【典型题】高一数学下期中模拟试卷(含答案)(1)

合集下载

新高一数学下期中模拟试卷及答案

新高一数学下期中模拟试卷及答案

新高一数学下期中模拟试卷及答案一、选择题1.已知直线l 过点(1,0),且倾斜角为直线0l :220x y --=的倾斜角的2倍,则直线l 的方程为( )A .4330x y --=B .3430x y --=C .3440x y --=D .4340x y --= 2.设l 为直线,,αβ是两个不同的平面,下列命题中正确的是( )A .若//l α,//l β,则//αβB .若l α⊥,l β⊥,则//αβC .若l α⊥,//l β,则//αβD .若αβ⊥,//l α,则l β⊥ 3.已知,,,A B C D 是同一球面上的四个点,其中ABC ∆是正三角形,AD ⊥平面ABC ,26AD AB ==,则该球的体积为( )A .48πB .24πC .16πD .4.已知三棱锥S ABC -的所有顶点都在球O 的球面上,SC 为球O 的直径,且SC OA ⊥,SC OB ⊥,OAB 为等边三角形,三棱锥S ABC -的体积为3,则球O 的半径为( )A .3B .1C .2D .45.设α表示平面,a ,b 表示直线,给出下列四个命题:①a α//,a b b α⊥⇒//; ②a b //,a b αα⊥⇒⊥;③a α⊥,a b b α⊥⇒⊂;④a α⊥,b a b α⊥⇒//,其中正确命题的序号是( )A .①②B .②④C .③④D .①③ 6.已知圆()()22:341C x y -+-=和两点(),A m m -,(),B m m -()0m >,若圆C 上存在点P ,使得90APB ∠=︒,则m 的最大值为( )A .B .CD .7.用一个平面去截正方体,则截面不可能是( )A .直角三角形B .等边三角形C .正方形D .正六边形8.在三棱锥P ABC -中,PA ⊥平面1202ABC BAC AP AB ∠=︒==,,,M 是线段BC 上一动点,线段PM P ABC -的外接球的表面积是( )A .92πB .C .18πD .40π9.某几何体的三视图如图所示,图中的四边形都是边长为4的正方形,两条虚线互相垂直且相等,则该几何体的体积是( )A.1763B.1603C.1283D.3210.若方程21424x kx k+-=-+有两个相异的实根,则实数k的取值范围是()A.13,34⎛⎤⎥⎝⎦B.13,34⎛⎫⎪⎝⎭C.53,124⎛⎫⎪⎝⎭D.53,12411.如图,平面四边形ABCD中,1AB AD CD===,2BD=,BD CD⊥,将其沿对角线BD折成四面体A BCD'-,使平面A BD'⊥平面BCD,若四面体A BCD'-的顶点在同一个球面上,则该球的表面积为()A.3πB.3πC.4πD.3π12.如图,在三棱柱111ABC A B C-中,1CC⊥平面ABC,ABC是等腰三角形,BA BC=,123AC CC==,,D是AC的中点,点F在侧棱1A上,若要使1C F⊥平面BDF,则1AFFA的值为( )A .1B .12或2C .22或2D .13或3 二、填空题13.已知圆22:20(0)M x y ay a +-=>截直线0x y +=所得线段的长度是22,则圆M 与圆22:(1)(1)1N x y -+-=的位置关系是_________.14.如图,正方体ABCD ﹣A 1B 1C 1D 1的棱长为1,M 为B 1C 1中点,连接A 1B ,D 1M ,则异面直线A 1B 和D 1M 所成角的余弦值为________________________.15.直线与圆交于两点,则________.16.三棱锥P ABC -中,5PA PB ==,2AC BC ==,AC BC ⊥,3PC =,则该三棱锥的外接球面积为________. 17.若直线l :-3y kx =与直线23-60x y +=的交点位于第一象限,则直线l 的倾斜角的取值范围是___________.18.正四棱锥P ABCD -底面的四个顶点,,,A B C D 在球O 的同一个大圆上,点P 在球面上.若163P ABCD V ,则球O 的体积是______. 19.在三棱锥P ABC -中,PA ⊥平面ABC ,AC BC ⊥,且三棱锥的最长的棱长为2,则此三棱锥的外接球体积为_____________.20.已知四面体ABCD 的外接球球心O 在棱CD 上,AB=3,CD=2,则A 、B 两点在四面体ABCD 的外接球上的球面距离是________.三、解答题21.如图,在四棱锥P ABCD -中,PA ⊥面ABCD ,//AB CD ,且22,22CD AB BC ===,90ABC ∠=︒,M 为BC 的中点.(1)求证:平面PDM ⊥平面PAM ;(2)若二面角P DM A --为30,求直线PC 与平面PDM 所成角的正弦值.22.如图,梯形ABCD 中,AB ∥CD ,,E F 是线段AB 上的两点,且DE AB ⊥,CF AB ⊥,12AB =,5AD =,42BC =,4DE =.现将△ADE ,△CFB 分别沿DE ,CF 折起,使两点,A B 重合于点G ,得到多面体CDEFG (1)求证:平面DEG ⊥平面CFG ;(2)求多面体CDEFG 的体积23.如图,在平面直角坐标系xoy 中,点(0,3)A ,直线:24=-l y x ,设圆C 的半径为1, 圆心在l 上.(1)若圆心C 也在直线1y x =-上,过点A 作圆C 的切线,求切线方程;(2)若圆C 上存在点M ,使2MA MO =,求圆心C 的横坐标a 的取值范围.24.在正三棱柱111ABC A B C -中,点D 是BC 的中点.(1)求证:1A C //面1AB D ;(2)设M 是棱1CC 上的点,且满足1BM B D ⊥.求证:面1AB D ⊥面ABM .25.如图,已知四棱锥的底面是菱形,平面,点为的中点.(1)求证:∥平面;(2)求证:. 26.已知以点C (1,﹣2)为圆心的圆与直线x+y ﹣1=0相切.(1)求圆C 的标准方程;(2)求过圆内一点P (2,﹣)的最短弦所在直线的方程.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】设直线0l 的倾斜角为α,则斜率01tan 2k α==,所以直线l 的倾斜角为2α,斜率22tan 4tan 21tan 3k ααα===-,又经过点(1,0),所以直线方程为4(1)3y x =-,即4340x y --=,选D.2.B解析:B【解析】A 中,,αβ也可能相交;B 中,垂直与同一条直线的两个平面平行,故正确;C 中,,αβ也可能相交;D 中,l 也可能在平面β内.【考点定位】点线面的位置关系3.D解析:D【解析】【分析】根据球的性质可知球心O 与ABC ∆外接圆圆心O '连线垂直于平面ABC ;在Rt POE ∆和Rt OO A ∆'中利用勾股定理构造出关于半径R 和OO '的方程组,解方程组求得R ,代入球的体积公式可得结果.设O '为ABC ∆的外心,如下图所示:由球的性质可知,球心O 与O '连线垂直于平面ABC ,作OE AD ⊥于E设球的半径为R ,OO x '=ABC ∆为等边三角形,且3AB = 3AO '∴=OO '⊥平面ABC ,AD ⊥平面ABC ,OE AD ⊥OO AE x '∴==,3OE AO '==在Rt POE ∆和Rt OO A ∆'中,由勾股定理得:22222OE PE O O O A R ''+=+=,即()222363x x R +-=+= 解得:3x =,3R =∴球的体积为:343233V R ππ== 本题正确选项:D【点睛】本题考查棱锥外接球的体积求解问题,关键是能够确定棱锥外接球球心的位置,从而在直角三角形中利用勾股定理构造方程求得半径.4.C解析:C【解析】【分析】根据题意作出图形,欲求球的半径r .利用截面的性质即可得到三棱锥S ABC -的体积可看成是两个小三棱锥S ABO -和C ABO -的体积和,即可计算出三棱锥的体积,从而建立关于r 的方程,即可求出r ,从而解决问题.【详解】解:根据题意作出图形:设球心为O ,球的半径r .SC OA ⊥,SC OB ⊥,SC ∴⊥平面AOB ,三棱锥S ABC -的体积可看成是两个小三棱锥S ABO -和C ABO -的体积和.2343123S ABC S ABO C ABO V V V r r ---∴=+=⨯⨯=三棱锥三棱锥三棱锥,故选:C .【点睛】本题考查棱锥的体积,考查球内接多面体,解题的关键是确定将三棱锥S ABC -的体积看成是两个小三棱锥S ABO -和C ABO -的体积和,属于中档题.5.B解析:B【解析】【分析】【详解】①a ∥α,a ⊥b ⇒b 与α平行,相交或b ⊂α,故①错误;②若a ∥b ,a ⊥α,由直线与平面垂直和判定定理得b ⊥α,故②正确;③a ⊥α,a ⊥b ⇒b 与α平行,相交或b ⊂α,故③错误;④若a ⊥α,b ⊥α,则由直线与平面垂直的性质得a ∥b ,故④正确.