八年级数学上册第六章测试卷北师大版
2022年八年级数学上册第六章数据的分析测试卷3新版北师大版
第六章数据的分析测试卷一、选择题1.已知一组数据:12,5,9,5,14,下列说法不正确的是()A.平均数是9 B.极差是5 C.众数是5 D.中位数是92.某市测得一周PM2.5的日均值(单位:)如下:50,40,75,50,37,50,40,这组数据的中位数和众数分别是()A.50和50 B.50和40 C.40和50 D.40和403.已知一组数据3,a,4,5的众数为4,则这组数据的平均数为()A.3 B.4 C.5 D.64.甲、乙、丙、丁四位同学五次数学测验成绩统计如表.如果从这四位同学中,选出一位成绩较好且状态稳定的同学参加全国数学联赛,那么应选()甲乙丙丁平均数80 85 85 80方差42 42 54 59A.甲B.乙C.丙D.丁5.期中考试后,班里有两位同学议论他们所在小组同学的数学成绩,小明说:“我们组成绩是86分的同学最多”,小英说:“我们组的7位同学成绩排在最中间的恰好也是86分”,上面两位同学的话能反映出的统计量是()A.众数和平均数 B.平均数和中位数C.众数和方差D.众数和中位数6.已知一组数据10,8,9,x,5的众数是8,那么这组数据的方差是()A.2.8 B.C.2 D.57.已知:一组数据x1,x2,x3,x4,x5的平均数是2,方差是,那么另一组数据3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2的平均数和方差分别是()A.2,B.2,1 C.4,D.4,38.某校初一年级有六个班,一次测试后,分别求得各个班级学生成绩的平均数,它们不完全相同,下列说法正确的是()A.全年级学生的平均成绩一定在这六个平均成绩的最小值与最大值之间B.将六个平均成绩之和除以6,就得到全年级学生的平均成绩C.这六个平均成绩的中位数就是全年级学生的平均成绩D.这六个平均成绩的众数不可能是全年级学生的平均成绩9.有一组数据7、11、12、7、7、8、11.下列说法错误的是()A.中位数是7 B.平均数是9 C.众数是7 D.极差是5二、填空题10.一组数据2、﹣2、4、1、0的中位数是.11.近年来,义乌市民用汽车拥有量持续增长,2007年至2011年我市民用汽车拥有量依次约为(单位:万辆):11,13,15,19,x,这五个数的平均数为16.2,则x的值为.12.商店某天销售了11件衬衫,其领口尺寸统计如下表:领口尺寸(单位:cm)38 39 40 41 42件数 1 4 3 1 2则这11件衬衫领口尺寸的众数是cm,中位数是cm.13.已知三个不相等的正整数的平均数,中位数都是3,则这三个数分别为.14.已知一个样本:1,3,5,x,2,它的平均数为3,则这个样本的方差是.三、解答题15.甲,乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字的个数统计结果如下表:班级参赛人中位数方差平均字数数甲55 149 191 135乙55 151 110 135某同学分析上表后得出如下结论:①甲、乙两班学生成绩的平均水平相同;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀);③甲班16.一次演讲比赛,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分,各项成绩均按百分制,然后再按演讲内容:演讲能力:演讲效果=5:4:1的比例计算选手的综合成绩(百分制).进入决赛的前两名选手的单项成绩如下表所示:选手演讲内容演讲能力演讲效果A 85 95 95B 95 85 95请决出两人的名次.17.广州市努力改善空气质量,近年来空气质量明显好转,根据广州市环境保护局公布的2006﹣2010这五年各年的全年空气质量优良的天数,绘制折线图如图.根据图中信息回答:(1)这五年的全年空气质量优良天数的中位数是,极差是.(2)这五年的全年空气质量优良天数与它前一年相比,增加最多的是年(填写年份).(3)求这五年的全年空气质量优良天数的平均数.18.某班实行小组量化考核制,为了了解同学们的学习情况,王老师对甲、乙两个小组连续六周的综合评价得分进行了统计,并将得到的数据制成如下的统计表:周次组别一二三四五六甲组12 15 16 14 14 13乙组9 14 10 17 16 18(1)请根据上表中的数据完成下表;(注:方差的计算结果精确到0.1)(2)根据综合评价得分统计表中的数据,请在图中画出甲、乙两组综合评价得分的折线统计图;(3)由折线统计图中的信息,请分别对甲、乙两个小组连续六周的学习情况做出简要评价.平均数中位数方差甲组乙组19.“最美女教师”张丽莉,为抢救两名学生,以致双腿高位截肢,社会各界纷纷为她捐款,我市某中学九年级一班全体同学参加了捐款活动,该班同学捐款情况的部分统计图如图所示:(1)求该班的总人数;(2)将条形图补充完整,并写出捐款总额的众数;(3)该班平均每人捐款多少元?20.市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了六次测试,测试成绩如下表(单位:环):第一次第二次第三次第四次第五次第六次甲10 8 9 8 10 9乙10 7 10 10 9 8(1)根据表格中的数据,分别计算甲、乙的平均成绩.(2)分别计算甲、乙六次测试成绩的方差;(3)根据(1)、(2)计算的结果,你认为推荐谁参加省比赛更合适,请说明理由.答案1.已知一组数据:12,5,9,5,14,下列说法不正确的是()A.平均数是9 B.极差是5 C.众数是5 D.中位数是9【考点】极差;算术平均数;中位数;众数.【专题】选择题.【分析】根据极差、平均数、众数、中位数的概念求解.【解答】解:这组数据的平均数为:=9,极差为:14﹣5=9,众数为:5,中位数为:9.故选B.【点评】本题考查了极差、平均数、众数、中位数的知识,掌握各知识点的概念是解答本题的关键.2.某市测得一周PM2.5的日均值(单位:)如下:50,40,75,50,37,50,40,这组数据的中位数和众数分别是()A.50和50 B.50和40 C.40和50 D.40和40【考点】众数;中位数.【专题】选择题.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:从小到大排列此数据为:37、40、40、50、50、50、75,数据50出现了三次最多,所以50为众数;50处在第4位是中位数.故选A.【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.3.已知一组数据3,a,4,5的众数为4,则这组数据的平均数为()A.3 B.4 C.5 D.6【考点】算术平均数;众数.【专题】选择题.【分析】要求平均数只要求出数据之和再除以总个数即可;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.依此先求出a,再求这组数据的平均数.【解答】解:数据3,a,4,5的众数为4,即4次数最多;即a=4.则其平均数为(3+4+4+5)÷4=4.故选B.【点评】本题考查平均数与众数的意义.平均数等于所有数据之和除以数据的总个数;众数是一组数据中出现次数最多的数据.4.甲、乙、丙、丁四位同学五次数学测验成绩统计如表.如果从这四位同学中,选出一位成绩较好且状态稳定的同学参加全国数学联赛,那么应选()A.甲B.乙C.丙D.丁【考点】方差;算术平均数.【专题】选择题.【分析】此题有两个要求:①成绩较好,②状态稳定.于是应选平均数大、方差小的同学参赛.【解答】解:由于乙的方差较小、平均数较大,故选乙.故选B.【点评】本题考查平均数和方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.5.期中考试后,班里有两位同学议论他们所在小组同学的数学成绩,小明说:“我们组成绩是86分的同学最多”,小英说:“我们组的7位同学成绩排在最中间的恰好也是86分”,上面两位同学的话能反映出的统计量是()A.众数和平均数 B.平均数和中位数C.众数和方差D.众数和中位数【考点】平均数、中位数和众数的比较.【专题】选择题.【分析】根据中位数和众数的定义回答即可.【解答】解:在一组数据中出现次数最多的数是这组数据的众数,排在中间位置的数是中位数,故选D.【点评】本题考查了众数及中位数的定义,属于统计基础知识,难度较小.6.已知一组数据10,8,9,x,5的众数是8,那么这组数据的方差是()A.2.8 B.C.2 D.5【考点】方差;众数.【专题】选择题.【分析】根据众数的概念,确定x的值,再求该组数据的方差.【解答】解:因为一组数据10,8,9,x,5的众数是8,所以x=8.于是这组数据为10,8,9,8,5.该组数据的平均数为:(10+8+9+8+5)=8,方差S2=[(10﹣8)2+(8﹣8)2+(9﹣8)2+(8﹣8)2+(5﹣8)2]==2.8.故选A.【点评】本题考查了平均数、众数、方差的意义.①平均数:反映了一组数据的平均大小,常用来一代表数据的总体“平均水平”;②众数是一组数据中出现次数最多的数值,叫众数,有时众数在一组数中有好几个;③方差是用来衡量一组数据波动大小的量.7.已知:一组数据x1,x2,x3,x4,x5的平均数是2,方差是,那么另一组数据3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2的平均数和方差分别是()A.2,B.2,1 C.4,D.4,3【考点】方差;算术平均数.【专题】选择题.【分析】本题可将平均数和方差公式中的x换成3x﹣2,再化简进行计算.【解答】解:∵x1,x2,…,x5的平均数是2,则x1+x2+…+x5=2×5=10.∴数据3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2的平均数是:′=[(3x1﹣2)+(3x2﹣2)+(3x3﹣2)+(3x4﹣2)+(3x5﹣2)]=[3×(x1+x2+ (x5)﹣10]=4,S′2=×[(3x1﹣2﹣4)2+(3x2﹣2﹣4)2+…+(3x5﹣2﹣4)2],=×[(3x1﹣6)2+…+(3x5﹣6)2]=9×[(x1﹣2)2+(x2﹣2)2+…+(x5﹣2)2]=3.故选D.【点评】本题考查的是方差和平均数的性质.设平均数为E(x),方差为D(x).则E(cx+d)=cE(x)+d;D(cx+d)=c2D(x).8.某校初一年级有六个班,一次测试后,分别求得各个班级学生成绩的平均数,它们不完全相同,下列说法正确的是()A.全年级学生的平均成绩一定在这六个平均成绩的最小值与最大值之间B.将六个平均成绩之和除以6,就得到全年级学生的平均成绩C.这六个平均成绩的中位数就是全年级学生的平均成绩D.这六个平均成绩的众数不可能是全年级学生的平均成绩【考点】算术平均数.【专题】选择题.【分析】平均数是指一组数据之和再除以总个数;而中位数是数据从小到大的顺序排列,所以只要找出最中间的一个数(或最中间的两个数)即为中位数;众数是出现次数最多的数;所以,这三个量之间没有必然的联系.【解答】解:A、全年级学生的平均成绩一定在这六个平均成绩的最小值与最大值之间,正确;B、可能会出现各班的人数不等,所以,6个的班总平均成绩就不能简单的6个的班的平均成绩相加再除以6,故错误;C、中位数和平均数是不同的概念,故错误;D、六个平均成绩的众数也可能是全年级学生的平均成绩,故错误;故选A.【点评】本题主要考查了平均数与众数,中位数的关系.平均数:=(x1+x2+…x n).众数:一组数据中出现次数最多的那个数据叫做这组数据的众数.中位数:n个数据按大小顺序排列,处于最中间位置的数(或最中间两个数据的平均数)叫做这组数据的中位数.9.有一组数据7、11、12、7、7、8、11.下列说法错误的是()A.中位数是7 B.平均数是9 C.众数是7 D.极差是5【考点】极差;加权平均数;中位数;众数.【专题】选择题.【分析】根据中位数、平均数、极差、众数的概念求解.【解答】解:这组数据按照从小到大的顺序排列为:7、7、7、8、11、11、12,则中位数为:8,平均数为:=9,众数为:7,极差为:12﹣7=5.故选A.【点评】本题考查了中位数、平均数、极差、众数的知识,掌握各知识点的概念是解答本题的关键.10.一组数据2、﹣2、4、1、0的中位数是.【考点】中位数.【专题】填空题.【分析】按大小顺序排列这组数据,中间两个数的平均数是中位数.【解答】解:从小到大排列此数据为:﹣2、0、1、2、4,处在中间位置的是1,则1为中位数.所以本题这组数据的中位数是1.故答案为1.【点评】本题属于基础题,考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.11.近年来,义乌市民用汽车拥有量持续增长,2007年至2011年我市民用汽车拥有量依次约为(单位:万辆):11,13,15,19,x,这五个数的平均数为16.2,则x的值为.【考点】算术平均数.【专题】填空题.【分析】根据平均数的计算公式进行计算即可.【解答】解:根据题意得:(11+13+15+19+x)÷5=16.2,解得:x=23,则x的值为23;故答案为:23.【点评】此题考查了算术平均数,熟记平均数的计算公式是本题的关键,是一道基础题.12.商店某天销售了11件衬衫,其领口尺寸统计如下表:则这11件衬衫领口尺寸的众数是cm,中位数是cm.【考点】众数;中位数.【专题】填空题.【分析】根据中位数的定义与众数的定义,结合图表信息解答.【解答】解:同一尺寸最多的是39cm,共有4件,所以,众数是39cm,11件衬衫按照尺寸从小到大排列,第6件的尺寸是40cm,所以中位数是40cm.故答案为:39,40.【点评】本题考查了中位数与众数,确定中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数,中位数有时不一定是这组数据的数;众数是出现次数最多的数据,众数有时不止一个.13.已知三个不相等的正整数的平均数,中位数都是3,则这三个数分别为.【考点】中位数;算术平均数.【专题】填空题.【分析】根据平均数和中位数的定义,结合正整数的概念求出这三个数.【解答】解:因为这三个不相等的正整数的中位数是3,设这三个正整数为a,3,b(a<3<b);其平均数是3,有(a+b+3)=3,即a+b=6.且a b为正整数,故a可取1,2,分别求得b的值为5,4.故这三个数分别为1,3,5或2,3,4.故填1,3,5或2,3,4.【点评】本题考查平均数和中位数.一组数据的中位数与这组数据的排序及数据个数有关,因此求一组数据的中位数时,先将该组数据按从小到大(或按从大到小)的顺序排列,然后根据数据的个数确定中位数:当数据个数为奇数时,则中间的一个数即为这组数据的中位数;当数据个数为偶数时,则最中间的两个数的算术平均数即为这组数据的中位数.平均数的求法.14.已知一个样本:1,3,5,x,2,它的平均数为3,则这个样本的方差是.【考点】方差;算术平均数.【专题】填空题.【分析】先由平均数公式求得x的值,再由方差公式求解即可.【解答】解:∵1,3,x,2,5,它的平均数是3,∴(1+3+x+2+5)÷5=3,∴x=4,∴S2=[(1﹣3)2+(3﹣3)2+(4﹣3)2+(2﹣3)2+(5﹣3)2]=2;∴这个样本的方差是2.故答案为:2.【点评】本题考查了平均数和方差:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.15.