab+b(a); a-b+a4、=+b(=(a+b)(a二、因式分解的一般方法及考虑顺序
1、基本方法:提公因式法、公式法、十字相乘法、分组分解法;
2、常用方法与技巧:换元法、主元法、拆项法、添项法、配方法、待定系数法。

3、考虑顺序:(1)提公因式法;(2)十字相乘法;(3)公式法;(4)分组分解法;(5)其它常用方法与技巧(简单概括为:提十公分)。

....三、例题
1、添项拆项
42333-3abc
a++bc+x+1;(2)[例1]因式分解:(1)x42可配成完全平方公式若添上:x2x+1(1)分析4242222222+1-+++1)1-+xx+1=xx)(x+2x1+-x=(x=(xx) 解:x333223abb应添上两项3a+b+要配成(a+b(2)分析:a)
333322332b3a--+b3abc+c+-3abc=ac+3ab+:解a3ab+b-2 3ab33-3ab(a +bb)++cc)
=(a+
22]-3ab(a+b+c)
+b)+-(a+b)ccc)[(a =(a+b+222-ab-ac-+b+cbc)
=(a +b+c)(a
35+a+1
(1x -11x+20;2][例因式分解:5,20x组成两组,则有公因拆成-16x+5x (2)a)
分别与11x(1)分析:把中项-式可提。

(注意这里16是完全平方数)
332-16)+5(x+4)
+=x-16x+5x20=x(x2011x:解x-+2-4x++++-+=x(x4)(x4)5(x4)
=(x4)(x5)
1
522组成两组,正好可以用1a两项,分别与a)分析:添上-(2a+和a和立方差公式23225521 ++1)++a+1=aa解:a(a+a+1=aa-aa+-2223221)
1)(a+-a++1=(aa+=aa(a-1)( a++a+1)+a 2、待定系数法2220
3y++14x3]因式分解2x-+3xy-9y[例22 3y),故用待定系数法,=(2x-2x3y)(x +3xy-9y+解:∵22 b),+3y+--3y+20=(2x3y可设2x++3xy-9ya)(x+14x y两项的系数,得是待定的系数,比较右边和左边的x和其中a,b14b?a?24a??解得?3a?3b??35?b?22+14x-3y+20=(2x-3y+4)(x+∴2x+3xy-9y3y+5)
22+3y-20),这是关于14)x-(9yx的二次三项式[另解]原式=2x +(3y+
常数项可分解为-(3y-4)(3y+5),用待定系数法,
22+3y-20)=[mx-(3y-4)][nx+2x-+(3y+14)x(9y(3y+5)] 可设2和x项的系数,得m=2, n=1 比较左、右两边的x22+14x-3y+20=(2x-3y++3xy-9y4)(x +3y+∴2x5)
四、填空题
2+ab=99,则a= ,,已知ab= 。

a1、两个小朋友的年龄分别为和b
22= 2、计算:(x+6) (x-6)。

222= (x-y) 、若3x+y=4,x。

+y =10,则22+4a+2b+3=
4、分解因式:a -b 。

3-31x+15= 5、分解因式:4x 。

42+1986x+1987= x6、分解因式:+1987x 。

五、选择题
222222y-2xyz因式分解后的结果是()+zx-xz+yx+z。

yx7、y-z (A)(y-z)(x+y)(x-z) (B)(y-z)(x-y)(x+z)
2
(C)(y+z)(x-y)(x+z) (D)(y+z)(x+y)(x-z)
24-1可被40至50之间的两个整数整除,则这两个整数是(8、已知7)。

(A)41,48 (B)45,47 (C)43,48 (D)41,47
3-nn中计算其值时,四个同学算出如下四个结9、n为某一自然数,代入代数式果,其中正确的结果只能是()。

(A)388944 (B)388945 (C)388954 (D)388948
六、将下列各式分解因式424424
x++x11y、+10、xy
243242 9 -13、x+4x 12、x-23x y+y
233+5x-18 x 30 41x14、x-+15、
223233、2y+x16、+3xy3xy+x-3x3+x+7 17
223233-27a9ax-、18x+x 19+11x6x26a+、x+6
3
23322 b)+b+)+20、a3(a+b+3(a+
23321 -11x-+31x 22、x 21、3x10 -7x+
七、解答题22+4的一个因式,求是xm-y的值。

+mx+3yy23、已知x-+4
的整数解。

+1=3-24、求方程xy-xy1)=3 --1)(y 解:原方程可化为(x, y整数∵x,
:
∴原方程可化为四个方程组x-1=3 x-1=-1 x -1=1 x-
1=-3
y-1=3 y-1=1 y-1=-3 y-1=-1
解得:(x,y)的解为(2,4)、(4,2)、(0,-2)、(-2,0)
4。

相关文档
最新文档