故选B .6.B解析:B【解析】【分析】根据使得90APB ∠=︒的点P 在以AB 为直径的圆上,再分析轨迹圆与圆C 的关系即可.【详解】由题, 使得90APB ∠=︒的点P 在以AB 为直径的圆上,又两点(),A m m -,(),B m m -, 所以圆心为()0,0.()222m m m +-=.故P 的轨迹方程为2222x y m +=. 又由题意知,当圆()()22:341C x y -+-=内切于222x y m +=时m 取最大值. 2223416m,故32m =故选:B【点睛】本题主要考查了圆与圆的位置关系,重点是根据90APB ∠=︒求出点P 的轨迹.属于中等题型.7.A解析:A【解析】【分析】【详解】画出截面图形如图显然A正三角形C正方形:D正六边形可以画出三角形但不是直角三角形;故选A.用一个平面去截正方体,则截面的情况为:①截面为三角形时,可以是锐角三角形、等腰三角形、等边三角形,但不可能是钝角三角形、直角三角形;②截面为四边形时,可以是梯形(等腰梯形)、平行四边形、菱形、矩形,但不可能是直角梯形;③截面为五边形时,不可能是正五边形;④截面为六边形时,可以是正六边形.故可选A.8.C解析:C【分析】首先确定三角形ABC 为等腰三角形,进一步确定球的球心,再求出球的半径,最后确定球的表面积.【详解】解:如图所示:三棱锥P ABC -中,PA ⊥平面2,2ABC AP AB ==,,M 是线段BC 上一动点,线段PM 3则:当AM BC ⊥时,线段PM 达到最小值,由于:PA ⊥平面ABC ,所以:222PA AM PM +=,解得:1AM =, 所以:3BM =,则:60BAM ∠=︒,由于:120BAC ∠=︒,所以:60MAC ∠=︒则:ABC 为等腰三角形. 所以:23BC =在ABC 中,设外接圆的直径为2324r ==, 则:2r =, 所以:外接球的半径2229222R ⎛⎫=+= ⎪ ⎪⎝⎭, 则:94182S ππ=⋅⋅=, 故选:C .【点睛】本题考查的知识要点:三棱锥的外接球的球心的确定及球的表面积公式的应用. 9.B【解析】该几何体为一个正方体去掉一个倒四棱锥,其中正方体棱长为4,倒四棱锥顶点为正方体中心,底面为正方体上底面,因此体积是32116042433-⨯⨯=,选B. 点睛: 1.解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图.2.三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据.10.D解析:D【解析】【分析】由题意可得,曲线22(1)4(1)x y y +-=与直线4(2)y k x -=-有2个交点,数形结合求得k 的范围.【详解】如图所示,化简曲线得到22(1)4(1)x y y +-=,表示以(0,1)为圆心,以2为半径的上半圆,直线化为4(2)y k x -=-,过定点(2,4)A ,设直线与半圆的切线为AD ,半圆的左端点为(2,1)B -,当AD AB k k k <,直线与半圆有两个交点,AD 221k =+,解得512AD k =, 4132(2)4AB k -==--,所以53,124k ⎛⎤∈ ⎥⎝⎦. 故选:D【点睛】本题考查直线与圆的位置关系,属于中档题.11.A解析:A【解析】【分析】设BC 的中点是E ,连接DE ,由四面体A′­BCD 的特征可知,DE 即为球体的半径.【详解】设BC 的中点是E ,连接DE ,A′E,因为AB =AD =1,BD 由勾股定理得:BA⊥AD又因为BD⊥CD,即三角形BCD 为直角三角形所以DE 为球体的半径2DE =243S ππ== 故选A【点睛】 求解球体的表面积、体积的问题,其实质是求球体的半径,解题的关键是构造关于球体半径R 的方程式,构造常用的方法是构造直角三角形,再利用勾股定理建立关于半径R 的方程.12.B解析:B【解析】【分析】易证1BD C F ⊥,故要使1C F ⊥平面BDF ,只需1C F DF ⊥,然后转化到平面11AAC C 中,根据勾股定理计算,即可得结果.【详解】1CC ⊥平面ABC ,BD ⊂平面ABC ,所以1BD CC ⊥,又BA BC =,D 为AC 中点,所以BD AC ⊥,又1AC CC C =,所以BD ⊥平面11AAC C ,1C F 平面11AAC C ,所以1C F BD ⊥,因为DF BD D =,故要使1C F 平面BDF ,只需1C F DF ⊥,在四边形11AAC C 中,1231AC CC AD CD ====,,, 设AF x =,则13FA x =-,由22211C D DF C F =+得()()2219143x x ⎡⎤+=+++-⎣⎦, 即2320x x -+=,解得1x =或2x =,所以112AF FA =或者12AF FA =, 故选:B.【点睛】本题考查了棱柱的结构特征,考查了空间中直线与平面的垂直的性质,勾股定理,考查空间想象能力和推理能力,属于中档题.二、填空题13.相交【解析】【分析】根据直线与圆相交的弦长公式求出的值结合两圆的位置关系进行判断即可【详解】解:圆的标准方程为则圆心为半径圆心到直线的距离圆截直线所得线段的长度是即则圆心为半径圆的圆心为半径则即两个 解析:相交【解析】【分析】根据直线与圆相交的弦长公式,求出a 的值,结合两圆的位置关系进行判断即可.【详解】解:圆的标准方程为222:()(0)M x y a a a +-=>,则圆心为(0,)a ,半径R a =, 圆心到直线0x y +=的距离2d =,圆22:20(0)M x y ay a +-=>截直线0x y +=所得线段的长度是22222222a a ∴-即24a =,2a =,则圆心为(0,2)M ,半径2R =,圆22:(1)(1)1N x y -+-=的圆心为(1,1)N ,半径1r =,则2MN =3R r +=,1R r -=,R r MN R r ∴-<<+,即两个圆相交.故答案为:相交.【点睛】本题主要考查直线和圆相交的应用,以及两圆位置关系的判断,根据相交弦长公式求出a 的值是解决本题的关键.14.【解析】【分析】连接取的中点连接可知且是以为腰的等腰三角形然后利用锐角三角函数可求出的值作为所求的答案【详解】如下图所示:连接取的中点连接在正方体中则四边形为平行四边形所以则异面直线和所成的角为或其 解析:10. 【解析】【分析】 连接1CD 、CM ,取1CD 的中点N ,连接MN ,可知11//A B CD ,且1CD M ∆是以1CD 为腰的等腰三角形,然后利用锐角三角函数可求出1cos CD M ∠的值作为所求的答案.【详解】如下图所示:连接1CD 、CM ,取1CD 的中点N ,连接MN ,在正方体1111ABCD A B C D -中,11//A D BC ,则四边形11A BCD 为平行四边形, 所以11//A B C D ,则异面直线1A B 和1D M 所成的角为1CD M ∠或其补角,易知1111190B C D BC C CDD ∠=∠=∠=,由勾股定理可得15CM D M ==12CDN 为1CD 的中点,则1MN CD ⊥,在1Rt D MN ∆中,11110cos 5D N CD M D M ∠==, 因此,异面直线1A B 和1D M 所成角的余弦值为105,故答案为105.【点睛】本题考查异面直线所成角的余弦值的计算,求解异面直线所成的角一般利用平移直线法求解,遵循“一作、二证、三计算”,在计算时,一般利用锐角三角函数的定义或余弦定理求解,考查计算能力,属于中等题.15.22【解析】【分析】首先将圆的一般方程转化为标准方程得到圆心坐标和圆的半径的大小之后应用点到直线的距离求得弦心距借助于圆中特殊三角形半弦长弦心距和圆的半径构成直角三角形利用勾股定理求得弦长【详解】根 解析:【解析】【分析】首先将圆的一般方程转化为标准方程,得到圆心坐标和圆的半径的大小,之后应用点到直线的距离求得弦心距,借助于圆中特殊三角形半弦长、弦心距和圆的半径构成直角三角形,利用勾股定理求得弦长.【详解】 根据题意,圆的方程可化为, 所以圆的圆心为,且半径是, 根据点到直线的距离公式可以求得, 结合圆中的特殊三角形,可知,故答案为. 【点睛】该题考查的是有关直线被圆截得的弦长问题,在解题的过程中,熟练应用圆中的特殊三角形半弦长、弦心距和圆的半径构成的直角三角形,借助于勾股定理求得结果.16.【解析】【分析】由已知数据得两两垂直因此三棱锥外接球直径的平方等于这三条棱长的平方和【详解】∵∴∴又以作长方体则长方体的外接球就是三棱锥的外接球设外接球半径为则球表面积为故答案为:【点睛】本题考查球 解析:7π【解析】【分析】由已知数据得,,CA CB CP 两两垂直,因此三棱锥外接球直径的平方等于这三条棱长的平方和.