甲,乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字的个数统计结果如下表:某同学分析上表后得出如下结论:①甲、乙两班学生成绩的平均水平相同;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀);③甲班成绩的波动比乙班大.上述结论正确的是 (把你认为正确结论的序号都填上). 【考点】方差;算术平均数;中位数. 【专题】填空题.【分析】平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.【解答】解:①由表中可知,平均字数都是135,正确;②甲班的中位数是149,过半的人数低于150,乙班的中位数是151,过半的人数大于等于151,说明乙的优秀人数多于甲班的,正确;③甲班的方差大于乙班的,又说明甲班的波动情况大,所以也正确. 故填①②③.【点评】本题考查了平均数、中位数和方差的意义.对统计中的概念理解是学好统计的关键,这道题把统计初步知识的考查与现代社会生活联系起来,避免了对该部分知识的抽象考查和脱离实际的弊病.16.一次演讲比赛,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分,各项成绩均按百分制,然后再按演讲内容:演讲能力:演讲效果=5:4:1的比例计算选手的综合成绩(百分制).进入决赛的前两名选手的单项成绩如下表所示: 请决出两人的名次.【考点】加权平均数.【专题】解答题.【分析】按照权重为演讲内容:演讲能力:演讲效果=5:4:1的比例计算两人的测试成绩,再进行比较即可求解.【解答】解:选手A的最后得分是:(85×5+95×4+95×1)÷(5+4+1)=900÷10=90,选手B最后得分是:(95×5+85×4+95×1)÷(5+4+1)=910÷10=91.由上可知选手B获得第一名,选手A获得第二名.【点评】本题考查的是加权平均数的求法,根据某方面的需要选拔时往往利用加权平均数更合适.17.广州市努力改善空气质量,近年来空气质量明显好转,根据广州市环境保护局公布的2006﹣2010这五年各年的全年空气质量优良的天数,绘制折线图如图.根据图中信息回答:(1)这五年的全年空气质量优良天数的中位数是,极差是.(2)这五年的全年空气质量优良天数与它前一年相比,增加最多的是年(填写年份).(3)求这五年的全年空气质量优良天数的平均数.【考点】折线统计图;算术平均数;中位数;极差.【专题】解答题.【分析】(1)把这五年的全年空气质量优良天数按照从小到大排列,根据中位数的定义解答;根据极差的定义,用最大的数减去最小的数即可;(2)分别求出相邻两年下一年比前一年多的优良天数,然后即可得解;(3)根据平均数的求解方法列式计算即可得解.【解答】解:(1)这五年的全年空气质量优良天数按照从小到大排列如下:333、334、345、347、357,所以中位数是345;极差是:357﹣333=24;(2)2007年与2006年相比,333﹣334=﹣1,2008年与2007年相比,345﹣333=12,2009年与2008年相比,347﹣345=2,2010年与2009年相比,357﹣347=10,所以增加最多的是2008年;(3)这五年的全年空气质量优良天数的平均数===343.2天.【点评】本题考查了折线统计图,要理解极差的概念,中位数的定义,以及算术平均数的求解方法,能够根据计算的数据进行综合分析,熟练掌握对统计图的分析和平均数的计算是解题的关键.18.某班实行小组量化考核制,为了了解同学们的学习情况,王老师对甲、乙两个小组连续六周的综合评价得分进行了统计,并将得到的数据制成如下的统计表:周次组别一二三四五六甲组12 15 16 14 14 13乙组9 14 10 17 16 18(1)请根据上表中的数据完成下表;(注:方差的计算结果精确到0.1)(2)根据综合评价得分统计表中的数据,请在图中画出甲、乙两组综合评价得分的折线统计图;(3)由折线统计图中的信息,请分别对甲、乙两个小组连续六周的学习情况做出简要评价.平均数中位数方差甲组乙组【考点】折线统计图;算术平均数;中位数;方差.【专题】解答题.【分析】(1)根据平均数、中位数、方差的定义,可得答案;(2)根据描点、连线,可得折线统计图;(3)根据折线统计图中的信息,统计表中的信息,可得答案.【解答】解:(1)填表如下:平均数中位数方差甲组14 14 1.7乙组14 15 11.7(2)如图:(3)从折线图可看出:甲组成绩相对稳定,但进步不大,且略有下降趋势;乙组成绩不够稳定,但进步较快,呈上升趋势.【点评】本题考查了折线图的意义和平均数的概念.平均数是指在一组数据中所有数据之和再除以数据的个数.平均数是表示一组数据集中趋势的量数,它是反映数据集中趋势的一项指标.解答平均数应用题的关键在于确定“总数量”以及和总数量对应的总份数.19.“最美女教师”张丽莉,为抢救两名学生,以致双腿高位截肢,社会各界纷纷为她捐款,我市某中学九年级一班全体同学参加了捐款活动,该班同学捐款情况的部分统计图如图所示:(1)求该班的总人数;(2)将条形图补充完整,并写出捐款总额的众数;(3)该班平均每人捐款多少元?【考点】条形统计图;扇形统计图;加权平均数;众数.【专题】解答题.【分析】(1)用捐款15元的人数14除以所占的百分比28%,计算即可得解;(2)用该班总人数减去其它四种捐款额的人数,计算即可求出捐款10元的人数,然后补全条形统计图,根据众数的定义,人数最多即为捐款总额的众数;(3)根据加权平均数的求解方法列式计算即可得解.【解答】解:(1)=50(人).该班总人数为50人;(2)捐款10元的人数:50﹣9﹣14﹣7﹣4=50﹣34=16,图形补充如右图所示,众数是10;(3)(5×9+10×16+15×14+20×7+25×4)=×655=13.1元,因此,该班平均每人捐款13.1元.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了六次测试,测试成绩如下表(单位:环):第一次第二次第三次第四次第五次第六次甲10 8 9 8 10 9乙10 7 10 10 9 8(1)根据表格中的数据,分别计算甲、乙的平均成绩.(2)分别计算甲、乙六次测试成绩的方差;(3)根据(1)、(2)计算的结果,你认为推荐谁参加省比赛更合适,请说明理由.【考点】方差;算术平均数.【专题】解答题.【分析】(1)根据图表得出甲、乙每次数据和平均数的计算公式列式计算即可;(2)根据方差公式S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],即可求出甲乙的方差;(3)根据方差的意义:反映了一组数据的波动大小,方差越大,波动性越大,反之也成立,找出方差较小的即可.【解答】解:(1)甲的平均成绩是:(10+8+9+8+10+9)÷6=9,乙的平均成绩是:(10+7+10+10+9+8)÷6=9;(2)甲的方差=[(10﹣9)2+(8﹣9)2+(9﹣9)2+(8﹣9)2+(10﹣9)2+(9﹣9)2]=.乙的方差=[(10﹣9)2+(7﹣9)2+(10﹣9)2+(10﹣9)2+(9﹣9)2+(8﹣9)2]=.(3)推荐甲参加全国比赛更合适,理由如下:两人的平均成绩相等,说明实力相当;但甲的六次测试成绩的方差比乙小,说明甲发挥较为稳定,故推荐甲参加比赛更合适.【点评】此题主要考查了平均数的求法以及方差的求法,正确的记忆方差公式是解决问题的关键,一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.2+…+(xn﹣)。
北师大版八年级数学上册 第六章 数据的分析 单元测试题
北师大版八年级数学上册第六章数据的分析单元测试题一、选择题(本大题共9小题,共27分)1.某校有31名同学参加某比赛,预赛成绩各不同,要取前16名参加决赛,小红已经知道了自己的成绩,她想知道自己能否进入决赛,只需要再知道这31名同学成绩的()A. 最高分B. 平均数C. 方差D. 中位数2.下表为九(1)班全部43名同学某次数学测验成绩的统计结果.则下列说法正确的是()A. 男生的平均成绩高于女生的平均成绩B. 男生的平均成绩低于女生的平均成绩C. 男生成绩的中位数高于女生成绩的中位数D. 男生成绩的中位数低于女生成绩的中位数3. 6.某专卖店专营某品牌的衬衫,店主对上一周中不同尺码的衬衫销售情况统计如下:该店主决定本周进货时,增加了一些41码的衬衫,影响该店主决策的统计量是()A. 平均数B. 方差C. 众数D. 中位数4.一组数据4,2,x,3,9的平均数为4,则这组数据的众数和中位数分别是()A. 3,2B. 2,2C. 2,3D. 2,45.从甲、乙、丙、丁四人中选一人参加诗词大会比赛,经过三轮初赛,他们的平均成绩都是86.5分,方差分别是S甲2=1.5,S乙2=2.6,S丙2=3.5,S丁2=3.68,你认为更合适去参赛的是()A. 甲B. 乙C. 丙D. 丁6.测试五位学生的“一分钟跳绳”成绩,得到五个各不相同的数据,在统计时,出现了一处错误:将最高成绩写得更高了,计算结果不受影响的是()A. 方差B. 标准差C. 中位数D. 平均数7.在“经典诵读”比赛活动中,某校10名学生参赛成绩如图所示,对于这10名学生的参赛成绩,下列说法正确的是()A. 众数是90分B. 中位数是95分C. 平均数是95分D. 方差是158.甲、乙、丙、丁四名射击运动员在选拔赛中,每人射击了10次,甲、乙两人的成绩如表所示,丙、丁两人的成绩如图所示.欲选一名运动员参赛,从平均数与方差两个因素分析,应选()甲乙平均数/环 9 8方差/环 1 1A. 甲B. 乙C. 丙D. 丁9.小明在五天投掷铅球训练中,每天训练的最好成绩(单位:m)分别为10.1,10.4,10.6,10.5,10.4,关于这组数据,下列说法错误的是()A. 平均数是10.4B. 中位数是10.6C. 众数是10.4D. 方差是0.028二、填空题(本大题共7小题,共21分)10.某餐厅供应单价分别为10元、18元、25元三种价格的抓饭,如图是该餐厅某月销售抓饭情况的扇形统计图,根据该统计图可算得该餐厅销售抓饭的平均单价为__________元.第2页,共17页11.已知一组数据6,x,3,3,5,1的众数是3和5,则这组数据的中位数是______.12.一组数据2,4,a,6,7,7的中位数是5,则方差S2=______.13.某校初一共有四个班参加语文考试,甲班共有a人,平均得x分;乙班共有b人,平均得y分;丙班共有c人,平均得z分;丁班共有d人,平均得w分,则该校初一年级语文平均得分为___________________.14.已知一组从小到大排列的数据:1,x,y,2x,6,10的平均数与中位数都是5,则这组数据的众数是______.15.如图是甲、乙两射击运动员10次射击成绩的折线统计图,则这10次射击成绩更稳定的运动员是______.16.已知一组数据−3,−1,0,a,3的平均数是0,则这组数据的方差是__________.三、解答题(本大题共5小题,共52分)17.某公司招聘职员两名,对甲、乙、丙、丁四名候选人进行了笔试和面试,各项成绩满分均为100分,然后再按笔试占60%,面试占40%计算候选人的综合成绩(满分为100分).他们的各项成绩如下表所示:候选人笔试成绩/分面试成绩/分甲90 88乙84 92丙x90丁88 86(1)直接写出这四名候选人面试成绩的中位数;(2)现得知候选人丙的综合成绩为87.6分,求表中x的值;(3)求出其余三名候选人的综合成绩,并以综合成绩排序确定所要招聘的前两名的人选.18.甲、乙两名队员参加射击训练,成绩分别被制成如图的两个统计图:根据以上信息,整理分析数据如表所示:平均成绩(环)中位数(环)众数(环)方差甲a7 7 1.2乙7 b8 c(1)请分别计算表格中a,b,c的值;(2)若选派其中一名参赛,你认为应选哪名队员?请说明理由。
北师大版八年级数学上册第六章达标测试卷【新版】
第六章达标测试卷一、选择题(每题3分,共30分)1.一名射击爱好者5次射击的中靶环数如下:6,7,9,8,9,这5个数据的中位数是()A.6 B.7 C.8 D.92.期中考试后,班里有两位同学议论他们所在小组同学的数学成绩.小明说:“我们组成绩是86分的同学最多.”小英说:“我们组7位同学的成绩排在最中间的恰好也是86分.”上面两位同学的话能反映的统计量分别是()A.众数和平均数B.平均数和中位数C.众数和方差D.众数和中位数3.一组数据为-1,0,4,x,6,16,这组数据的中位数为5,则这组数据众数可能是()A.5 B.6 C.-1 D.5.54.已知一组数据3,a,4,5的众数为4,则这组数据的平均数为() A.3 B.4 C.5 D.65.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生要想知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的()A.众数B.方差C.平均数D.中位数6.甲、乙、丙、丁四人进行射箭测试,每人10次,射箭成绩的平均数都是8.9环,方差分别是s甲2=0.65,s乙2=0.55,s丙2=0.50,s丁2=0.45,则射箭成绩最稳定的是()A.甲B.乙C.丙D.丁7.某公司10名职工的5月份工资统计如下,该公司10名职工5月份工资的众数和中位数分别是()A.2 400元,2 400元B.2 400元,2 300元C.2 200元,2 200元D.2 200元,2 300元(第8题)8.某赛季甲、乙两名篮球运动员12场比赛得分情况如图所示,对这两名运动员的成绩进行比较,下面四个结论中,不正确的是()A.甲运动员得分的极差大于乙运动员得分的极差B.甲运动员得分的中位数大于乙运动员得分的中位数C.甲运动员得分的平均数大于乙运动员得分的平均数D.甲运动员的成绩比乙运动员的成绩稳定9.已知A样本的数据如下:72,73,76,76,77,78,78,78,B样本的数据恰好是A样本数据每个都加2,则A,B两个样本的下列统计量对应相同的是()A.平均数B.标准差C.中位数D.众数10.已知5个正数a1,a2,a3,a4,a5的平均数是a,且a1>a2>a3>a4>a5,则数据a1,a2,a3,0,a4,a5的平均数和中位数是()A.a,a3B.a,a2+a2+a3 2C.56a,a2+a32 D.56a,a3+a42二、填空题(每题3分,共24分)11.已知一组数据为25,25,27,27,26,则其平均数为________.12.某项目六名礼仪小姐的身高(单位:cm)如下:168,166,168,167,169,168,则她们身高的众数是________,极差是________.13.如图是某商场一天的运动鞋销售量情况统计图,这些运动鞋的尺寸的众数和中位数分别为____________ .(第13题)(第16题)14.某学生数学学科课堂表现为90分,平时作业为92分,期末考试为85分,若这三项成绩分别按30%,30%,40%的比例计入总评成绩,则该学生数学学科总评成绩是________分.15.已知样本数据x1,x2,x3,x4的方差为2,则4x1,4x2,4x3,4x4的方差是________.16.甲、乙两名射击运动员进行10次射击,甲的成绩(单位:环)是7,7,8,9,8,9,10,9,9,9,乙的成绩如图所示,则甲、乙两人射击成绩的方差之间的关系是s甲2________s乙2(填“>”“<”或“=”).17.某班40名学生的某次数学测验成绩统计表如下:成绩/分50 60 70 80 90 100人数 2 x 10 y 8 2 若这个班的数学平均成绩是74分,则x=________,y=________. 18.某商店3月份、4月份出售同一品牌各种规格的空调台数如下表:规格销售量/台月份A型号B型号C型号D型号3月12 20 8 44月16 30 8 6 根据表中的数据回答下列问题:(1)该商店这两个月平均每月销售空调________台;(2)请你帮助该商店经理考虑下,6月份进货时,商店对________型号的空调要多进,对________型号的空调要少进.三、解答题(19~21题每题10分,其余每题12分,共66分)19.从甲、乙、丙三个厂家生产的同一种产品中各抽取8件,对其使用寿命跟踪调查.结果如下(单位:年):甲:345688910乙:4666891213丙:33479101112三个厂家在广告中都称该产品的使用寿命是8年,请根据结果来判断厂家在广告中分别运用了平均数、众数、中位数的哪一种集中趋势的特征数.20.小亮和小莹自制了一个标靶进行投标比赛,两人各投了10次,下图是他们投标成绩的统计图.(第20题)平均数中位数众数小亮7小莹7 9(1)根据图中信息填写上表;(2)分别用平均数和中位数解释谁的成绩比较好.21.某饮料店为了了解本店一种果汁饮料上半年的销售情况,随机调查了8天该种饮料的日销售量,结果如下(单位:听):33,32,28,32,25,24,31,35.(1)这8天的平均日销售量是多少听?(2)根据上面的计算结果,估计上半年(按181天计算)该店能销售这种饮料多少听?22.张林、李明、王浩、刘平、陈亮五人学习小组在两次数学测试中,成绩如表所示.(1)为了比较学习小组数学测验成绩某种意义上的稳定性,可采取绝对差作为评价标准.若绝对差的计算公式是:绝对差=1n(|x1-x|+|x2-x|+…+|x n-x|)(其中x表示n个数据x1,x2,…,x n的平均数),并规定绝对差小的稳定性好.请问这两次数学测验成绩,哪一次测验成绩更稳定?(2)请你设计一种能评价张林两次数学测验成绩好与差的方案?并通过计算说明.23.某次学生夏令营活动,有小学生、初中生、高中生和大学生参加,共200人,各类学生人数比例见扇形统计图(如图).(1)参加这次夏令营活动的初中生共有多少人?(2)活动组织者号召参加这次夏令营活动的所有学生为贫困学生捐款.结果小学生每人捐款5元,初中生每人捐款10元,高中生每人捐款15元,大学生每人捐款20元.问平均每人捐款多少元?(3)在(2)的条件下,把每个学生的捐款数额(单位:元)一一记录下来,则在这组数据中,众数是多少?(第23题)24.某市甲、乙两个汽车销售公司1至10月每月销售同种品牌汽车的情况如图所示.(1)请你根据统计图填写下表:销售公司平均数/辆方差中位数/辆众数/辆甲9乙9 17.0 8(2)请你从以下两个不同的方面对甲、乙两个汽车销售公司1至10月的销售情况进行分析(分析哪个汽车销售公司较有潜力):①从平均数和方差结合看;②从折线图上甲、乙两个汽车销售公司销售量的趋势看.(第24题)答案一、1.C 2.D 3.B 4.B 5.D 6.D 7.A 8.D 9.B 10.D 二、11.26 12.168 cm ;3 cm 13.25 cm 和24.5 cm 14.88.6 15.3216.< 17.10;8 18.(1)52 (2)B ;D三、19.解:甲厂用了众数,乙厂用了平均数,丙厂用了中位数. 20.解:(1)7;7;7.5(2)平均数相等说明两人整体水平相当,成绩一样好;小莹的中位数大说明小莹的成绩比小亮好.21.解:(1)这8天的平均日销售量是18(33+32+28+32+25+24+31+35)=30(听).(2)30×181=5 430(听).所以估计上半年该店能销售这种饮料5 430听.22.解:(1)设两次数学测验成绩的绝对差分别是P 1,P 2,则P 1=15(|81-80|+|82-80|+|79-80|+|78-80|+|80-80|)=1.2,P 2=15(|82-82|+|79-82|+|89-82|+|85-82|+|75-82|)=4.因为P 1<P 2,所以第1次数学测验成绩更稳定.(2)答案不唯一,以下提供一种设计方案参考:第1次测验成绩81分排序是第2名,第2次测验成绩82分排序是第3名,所以从排名序号来看,张林第1次测验成绩比第2次更好些.23.解:(1)200×(1-10%-20%-30%)=80(人).(2)[(20%×5+30%×15+10%×20)×200+80×10]÷200=11.5(元). (3)众数是10元.24.解:(1)甲乙车销售公司的销售情况稳定.②因为甲汽车销售公司每月销售量在平均数上下波动,而乙汽车销售公司每月销售量总体上呈上升趋势,并且从6月起每月都比甲汽车销售公司销售量多,所以乙汽车销售公司较有潜力.。
(北师大版)初中数学八年级上册 第六章综合测试(含答案)
第六章综合检测第Ⅰ卷(选择题共30分)一、选择题(每题3分,共30分)1.某种商品共10件,第一天以50元/件的价格卖出3件,第二天以45元/件的价格卖出2件,第三天以40元/件的价格卖出5件,则这种商品的平均售价为每件()A.42元B.44元C.45元D.46元2.共享单车已经成为城市公共交通的重要组成部分,某共享单车公司经过调查获得关于共享单车租用行驶时间的数据,并由此制定了新的收费标准:每次租用单车行驶a小时及a小时以内,免费骑行;超过a小时后,每半小时收费1元,这样可保证不少于50%的骑行是免费的.制定这一标准中的a的值时,参考的统计量是此次调查所得数据的()A.平均数B.中位数C.众数D.方差3.某学校国旗护卫队成员的身高分布如下表,则该学校国旗护卫队成员的身高的众数和中位数分别是()身高(cm)159160161162人数71099A.160cm和160cmB.160cm和160.5cmC.160cm和161cmD.161cm和161cm4.某班七个合作学习小组的人数如下:4,5,5,x,6,7,8.已知这组数据的平均数是6,则这组数据的中位数是()A.5B.5.5C.6D.75.某中学规定学生的学期体育成绩满分为100分,其中课外体育成绩占20%,期中考试成绩占30%,期末考试成绩占50%.小彤这学期的三项成绩(百分制)依次为95分,90分,88分,则小彤这学期的体育成绩为()A.89分B.90分C.92分D.93分6.如图所示的统计图表示某体校射击队甲、乙两名队员射击比赛的成绩.根据统计图中的信息,可得下列结论正确的是()A.甲队员成绩的平均数比乙队员的大B.乙队员成绩的方差比甲队员的大C.甲队员成绩的中位数比乙队员的大D.甲队员成绩的方差比乙队员的大7.在《朗读者》节目的影响下,某中学开展了“好书伴我成长”读书活动.为了解5月份八年级300名学生的读书情况,随机调查了八年级50名学生读书的册数,统计数据如下表所示:册数01234人数41216171关于这组数据,下列说法正确的是()A.中位数是2B.众数是17C.平均数是2D.方差是28.某篮球队10名队员的年龄结构如下表,已知该队队员年龄的中位数为21.5岁,则众数与方差分别为()年龄(岁)192021222426人数11x y21A.22岁,3B.22岁,4C.21岁,3D.21岁,49.一组数据:2,3,3,4,若添加一个数据3,则发生变化的统计量是()A.平均数B.中位数C.众数D.方差10.一次数学测试,某小组五名同学的成绩如下表所示(有两个数据被遮盖),则被遮盖的两个数据依次是()组员甲乙丙丁戊方差平均成绩得分8179■8082■80A.80,2B.80C.78,2D.78第Ⅱ卷(非选择题共70分)二、填空题(每题3分,共18分)11.已知一组数据:3,5,x,7,9的平均数为6,则x ________.12.从1,2,3,5,7,8中任取两数相加,在不同的和数中,是2的倍数的个数为a,是3的倍数的个数为b,则一组数据6,a,b,9的中位数是________.13.小李和小林练习射箭,射完10箭后两人的成绩如图所示,通常新手的成绩不太稳定,根据图中的信息,估计这两人中的新手是________.14.有5个从小到大排列的正整数,中位数是3,唯一的众数是8,则这5个数的平均数为________. 15.已知一组数据的方差()()()()222221234166664s x x x x ⎡⎤=-+-+-+-⎣⎦,那么这组数据的总和为________.16.某单位招聘员工,采用笔试与面试相结合的方式进行,两项成绩的原始分满分均为100分,根据规定两项成绩按一定比例折算成综合成绩(综合成绩满分仍为100分).1号选手笔试85分,面试90分,综合成绩是88分,则折算成综合成绩时笔试成绩和面试成绩的比例是________. 三、解答题(共52分)17.(6分)某公司欲招聘一名工作人员,对甲、乙两名应聘者进行面试和笔试,他们的成绩(百分制)如下表所示.该公司分别赋予面试成绩和笔试成绩7和3的权,平均成绩高的被录取,试判断谁将被录取,并说明理由.应聘者 面试成绩 笔试成绩 甲 84 90 乙918018.(6分)某商场甲、乙、丙三名业务员5个月的销售额(单位:万元)如下表:第1个月 第2个月第3个月第4个月第5个月甲 7.2 9.6 9.6 7.8 9.3 乙 5.8 9.7 9.8 5.8 9.9 丙46.28.59.99.9(1)根据上表中的数据,将下表补充完整:数值统计量 人员平均数(万元)中位数(万元)众数(万元)甲9.39.6 乙 8.25.8丙7.78.5(2)甲、乙、丙三名业务员都说自己的销售业绩好,你赞同谁的说法?请说明理由.19.(8分)某市篮球队到市一中选拔一名队员.教练让王亮和李刚两名同学进行5次3分投篮测试,每人每次投10个球,这两名同学5次投篮所投中的个数如下:王亮:6,7,8,7,7;李刚:4,7,7,8,9.(1)填写下表:姓名平均数众数方差王亮7李刚72.8(2)你认为谁的成绩比较稳定?为什么?(3)若你是教练,你打算选谁?简要说明理由.20.(8分)作为宁波市政府民生实事之一的公共自行车建设工作已基本完成,某部门对2019年4月份中的某一周进行了公共自行车日租量的统计,结果如图所示.(1)求这周日租量的众数、中位数和平均数;(2)用(1)中的平均数估计4月份(30天)共租车多少万车次;(3)市政府在公共自行车建设项目中共投入9600万元,估计2019年共租车3200万车次,每车次平均收入租车费0.1元,求2019年租车费收入占总投入的百分比(精确到0.1%).21.(8分)新华机械厂有15名工人,某月这15名工人加工的零件数统计如下:人数112632加工零件数540450300240210120(1)求这15名工人该月加工的零件数的平均数、中位数和众数;(2)假如部门负责人把每名工人每月加工零件的任务确定为260件,你认为是否合适?为什么?如果不合适,你认为把任务确定为多少较合适?22.(8分)下面的表格是李刚同学一学期数学成绩的记录(满分100分).考试类别平时期中考试期末考试第一单元第二单元第三单元第四单元成绩(分)888690929096根据表格提供的信息回答下面的问题:(1)李刚同学6次成绩的众数是________;(2)李刚同学6次成绩的中位数是________;(3)李刚同学平时成绩的平均数是________;(4)如果用如图所示的比例给李刚打分,那么他应该得多少分?23.(8分)一分钟投篮测试规定,得6分以上(包括6分)为合格,得9分以上(包括9分)为优秀,甲、乙两组同学的一次测试成绩如下表:成绩(分)456789甲组(人)125214乙组(人)114522(1)请你根据上述统计数据,把下面的统计图表补充完整;一分钟投篮测试成绩统计分析表统计量平均数(分)方差中位数(分)合格率优秀率甲组2.56680.0%26.7%乙组6.81.7686.7%13.3%(2)下面是小明和小红的一段对话,请你根据(1)中的分析表,写出两条支持小红观点的理由.第六章综合测试答案解析第Ⅰ卷一、 1.【答案】B【解析】这种商品的平均售价为每件5034524054410⨯+⨯+⨯=(元).故选B.2.【答案】B【解析】因为需要保证不少于50%的骑行是免费的,所以制定这一标准中的a 的值时,参考的统计量是此次调查所得数据的中位数,故选B. 3.【答案】C【解析】根据众数的定义“一组数据中出现次数最多的那个数据叫做这组数据的众数”,即得这组数据的众数是160cm ;根据中位数的定义,将这组数据按从小到大(或从大到小)的顺序依次排列,可得上述奇数个数中最中间的数161cm 是这组数据的中位数. 4.【答案】C 5.【答案】B【解析】根据题意,得9520%9030%8850%90⨯+⨯+⨯=(分),即小彤这学期的体育成绩为90分. 故选B. 6.【答案】D【解析】甲队员10次射击的成绩分别为6,7,7,7,8,8,9,9,9,10,则中位数为8882+=(环), 甲10次射击成绩的平均数为()637283910108+⨯+⨯+⨯+÷=(环), 方差为()()()()()22222168378288398108 1.410⨯-+⨯-+⨯-+⨯-+⎤⎦=⎡⎣-;乙队员10次射击的成绩分别为6,7,7,8,8,8,8,9,9,10,则中位数为8882+=(环), 平均数为()627482910108+⨯+⨯+⨯+÷=(环), 方差为()()()()()22222168278488298108 1.210⨯-+⨯-+⨯-+⨯-+⎤⎦=⎡⎣-.故选D. 7.【答案】A【解析】A 中,在这组数据中,第25,26个数均为2,故中位数为2,正确;B 中,在这组数据中,3出现的次数最多,故众数是3,错误;C 中,112216317411.9850x ⨯+⨯+⨯+⨯==,错误;D 中,()()()()()2222221s 40 1.98121 1.98162 1.98173 1.984 1.980.9850⎡⎤=⨯⨯-+⨯-+⨯-+⨯-+-≈⎣⎦,错误.8.【答案】D【解析】因为共有10个数据,所以5x y +=.又因为该队队员年龄的中位数为21.5岁,即212221.52+=(岁),所以3x =,2y =. 则这组数据的众数为21岁,平均数为1920213222242262210++⨯+⨯+⨯+=(岁),所以方差为()()()()()()2222221922202232122221102222242226224-+-+⨯-+⨯⎡-+⨯-+-⎤⎣⎦=⨯.故选D. 9.【答案】D【解析】原数据2,3,3,4的平均数为233434+++=,中位数为3332+=,众数为3,方差为()()()2222333243140.5⎡⎤⨯⎣⎦-+-⨯+-=;新数据2,3,3,3,4的平均数为2333435++++=,中位数为3,众数为3,方差为()()()2222333343150.4⎡⎤⨯⎣⎦-+-⨯+-=.所以添加一个数据3,方差发生变化.故选D. 10.【答案】C第II 卷二、 11.【答案】6【解析】依题意可得357965x ++++=,解得6x =.12.【答案】6.5 13.【答案】小李 14.【答案】4.4 15.【答案】24 【解析】因为()()()()222212234616466x x x S x -+-+-+-⎡⎤=⎣⎦, 所以这组数据的平均数是6,数据的个数是4. 所以这组数据的总和为4624⨯=. 16.