【详解】 ∵5PA PB ==2AC BC ==3PC =,∴222222,PC CB PB PC CA PA +=+=,∴,PC CB PC CA ⊥⊥,又CA CB ⊥,以,,CA CB CP 作长方体,则长方体的外接球就是三棱锥P ABC -的外接球.设外接球半径为R ,则2222(2)7R CA CB CP =++=,7R =,球表面积为22744()7.2S R πππ==⨯= 故答案为:7π.【点睛】 本题考查球的表面积,解题关键是确定,,CA CB CP 两两垂直,以,,CA CB CP 作长方体,则长方体的外接球就是三棱锥P ABC -的外接球. 17.【解析】若直线与直线的交点位于第一象限如图所示:则两直线的交点应在线段上(不包含点)当交点为时直线的倾斜角为当交点为时斜率直线的倾斜角为∴直线的倾斜角的取值范围是故答案为解析:(,)62ππ 【解析】 若直线:3l y kx =-与直线2360x y +-=的交点位于第一象限,如图所示:则两直线的交点应在线段AB 上(不包含,A B 点), 当交点为()0,2A 时,直线l 的倾斜角为2π,当交点为()3,0B 时,斜率(03330k -==-l 的倾斜角为6π ∴直线的倾斜角的取值范围是,62ππ⎛⎫⎪⎝⎭. 故答案为,62ππ⎛⎫ ⎪⎝⎭ 18.【解析】【分析】正四棱锥底面的四个顶点在球的同一个大圆上则棱锥的高等于球的半径由此可由棱锥体积求得球的半径从而得球体积【详解】∵正四棱锥底面的四个顶点在球的同一个大圆上∴球心是正方形对角线交点是棱锥 解析:323π 【解析】【分析】正四棱锥P ABCD -底面的四个顶点,,,A B C D 在球O 的同一个大圆上,则棱锥的高等于球的半径,由此可由棱锥体积求得球的半径,从而得球体积.【详解】∵正四棱锥P ABCD -底面的四个顶点,,,A B C D 在球O 的同一个大圆上,∴球心O 是正方形ABCD 对角线交点,PO 是棱锥的高,设球半径为R ,则AB =,22)2ABCD S R ==,211162333P ABCD ABCD V S PO R R -==⨯⨯=,2R =, ∴3344322333V R πππ==⨯=球. 故答案为:323π. 【点睛】本题考查球的体积,考查正四棱锥与半球的截接问题.解题关键是确定球半径与正四棱锥中的线段长之间的关系.19.【解析】【分析】根据题意可得平面所以得出为三棱锥的最长边根据直角三角形的性质边的中点到三棱锥的各顶点距离都相等所以为球心球直径即为【详解】平面平面平面所以三棱锥中最长边为设中点为在中所以三棱锥的外接 解析:43π 【解析】【分析】根据题意可得,BC ⊥平面PAC ,所以BC PC ⊥,得出PB 为三棱锥的最长边,PA AB ⊥,根据直角三角形的性质,PB 边的中点到三棱锥的各顶点距离都相等,所以为球心,球直径即为PB .【详解】PA ⊥平面ABC ,BC ⊂平面ABC ,PA BC ∴⊥,,,AC BC PA AC A BC ⊥=∴⊥平面PAC ,BC PC ⊥,,,,,PB BC PB PC PA AC PC AC PC PA ∴>>⊥∴>>,所以三棱锥中最长边为2PB =,设PB 中点为O ,在,Rt PAB Pt PBC ∆∆中,12AO CO PB ==,所以三棱锥的外接球的球心为O , 半径为41,3V π∴=. 故答案为:43π. 【点睛】 本题考查几何体的“切”“接”球问题,确定球心是解题的关键,考查空间垂直的应用,属于中档题.20.【解析】【分析】根据球心到四个顶点距离相等可推断出O 为CD 的中点且OA =OB =OC =OD 进而在△A0B 中利用余弦定理求得cos ∠AOB 的值则∠AOB 可求进而根据弧长的计算方法求得答案【详解】解:球心 解析:23π 【解析】【分析】根据球心到四个顶点距离相等可推断出O 为CD 的中点,且OA =OB =OC =OD ,进而在△A 0B 中,利用余弦定理求得cos ∠AOB 的值,则∠AOB 可求,进而根据弧长的计算方法求得答案.【详解】解:球心到四个顶点距离相等,故球心O 在CD 中点,则OA =OB =OC =OD =1,再由AB =A 0B 中,利用余弦定理cos ∠AOB 11312112+-==-⨯⨯, 则∠AOB 23π=,则弧AB 23π=•123π=. 故答案为:23π. 【点睛】本题主要考查了余弦定理的应用、四面体外接球的性质等,考查了学生观察分析和基本的运算能力. 三、解答题21.(1)详见解析;(2. 【解析】【分析】(1)在直角梯形ABCD 中,由条件可得222AD AM DM =+,即DM AM ⊥.再由PA ⊥面ABCD ,得DM PA ⊥,利用线面垂直的判定可得DM ⊥平面PAM ,进一步得到平面PDM ⊥平面PAM ;(2)由(1)知,,PM DM AM DM ⊥⊥,则PMA ∠为二面角P DM A --的平面角为30,求得tan301PA AM =⋅︒=.以A 为坐标原点,分别以,,AE AB AP 所在直线为,,x y z 轴建立空间直角坐标系,求出PC 的坐标及平面PDM 的一个法向量,由PC 与n 所成角的余弦值可得直线PC 与平面PDM 所成角的正弦值.【详解】(1)证明:在直角梯形ABCD 中,由已知可得,1,2,2AB CD BM CM ==== 可得223,6AM DM ==,过A 作AE CD ⊥,垂足为E ,则1,22DE AE ==29AD =,则222AD AM DM =+,∴DM AM ⊥.∵PA ⊥面ABCD ,∴DM PA ⊥,又PA AM A =,∴DM ⊥平面PAM ,∵DM ⊂平面PDM ,∴平面PDM ⊥平面PAM ;(2)解:由(1)知,,PM DM AM DM ⊥⊥,则PMA ∠为二面角P DM A --的平面角为30,则tan301PA AM =⋅︒=.以A 为坐标原点,分别以,,AE AB AP 所在直线为,,x y z 轴建立空间直角坐标系, 则()0,0,1P ,(22,1,0)D -,(22,1,0)C ,(2,1,0)M ,(22,1,1),(22,1,1),(2,1,1)PC PD PM =-=--=-. 设平面PDM 的一个法向量为(,,)n x y z =, 由22020n PD y z n PM x y z ⎧⋅=--=⎪⎨⋅=+-=⎪⎩,取1x =,得2321,,22n ⎛= ⎝⎭. ∴直线PC 与平面PDM 所成角的正弦值为:||230|cos ,|30||||106PC n PC n PC n ⋅<>===⋅⋅. 【点睛】 向量法是求立体几何中的线线角、线面角、面面角时常用方法.22.:(Ⅰ)见解析(Ⅱ)16【解析】【分析】【详解】(Ⅰ)证明:因为,DE EF CF EF ⊥⊥,所以四边形平面CDEF 为矩形,由5,4GD DE ==,42,4GC CF==得223GE GD CF =-=224GF GC CF =-=,所以5EF =,在EFG 中 ,有222EF GE FG =+,所以EG GF ⊥又因为,CF EF CF FG ⊥⊥,得CF ⊥平面EFG , 所以CF EG ⊥,所以EG ⊥平面CFG ,即平面DEG ⊥平面CFG ;(Ⅱ):在平面EGF 中,过点G 作GH EF ⊥于点H ,则125EG GF GH EF ⋅== 因为平面CDEF ⊥平面EFG , 得GH ⊥平面CDEF ,1163CDEF CDEF V S GH =⋅=23.(1)3y =或34120x y +-=;(2)12[0,]5. 【解析】 【分析】 (1)两直线方程联立可解得圆心坐标,又知圆C 的半径为1,可得圆的方程,根据点到直线距离公式,列方程可求得直线斜率,进而得切线方程;(2)根据圆C 的圆心在直线l :24y x =-上可设圆C 的方程为[]22()(24)1x a y a -+--=,由2MA MO =,可得M 的轨迹方程为22(1)4x y ++=,若圆C 上存在点M ,使2MA MO =,只需两圆有公共点即可.【详解】 (1)由24,{1,y x y x =-=-得圆心()3,2C , ∵圆C 的半径为1,∴圆C 的方程为:22(3)(2)1x y -+-=,显然切线的斜率一定存在,设所求圆C 的切线方程为3y kx =+,即30kx y -+=. 232311k k -+=+,∴2(43)0k k +=,∴0k =或34k =-. ∴所求圆C 的切线方程为3y =或34120x y +-=. (2)∵圆C 的圆心在直线l :24y x =-上,所以,设圆心C 为(,24)a a -, 则圆C 的方程为[]22()(24)1x a y a -+--=.又∵2MA MO =,∴设M 为(,)x y =22(1)4x y ++=,设为圆D . 