【答案】2:3【解析】设折算成综合成绩时笔试成绩和面试成绩占的百分比分别是x ,y ,根据题意,得1859088x y x y +=⎧⎨+=⎩解得0.40.6x y =⎧⎨=⎩所以折算成综合成绩时笔试成绩和面试成绩占的百分比分别是40%,60%. 即笔试成绩和面试成绩的比例是2:3. 三、17.【答案】解:乙将被录取.理由:甲的平均成绩为()8479031085.8⨯+⨯÷=(分), 乙的平均成绩为()9178031087.7⨯+⨯÷=(分). 因为87.785.8>,所以乙的平均成绩较高,故乙将被录取. 18.【答案】解:(1)7.29.69.67.89.38.75++++==甲;将乙组数据从小到大排列为:5.8,5.8,9.7,9.8,9.9,其中处于最中间的数为9.7,所以中位数为9.7; 丙组数据中出现次数最多的数据是9.9,所以丙组数据的众数为9.9.(2)(答案合理即可)若从平均数的角度分析,甲的平均数最大,所以甲的销售业绩最好; 若从中位数的角度分析,乙的中位数最大,所以乙的销售业绩最好; 若从众数的角度分析,丙的众数最大,所以丙的销售业绩最好.【解析】(1)将甲5个月的销售额相加除以5即为甲的平均数;将乙5个月的销售额按从小到大的顺序排列,处于最中间的数据为中位数;丙5个月的销售额中出现次数最多的即为 众数;(2)分别从不同的角度分析数据,得出业绩的好坏.19.【答案】解:(1)王亮5次投篮,有3次投中7个,故众数为7;方差为()()()21=67237728720.45S ⨯-+⨯-+-⎦=⎡⎤⎣; 李刚投篮所投中的个数的平均数为()4778957++++÷=. 填表如下:姓名 平均数 众数 方差 王亮 7 7 0.4 李刚772.8(2)王亮的成绩比较稳定.理由:两人的平均数相同,王亮投篮成绩的方差小于李刚投篮成绩的方差, 所以王亮的成绩比较稳定.(3)选王亮的理由是他的成绩比较稳定,选李刚的理由是他具有发展潜力,李刚越到后面投中的个数越多(答案合理即可).20.【答案】解:(1)根据条形统计图,得8出现的次数最多,所以众数为8万车次; 将数据按照从小到大的顺序排列为7.5,8,8,8,9,9,10,所以中位数为8万车次; 平均数为()7.5888991078.5++++++÷=(万车次). (2)根据题意,得308.5255⨯=(万车次),则估计4月份(30天)共租车255万车次. (3)根据题意,得32000.113.3%960030⨯=≈,即2019年租车费收入占总投入的百分比约为3.3%.21.【答案】解:(1)因为()540450300224062103120215390015260++⨯+⨯+⨯+⨯÷=÷=,所以这15名工人该月加工零件数的平均数为260件.因为数据由低到高排序为:120,120,210,210,210,240,240,240,240,240,240,300,300,450,540,所以中位数为240件.因为240出现了6次,出现的次数最多,所以众数为240件.(2)不合适.理由如下:由题意得每月能完成260件的工人有4人,有11人不能完成此任务.尽管260件是平均数,但不利于调动工人的积极性.而240件既是中位数又是众数,是大多数人能达到的数额,故把任务确定为240件较合适.22.【答案】解:(1)李刚同学6次成绩中90分出现的次数最多,有2次,即众数为90分. (2)成绩从大到小排列为(单位:分):96,92,90,90,88,86,则中位数是9090902+=(分). (3)李刚同学平时成绩的平均数是98969092894+++=(分).(4) 8910%9030%9660%93.5⨯+⨯+⨯=(分). 因此,李刚应该得93.5分.23.【答案】解:(1)根据测试成绩表,补全统计图如图所示:补全分析表如下:一分钟投篮测试成绩统计分析表统计量 平均数(分) 方差 中位数(分) 合格率 优秀率甲组 6.8 2.56 6 80.0% 26.7% 乙组6.81.76786.7%13.3%(2)(答案合理即可)理由1:甲、乙两组成绩的平均数一样,乙组成绩的方差低于甲组,说明乙组成绩比甲组稳定,所以乙组成绩好于甲组.理由2:乙组成绩的合格率高于甲组成绩的合格率,所以乙组成绩好于甲组.。
北师大版八年级数学上册第六章数据的分析测试卷(全章)
北师大版八年级数学测试卷(考试题)第六章数据的分析周周测4一、选择题1.某射击运动员在一次射击练习中,成绩(单位:环)记录如下:8,9,8,7,10.这组数据的平均数和中位数分别是().A.8,8B.8.4,8C.8.4,8.4D.8,8.42.某校在开展“爱心捐助”的活动中,九年级一班六名同学捐款的数额分别为8,10,4,8,10(单位:元).这组数据的众数是().A.10B.9C.8D.43.在2016年的体育中考中,某校6名学生的体育成绩统计如图,则这组数据的众数、中位数、方差依次是().分数A.18,18,1B.18,17.5,3C.18,18,3D.18,17.5,14.一组数据2,4,x,2,4,7的众数是2,则这组数据的平均数、中位数分别为()A.3.5,3B.3,4C.3,3.5D.4,35.若1,2,3,x的平均数是6,且1,2,3,x,y的平均数是7,则y的值为().A.7B.9C.11D.136.丽华根据演讲比赛中九位评委所给的分数作了如下表格,如果去掉一个最高分和一个最低分,则表中数据不发生变化的是().A.平均数B D.中位数7.为了解某公司员工的年工资情况,小王随机抽查了10位员工,某年工资(单位:万元)如下:3,3,3,4,5,5,6,6,8,20.下列统计量中,能合理反应该公司员工年工资水平的是().A.方差B.众数C.中位数D.平均数8.某校一年级学生的平均年龄为7岁,方差为3,5年后该校六年级学生的年龄中().A.平均年龄为7岁,方差改变B.平均年龄为12岁,方差不变C.平均年龄为12岁,方差改变D.平均年龄不变,方差不变9.有19位同学参加歌咏比赛,所得的分数互不相同,取得分前10位的同学进入比赛,某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这19位同学分数的( ). A .平均数 B .中位数 C .众数 D .方差10.自然数4,5,5,x ,y 从小到大排列后,其中位数为4,如果这组数据唯一的众数是5,那么,所有满足条件的x ,y 中,x y +的最大值是( ). A .3B .4C .5D .6二、填空题11.数据1,1,1,3,4的平均数是__________,众数是__________,极差是__________.12.某大学生招生考试只考数学和物理,计算综合得分时,按数学占60%,物理占40%,计算,已知小明数学得分为95分,物理得分为90分,那么小明的综合得分是__________.13.苹果树有果树200棵,从中随机抽出5棵,每棵果树的产量(单位:千克)如下:98,102,97,103,105,则这5棵树的平均产量为__________千克,估计200棵树的总产量为__________千克.14.已知一个样本1,3,2,2,a ,b ,c 的众数为3,平均数为2,则该样本的方差为__________.15.已知依序数据1x ,2x ,3x ,4x 的平均数是2,则数据123x +,223x +,323x +,423x +的平均数是__________. 16.某班进行个人投篮比赛,受污损的下表记录了在规定时间内投进几个球的人数分布情况,已知进球3个或3个以上的人平均每人投进3.5个球,进球4个或4个以下的人平均,每人投进2.5个球.则投进3个球的有__________人,投进4个球的有__________人.三、解答题17.在“全民读书月”活动中,小明调查了班级里40名同学本学期计划购买课外书的花费情况,并将结果绘制成如图所示的统计图,请根据相关信息,解答下列问题:元(1)本次调查获取的样本数据的众数是__________.(2)这次调查获取的样本数据的中位数是__________.(3)若该校共有学生1000人,根据样本数据,估计本学期计划购买课外书花费50元的学生有多少人?18.学校广播站要招收一名播音员,考查形象、知识面、普通话三个醒目.按形象占100%,知识面占40%,普通话占50%,计算加权平均数,作为最后评定的总成绩,李文和孔明两位同学的各项成绩如下表:(1(2)若孔明同学要在总成绩上超过李文同学,则他的普通话成绩x应超过多少分?19.下表是某校九年级(1)班20名学生某次数学测验的成绩表:(1)若这20(2)在(1)的条件,设这20名学生本次测验成绩的众数为a,中位数为b,求a,b的值.20.“最美女教师”张丽莉,为抢救两名学生,以致双腿高位截瘫,社会各界纷纷为她捐款,我市某中学九年级一班全体同学参加了捐款活动,该班同学捐款情况的部分统计图如图所示:该班同学捐款情况部分统计图该班同学捐款情况部分统计图/元E:捐款25元捐款15元捐款20元捐款10元捐款5元D:C:B:A:EDC28%BA(1)求该班的总人数.(2)将条形图补充完整,并写出捐款总额的众数.(3)该班平均每人捐款多少元.21.市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了六次测试,测试成绩如下表(单位:环):附赠材料:怎样提高答题效率直觉答题法相信自己的第一感觉厦门英才学校彭超老师说,“经验表明,从做题的过程来看,同学们要相信自己的第一感觉,不要轻易改动第一次做出的选择,第一感觉的正确率在80%以上。
北师大版数学八年级上册 第六章 数据的分析综合测评(含答案)
第六章 数据的分析综合测评(本试卷满分100分)一、选择题(本大题共10小题,每小题3分,共30分) 1. 一组数据4,6,5,5,10中,平均数是( )A .5B .6C .7D .82. 某车间5名工人日加工零件数(个)分别为5,9,3,4,3,这组数据的众数是( ) A .3个 B .4个 C .5个 D .9个3. 学校举行演讲比赛,共有13名同学进入决赛,比赛将评出金奖1名,银奖2名,铜奖3名.某选手知道自己的分数后,要判断自己能否获奖,他应当关注有关成绩的( )A .平均数B .中位数C .众数D .方差 4. 某校八年级八个班级向“希望工程”捐献图书的册数如下:所捐图书册数的中位数和众数分别是( ) A .90册,500册 B .93册,500册 C .90册,90册 D .93册,90册 5. 某校九年级进行了3次数学模拟考试,甲、乙、丙、丁4名同学3次数学成绩的平均分都是129分,方差分别是3.6,4.6,6.3,7.3,则这4名同学3次数学成绩最稳定的是( )A .甲B .乙C .丙D .丁6.(2021年黑龙江)一组数据:2,4,4,4,6,若去掉一个数据4,则下列统计量中发生变化的是( ) A .众数 B .中位数 C .平均数 D .方差7. 某公司招聘职员一名,从学历、经验和工作态度三个方面对甲、乙、丙、丁四名应聘者进行测试.测试结果如下表:(各项满分均为10分)如果将学历、经验和工作态度三项得分按1∶2∶3的比例确定各应聘者的最终得分,并以此为依据录取得分最高者,那么将被录取的是( )A .甲B .乙C .丙D .丁8. 在对一组数据进行分析时,小华列出了方差的计算公式:()()()()22222-3-3-4-x x x xn+++,由公式提供的信息,下列说法错误的是( )A .这组数据共有4个B .这组数据的中位数是3C .这组数据的众数是3D .这组数据的平均数是3.59. 在某次演讲比赛中,五位评委给选手圆圆打分,得到互不相等的五个分数.若去掉一个最高分,平均分为x ;去掉一个最低分,平均分为y ;同时去掉一个最高分和一个最低分,平均分为z ,则( )A .y >z >xB .x >z >yC .y >x >zD .z >y >x10. 下列说法:①一组数据:3,2,5,5,4,6的众数是5;②甲、乙两种麦种连续3年的平均亩产量相同,它们的方差分别为5和0.5,则乙麦种产量比较稳定;③一组数据2,4,x ,2,4,10的众数为2,则它的中位数是3,方差是48;④如果x 1,x 2,…x n ,的平均数是x ,那么(x 1−x )+(x 2−x )+…+(x n −x )=0.其中正确的有()A.①②③B.①③④C.①②④D.①②③④二、填空题(本大题共6小题,每小题3分,共18分)11. 已知一组数据1,3,a,10的平均数为5,则a=__________.12. 在“英语达人”中学生竞赛中,5位评委给小明的评分分别是:8,7,7,9,9,这组数据的的方差是__________.13. 某超市销售A,B,C,D四种矿泉水,它们的单价依次是5元,3元,2元,1元.这四种矿泉水某天的销售量如图1所示,则这天销售的矿泉水的平均单价是__________元.图1 图214. 若一组数据8,3,x,y,5的众数和中位数分别是8和6,则这组数据的平均数为__________.15. 若一组数据a1,a2,…,a n的方差是5,则一组新数据2a1,2a2,…,2a n的方差是__________.16. 某中学学生对本校学生的每周零花钱使用情况进行了调查,得到一组学生平均一周用出的零花钱的数据.图2是根据这组数据绘制的统计图,图中从左到右各长方形的高度之比为3:4:5:8:6,又知此次调查中平均一周用出零花钱25元和30元的学生一共42人.则这组数据的众数是__________元,中位数是__________元.三、解答题(本大题共7小题,共52分)17. (6分)小明八年级下学期的数学成绩如下表所示:考试类别平时成绩期中成绩期末成绩成绩(分)85 86 88如果按平时成绩占20%、期中成绩占30%、期末成绩占50%计算,求出小明该学期的总评成绩.18. (6分)某校200名学生参加植树活动,要求每人植树3~6棵.活动结束后对20名学生每人的植树量(单位:棵)进行了调查,调查结果如下表所示:棵数 3 4 5 6人数 5 9 5 1(1)这20名学生每人植树量的众数为__________棵,中位数为__________棵;(2)求这20名学生中植树棵树不少于5棵的人数所占的百分比.19.(8分)学校组织了“我和我的祖国”演讲比赛,甲、乙两队各有10人参加本次比赛,成绩(10分制)如下表所示:甲10 8 7 9 8 10 10 9 10 9乙7 8 9 7 10 10 9 10 10 10(1)甲队成绩的众数是__________分,乙队成绩的平均数是__________分;(2)哪个队的成绩比较整齐?20.(10分)“新冠肺炎”疫情期间,某口罩生产车间有15位工人,为了解生产进度,车间主任统计了15位工人某天生产口罩的只数如下表:每人生产口罩只数540 450 300 240 210 120人数 1 1 2 6 3 2(1)求这15位工人该天生产口罩的中位数和众数;(2)假如车间主任把每位工人每天生产口罩数定为250只,你认为这个定额是否合理?若不合理,应定为多少较为合理?请说明理由.21.(10分)“绿水青山就是金山银山”,某市市民积极参与义务植树活动.小致同学为了解自己所在小区300户家庭在4月份义务植树的数量,进行了抽样调查,随机抽取了其中30户家庭,收集的数据如下(单位:棵):1 123 2 3 2 3 34 3 3 4 3 35 3 4 3 4 4 5 4 5 3 4 3 4 5 6(1)对以上数据进行整理、描述和分析:①绘制如图3的统计图,请补充完整;②这30户家庭4月份义务植树数量的平均数是棵,众数是棵;(2)“互联网+全民义务植树”是新时代全民义务植树组织形式和尽责方式的一大创新,小致同学所调查的这30户家庭中有8户家庭采用了网上预约义务植树这种方式,由此可以估计该小区采用这种形式植树的家庭有多少户?