所以点M 应该既在圆C 上又在圆D 上,即圆C 和圆D 有交点,∴2121-≤+,由251280a a -+≥,得a R ∈, 由25120a a -≤,得1205a ≤≤. 综上所述,a 的取值范围为120,5⎡⎤⎢⎥⎣⎦. 考点:1、圆的标准方程及切线的方程;2、圆与圆的位置关系及转化与划归思想的应用.【方法点睛】本题主要考查圆的标准方程及切线的方程、圆与圆的位置关系及转化与划归思想的应用.属于难题.转化与划归思想是解决高中数学问题的一种重要思想方法,是中学数学四种重要的数学思想之一,尤其在解决知识点较多以及知识跨度较大的问题发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是将题设条件研究透,这样才能快速找准突破点.以便将问题转化为我们所熟悉的知识领域,进而顺利解答,希望同学们能够熟练掌握并应用于解题当中.本题(2)巧妙地将圆C 上存在点M ,使2MA MO =问题转化为,两圆有公共点问题是解决问题的关键所在.24.(1)证明见解析;(2)证明见解析.【解析】【分析】(1)记1A B 与1B A 交于O ,先证明OD //1A C ,根据线面平行的判定定理即可证明A 1C ∥平面AB 1D ;(2)先证明BM ⊥面1AB D ,即可根据面面垂直的判定定理进行证明即可.【详解】(1)设11A B AB O ⋂=,连OD .因为四边形11AA B B 是矩形,∴O 是1A B 的中点. 又D 是BC 的中点,∴1A C //OD .又1AC ⊄面1AB D ,OD ⊂面1AB D , ∴1A C //面1AB D .(2)因为ABC ∆是正三角形,D 是BC 的中点,∴AD BC ⊥.∵平面ABC ⊥面11BB C C ,又平面ABC ⊥面11BB C C BC =,AD ⊂面ABC . ∴AD ⊥面11BB C C ,∵BM ⊂面11BB C C ,∴AD BM ⊥. 又∵1BM B D ⊥,1AD B D D ⋂=,AD ,1B D ⊂面1AB D , ∴BM ⊥面1AB D ,又BM ⊂面ABM , ∴面1AB D ⊥面ABM . 【点睛】垂直、平行关系证明中应用转化与化归思想的常见类型. (1)证明线面、面面平行,需转化为证明线线平行. (2)证明线面垂直,需转化为证明线线垂直. (3)证明线线垂直,需转化为证明线面垂直. 25.(1)详见解析;(2)详见解析。

人教版高一下学期期中考试数学试卷及答案解析(共五套)

人教版高一下学期期中考试数学试卷及答案解析(共五套)

人教版高一下学期期中考试数学试卷(一)注意事项:本试卷满分150分,考试时间120分钟,试题共22题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.点C是线段AB靠近点B的三等分点,下列正确的是()A.B.C.D.2.已知复数z满足z(3+i)=3+i2020,其中i为虚数单位,则z的共轭复数的虚部为()A.B.C.D.3.如图,▱ABCD中,∠DAB=60°,AD=2AB=2,延长AB至点E,且AB=BE,则•的值为()A.﹣1 B.﹣3 C.1 D.4.设i是虚数单位,则2i+3i2+4i3+……+2020i2019的值为()A.﹣1010﹣1010i B.﹣1011﹣1010iC.﹣1011﹣1012i D.1011﹣1010i5.如图,在正方体ABCD﹣A1B1C1D1中,异面直线A1B与CD所成的角为()A.30°B.45°C.60°D.135°6.在△ABC中,角A,B,C所对的边分别为a,b,c,若(a﹣2b)cos C=c(2cos B﹣cos A),△ABC的面积为a2sin,则C=()A.B.C.D.7.在正方体ABCD﹣A1B1C1D1中,下列四个结论中错误的是()A.直线B1C与直线AC所成的角为60°B.直线B1C与平面AD1C所成的角为60°C.直线B1C与直线AD1所成的角为90°D.直线B1C与直线AB所成的角为90°8.如图,四边形ABCD为正方形,四边形EFBD为矩形,且平面ABCD与平面EFBD互相垂直.若多面体ABCDEF的体积为,则该多面体外接球表面积的最小值为()A.6πB.8πC.12πD.16π二、多选题(本大题共4小题,每小题5分,选对得分,选错、少选不得分)9.在△ABC中,角A,B,C的对边分别为a,b,c,若a2=b2+bc,则角A可为()A.B.C.D.10.如图,四边形ABCD为直角梯形,∠D=90°,AB∥CD,AB=2CD,M,N分别为AB,CD的中点,则下列结论正确的是()A.B.C.D.11.下列说法正确的有()A.任意两个复数都不能比大小B.若z=a+bi(a∈R,b∈R),则当且仅当a=b=0时,z=0C.若z1,z2∈C,且z12+z22=0,则z1=z2=0D.若复数z满足|z|=1,则|z+2i|的最大值为312.如图,已知ABCD﹣A1B1C1D1为正方体,E,F分别是BC,A1C的中点,则()A.B.C.向量与向量的夹角是60°D.异面直线EF与DD1所成的角为45°三、填空题(本大题共4小题,每小题5分,共20分.不需写出解答过程,请把答案直接填写在横线上)13.已知正方形ABCD的边长为2,点P满足=(+),则||=;•=.14.若虛数z1、z2是实系数一元二次方程x2+px+q=0的两个根,且,则pq=.15.已知平面四边形ABCD中,AB=AD=2,BC=CD=BD=2,将△ABD沿对角线BD折起,使点A到达点A'的位置,当A'C=时,三棱锥A﹣BCD的外接球的体积为.16.已知一圆锥底面圆的直径为3,圆锥的高为,在该圆锥内放置一个棱长为a 的正四面体,并且正四面体在该几何体内可以任意转动,则a的最大值为.四、解答题(本大题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.在四边形ABCD中,AB∥CD,AD=BD=CD=1.(1)若AB=,求BC;(2)若AB=2BC,求cos∠BDC.18.(1)已知z1=1﹣2i,z2=3+4i,求满足=+的复数z.(2)已知z,ω为复数,(1+3i)﹣z为纯虚数,ω=,且|ω|=5.求复数ω.19.如图,墙上有一壁画,最高点A离地面4米,最低点B离地面2米.观察者从距离墙x(x>1)米,离地面高a(1≤a≤2)米的C处观赏该壁画,设观赏视角∠ACB=θ.(1)若a=1.5,问:观察者离墙多远时,视角θ最大?(2)若tanθ=,当a变化时,求x的取值范围.20.如图,已知复平面内平行四边形ABCD中,点A对应的复数为﹣1,对应的复数为2+2i,对应的复数为4﹣4i.(Ⅰ)求D点对应的复数;(Ⅱ)求平行四边形ABCD的面积.21.如图所示,等腰梯形ABFE是由正方形ABCD和两个全等的Rt△FCB和Rt△EDA组成,AB=1,CF=2.现将Rt△FCB沿BC所在的直线折起,点F移至点G,使二面角E﹣BC﹣G的大小为60°.(1)求四棱锥G﹣ABCE的体积;(2)求异面直线AE与BG所成角的大小.22.如图,四边形MABC中,△ABC是等腰直角三角形,AC⊥BC,△MAC是边长为2的正三角形,以AC为折痕,将△MAC向上折叠到△DAC的位置,使点D在平面ABC内的射影在AB上,再将△MAC向下折叠到△EAC的位置,使平面EAC⊥平面ABC,形成几何体DABCE.(1)点F在BC上,若DF∥平面EAC,求点F的位置;(2)求直线AB与平面EBC所成角的余弦值.参考答案一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.点C是线段AB靠近点B的三等分点,下列正确的是()A.B.C.D.【答案】D【分析】根据共线向量的定义即可得结论.【解答】解:由题,点C是线段AB靠近点B的三等分点,=3=﹣3,所以选项A错误;=2=﹣2,所以选项B和选项C错误,选项D正确.故选:D.【知识点】平行向量(共线)、向量数乘和线性运算2.已知复数z满足z(3+i)=3+i2020,其中i为虚数单位,则z的共轭复数的虚部为()A.B.C.D.【答案】D【分析】直接利用复数代数形式的乘除运算化简,然后利用共轭复数的概念得答案.【解答】解:∵z(3+i)=3+i2020,i2020=(i2)1010=(﹣1)1010=1,∴z(3+i)=4,∴z=,∴=,∴共轭复数的虚部为,故选:D.【知识点】复数的运算3.如图,▱ABCD中,∠DAB=60°,AD=2AB=2,延长AB至点E,且AB=BE,则•的值为()A.﹣1 B.﹣3 C.1 D.【答案】C【分析】利用图形,求出数量积的向量,然后转化求解即可.【解答】解:由题意,▱ABCD中,∠DAB=60°,AD=2AB=2,延长AB至点E,且AB=BE,可知=+=,=﹣=﹣2,所以•=()•(﹣2)=﹣2﹣2=1.故选:C.【知识点】平面向量数量积的性质及其运算4.设i是虚数单位,则2i+3i2+4i3+……+2020i2019的值为()A.﹣1010﹣1010i B.﹣1011﹣1010iC.﹣1011﹣1012i D.1011﹣1010i【答案】B【分析】利用错位相减法、等比数列的求和公式及其复数的周期性即可得出.【解答】解:设S=2i+3i2+4i3+ (2020i2019)∴iS=2i2+3i3+ (2020i2020)则(1﹣i)S=i+i+i2+i3+……+i2019﹣2020i2020.==i+==﹣2021+i,∴S==.故选:B.【知识点】复数的运算5.如图,在正方体ABCD﹣A1B1C1D1中,异面直线A1B与CD所成的角为()A.30°B.45°C.60°D.135°【答案】B【分析】易知∠ABA1即为所求,再由△ABA1为等腰直角三角形,得解.【解答】解:因为AB∥CD,所以∠ABA1即为异面直线A1B与CD所成的角,因为△ABA1为等腰直角三角形,所以∠ABA1=45°.故选:B.【知识点】异面直线及其所成的角6.在△ABC中,角A,B,C所对的边分别为a,b,c,若(a﹣2b)cos C=c(2cos B﹣cos A),△ABC的面积为a2sin,则C=()A.B.C.D.【答案】C【分析】先利用正弦定理将已知等式中的边化角,再结合两角和公式与三角形的内角和定理,可推出sin B=2sin A;然后利用三角形的面积公式、正弦定理,即可得解.【解答】解:由正弦定理知,==,∵(a﹣2b)cos C=c(2cos B﹣cos A),∴(sin A﹣2sin B)cos C=sin C(2cos B﹣cos A),即sin A cos C+sin C cos A=2(sin B cos C+cos B sin C),∴sin(A+C)=2sin(B+C),即sin B=2sin A.∵△ABC的面积为a2sin,∴S=bc sin A=a2sin,根据正弦定理得,sin B•sin C•sin A=sin2A•sin,化简得,sin B•sin cos=sin A•cos,∵∈(0,),∴cos>0,∴sin==,∴=,即C=.故选:C.【知识点】正弦定理、余弦定理7.在正方体ABCD﹣A1B1C1D1中,下列四个结论中错误的是()A.直线B1C与直线AC所成的角为60°B.直线B1C与平面AD1C所成的角为60°C.直线B1C与直线AD1所成的角为90°D.直线B1C与直线AB所成的角为90°【答案】B【分析】连接AB1,求出∠ACB1可判断选项A;连接B1D1,找出点B1在平面AD1C上的投影O,设直线B1C与平面AD1C所成的角为θ,由cosθ=可判断选项B;利用平移法找出选项C和D涉及的异面直线夹角,再进行相关运算,即可得解.【解答】解:连接AB1,∵△AB1C为等边三角形,∴∠ACB1=60°,即直线B1C与AC所成的角为60°,故选项A正确;连接B1D1,∵AB1=B1C=CD1=AD1,∴四面体AB1CD1是正四面体,∴点B1在平面AD1C上的投影为△AD1C的中心,设为点O,连接B1O,OC,则OC=BC,设直线B1C与平面AD1C所成的角为θ,则cosθ===≠,故选项B错误;连接BC1,∵AD1∥BC1,且B1C⊥BC1,∴直线B1C与AD1所成的角为90°,故选项C正确;∵AB⊥平面BCC1B1,∴AB⊥B1C,即直线B1C与AB所成的角为90°,故选项D正确.故选:B.【知识点】直线与平面所成的角、异面直线及其所成的角8.如图,四边形ABCD为正方形,四边形EFBD为矩形,且平面ABCD与平面EFBD互相垂直.若多面体ABCDEF的体积为,则该多面体外接球表面积的最小值为()A.6πB.8πC.12πD.16π【答案】A【分析】由题意可得AC⊥面EFBD,可得V ABCDEF=V C﹣EFBD+V A﹣EFBD=2V A﹣EFBD,再由多面体ABCDEF 的体积为,可得矩形EFBD的高与正方形ABCD的边长之间的关系,再由题意可得矩形EFBD的对角线的交点为外接球的球心,进而求出外接球的半径,再由均值不等式可得外接球的半径的最小值,进而求出外接球的表面积的最小值.【解答】解:设正方形ABCD的边长为a,矩形BDEF的高为b,因为正方形ABCD,所以AC⊥BD,设AC∩BD=O',由因为平面ABCD与平面EFBD互相垂直,AC⊂面ABCD,平面ABCD∩平面EFBD=BD,所以AC⊥面EFBD,所以V ABCDEF=V C﹣EFBD+V A﹣EFBD=2V A﹣EFBD=2•S EFBD•CO'=•a•b•a =a2b,由题意可得V ABCDEF=,所以a2b=2;所以a2=,矩形EFBD的对角线的交点O,连接OO',可得OO'⊥BD,而OO'⊂面EFBD,而平面ABCD⊥平面EFBD,平面ABCD∩平面EFBD=BD,所以OO'⊥面EFBD,可得OA=OB=OE=OF都为外接球的半径R,所以R2=()2+(a)2=+=+=++≥3=3×,当且仅当=即b=时等号成立.所以外接球的表面积为S=4πR2≥4π•3×=6π.所以外接球的表面积最小值为6π.故选:A.【知识点】球的体积和表面积二、多选题(本大题共4小题,每小题5分,选对得分,选错、少选不得分)9.在△ABC中,角A,B,C的对边分别为a,b,c,若a2=b2+bc,则角A可为()A.B.C.D.【答案】BC【分析】由已知利用余弦定理整理可得cos A=,对于A,若A=,可得b=<0,错误;对于B,若A=,可得b=>0,对于C,若A=,可得b=>0,对于D,若A=,可得c=0,错误,即可得解.【解答】解:因为在△ABC中,a2=b2+bc,又由余弦定理可得:a2=b2+c2﹣2bc cos A,所以b2+bc=b2+c2﹣2bc cos A,整理可得:c=b(1+2cos A),可得:cos A=,对于A,若A=,可得:﹣=,整理可得:b=<0,错误;对于B,若A=,可得:=,整理可得:b=>0,对于C,若A=,可得:cos==,整理可得:b=>0,对于D,若A=,可得:cos=﹣=,整理可得:c=0,错误.故选:BC.【知识点】余弦定理10.如图,四边形ABCD为直角梯形,∠D=90°,AB∥CD,AB=2CD,M,N分别为AB,CD的中点,则下列结论正确的是()A.B.C.D.【答案】ABC【分析】由向量的加减法法则、平面向量基本定理解决【解答】解:由,知A正确;由知B正确;由知C正确;由N为线段DC的中点知知D错误;故选:ABC.【知识点】向量数乘和线性运算、平面向量的基本定理11.下列说法正确的有()A.任意两个复数都不能比大小B.若z=a+bi(a∈R,b∈R),则当且仅当a=b=0时,z=0C.若z1,z2∈C,且z12+z22=0,则z1=z2=0D.若复数z满足|z|=1,则|z+2i|的最大值为3【答案】BD【分析】通过复数的基本性质,结合反例,以及复数的模,判断命题的真假即可.【解答】解:当两个复数都是实数时,可以比较大小,所以A不正确;复数的实部与虚部都是0时,复数是0,所以B正确;反例z1=1,z2=i,满足z12+z22=0,所以C不正确;复数z满足|z|=1,则|z+2i|的几何意义,是复数的对应点到(0,﹣2)的距离,它的最大值为3,所以D正确;故选:BD.【知识点】复数的模、复数的运算、虚数单位i、复数、命题的真假判断与应用12.如图,已知ABCD﹣A1B1C1D1为正方体,E,F分别是BC,A1C的中点,则()A.B.C.向量与向量的夹角是60°D.异面直线EF与DD1所成的角为45°【答案】ABD【分析】在正方体ABCD﹣A1B1C1D1中,建立合适的空间直角坐标系,设正方体的棱长为2,根据空间向量的坐标运算,以及异面直线所成角的向量求法,逐项判断即可.【解答】解:在正方体ABCD﹣A1B1C1D1中,以点A为坐标原点,分别以AB,AD,AA1为x 轴、y轴、z轴建立空间直角坐标系,设正方体的棱长为2,则A(0,0,0),A1(0,0,2),B(2,0,0),B1(2,0,2),C (2,2,0),D(0,2,0),D1(0,2,2),所以,故,故选项A正确;又,又,所以,,则,故选项B正确;,所以,因此与的夹角为120°,故选项C错误;因为E,F分别是BC,A1C的中点,所以E(2,1,0),F(1,1,1),则,所以,又异面直线的夹角大于0°小于等于90°,所以异面直线EF与DD1所成的角为45°,故选项D正确;故选:ABD.【知识点】异面直线及其所成的角三、填空题(本大题共4小题,每小题5分,共20分.不需写出解答过程,请把答案直接填写在横线上)13.已知正方形ABCD的边长为2,点P满足=(+),则||=;•=.【分析】根据向量的几何意义可得P为BC的中点,再根据向量的数量积的运算和正方形的性质即可求出.【解答】解:由=(+),可得P为BC的中点,则|CP|=1,∴|PD|==,∴•=•(+)=﹣•(+)=﹣2﹣•=﹣1,故答案为:,﹣1.