图322. (12分)射击训练班中的甲、乙两名选手在5次射击训练中的成绩(单位:环)依次为:甲:8,8,7,8,9;乙:5,9,7,10,9.教练根据他们的成绩绘制了如图4所示的尚不完整的统计图表:图4 根据以上信息,解答下面的问题:(1)a=__________,b=__________,c=__________; (2)完成图6中表示乙成绩变化情况的折线;(3)教练根据这5次成绩,决定选择甲参加射击比赛,教练的理由是什么?(4)若选手乙再射击第6次,命中的成绩是8环,则选手乙这6次射击成绩的方差与前5次射击成绩的方差相比会__________.(填“变大”“变小”或“不变”)附加题(共20分,不计入总分)1.(6分)对于三个数a ,b ,c ,用M {a ,b ,c }表示这三个数的平均数,用min {a ,b ,c }表示这三个数中最小的数,例如:M {-1,2,3}=1233-++=43,min {-1,2,3}=-1.如果M {3,x -1,5x +1}=min {2,-x +3,5x },那么x = .2.(14分)在发生某公共卫生事件期间,某专业机构认为该事件在一段时间内没有发生大规模群体感染的标志是:连续14天,每天新增疑似病例不超过7人.已知在过去的14天内,甲、乙两地新增疑似病例数据信息如下:甲地:总体平均数为2,方差为2; 乙地:中位数为3,众数为4和5.请你运用所学知识判断:甲、乙两地是否会发生大规模群体感染?请说明理由.(山东 于宗英)平均数 众数 中位数 方差 甲 8 a 8 c乙 8 9 b 3.2第六章数据的分析综合测评一、1. B 2. A 3. B 4. D 5. A 6. D 7. A 8. D 9. A 10. C二、11. 6 12. 0.8 13. 2.25 14. 6 15. 20 16. 25 25三、17. 解:小明该学期的总评成绩为:85×20%+86×30%+88×50%=86.6(分).18. 解:(1)4 4(2)这20名学生中植树棵数不少于5棵的人数所占的百分比为:5+120×100%=30%.19. 解:(1)10 9(2)甲队的平均数为:(7+8×2+9×3+10×4)÷10=9;甲队的方差为:110()()()()2222 7-928-939-9+410-9+⨯+⨯⨯⎡⎤⎣⎦=1;乙队的方差为:110×()()()()222227-98-929-9+510-9⨯++⨯⨯⎡⎤⎣⎦=1.4.因为1<1.4,所以甲队的成绩比较整齐.20. 解:(1)这15位工人该天生产口罩的中位数是240只,众数是240只.(2)不合理.因为表中数据显示,每月能完成250件的人数一共有4人,还有11人不能达到此定额,不利于调动多数员工的积极性.因为240既是中位数,又是众数,是大多数人能达到的定额,故定额为240只较为合理.21. 解:(1)①由已知数据可知种植3棵树的家庭有12户,种植4棵树的家庭有8户.补全统计图如图1:图1②3.4 3(2)300×830=80(户).所以估计该小区采用这种形式植树的家庭有80户.22. 解:(1)8 9 0.4(2)乙成绩变化情况的折线如图2所示:图2(3)因为两人的平均成绩相同,而甲的成绩的方差小,所以甲的成绩较稳定,故教练选择甲参加射击比赛.(4)变小附加题1.12或132.解:①甲地不会发生大规模群体感染.理由如下:由题意,得()()()2221214122...214x x x ⎡⎤-+-++-⎣⎦=2,即()()()222121422...2x x x ⎡⎤-+-++-⎣⎦=28. 若甲地14天中存在某一天新增疑似病例超过7人,则最少为8人.因为(8-2)2=36>28,所以没有一天新增疑似病例超过7人,故甲地不会发生大规模群体感染. ②乙地不会发生大规模群体感染.理由如下:因为一共有14个数据,所以中位数为第7,8个数的平均数.因为中位数是3,所以第7,8个数可能为2,4或3,3两种情况.若中间两个数是2和4,则前面六个数只能取0,1,2这三个数,所以前七个数中有一个数至少会出现3次.因为众数是4和5,所以后六个数中4和5至少各出现4次,不合题意;若中间两个数都是3,因为众数是4和5,则后六个数中4和5至少各出现3次,所以后六个数只能为4,4,4,5,5,5.所以前六个数只能取0,1,2,且每个数最多出现两次.所以,这14个数只能是:0,0,1,1,2,2,3,3,4,4,4,5,5,5. 所以乙地不会发生大规模群体感染.。
北师大版八年级数学上册第六章 数据的分析综合测评(Word版 含答案)
第六章 数据的分析综合测评(时间: 分钟 满分:100分)(班级: 姓名: 得分: )一、选择题(每小题4分,共32分)1. 数据-1,0,1,2,3的平均数是( ) A .-1 B .0 C .1 D .52. 在一次体操比赛中,六位评委对某位选手的打分分别为(单位:分):9.2,9.4,9.1,9.3,9.2,9.6,这组数据的众数为( )A .9.3B .9.2C .9.1D .9.63. 在《学习方法报》社举办的一次3D 打印“青少年创新大赛”中,有13名同学成绩优异,现取前6名进入决赛.小尚同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这13名同学成绩的( )A .方差B .众数C .平均数D .中位数4. 在一次训练中,甲、乙、丙三人各射击10次的成绩如图1所示,在这三人中,此次射击成绩最稳定的是( )A .甲B .乙C .丙D .无法判断图1 图25. 若x 个数的平均数为a ,y 个数的平均数为b ,则这(x+y )个数的平均数是( ) A .2a b + B .a y x b ++ C .xa yb x y ++ D .xa yba b++6. 甲、乙两地去年12月前5天的日平均气温如图2所示,下列描述错误的是( )A .甲地气温的中位数是6 ℃B .两地气温的平均数相同C .乙地气温的众数是8 ℃D .乙地气温相对比较稳定7. 甲、乙两班举行电脑汉字输入比赛,每班参赛学生成绩(每分钟输入汉字的个数)统计后结果如下表所示:参加人数 中位数 平均数 方 差甲 班 45 148 135 190 乙 班45151135110某同学根据表中数据分析得出如下结论:①甲、乙两班学生成绩的平均水平相同;②乙班优秀人数多于甲班优秀人数(规定每分钟输入汉字大于或等于150个为优秀);③乙班成绩比较稳定.其中结论正确的有( )A .0个B .1个C .2个D .3个 8. 某射击运动员练习射击,5次成绩分别为(单位:环):8,9,7,8,x .下列说法中正确的是( ) A .若这5次成绩的中位数为8,则x=8 B .若这5次成绩的众数是8,则x=8 C .若这5次成绩的方差为8,则x=8D .若这5次成绩的平均成绩是8,则x=8 二、填空题(每小题5分,共30分)9. 某生产小组6名工人某天加工零件的个数分别是10,10,11,12,8,10,则这组数据的中位数是 .10. 若甲.乙两个街舞团的人数相同,平均身高相同,通过计算身高的方差发现身高更整齐的街舞团是甲,那么s甲2s乙2(填“>”或“<”).11.(2019年盘锦)在中考体育加试中,某班30名男生的跳远成绩如下表:成绩/m 1.95 2.00 2.05 2.10 2.15 2.25人数239853这些男生跳远成绩的众数、中位数分别是.12. 学完方差的知识后,小明了解了他最要好的四个朋友的身高分别是(单位:cm):176,174,177,173,那么小明四个好朋友身高的方差是.13. 某校招聘一名数学老师,对应聘者分别进行了教学能力、科研能力和组织能力三项测试,其中甲、乙两名应聘者的成绩如下表所示(单位:分):教学能力科研能力组织能力甲81 85 86乙92 80 74如果根据实际需要,学校将教学、科研和组织能力三项测试得分按5:3:2的比例计算两人的总成绩,得分高者被录用,那么将被录用.14. 若10个数的平均数是3,方差是4,现将这10个数都扩大2倍,则这组新数据的方差是.三、解答题(共38分)15. (12分)某高科技产品开发公司现有员工50名,所有员工的月工资情况如下表:员工管理人员普通工作人员人员结构总经理部门经理科研人员销售人员高级技工中级技工勤杂工员工数(名) 1 3 2 3 16 24 1每人月工资(元)21 000 8400 2025 2200 1800 1600 950 请你根据上述内容,解答下列问题:(1)所有员工月工资的中位数为元,众数为元;(2)所有员工的月平均工资为2500元,这样的工资能否反映该公司员工的月工资实际水平?若不合理,则选择哪个数据更合理?16. (12分)某校为了分析九年级学生艺术考试的成绩,随机抽查了两个班各5名学生的成绩,它们分别为:九(1)班:96,92,94,97,96;九(2)班:90,98,97,98,92.通过数据分析,列表如下:(1)补全表格;(2)计算两个班所抽取的学生艺术成绩的方差,判断哪个班的艺术成绩比较稳定.17. (14分)某校拟派一名跳高运动员参加校际比赛,对甲、乙两名同学进行了8次跳高选拔比赛,他们的原始成绩(单位:cm)如下表:第1次第2次第3次第4次第5次第6次第7次第8次甲169 165 168 169 172 173 169 167乙161 174 172 162 163 172 172 176两名同学的8次跳高成绩数据分析如下表:平均数中位数众数方差甲 a b c 5.75乙169 172 172 31.25根据图表信息回答下列问题:(1)a=,b=,c=;(2)这两名同学中,的成绩更为稳定(填甲或乙);(3)若跳高165 cm就可能获得冠军,该校为了获取跳高比赛冠军,你认为应该选择同学参赛,理由是:;(4)若跳高170 cm方可夺得冠军,该校为了获取跳高比赛冠军,你认为应该选择同学参赛,班由是:.第六章数据的分析综合测评一、1. C 2. B 3. D 4. B 5. C 6. C 7. D 8. D二、9. 10 10. < 11. 2.05,2.10 12. 5213. 乙14. 16三、15. 解:(1)1700 1600(2)不能.因为将近一半的员工工资为1600元,所以平均工资不能反映该公司员工月工资的平均水平.选择中位数或众数更为合理.16. 解:(1)表格数据从上到下从左到右依次为96,95,98;(2)九(1)班的方差为15×[(96-95)2+(92-95)2+(94-95)2+(97-95)2+(96-95)2]=3.2,九(2)班的方差为15×[(90-95)2+(98-95)2+(97-95)2+(98-95)2+(92-95)2]=11.2,因为两班平均成绩相等,且3.2<11.2,所以九(1)班学生的艺术成绩比较稳定.17. 解:(1)a=18(169+165+168+169+172+173+169+167)=169;b=1691692=169;因为169出现了3次,出现次数最多,所以c的值为169.(2)因为甲、乙两名同学成绩的平均数相同,但甲的方差小于乙的方差,所以甲的成绩更稳定. (3)若跳高1.65米就获得冠军,那么成绩在1.65或1.65米以上的次数甲多,所以选择甲. (4)若跳高1.70米就获得冠军,那么成绩在1.70或1.70米以上的次数乙多,所以选择乙.。
北师大版八年级上册数学第六章 数据的分析 单元测试卷(含答案解析)
北师大版八年级上册数学第六章数据的分析单元测试卷一、单选题1.一组数据6,7,8,9,10,这组数据的平均数是()A.6B.7C.8D.92.“魅力凉都”六盘水某周连续7天的最高气温(单位℃)是18,22,22,23,24,25,26,则这组数据的中位数是()A.18B.22C.23D.243.小张五次数学考试成绩分别为:86分、78分、80分、85分、92分,李老师想了解小张数学成绩波动情况,则李老师最关注小张数学成绩的()A.方差B.众数C.中位数D.平均数4.一组数据1,2,3,5,3,4,10的极差、众数分别是()A.3,3B.9,3C.5,4D.6,10 5.甲、乙、丙、丁四人参加训练,近期的10次百米测试平均成绩都是13.2秒,方差如下表所示则这四人中发挥最稳定的是()A.甲B.乙C.丙D.丁6.某球员参加一场篮球比赛,比赛分4节进行,该球员每节得分如折线统计图所示,则该球员平均每节得分为()A.7分B.8分C.9分D.10分7.一组数据的算术平均数是40,将这组数据中的每一个数据都减去5后,所得的新的一组数据的平均数是()A.40B.35C.25D.58.某电脑公司销售部为了定制下个月的销售计划,对20位销售人员本月的销售量(单位:台)进行了统计,绘制成如图所示的统计图,则这20位销售人员本月销售量的中位数、众数分别是()A.20台,14台B.19台,20台C.20台,20台D.25台,20台9.某青年排球队12名队员的年龄情况如下:则这个队队员年龄的众数和中位数是()A.19,19B.19,20C.19,20.5D.20,1910.若一组数据2,3,4,5,x的方差与另一组数据5,6,7,8,9的方差相等,则x 的值为().A.1B.6C.1或6D.5或611.如图是某单元楼居民六月份的用电(单位:度)情况,则关于用电量描述不正确的是()A.众数为30B.中位数为30C.平均数为24D.方差为84 12.某次期中考试,小明、小亮的语文、数学、英语三科的分数如下:如果将语文、数学、英语这三科的权重比由3:5:2变成5:3:2,那么分数变化情况是()A.小明增加的分数多B.小亮增加的分数多C .两人增加的分数一样多D .两人的分数都减少了13.如图是成都市某周内日最高气温的折线统计图,关于这7天的日最高气温的说法正确的是( )A .极差是8℃B .众数是28℃C .中位数是24℃D .平均数是26℃14.若一组数据1a ,2a ,3a 的平均数为4,方差为3,那么数据12a +,22a +,32a +的平均数和方差分别是( ) A .4, 3B .6, 3C .3, 4D .6 515.A 、B 、C 、D 、E 五名射击运动员在一次比赛中的平均成绩是80环,而A 、B 、C 三人的平均成绩是78环,那么下列说法中一定正确的是( ) A .D 、E 的成绩比其他三人好 B .B 、E 两人的平均成绩是83环 C .最高分得主不是A 、B 、CD .D 、E 中至少有1人的成绩不少于83环。
北师大版八年级上册 第六章 单元测试卷(解析版)
初中数学北师大版八年级上学期第六章测试卷一、单选题1.已知一组数据为8,9,10,10,11,则这组数据的众数()A. 8B. 9C. 10D. 112.12位参加歌唱比赛的同学的成绩各不相同,按成绩取前6名进入决赛,如果小粉知道了自己的成绩后,要判断能否进入决赛,小粉需要知道这12位同学的成绩的()A. 平均数B. 中位数C. 众数D. 方差3.甲、乙、丙、丁四名同学进行跳高测试,每人10次跳高成绩的平均数都是1.28m,方差分别是s甲2=0.60,s乙2=0.62,s丙2=0.58,s丁2=0.45,则这四名同学跳高成绩最稳定的是()A. 甲B. 乙C. 丙D. 丁4.下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择()A. 甲B. 乙C. 丙D. 丁二、综合题5.随着移动互联网的快速发展,基于互联网的共享单车应运而生。
为了解某单位使用共享单车的情况,该单位有200名员工,某研究小组随机采访10位员工,得到这10位员工一周内使用共享单车的次数分别为:17,12,15,20,17,0,7,26,17,9。