【知识点】平面向量数量积的性质及其运算14.若虛数z1、z2是实系数一元二次方程x2+px+q=0的两个根,且,则pq=.【答案】1【分析】设z1=a+bi,则z2=a﹣bi,(a,b∈R),根据两个复数相等的充要条件求出z1,z2,再由根与系数的关系求得p,q的值.【解答】解:由题意可知z1与z2为共轭复数,设z1=a+bi,则z2=a﹣bi,(a,b∈R 且b≠0),又,则a2﹣b2+2abi=a﹣bi,∴(2a+b)+(a+2b)i=1﹣i,∴,解得.∴z1=+i,z2=i,(或z2=+i,z1=i).由根与系数的关系,得p=﹣(z1+z2)=1,q=z1•z2=1,∴pq=1.故答案为:1.【知识点】复数的运算15.已知平面四边形ABCD中,AB=AD=2,BC=CD=BD=2,将△ABD沿对角线BD折起,使点A到达点A'的位置,当A'C=时,三棱锥A﹣BCD的外接球的体积为.【分析】由题意画出图形,找出三棱锥外接球的位置,求解三角形可得外接球的半径,再由棱锥体积公式求解.【解答】解:记BD的中点为M,连接A′M,CM,可得A′M2+CM2=A′C2,则∠A′MC=90°,则外接球的球心O在△A′MC的边A′C的中垂线上,且过正三角形BCD的中点F,且在与平面BCD垂直的直线m上,过点A′作A′E⊥m于点E,如图所示,设外接球的半径为R,则A′O=OC=R,,A′E=1,在Rt△A′EO中,A′O2=A′E2+OE2,解得R=.故三棱锥A﹣BCD的外接球的体积为.故答案为:.【知识点】球的体积和表面积16.已知一圆锥底面圆的直径为3,圆锥的高为,在该圆锥内放置一个棱长为a的正四面体,并且正四面体在该几何体内可以任意转动,则a的最大值为.【分析】根据题意,该四面体内接于圆锥的内切球,通过内切球即可得到a的最大值.【解答】解:依题意,四面体可以在圆锥内任意转动,故该四面体内接于圆锥的内切球,设球心为P,球的半径为r,下底面半径为R,轴截面上球与圆锥母线的切点为Q,圆锥的轴截面如图:则OA=OB=,因为SO=,故可得:SA=SB==3,所以:三角形SAB为等边三角形,故P是△SAB的中心,连接BP,则BP平分∠SBA,所以∠PBO=30°;所以tan30°=,即r=R=×=,即四面体的外接球的半径为r=.另正四面体可以从正方体中截得,如图:从图中可以得到,当正四面体的棱长为a时,截得它的正方体的棱长为a,而正四面体的四个顶点都在正方体上,故正四面体的外接球即为截得它的正方体的外接球,所以2r=AA1=a=a,所以a=.即a的最大值为.故答案为:.【知识点】旋转体(圆柱、圆锥、圆台)四、解答题(本大题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.在四边形ABCD中,AB∥CD,AD=BD=CD=1.(1)若AB=,求BC;(2)若AB=2BC,求cos∠BDC.【分析】(1)直接利用余弦定理的应用求出结果;(2)利用余弦定理的应用建立等量关系式,进一步求出结果.【解答】解:(1)在四边形ABCD中,AD=BD=CD=1.若AB=,所以:cos∠ADB==,由于AB∥CD,所以∠BDC=∠ABD,即cos∠BDC=cos∠ABD=,所以BC2=BD2+CD2﹣2•BD•CD•cos∠BDC==,所以BC=.(2)设BC=x,则AB=2BC=2x,由余弦定理得:cos∠ADB==,cos∠BDC===,故,解得或﹣(负值舍去).所以.【知识点】余弦定理18.(1)已知z1=1﹣2i,z2=3+4i,求满足=+的复数z.(2)已知z,ω为复数,(1+3i)﹣z为纯虚数,ω=,且|ω|=5.求复数ω.【分析】(1)把z1,z2代入=+,利用复数代数形式的乘除运算化简求出,进一步求出z;(2)设z=a+bi(a,b∈R),利用复数的运算及(1+3i)•z=(1+3i)(a+bi)=a﹣3b+(3a+b)i为纯虚数,可得,又ω==i,|ω|=5,可得,即可得出a,b,再代入可得ω.【解答】解:(1)由z1=1﹣2i,z2=3+4i,得=+==,则z=;(2)设z=a+bi(a,b∈R),∵(1+3i)•z=(1+3i)(a+bi)=a﹣3b+(3a+b)i为纯虚数,∴.又ω===i,|ω|=5,∴.把a=3b代入化为b2=25,解得b=±5,∴a=±15.∴ω=±(i)=±(7﹣i).【知识点】复数的运算19.如图,墙上有一壁画,最高点A离地面4米,最低点B离地面2米.观察者从距离墙x(x>1)米,离地面高a(1≤a≤2)米的C处观赏该壁画,设观赏视角∠ACB=θ.(1)若a=1.5,问:观察者离墙多远时,视角θ最大?(2)若tanθ=,当a变化时,求x的取值范围.【分析】(1)首项利用两角和的正切公式建立函数关系,进一步利用判别式确定函数的最大值;(2)利用两角和的正切公式建立函数关系,利用a的取值范围即可确定x的范围.【解答】解:(1)如图,作CD⊥AF于D,则CD=EF,设∠ACD=α,∠BCD=β,CD=x,则θ=α﹣β,在Rt△ACD和Rt△BCD中,tanα=,tanβ=,则tanθ=tan(α﹣β)==(x>0),令u=,则ux2﹣2x+1.25u=0,∵上述方程有大于0的实数根,∴△≥0,即4﹣4×1.25u2≥0,∴u≤,即(tanθ)max=,∵正切函数y=tan x在(0,)上是增函数,∴视角θ同时取得最大值,此时,x==,∴观察者离墙米远时,视角θ最大;(2)由(1)可知,tanθ===,即x2﹣4x+4=﹣a2+6a﹣4,∴(x﹣2)2=﹣(a﹣3)2+5,∵1≤a≤2,∴1≤(x﹣2)2≤4,化简得:0≤x≤1或3≤x≤4,又∵x>1,∴3≤x≤4.【知识点】解三角形20.如图,已知复平面内平行四边形ABCD中,点A对应的复数为﹣1,对应的复数为2+2i,对应的复数为4﹣4i.(Ⅰ)求D点对应的复数;(Ⅱ)求平行四边形ABCD的面积.【分析】(I)利用复数的几何意义、向量的坐标运算性质、平行四边形的性质即可得出.(II)利用向量垂直与数量积的关系、模的计算公式、矩形的面积计算公式即可得出.【解答】解:(Ⅰ)依题点A对应的复数为﹣1,对应的复数为2+2i,得A(﹣1,0),=(2,2),可得B(1,2).又对应的复数为4﹣4i,得=(4,﹣4),可得C(5,﹣2).设D点对应的复数为x+yi,x,y∈R.得=(x﹣5,y+2),=(﹣2,﹣2).∵ABCD为平行四边形,∴=,解得x=3,y=﹣4,故D点对应的复数为3﹣4i.(Ⅱ)=(2,2),=(4,﹣4),可得:=0,∴.又||=2,=4.故平行四边形ABCD的面积==16.【知识点】复数的代数表示法及其几何意义21.如图所示,等腰梯形ABFE是由正方形ABCD和两个全等的Rt△FCB和Rt△EDA组成,AB=1,CF=2.现将Rt△FCB沿BC所在的直线折起,点F移至点G,使二面角E﹣BC﹣G的大小为60°.(1)求四棱锥G﹣ABCE的体积;(2)求异面直线AE与BG所成角的大小.【分析】(1)推导出GC⊥BC,EC⊥BC,从而∠ECG=60°.连接DG,推导出DG⊥EF,由BC⊥EF,BC⊥CG,得BC⊥平面DEG,从而DG⊥BC,进而DG⊥平面ABCE,DG是四棱锥G ﹣ABCE的高,由此能求出四棱锥G﹣ABCE的体积.(2)取DE的中点H,连接BH、GH,则BH∥AE,∠GBH既是AE与BG所成角或其补角.由此能求出异面直线AE与BG所成角的大小.【解答】解:(1)由已知,有GC⊥BC,EC⊥BC,所以∠ECG=60°.连接DG,由CD=AB=1,CG=CF=2,∠ECG=60°,有DG⊥EF①,由BC⊥EF,BC⊥CG,有BC⊥平面DEG,所以,DG⊥BC②,由①②知,DG⊥平面ABCE,所以DG就是四棱锥G﹣ABCE的高,在Rt△CDG中,.故四棱锥G﹣ABCE的体积为:.(2)取DE的中点H,连接BH、GH,则BH∥AE,故∠GBH既是AE与BG所成角或其补角.在△BGH中,,,则.故异面直线AE与BG所成角的大小为.【知识点】异面直线及其所成的角、棱柱、棱锥、棱台的体积22.如图,四边形MABC中,△ABC是等腰直角三角形,AC⊥BC,△MAC是边长为2的正三角形,以AC为折痕,将△MAC向上折叠到△DAC的位置,使点D在平面ABC内的射影在AB上,再将△MAC向下折叠到△EAC的位置,使平面EAC⊥平面ABC,形成几何体DABCE.(1)点F在BC上,若DF∥平面EAC,求点F的位置;(2)求直线AB与平面EBC所成角的余弦值.【分析】(1)点F为BC的中点,设点D在平面ABC内的射影为O,连接OD,OC,取AC 的中点H,连接EH,由题意知EH⊥AC,EH⊥平面ABC,由题意知DO⊥平面ABC,得DO∥平面EAC,取BC的中点F,连接OF,则OF∥AC,从而OF∥平面EAC,平面DOF∥平面EAC,由此能证明DF∥平面EAC.(2)连接OH,由OF,OH,OD两两垂直,以O为坐标原点,OF,OH,OD所在直线分别为x,y,z轴,建立空间直角坐标系,利用向量法能求出直线AB与平面EBC所成角的余弦值.【解答】解:(1)点F为BC的中点,理由如下:设点D在平面ABC内的射影为O,连接OD,OC,∵AD=CD,∴OA=OC,∴在Rt△ABC中,O为AB的中点,取AC的中点H,连接EH,由题意知EH⊥AC,又平面EAC⊥平面ABC,平面EAC∩平面ABC=AC,∴EH⊥平面ABC,由题意知DO⊥平面ABC,∴DO∥EH,∴DO∥平面EAC,取BC的中点F,连接OF,则OF∥AC,又OF⊄平面EAC,AC⊂平面EAC,∴OF∥平面EAC,∵DO∩OF=O,∴平面DOF∥平面EAC,∵DF⊂平面DOF,∴DF∥平面EAC.(2)连接OH,由(1)可知OF,OH,OD两两垂直,以O为坐标原点,OF,OH,OD所在直线分别为x,y,z轴,建立如图所示空间直角坐标系,则B(1,﹣1,0),A(﹣1,1,0),E(0,1,﹣),C(1,1,0),∴=(2,﹣2,0),=(0,2,0),=(﹣1,2,﹣),设平面EBC的法向量=(a,b,c),则,取a=,则=(,0,﹣1),设直线与平面EBC所成的角为θ,则sinθ===.∴直线AB与平面EBC所成角的余弦值为cosθ==.【知识点】直线与平面平行、直线与平面所成的角人教版高一下学期期中考试数学试卷(二)注意事项:本试卷满分150分,考试时间120分钟,试题共22题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.(2﹣i)z对应的点位于虚轴的正半轴上,则复数z对应的点位于()1.已知复平面内,A.第一象限B.第二象限C.第三象限D.第四象限2.平行四边形ABCD中,点E是DC的中点,点F是BC的一个三等分点(靠近B),则=()A.B.C.D.3.已知向量=(6t+3,9),=(4t+2,8),若(+)∥(﹣),则t=()A.﹣1 B.﹣C.D.14.已知矩形ABCD的一边AB的长为4,点M,N分别在边BC,DC上,当M,N分别是边BC,DC的中点时,有(+)•=0.若+=x+y,x+y=3,则线段MN的最短长度为()A.B.2 C.2D.25.若z∈C且|z+3+4i|≤2,则|z﹣1﹣i|的最大和最小值分别为M,m,则M﹣m的值等于()A.3 B.4 C.5 D.96.已知球的半径为R,一等边圆锥(圆锥母线长与圆锥底面直径相等)位于球内,圆锥顶点在球上,底面与球相接,则该圆锥的表面积为()A.R2B.R2C.R2D.R27.农历五月初五是端午节,民间有吃粽子的习惯,粽子又称粽籺,俗称“粽子”,古称“角黍”,是端午节大家都会品尝的食品,传说这是为了纪念战国时期楚国大臣、爱国主义诗人屈原.小明在和家人一起包粽子时,想将一丸子(近似为球)包入其中,如图,将粽叶展开后得到由六个边长为4的等边三角形所构成的平行四边形,将粽叶沿虚线折起来,可以得到如图所示的粽子形状的六面体,则放入丸子的体积最大值为()A.πB.πC.πD.π8.已知半球O与圆台OO'有公共的底面,圆台上底面圆周在半球面上,半球的半径为1,则圆台侧面积取最大值时,圆台母线与底面所成角的余弦值为()A.B.C.D.二、多选题(本大题共4小题,每小题5分,选对得分,选错、少选不得分)9.下列有关向量命题,不正确的是()A.若||=||,则=B.已知≠,且•=•,则=C.若=,=,则=D.若=,则||=||且∥10.若复数z满足,则()A.z=﹣1+i B.z的实部为1 C.=1+i D.z2=2i11.如图,在平行四边形ABCD中,E,F分别为线段AD,CD的中点,AF∩CE=G,则()A.B.C.D.12.已知正方体ABCD﹣A1B1C1D1,棱长为2,E为线段B1C上的动点,O为AC的中点,P 为棱CC1上的动点,Q为棱AA1的中点,则以下选项中正确的有()A.AE⊥B1CB.直线B1D⊥平面A1BC1C.异面直线AD1与OC1所成角为D.若直线m为平面BDP与平面B1D1P的交线,则m∥平面B1D1Q三、填空题(本大题共4小题,每小题5分,共20分.不需写出解答过程,请把答案直接填写在横线上)13.已知向量=(m,1),=(m﹣6,m﹣4),若∥,则m的值为.14.将表面积为36π的圆锥沿母线将其侧面展开,得到一个圆心角为的扇形,则该圆锥的轴截面的面积S=.15.如图,已知有两个以O为圆心的同心圆,小圆的半径为1,大圆的半径为2,点A 为小圆上的动点,点P,Q是大圆上的两个动点,且•=1,则||的最大值是.16.如图,在三棱锥A﹣BCD的平面展开图中,已知四边形BCED为菱形,BC=1,BF=,若二面角A﹣CD﹣B的余弦值为﹣,M为BD的中点,则CD=,直线AD与直线CM所成角的余弦值为.四、解答题(本大题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.已知,.(1)若与同向,求;(2)若与的夹角为120°,求.18.已知a、b、c是△ABC中∠A、∠B、∠C的对边,a=4,b=6,cos A=﹣.(1)求c;(2)求cos2B的值.19.已知:复数z1与z2在复平面上所对应的点关于y轴对称,且z1(1﹣i)=z2(1+i)(i为虚数单位),|z1|=.(Ⅰ)求z1的值;(Ⅱ)若z1的虚部大于零,且(m,n∈R),求m,n的值.20.(Ⅰ)在复数范围内解方程|z|2+(z+)i=(i为虚数单位)(Ⅱ)设z是虚数,ω=z+是实数,且﹣1<ω<2.(1)求|z|的值及z的实部的取值范围;(2)设,求证:μ为纯虚数;(3)在(2)的条件下求ω﹣μ2的最小值.21.如图,直三棱柱A1B1C1﹣ABC中,AB=AC=1,,A1A=4,点M为线段A1A 的中点.(1)求直三棱柱A1B1C1﹣ABC的体积;(2)求异面直线BM与B1C1所成的角的大小.(结果用反三角表示)22.如图所示,在正方体ABCD﹣A1B1C1D1中,点G在棱D1C1上,且D1G=D1C1,点E、F、M分别是棱AA1、AB、BC的中点,P为线段B1D上一点,AB=4.(Ⅰ)若平面EFP交平面DCC1D1于直线l,求证:l∥A1B;(Ⅱ)若直线B1D⊥平面EFP.(i)求三棱锥B1﹣EFP的表面积;(ii)试作出平面EGM与正方体ABCD﹣A1B1C1D1各个面的交线,并写出作图步骤,保留作图痕迹.设平面EGM与棱A1D1交于点Q,求三棱锥Q﹣EFP的体积.答案解析一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.(2﹣i)z对应的点位于虚轴的正半轴上,则复数z对应的点位于()1.已知复平面内,A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【分析】直接利用复数的运算和几何意义的应用求出该点所表示的位置.【解答】解:设z=a+bi(a,b∈R),所以(2﹣i)(a+bi)=2a+b+(2b﹣a)i,由于对应的点在虚轴的正半轴上,所以,即,所以a<0,b>0.故该点在第二象限.故选:B.【知识点】复数的代数表示法及其几何意义2.平行四边形ABCD中,点E是DC的中点,点F是BC的一个三等分点(靠近B),则=()A.B.C.D.【答案】D【分析】利用平行四边形的性质以及向量相等的概念,再利用平面向量基本定理进行转化即可.【解答】解:因为ABCD为平行四边形,所以,故.故选:D.【知识点】平面向量的基本定理3.已知向量=(6t+3,9),=(4t+2,8),若(+)∥(﹣),则t=()A.﹣1 B.﹣C.D.1【答案】B【分析】根据平面向量的坐标表示和共线定理,列方程求出t的值.【解答】解:向量=(6t+3,9),=(4t+2,8),所以+=(6t+3,11),﹣=(4t+2,5).又(+)∥(﹣),所以5(6t+3)﹣11(4t+2)=0,解得t=﹣.故选:B.【知识点】平面向量共线(平行)的坐标表示4.已知矩形ABCD的一边AB的长为4,点M,N分别在边BC,DC上,当M,N分别是边BC,DC的中点时,有(+)•=0.若+=x+y,x+y=3,则线段MN的最短长度为()A.B.2 C.2D.2【答案】D【分析】先根据M,N满足的条件,将(+)•=0化成的表达式,从而判断出矩形ABCD为正方形;再将+=x+y,左边用表示出来,结合x+y =3,即可得NC+MC=4,最后借助于基本不等式求出MN的最小值.【解答】解:当M,N分别是边BC,DC的中点时,有(+)•===,所以AD=AB,则矩形ABCD为正方形,设,,则=.则x=2﹣λ,y=2﹣μ.又x+y=3,所以λ+μ=1.故NC+MC=4,则MN==(当且仅当MC=NC=2时取等号).故线段MN的最短长度为2.故选:D.