(1)这组数据的中位数是________,众数是________;(2)试用平均数估计该单位员工一周内使用共享单车的总次数.6.在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m)绘制出如下的统计图①和图②,请根据相关信息,解答下列问题(1)图①中a的值为________;(2)求统计的这组初赛成绩数据的平均数、众数和中位数;(3)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m的运动员能否进入复赛。
7.“大美武汉·诗意江城”,某校数学兴趣小组就“最想去的武汉市旅游景点”随机调查了本校3000名学生中的部分学生,提供四个景点选择:A、黄鹤楼;B、东湖海洋世界;C、极地海洋世界;D、欢乐谷.要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:(1)一共调查了学生________人(2)扇形统计图中表示“最想去的景点D”的扇形圆心角为________度(3)如果A、B、C、D四个景点提供给学生优惠门票价格分别为20元、30元、40元、60元,根据以上的统计估计全校学生到对应的景点所需要门票总价格是多少元?8.某校为选拔一名选手参加“美丽江门,我为侨乡做代言”主题演讲比赛,经研究,按下图所示的项目和权数对选拔赛参赛选手进行考评(因排版原因统计图不完整),下表是李明、张华在选拔赛中的得分情况:结合以上信息,回答下列问题:(1)求服装项目在选手考评中的权数;(2)根据你所学的知识,帮助学校在李明、张华两人中选择一人参加“美丽江门,我为侨乡做代言”主题演讲比赛,并说明理由.9.为了考察甲、乙两种成熟期小麦的株高长势情况,现从中随机抽取6株,并测得它们的株高(单位:cm)如下表所示:(Ⅰ)请分别计算表内两组数据的方差,并借此比较哪种小麦的株高长势比较整齐?(Ⅱ)现将进行两种小麦优良品种杂交实验,需从表内的甲、乙两种小麦中,各随机抽取一株进行配对,以预估整体配对情况,请你用列表法或画树状图的方法,求所抽取的两株配对小麦株高恰好都等于各自平均株高的概率.10.良好的饮食对学生的身体、智力发育和健康起到了极其重要的作用,荤菜中蛋白质、钙、磷及脂溶性维生素优于素食,而素食中不饱和脂肪酸、维生素和纤维素又优于荤食,只有荤食与素食适当搭配,才能强化初中生的身体素质.某校为了了解学生的体质健康状况,以便食堂为学生提供合理膳食,对本校七年级、八年级学生的体质健康状况进行了调查,过程如下:收集数据:从七、八年级两个年级中各抽取15名学生,进行了体质健康测试,测试成绩(百分制)如下:七年级:748175767075757981707480916982八年级:819483778380817081737882807050(说明:90分及以上为优秀,80~90分(不含90分)为良好,60~80分(不含80分)为及格,60分以下为不及格)得出结论:(1)根据上述数据,将表格补充完整;(2)可以推断出几年级学生的体质健康状况更好一些,并说明理由;(3)若七年级共有300名学生,请估计七年级体质健康成绩优秀的学生人数.答案解析部分一、单选题1. C解:这组数据中8、9、11各出现一次,10出现两次,因此这组数据的众数是10.故答案为:C.【分析】根据众数的含义和计算方法得到答案即可。
北师大版八年级数学(上)第六单元测试卷
第六章 单元测试一、选择题(每小题2分,共20分)1.已知油箱中有油25升,每小时耗油5升,则剩油量P (升)与耗油时间t (小时)之间的函数关系式为( )A .P =25+5tB .P =25-5tC .P =t525D .P =5t -252.函数y =xx 3-的自变量的取值范围是( ) A .x ≥3 B .x >3 C .x ≠0且x ≠3 D .x ≠03.函数y =3x +1的图象一定通过( )A .(3,5)B .(-2,3)C .(2,7)D .(4,10) 4.下列函数中,图象经过原点的有( ) ①y =2x -2 ②y =5x 2-4x ③y =-x 2 ④y =x6 A .1个 B .2个 C .3个 D .4个 5.某市自来水公司年度利润表如图,观察该图表可知,下列四个说法中错误的是()A .1996年的利润比1995年的利润增长-2173.33万元B .1997年的利润比1996年的利润增长5679.03万元C .1998年的利润比1997年的利润增长315.51万元D .1999年的利润比1998年的利润增长-7706.77万元 6.下列函数中是一次函数的是( ) A .y =2x 2-1B .y =-x 1 C .y =31+x D .y =3x +2x 2-17.已知函数y =(m 2+2m )x 12-+m m+(2m -3)是x 的一次函数,则常数m 的值为( )A .-2B .1C .-2或-1D .2或-1 8.如图所示的图象是直线ax +by +c =0的图象,则下列条件中正确的为()A .a =b ,c =0B .a =-b ,c =0C .a =b ,c =1D .a =-b ,c =19.若函数y =2x +3与y =3x -2b 的图象交x 轴于同一点,则b 的值为( )A .-3B .-23 C .9 D .-49 10.函数y =2x +1与y =-21x +6的图象的交点坐标是( )A .(-1,-1)B .(2,5)C .(1,6)D .(-2,5)二、填空题(每小题3分,共24分)11.已知函数y =3x -6,当x =0时,y =______;当y =0时,x =______. 12.在函数y =11+x 中,自变量x 的取值范围是______. 13.长沙向北京打长途电话,设通话时间x (分),需付电话费y (元),通话3分以内话费为3.6元.请你根据如图所示的y随x的变化的图象,找出通话5分钟需付电话费______元.14.已知直线经过原点和P(-3,2),那么它的解析式为______.15.已知一次函数y=-(k-1)x+5随着x的增大,y的值也随着增大,那么k的取值范围是______.16.一次函数y=1-5x经过点(0,______)与点(______,0),y随x的增大而______.17.一次函数y=(m2-4)x+(1-m)和y=(m-1)x+m2-3的图象与y轴分别交于点P和点Q,若点P与点Q关于x轴对称,则m=______.18.假定甲乙两人在一次赛跑中,路程S与时间t的关系如图所示,那么可以知道:这是一次______米赛跑;甲、乙两人中先到达终点的是______;乙在这次赛跑中的速度为______米/秒.三、解答题(每小题7分,共56分)19.北京到天津的低速公路约240千米,骑自行车以每小时20千米匀速从北京出发,t小时后离天津S千米.(1)写出S与t之间的函数关系式;(2)画出这个函数的图象;(3)回答:①8小时后距天津多远?②出发后几小时,到两地距离相等?20.已知正比例函数的图象上有一点P,它的纵坐标与横坐标的比值是-65.(1)求这个函数的解析式;(2)点P1(10,-12)、P2(-3,36)在这个函数图象上吗?为什么?21.作出函数y=34x-4的图象,并回答下面的问题:(1)求它的图象与x轴、y轴所围成图形的面积;(2)求原点到此图象的距离.22.如图一次函数y=kx+b的图象经过点A和点B.(1)写出点A和点B的坐标并求出k、b的值;(2)求出当x=23时的函数值.23.一次函数y=(2a+4)x-(3-b),当a、b为何值时(1)y随x的增大而增大;(2)图象与y轴交在x轴上方;(3)图象过原点.24.判断三点A(1,3)、B(-2,0)、C(2,4)是否在同一条直线上,为什么?25.为发展电信事业,方便用户,电信公司对移动电话采用不同的收费方式,所使用的便民卡和如意卡在×市范围内每月(30天)的通话时间x(分钟)与通话费y(元)的关系如图所示:分别求出通话费y1、y2与通话时间x之间的函数关系式.26.为加强公民的节水意识,某城市制定了以下用水收费标准:每户每月用水未超过7立方米时,每立方米收费1.0元并加收0.2元的城市污水处理费;超过7立方米的部分每立方米收费1.5元并加收0.4元的城市污水处理费.设某户每月用水量为x(立方米),应交水费为y(元).(1)分别写出未超过7立方米和多于7立方米时,y与x的函数关系式;(2)如果某单位共有50户,某月共交水费541.6元,且每户的用水量均未超过10立方米,求这个月用水未超过7立方米的用户最多可能有多少户?参考答案一、1.B2.A3.C4.B5.D6.C7.B8.A9.D10.B二、11.-6,212.x≠-113. 614.y=-32x15.k<116.1,51,减小17.-1或218.100,甲,8三、19.(1)S=240-20t(2)略(3)①80千米②t=620.(1)y=-65x(2)都不在点的坐标代入函数式不成立21.图略(1)6(2)51222.(1) A(-1.3) B(2,-3),k=-2,b=1(2)-223.(1)a>-2,b为任意数(2)a≠-2且b>3(3)a≠-2且b=324.在略25.y1=51x+29y2=21x26.(1)y=1.2x(0≤x≤7)y=1.9(x-7)+8.4(x>7)(2)28。
北师大版八年级数学上册第六章数据的分析测试卷
北师大版八年级数学测试卷(考试题)第六章数据的分析周周测1一.选择题1.有一组数据:,这组数据的平均数是A. 6B. 7C. 8D. 92.在某公司的面试中,李明的得分情况为:个人形象89分,工作能力93分,交际能力83分已知个人形象、工作能力和交际能力的权重为3:4:4,则李明的最终成绩是A. 分B. 分C. 分D. 265分3.某班学生军训射击,有m人各打中a环,n人各打中b环,那么该班打中a环和b环学生的平均环数是A. B. C. D.A. 立方米B. 立方米C. 立方米D. 立方米4.在一次“爱心互助”捐款活动中,某班第一小组8名同学捐款的金额单位:元如表所示则这8名同学捐款的平均金额为金额元5678人数2321A. 元B. 元C. 元D. 7元5.某校调查了20名同学某一周玩手机游戏的次数,调查结果如下表所示,那么这20名同学玩手机游戏次数的平均数为次数2458人数22106A. 5B.C. 6D.7.某地区某月前两周从周一至周五每天的最低气温是(单位:℃),和,若第一周这五天的平均气温为7℃,则第二周这五天的平均气温为A. 7℃B. 8℃C. 9℃D. 10℃8.某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如表:候选人甲乙丙丁面试86 92 90 83测试成绩(百分制)笔试90 83 83 929.如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权.根据四人各自的平均成绩,公司将录取()A.甲B.乙C.丙D.丁10.如图是小芹6月1日﹣7日每天的自主学习时间统计图,则小芹这七天平均每天的自主学习时间是()A.1小时B.1.5小时C.2小时D.3小时11.在一次数学测试中,小明所在小组的8个同学的成绩单位:分分别是,则这组数据的中位数是A. 90B.C. 91D. 9212.已知一组数据:2,2,3,x,5,5,6的众数是2,则x是A. 5B. 4C. 3D. 213.某学习小组13名学生的一次英语听力测试成绩分布如下表所示满分20分:成绩分14151617181920人数人1322122这13名学生听力测试成绩的中位数是A. 16分B. 17分C. 18分D. 19分14.某男装专营店老板专卖某品牌的夹克,店主统计了一周中不同尺码的夹克销售量如表:尺码170175180185190平均每天的销售量件7918106如果店主要购进100件这种夹克,则购进180尺码的夹克数量最合适的是A. 20件B. 18件C. 36件D. 50件15.已知一小到大的数:的中位是,则A. 5B. 6C. 7D. 8二、填空题16.已知一组数据1,a,4,4,9.它的平均数是4,则a=______.17.某中学随机抽查了50名学生,了解他们一周的课外阅读时间,结果如表所示:时间(小时) 4 5 6 7人数10 20 15 5则这50名学生一周的平均课外阅读时间是______小时.18.下图是根据今年某校九年级学生体育考试跳绳的成绩绘制成的统计图.如果该校九年级共有200名学生参加了这项跳绳考试,根据该统计图给出的信息可得这些同学跳绳考试的平均成绩为______.19.某校规定:学生的数学学期综合成绩是由平时、期中和期末三项成绩按3:3:4的比例计算所得.若某同学本学期数学的平时、期中和期末成绩分别是90分,90分和85分,则他本学期数学学期综合成绩是______分.20.若一组数据“-2,x,-1,0,2”的众数是2,则中位数是21.一个射手连续射靶22次,其中3次射中10环,7次射中9环,9次射中8环,3次射中7环.则射中环数的中位数是,众数是.三、解答题22.甲、乙两名大学生竞选班长,现对甲、乙两名应聘者从笔试、口试、得票三个方面表现进行评分,各项成绩如表所示:应聘者笔试口试得票甲85 83 90乙80 85 92(1)如果按笔试占总成绩20%、口试占30%、得票占50%来计算各人的成绩,试判断谁会竞选上?(2)如果将笔试、口试和得票按2:1:2来计算各人的成绩,那么又是谁会竞选上?23.某单位欲招聘管理人员一名,对甲、乙、丙三人进行了笔试和面试两项测试,三人的测试成绩如下表所示:测试项目测试成绩/分甲乙丙笔试75 80 90面试93 70 68根据录用程序,该单位组织200名职工利用投票推荐的方式对三人进行民主评议,三人的得票率(没有弃权票,每个职工只能推荐一个)如图所示,每得一票记1分,(1)请计算出三人的民主评议得分;(2)根据实际需要,该单位将笔试、面试、民主评议三项得分按4:3:3的比例确定每人的最后成绩,那么谁将被录用?请说明理由.24.某学校招聘教师,采取笔试与面试相结合的方式进行,两项成绩的原始满分均为100分,前6名选手的得分如下:序号项目123456笔试成绩分859284908480面试成绩分908382908085根据规定,笔试成绩和面试成绩分别按一定的百分比折算成综合成绩综合成绩的满分仍为100分这6名选手笔试成绩的中位数是______ 分,众数是______ 分;这6名选手面试成绩的平均分是______ 分;现得知1号选手的综合成绩为88分,求笔试成绩和面试成绩各占的百分比.25.在2016年宝应以“不忘初心,继续前进”为主题的青年千人毅行中,随机抽得12名选手所用的时间单位:分钟得到如下样本数据:240 246 243 275 225 264234 255 252 268 262 248计算该样本数据的中位数和平均数;如果一名选手的成绩是247分钟,请你依据样本数据中位数,推断他的成绩如何?附赠材料:怎样提高答题效率直觉答题法相信自己的第一感觉厦门英才学校彭超老师说,“经验表明,从做题的过程来看,同学们要相信自己的第一感觉,不要轻易改动第一次做出的选择,第一感觉的正确率在80%以上。
北师版数学八年级上册第六章达标测试卷及答案
第六章达标测试卷一、选择题(每题3分,共30分)1.一名射击爱好者5次射击的中靶环数如下:6,7,9,8,9,这5个数据的中位数是()A.6 B.7 C.8 D.92.期中考试后,班里有两位同学议论他们所在小组同学的数学成绩.小明说:“我们组成绩是86分的同学最多.”小英说:“我们组7位同学的成绩排在最中间的恰好也是86分.”上面两位同学的话能反映的统计量分别是()A.众数和平均数B.平均数和中位数C.众数和方差D.众数和中位数3.一组数据为-1,0,4,x,6,16,这组数据的中位数为5,则这组数据众数可能是()A.5 B.6 C.-1 D.5.54.已知一组数据3,a,4,5的众数为4,则这组数据的平均数为() A.3 B.4 C.5 D.65.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生要想知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的()A.众数B.方差C.平均数D.中位数6.甲、乙、丙、丁四人进行射箭测试,每人10次,射箭成绩的平均数都是8.9环,方差分别是s甲2=0.65,s乙2=0.55,s丙2=0.50,s丁2=0.45,则射箭成绩最稳定的是()A.甲B.乙C.丙D.丁7.某公司10名职工的5月份工资统计如下,该公司10名职工5月份工资的众数和中位数分别是()A.2 400元,2 400元B.2 400元,2 300元C.2 200元,2 200元D.2 200元,2 300元(第8题)8.某赛季甲、乙两名篮球运动员12场比赛得分情况如图所示,对这两名运动员的成绩进行比较,下面四个结论中,不正确的是()A.甲运动员得分的极差大于乙运动员得分的极差B.甲运动员得分的中位数大于乙运动员得分的中位数C.甲运动员得分的平均数大于乙运动员得分的平均数D.甲运动员的成绩比乙运动员的成绩稳定9.已知A样本的数据如下:72,73,76,76,77,78,78,78,B样本的数据恰好是A样本数据每个都加2,则A,B两个样本的下列统计量对应相同的是()A.平均数B.标准差C.中位数D.众数10.已知5个正数a1,a2,a3,a4,a5的平均数是a,且a1>a2>a3>a4>a5,则数据a1,a2,a3,0,a4,a5的平均数和中位数是()A.a,a3B.a,a2+a2+a3 2C.56a,a2+a32 D.56a,a3+a42二、填空题(每题3分,共24分)11.已知一组数据为25,25,27,27,26,则其平均数为________.12.某项目六名礼仪小姐的身高(单位:cm)如下:168,166,168,167,169,168,则她们身高的众数是________,极差是________.13.如图是某商场一天的运动鞋销售量情况统计图,这些运动鞋的尺寸的众数和中位数分别为____________ .(第13题)(第16题)14.某学生数学学科课堂表现为90分,平时作业为92分,期末考试为85分,若这三项成绩分别按30%,30%,40%的比例计入总评成绩,则该学生数学学科总评成绩是________分.15.已知样本数据x1,x2,x3,x4的方差为2,则4x1,4x2,4x3,4x4的方差是________.16.甲、乙两名射击运动员进行10次射击,甲的成绩(单位:环)是7,7,8,9,8,9,10,9,9,9,乙的成绩如图所示,则甲、乙两人射击成绩的方差之间的关系是s甲2________s乙2(填“>”“<”或“=”).17.某班40名学生的某次数学测验成绩统计表如下:若这个班的数学平均成绩是74分,则x=________,y=________. 18.某商店3月份、4月份出售同一品牌各种规格的空调台数如下表:根据表中的数据回答下列问题:(1)该商店这两个月平均每月销售空调________台;(2)请你帮助该商店经理考虑下,6月份进货时,商店对________型号的空调要多进,对________型号的空调要少进.三、解答题(19~21题每题10分,其余每题12分,共66分)19.从甲、乙、丙三个厂家生产的同一种产品中各抽取8件,对其使用寿命跟踪调查.结果如下(单位:年):甲:345688910乙:4666891213丙:33479101112三个厂家在广告中都称该产品的使用寿命是8年,请根据结果来判断厂家在广告中分别运用了平均数、众数、中位数的哪一种集中趋势的特征数.20.小亮和小莹自制了一个标靶进行投标比赛,两人各投了10次,下图是他们投标成绩的统计图.(第20题)(1)根据图中信息填写上表;(2)分别用平均数和中位数解释谁的成绩比较好.21.某饮料店为了了解本店一种果汁饮料上半年的销售情况,随机调查了8天该种饮料的日销售量,结果如下(单位:听):33,32,28,32,25,24,31,35.(1)这8天的平均日销售量是多少听?(2)根据上面的计算结果,估计上半年(按181天计算)该店能销售这种饮料多少听?22.张林、李明、王浩、刘平、陈亮五人学习小组在两次数学测试中,成绩如表所示.(1)为了比较学习小组数学测验成绩某种意义上的稳定性,可采取绝对差作为评价标准.若绝对差的计算公式是:绝对差=1n(|x1-x|+|x2-x|+…+|x n-x|)(其中x表示n个数据x1,x2,…,x n的平均数),并规定绝对差小的稳定性好.请问这两次数学测验成绩,哪一次测验成绩更稳定?(2)请你设计一种能评价张林两次数学测验成绩好与差的方案?并通过计算说明.23.某次学生夏令营活动,有小学生、初中生、高中生和大学生参加,共200人,各类学生人数比例见扇形统计图(如图).(1)参加这次夏令营活动的初中生共有多少人?(2)活动组织者号召参加这次夏令营活动的所有学生为贫困学生捐款.结果小学生每人捐款5元,初中生每人捐款10元,高中生每人捐款15元,大学生每人捐款20元.问平均每人捐款多少元?(3)在(2)的条件下,把每个学生的捐款数额(单位:元)一一记录下来,则在这组数据中,众数是多少?(第23题)24.某市甲、乙两个汽车销售公司1至10月每月销售同种品牌汽车的情况如图所示.(1)请你根据统计图填写下表:(2)请你从以下两个不同的方面对甲、乙两个汽车销售公司1至10月的销售情况进行分析(分析哪个汽车销售公司较有潜力):①从平均数和方差结合看;②从折线图上甲、乙两个汽车销售公司销售量的趋势看.(第24题)答案一、1.C 2.D 3.B 4.B 5.D 6.D 7.A 8.D 9.B 10.D 二、11.26 12.168 cm ;3 cm 13.25 cm 和24.5 cm 14.88.6 15.3216.< 17.10;8 18.(1)52 (2)B ;D三、19.解:甲厂用了众数,乙厂用了平均数,丙厂用了中位数. 20.解:(1)7;7;7.5(2)平均数相等说明两人整体水平相当,成绩一样好;小莹的中位数大说明小莹的成绩比小亮好.21.解:(1)这8天的平均日销售量是18(33+32+28+32+25+24+31+35)=30(听).(2)30×181=5 430(听).所以估计上半年该店能销售这种饮料5 430听.22.解:(1)设两次数学测验成绩的绝对差分别是P 1,P 2,则P 1=15(|81-80|+|82-80|+|79-80|+|78-80|+|80-80|)=1.2,P 2=15(|82-82|+|79-82|+|89-82|+|85-82|+|75-82|)=4.因为P 1<P 2,所以第1次数学测验成绩更稳定.(2)答案不唯一,以下提供一种设计方案参考:第1次测验成绩81分排序是第2名,第2次测验成绩82分排序是第3名,所以从排名序号来看,张林第1次测验成绩比第2次更好些.23.解:(1)200×(1-10%-20%-30%)=80(人).(2)[(20%×5+30%×15+10%×20)×200+80×10]÷200=11.5(元). (3)众数是10元.24.解:(1)甲乙车销售公司的销售情况稳定.②因为甲汽车销售公司每月销售量在平均数上下波动,而乙汽车销售公司每月销售量总体上呈上升趋势,并且从6月起每月都比甲汽车销售公司销售量多,所以乙汽车销售公司较有潜力.。
北师大版八年级数学上册第六章数据的分析测试题
第六章数据的分析周周测2一.选择题1.九年级两名男同学在体育课上各练习10次立定跳远,平均成绩均为米,要判断哪一名同学的成绩比较稳定,通常需要比较这两名同学立定跳远成绩的A. 方差B. 众数C. 平均数D. 中位数2.商厦信誉楼女鞋专柜试销一种新款女鞋,一个月内销售情况如表所示:型号22 23 24 25数量双 2 6 11 15 7 3 4经理最关心的是,哪种型号的鞋销量最大对他来说,下列统计量中最重要的是A. 平均数B. 众数C. 中位数D. 方差3.期中考试后,两位同学讨论他们所在小组的数学成绩,小明说:“我们组7位同学中,有4人的成绩是86分”,小亮说:“我们组7位同学中,第4名的成绩是86分”,上面两位同学所说的“86分”反映的统计量分别是A. 众数和中位数B. 众数与平均数C. 众数和方差D. 平均数与中位数4.下列说法中错误的是A. 一组数据的平均数、众数和中位数可能是同一个数B. 一组数据的众数可能有多个C. 数据中的中位数可能不唯一D. 众数、中位数和平均数是从不同的角度描述了一组数据集中趋势的5.小张参加招考公务员考试,本次参加招考的总人数是1600名,规定:按考试成绩从高到低排列,前800名通过笔试,小张想知道自己是否通过笔试,他最应该了解的考试成绩统计量是A. 平均数B. 中位数C. 众数D. 标准差6.下列做法错误的是A. 小丽近6个月的手机话费单位:元分别为:,这组数据的中位数是25B. 服装店老板最关心的是卖出服装的众数C. 要了解全市初中毕业班近4万名学生2015年中考数学成绩情况,适宜采用全面调查D. 条形统计图能够显示每组中的具体数据,易于比较数据之间的差别7.某中学规定:学生的学期体育综合成绩满分为100分,其中,期中考试成绩占,期末考试成绩占,小宝这个学期的期中、期末体育成绩百分制分别是80分、90分,则小宝这个学期的体育成绩综合成绩是A. 80分B. 84分C. 86分D. 90分8.学期的五次数学单元练习中,甲、乙两位同学的平均成绩一样,方差分别为,由此可知A. 甲比乙的成绩稳定B. 甲乙两人的成绩一样稳定C. 乙比甲的成绩稳定D. 无法确定谁的成绩更稳定9.甲、乙、丙、丁四人参加训练,近期的10次百米测试平均成绩都是秒,方差如下表所示选手甲乙丙丁方差则这四人中发挥最稳定的是A. 甲B. 乙C. 丙D. 丁10.在5次数学单元测试中,甲、乙、丙、丁四名同学成绩的平均分均为分,方差分别为,则这四名同学中成绩最稳定的是A. 甲B. 乙C. 丙D. 丁11.数学老师对黄华的8次单元考试成绩进行统计分析,要判断黄华的数学成绩是否稳定,老师需要知道黄华这8次数学成绩的A. 平均数B. 中位数C. 众数D. 方差12.某校在中国学生核心素养知识竞赛中,通过激烈角逐,甲、乙、丙、丁四名同学胜出,他们2的成绩如表:甲乙丙丁平均分方差最高分如果要选出一个成绩较好且状态稳定的同学去参加市级比赛,应选A. 丁B. 丙C. 乙D. 甲13.在方差的计算公式中,数字10和20分别表示的意义可以是A. 数据的个数和方差B. 平均数和数据的个数C. 数据的个数和平均数D. 数据组的方差和平均数二.填空题14.从10000名初三学生中,随机地抽取100名学生,测得他们所穿鞋的鞋号(单位:公分),则这个样本数据的平均数、中位数、众数、方差四个指标中,鞋厂最感兴趣的指标是众数15.一台机床生产一种零件,5天内出现次品的件数为:1,0,1,2,1.则出现次品的方差为 .16.一组数据1,2,3,x,5的平均数是3,则该组数据的方差是 .17.甲乙两位士兵射击训练,两人各射靶5次,命中的环数如下表:甲射靶的环数7 8 6 8 6乙射靶的环数9 5 6 7 8那么射击成绩较稳定的是 .18.在一次数学单元测试中,A、B两个学习小组成员的成绩如图所示,则在这次测试中,这两个小组的数学成绩较为稳定的一组是(填“A组”、“B 组”或“一样”) .三.解答题19.某校把体育成绩、德育成绩、学习成绩三项,分别按1:3:6的比例计入综合成绩,综合成绩最高者得一等奖,已知小明、小亮两位同学入围测评,他们的成绩如表通过计算他们的综合成绩,判断两人谁能拿到一等奖?体育成绩德育成绩学习成绩小明95 94 91小亮90 91 9320.某校八年级学生开展踢毽子比赛活动,每班派5名学生参加,按团体总分多少排列名次,在规定时间内每人踢100个以上含为优秀表是成绩最好的甲班和乙班5名学生的比赛数据单位:个:1号2号3号4号5号总数甲班89 100 96 118 97 500乙班100 95 110 91 104 500经统计发现两班总数相等此时有学生建议,可以通过考察数据中的其他信息作为参考.请你回答下列问题:计算两班的优秀率.计算两班比赛数据的方差.根据以上信息,你认为应该把冠军奖杯发给哪一个班级?简述你的理由.21.市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了六次测试,测试成绩如表单位:环:第一次第二次第三次第四次第五次第六次甲10 8 9 8 10 9乙10 7 10 10 9 8根据表格中的数据,分别计算甲、乙的平均成绩;已知甲六次成绩的方差,试计算乙六次测试成绩的方差;根据、计算的结果,你认为推荐谁参加省比赛更合适,请说明理由.22.学校准备推荐一位选手参加知识竞赛,对甲、乙两位选手进行四项测试,他们各自的成绩百分制如表:选手表达能力阅读理解综合素质汉字听写甲85 78 85 73乙73 80 82 83学校将表达能力、阅读理解、综合素质和汉字听写分别以、、、记入个人最后成绩,并根据成绩择优推荐,请你通过计算说明谁将被推荐参加比赛?23.县教育局为了了解我县中小学校实施素质教育的情况,抽查了某校七年级甲、乙两个班的部分学生,了解他们在一周内周一到周五参加课外活动的次数情况,抽查结果如图所示,请根据有关信息回答下列问题:在这次抽查中,甲班被抽查了多少人?乙班被抽查了多少人?在被抽查的学生中,甲班学生参加课外活动的平均次数是多少?乙班学生参加课外活动的平均次数是多少?根据以上信息,用你学过的知识,估计甲、乙两班在开展课外活动方面,哪个班更好一些?从图中你还能得到哪些信息?为了传承优秀传统文化,我县团委组织了一次全县有3000名学生参加的“中国诗词大会”海选比赛,赛后发现所有参赛学生的成绩均不低于50分,为了更好地了解本次大赛的成绩分布情况,随机抽取了其中200名学生的成绩成绩x取整数,总分100分作为样本进行整理,得到下列不完整的统计图表:成绩分频数频率103040 nm50请根据所给信息,解答下列问题:______ , ______ ;请补全频数分布直方图;这次比赛成绩的中位数会落在______ 分数段;若成绩在90分以上包括90分的为“优”等,则该校参加这次比赛的3000名学生中成绩“优”等约有多少人?补充完面的统计分析表某校要从九年级一班和班选取10名女同学成仪队,选取两班生的身高如下:单米一班:168空格空170 空空6空66 171 格空6 170班级平均数方差中位数极差一班168 168 6二班168请选一合适的计量作为选择标准,说明哪一个班能.掌握的三个数学答题方法树枝答题法关注数学题的解题过程2014年上海市中考状元徐瑜卿认为,数学是一门思维学科,并不是平时做题多就一定会拿高分。
北师大八年级数学上册:第六章数据的分析单元测试题(含答案)
第六章数据的分析综合测评一、选择题(每小题3分,共30分)1.一组数据6,7,8,9,10,这组数据的平均数是()A.6 B.7 C.8 D.92.已知一组数据75,80,80,85,90,那么这组数据的众数和中位数分别为()A.75,80 B.80,85 C.80,90 D.80,803.九年级某班12名同学练习定点投篮,每人各投10次,进球数统计如下:进球数(1 2 3 4 5 7个)人数(人) 1 1 4 2 3 1这12名同学进球数的众数是()A.3.75B.3C.3.5D.74. 教练要从甲、乙两名射击运动员中选一名成绩较稳定的运动员参加比赛.两人在相同条件下各射出5发子弹,命中环数如下:甲:9,8,7,7,9;乙:10,8,9,7,6.应该选择参加比赛的是()A.甲B.乙C.甲、乙都可以D.无法确定5. (2021年临沂)某老师为了解学生周末学习时间的情况,在所任班级中随机调查了10名学生,绘成图1所示的条形统计图,则这10名学生周末学习的平均时间是()A.1小时B.2小时C.3小时D.4小时图1 图26. 某电脑公司销售部为了定制下个月的销售计划,对20位销售人员本月的销售量(单位:台)进行了统计,绘制成图2所示的统计图,则这20位销售人员本月销售量的中位数、众数分别是()A.20台,14台B.19台,20台C.20台,20台D.25台,20台7. 若一组数据2,3,4,5,x的方差与另一组数据5,6,7,8,9的方差相等,则x的值为()A.1 B.6 C.1或6 D.5或68.九年级体育素质测试,某小组5名同学成绩如下表所示,其中有两个数据被遮盖:那么被遮盖的两个数据依次是()A.35,2B.36,4C.35,3D.36,39. 某校有25名同学参加某比赛,预赛成绩各不相同,取前13名参加决赛,其中一名同学已经知道自己的成绩,能否进入决赛,只需要再知道这25名同学成绩的()A.中位数B.最高分C.方差D.平均数10. 下表是某校合唱团成员的年龄分布情况:年龄/岁13 14 15 16频数 5 15 x 10﹣x对于不同的x,下列关于年龄的统计量不会发生改变的是()A.平均数、中位数B.中位数、方差C.平均数、方差D.众数、中位数二、填空题(每小题4分,共32分)11. 某学习小组有8人,在一次数学测验中的成绩分别是102,115,100,105,92,105,85,104,则他们成绩的平均数是_____________.12. 某超市决定招聘广告策划人员一名,一位应聘者三项素质测试的成绩如下表:测试项目创新能力综合知识语言表达测试成绩(分)70 80 92将创新能力、综合知识和语言表达三项测试成绩按5∶3∶2的比例计入总成绩,则该应聘者的总成绩是_____________分.13某校九年级(1)班40名同学中,14岁的有1人,15岁的有21人,16岁的有16人,17岁的有2人,则这个班同学年龄的中位数是___________岁.14.已知一组数据3,3,4,7,8,则这组数据的方差为____________.15.若干名同学制作卡通图片,他们制作的卡通图片张数的条形统计图如图3所示,设他们制作的卡通图片张数的平均数为a,中位数为b,众数为c,则a,b,c的大小关系为________.图316. 一组数据2,x,4,6,7,已知这组数据的众数是6,那么这组数据的方差是________.17.两组数据3,a,2b,5与a,6,b的平均数都是8,若将这两组数据合并为一组数据,则这组新数据的众数为________,中位数为________.18. 下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择____________.三、解答题(共58分)19.(8分)在一次男子马拉松长跑比赛中,随机抽得12名选手所用的时间(单位:分)得到如下样本数据:140146143175125164134155152168162148(1)计算该样本数据的中位数和平均数;(2)如果一名选手的成绩是147分,请你依据样本数据的中位数,推断他的成绩如何?20.(2021年盐城)(8分)甲、乙两位同学参加数学综合素质测试,各项成绩如下(单位:分):(1)分别计算甲、乙成绩的中位数;(2)如果数与代数、空间与图形、统计与概率、综合与实践的成绩按3︰3︰2︰2计算,那么甲、乙的数学综合素质成绩分别为多少分?21. (8分)从甲、乙两名同学中选拔一人参加“中华好诗词”大赛,在相同的测试条件下,两人5次测试成绩(单位:分)如下:甲:79,86,82,85,83;乙:88,79,90,81,72.请回答下列问题:(1)甲成绩的平均数是,乙成绩的平均数是;(2)经计算知2s甲=6,2s乙=42,你认为选谁参加比赛更合适,说明理由.22.(10分)八(2)班组织了一次经典朗读比赛,甲、乙两队各10人的比赛成绩如下表(10分制):甲7 8 9 7 10 10 9 10 10 10 乙10 8 7 9 8 10 10 9 10 9 (1)甲队成绩的中位数是分,乙队成绩的众数是分;(2)计算乙队的平均成绩和方差;(3)已知甲队成绩的方差是1.4,则成绩较为整齐的是队.23.(12分)某校九年级学生开展踢毽子比赛活动,每班派5名学生参加,按团体总分多少排列名次,在规定时间内每人踢100个以上(含100个)为优秀.下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个):1号2号3号4号5号总成绩甲班100 98 110 89 103 500乙班89 100 95 119 97 500经统计发现两班总成绩相等,只好将数据中的其他信息作为参考.根据要求回答下列问题:(1)计算两班的优秀率;(2)求两班比赛数据的中位数;(3)求两班比赛数据的方差;(4)根据以上三条信息,你认为应该把冠军奖状发给哪一个班级?简述理由.24.(12分)为了普及环保知识,增强环保意识,某中学组织了环保知识竞赛活动.七、八、九三个年级根据初赛成绩分别选出了10名同学参加决赛,这些选手的决赛成绩(满分为100分)如下表所示:决赛成绩(单位:分)七年级80 86 88 80 88 99 80 74 91 89八年级85 85 87 97 85 76 88 77 87 88九年级82 80 78 78 81 96 97 88 89 86(1)请你填写下表:平均数众数中位数七年级85.5 87八年级85.5 85九年级84(2)请从以下两个不同的角度对三个年级的决赛成绩进行分析:①从平均数和众数相结合看(分析哪个年级成绩好些);②从平均数和中位数相结合看(分析哪个年级成绩好些).(3)如果在每个年级参加决赛的选手中分别选出3人参加总决赛,你认为哪个年级的实力更强一些?并说明理由.附加题(15分,不计入总分)25. 小红的奶奶开了一个金键牛奶销售店,主要经营“金键学生奶”、“金键酸牛奶”、“金键原味奶”,由于经营不善,经常导致牛奶滞销(没卖完)或脱销(量不够),为此细心的小红结合所学知识帮奶奶统计了一个星期牛奶的销售情况,并绘制成下表:(1)计算各品种牛奶的日平均销售量,并说明哪种牛奶销量最高;(2)计算各品种牛奶的方差(保留两位小数),并比较哪种牛奶销量最稳定;(3)假如你是小红,会给奶奶哪些建议?第六章数据的分析综合测评参考答案一、1. C 2. D 3. B 4. A 5. C 6. C 7. C 8. B 9. A 10. D二、11. 101 12. 77.413. 15 14. 4.415. c<a<b16. 3.2 17.12 6 18.甲三、19. 解:(1)将样本数据按从小到大的顺序排列,得到最中间两个数据是148,152,所以中位数为150分,平均数为112(140+146+143+…+148)=151(分).(2)由(1)知样本数据的中位数为150分,可以估计这次马拉松比赛有一半选手的成绩快于150分,这名选手的成绩为147分,快于中位数150分,可以推断他的成绩比一半以上选手的成绩好.20. 解:(1)将甲的成绩按从小到大的顺序排列为89,90,90,93,中位数为90;将乙的成绩按从小到大的顺序排列为86,92,94,94,中位数为(92+94)÷2=93.(2)甲的数学综合素质成绩为90×310+93×310+89×210+90×210=27+27.9+17.8+18=90.7(分);乙的数学综合素质成绩为94×310+92×310+94×210+86×210=28.2+27.6+18.8+17.2=91.8(分).21. 解:(1)83 82(2)选甲参加比赛更合适.理由如下:∵甲成绩的平均数>乙成绩的平均数,且2s甲<2s乙,∴甲的平均成绩高于乙,且甲的成绩更稳定,故选拔甲参加比赛更合适.22. 解:(1)9.5 10(2)乙队的平均成绩是110(10×4+8×2+7+9×3)=9,则方差是110[4×(10﹣9)2+2×(8﹣9)2+(7﹣9)2+3×(9﹣9)2]=1.(3)乙23.解:(1)甲班踢100个以上(含100个)的人数是3,则优秀率是60%;乙班踢100个以上(含100个)的人数是2,则优秀率是40%.(2)甲班比赛数据的中位数是100,乙班比赛数据的中位数是97.(3)因为两班的总分均为500,所以平均数都为100.2 s 甲=15[(100﹣100)2+(98﹣100)2+(110﹣100)2+(89﹣100)2+(103﹣100)2]=46.8;2 s 乙=15[(89﹣100)2+(100﹣100)2+(95﹣100)2+(119﹣100)2+(97﹣100)2]=103.2.(4)应把冠军奖状给甲班.理由:甲班的优秀率、中位数都高于乙班,甲班的方差小于乙班,说明甲班成绩更稳定.24.解:(1)表从上到下、从左到右依次填80,86,85.5,78(2)①八年级的成绩更好一些.②七年级的成绩好一些.(3)九年级的实力较强.理由:如果从三个年级中分别选出3人参加总决赛,可以看到九年级的高分较多,成绩更好一些.25.解:(1)金键学生奶的平均数是3,金键酸牛奶的平均数是80,金键原味奶的平均数是40,金键酸牛奶的销量最高.(2)学生奶的方差=17[(2﹣3)2+2×(1﹣3)2+2×(0﹣3)2+(9﹣3)2+(8﹣3)2]≈12.57;酸牛奶的方差=17[2×(70﹣80)2+(80﹣80)2+(75﹣80)2+(84﹣80)2+(81﹣80)2+(100﹣80)2]≈91.71;原味奶的方差=17[(40﹣40)2+2×(30﹣40)2+(35﹣40)2+(38﹣40)2+(47﹣40)2+(60﹣40)2]≈96.86.金键学生奶销量最稳定.(3)答案不唯一,合理即可.如建议学生奶平常尽量少进或不进,周末可以进几瓶.。
北师大版八年级数学上册第六章数据的分析测试题全章
第六章数据的分析周周测3一、单选题1.某小组5名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是( )A.中位数是4,平均数是3.75B.众数是4,平均数是3.75C.中位数是4,平均数是3.8D.众数是2,平均数是3.82.已知一组数据从小到大依次为-1,0,4,x,6,15,中位数为5,则其众数为( )A.4 B.5 C.5.5 D.63.有四个数:84,76,X,90,它们的平均数为80,则X为()A.70 B.71 C.72 D.734.赵老师是一名健步走运动的爱好者,她用手机软件记录了某个月(30天)每天健步走的步数(单位:万步),将记录结果绘制成了如图所示的统计图.在每天所走的步数这组数据中,众数和中位数分别是()A.1.2,1.3 B.1.3,1.3 C.1.4,1.35 D.1.4,1.35.将一组数据中的每一个数减去40后,所得新的一组数据的平均数是2,则原来那组数据的平均数是()A.40 B.42 C.38 D.26.有8个数的平均数是11,另外有12个数的平均数是12,这20个数的平均数是()A.11.6 B.2.32 C.23.2 D.11.57.某市统计部门公布的2016年6~10月份本市居民消费价格指数(CPI)的同比增长率分别为2.3%,2.3%,2%,1.6%,1.6%,业内人士评论说:“这五个月的本市居民消费价格指数同比增长率之间相当平稳”,从统计角度看,“增长率之间相当平稳”反映的统计量是()A.方差B.平均数C.众数D.中位数8.在共有15人参加的“我爱祖国”演讲比赛中,参赛选手要想知道自己是否能进入前8名,只需要了解自己的成绩以及全部成绩的()A.平均数B.众数C.中位数D.方差9.某校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占40%,期末卷面成绩占60%,小明的两项成绩(百分制)依次是80分,90分,则小明这学期的数学成绩是()A.80分B.82分C.84分D.86分10.某市举行中学生“好书伴我成长”演讲比赛,某同学将所有选手的得分情况进行统计,绘成如图所示的成绩统计图.思考下列四个结论:①比赛成绩的众数为6分;②成绩的极差是5分;③比赛成绩的中位数是7.5分;④共有25名学生参加了比赛,其中正确的判断共有()A.1个B.2个C.3个D.4个二、填空题11.李刚同学的四次数学测试成绩分别是80分、76分、90分、84分,如果按照1:2:4:1的权重对这四次成绩进行综合评价,李刚同学的综合得分是_____分.12.随机从甲、乙两块试验田中各抽取100株麦苗测量高度,甲、乙两块试验田的平均数都是13,方差结果为:S甲2=36,S乙2=158,则小麦长势比较整齐的试验田是________.13.甲、乙两同学近期4次数学单元测试成绩的平均分相同,甲同学成绩的方差,乙同学成绩的方差,则他们的数学测试成绩谁较稳定____________________(填甲或乙).14.分别从甲、乙两厂各抽检了20只鸡腿,结果如图. 如果只考虑鸡腿的质量均匀程度,可以判断质量更稳定的是____________.15.某商店3 月份、4 月份出售同一品牌各种规格的空调台数如下表;根据表中的数据回答下列问题:规格A 型号B 型号C 型号D 型号月份三月12台20台8台4台四月16台30台8台6台(1)商店这两个月平均每月销售空调____台;(2)请你帮助该商店经理考虑下,6月份进货时,商店对____型号的空调要多进,对_______型号的空调要少进.16.样本数据10,10,x,8的众数和平均数相同,则12,12,x+2,10这组数据的标准差是________.三、解答题17.我市某中学举行“中国梦——校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示填写下表;(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.18.为了了解江城中学学生的身高情况,随机对该校男生、女生的身高进行抽样调查,已知抽取的样本中,男生、女生的人数相同,根据所得数据绘制成如下所示的统计表和如图所示的统计图.根据图表中提供的信息,回答下列问题:(1)女生身高在B组的有________人;(2)在样本中,身高在150≤x<155之间的共有________人,身高人数最多的在________组(填组别序号);(3)已知该校共有男生500人,女生480人,请估计身高在155≤x<165之间的学生有多少人.(1)计算李文同学的总成绩;(2)若孔明同学要在总成绩上超过李文同学,则他的普通话成绩x应超过多少分?20.在“全民读书月”活动中,小明调查了班级里40名同学本学期计划购买课外书的花费情况,并将结果绘制成如图所示的统计图,请根据相关信息,解答下列问题:(直接填写结果)(1)本次调本获取的样本数据的众数是____;(2)这次调查获取的样本数据的中位数是____;(3)若该校共有学生1000人,根据样本数据,估计本学期计划购买课外书花费50元的学生有多少人?做好时间规划才能更有效率充分——利用你的一天时间我们都知道,对于中学生来讲,很大程度上,一个人学习成绩的好坏,是与他是否会管理自己的时间有关的。