【知识点】平面向量数量积的性质及其运算5.若z∈C且|z+3+4i|≤2,则|z﹣1﹣i|的最大和最小值分别为M,m,则M﹣m的值等于()A.3 B.4 C.5 D.9【答案】B【分析】由题意画出图形,再由复数模的几何意义,数形结合得答案.【解答】解:由|z+3+4i|≤2,得z在复平面内对应的点在以Q(﹣3,﹣4)为圆心,以2为半径的圆及其内部.如图:|z﹣1﹣i|的几何意义为区域内的动点与定点P得距离,则M=|PQ|+2,m=|PQ|﹣2,则M﹣m=4.故选:B.【知识点】复数的运算6.已知球的半径为R,一等边圆锥(圆锥母线长与圆锥底面直径相等)位于球内,圆锥顶点在球上,底面与球相接,则该圆锥的表面积为()A.R2B.R2C.R2D.R2【答案】B【分析】设圆锥的底面半径为r,求得圆锥的高,由球的截面性质,运用勾股定理可得r,由圆锥的表面积公式可得所求.【解答】解:如图,设圆锥的底面半径为r,则圆锥的高为r,则R2=r2+(r﹣R)2,解得r=R,则圆锥的表面积为S=πr2+πr•2r=3πr2=3π(R)2=πR2,故选:B.【知识点】球内接多面体、旋转体(圆柱、圆锥、圆台)7.农历五月初五是端午节,民间有吃粽子的习惯,粽子又称粽籺,俗称“粽子”,古称“角黍”,是端午节大家都会品尝的食品,传说这是为了纪念战国时期楚国大臣、爱国主义诗人屈原.小明在和家人一起包粽子时,想将一丸子(近似为球)包入其中,如图,将粽叶展开后得到由六个边长为4的等边三角形所构成的平行四边形,将粽叶沿虚线折起来,可以得到如图所示的粽子形状的六面体,则放入丸子的体积最大值为()A.πB.πC.πD.π【答案】A【分析】先根据题意求得正四面体的体积,进而得到六面体的体积,再由图形的对称性得,内部的丸子要是体积最大,就是丸子要和六个面相切,设丸子的半径为R,则,由此求得R,进而得到答案.【解答】解:由题意可得每个三角形面积为,由对称性可知该六面体是由两个正四面体合成的,可得该四面体的高为,故四面体的体积为,∵该六面体的体积是正四面体的2倍,。

2023-2024学年湖北省高一下学期期中月考数学试题1(含答案)

2023-2024学年湖北省高一下学期期中月考数学试题1(含答案)

2023-2024学年湖北省高一下册期中联考数学试题一、单选题1.若复数45i z =+,则23z -=()A .1015i --B .1015i -+C .1415i +D .1415i-【正确答案】B【分析】先求出45i z =-,进而求出23z -.【详解】因为45i z =+,所以45i z =-,所以()232345i 1015i z -=--=-+故选:B2.如图,在ABC 中,D 是BC 上的点,则AB BC AD +-等于()A .ADB .DBC .DCD .AB【正确答案】C【分析】由向量的加法和减法原则求解即可.【详解】AB BC AD AC AD DC +-=-=.故选:C.3.设角α的终边经过点(34)P -,,那么()()sin 2cos παα-+-等于()A .15B .-15C .25D .-25【正确答案】D【分析】利用任意角三角函数的定义,分别计算sin α和cos α,再根据诱导公式对()()sin 2cos παα-+-化简,代入sin α和cos α的值,即可求出结果.【详解】∵角α的终边经过点(34)P -,,r PO =,∴4sin r α==45,33cos 5r α-==-,∴()()462sin 2cos sin 2cos 555παααα-+-=+=-=-.故选:D .4.已知向量3(,sin )2a α= ,1(sin ,)6b α= ,若//a b ,则锐角α为()A .30°B .60°C .45°D .75°【正确答案】A【分析】利用向量平行列方程,即可求出锐角α.【详解】因为//a b ,所以sin 2α311264=⨯=,∴sin α=±12.又α为锐角,所以α=30°.故选:A5.为了得到函数πcos 24y x ⎛⎫=- ⎪⎝⎭的图像,可以将函数cos y x =的图像上()A .每个点的横坐标缩短到原来的12倍,纵坐标不变,再向左平移π8个单位B .每个点的横坐标缩短到原来的12倍,纵坐标不变,再向右平移π8个单位C .每个点的横坐标伸长到原来的2倍,纵坐标不变,再向右平移π8个单位D .每个点的横坐标伸长到原来的2倍,纵坐标不变,再向左平移π8个单位【正确答案】B【分析】由函数图像的伸缩变换和平移变化规律求解.【详解】由πcos 228πcos 4y x x ⎡⎤⎛⎫- ⎪⎢⎥⎛⎫= ⎝⎭-=⎪⎝⎭⎣⎦可知,函数cos y x =的图像每个点的横坐标缩短到原来的12倍,纵坐标不变,可得函数cos 2y x =的图像,再向右平移π8个单位,得函数πcos 24πcos 28y x x ⎛⎫==- ⎪⎡⎤⎛⎫- ⎪⎢⎝⎭⎝⎣⎦⎭⎥的图像.故选:B6.在复平面内,点(cos ,sin ),(sin(),cos())A B θθθθ--分别对应复数12,z z ,则21z z =()A .1-B .1C .i-D .i【正确答案】D【分析】根据复数几何意义,求得12,z z ,再结合复数的除法的运算法则,即可求解.【详解】由点(cos ,sin )A θθ和(sin(),cos())B θθ--分别对应复数12,z z ,可得1cos isin z θθ=+,2sin()i cos()sin i cos z θθθθ=-+-=-+,所以222221sin i cos (sin i cos )(cos isin )(sin cos )ii cos isin (cos isin )(cos isin )cos sin z z θθθθθθθθθθθθθθθθ-+-+-+====++-+.故选:D.7.八卦是中国文化的基本学概念,图1是八卦模型图,其平面图形为图2所示的正八边形ABCDEFGH ,其中1OA =给出下列结论,其中正确的结论为()A .OA 与OH 的夹角为π3B .OD OF OE+= C.OA OC -=D .OA 在OD上的投影向量为2e (其中e 为与OD 同向的单位向量)【正确答案】C【分析】结合正八边形的性质以及向量的知识对选项进行分析,从而确定正确选项.【详解】2ππ84=,所以,OA OH 的夹角为π4,A 选项错误.由于四边形ODEF 不是平行四边形,所以OD OF OE +≠,AOC是等腰直角三角形,所以CA == ,2DH =,所以OA OC CA -==,C 选项正确.结合图像可知OA 在OD 上的投影向量与OD的方向相反,所以D 选项错误.故选:C8.在ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c ,若cos cos a bA B=,222c a b ab =+-,则ABC ∆是()A .钝角三角形B .等边三角形C .直角三角形D .等腰直角三角形【正确答案】B【分析】利用正余弦定理可确定边角关系,进而可判定三角形形状.【详解】在ABC ∆中,由正弦定理得sin sin a bA B =,而cos cos a b A B=,∴sin sin cos cos A BA B=,即tan tan A B =,又∵A 、B 为ABC ∆的内角,∴A B =,又∵222c a b ab =+-,∴222ab a b c =+-,∴由余弦定理得:2221cos 22a b c C ab +-==,∴3C π=,∴ABC ∆为等边三角形.故选:B.二、多选题9.下列命题中,不正确的是()A .1()i a a -∈R 是一个复数B .形如()i a b b +∈R 的数一定是虚数C .两个复数一定不能比较大小D .若a b >,则i ia b +>+【正确答案】BCD【分析】根据复数的概念逐项分析即得.【详解】由复数的定义可知A 命题正确;形如()i a b b +∈R 的数,当0b =时,它不是虚数,故B 命题错误;若两个复数全是实数,则可以比较大小,故C 命题错误;两个虚数不能比较大小,故D 命题错误.故选:BCD .10.已知向量()2,1a =r ,2b a = ,且a b ⊥,则b = ()A .()2,4-B .()2,4--C .()2,4-D .()2,4【正确答案】AC【分析】设b的坐标,利用向量模的坐标公式及a b ⊥ 关系,建立方程组解出来即可.【详解】设(),b x y =,因为2b a = ,a b ⊥ ,所以2222420200b ax y x y a b ⎧=⎧+=⎪⇒⎨⎨+=⋅=⎪⎩⎩ ,解得24x y =⎧⎨=-⎩或24x y =-⎧⎨=⎩,故()2,4b =- 或()2,4b =-r.故选:AC.11.函数()()()cos 02f x x ωϕϕπ=+≤<的部分图像如图所示,则()A .3ω=B .65ϕπ=C .函数()f x 在314,55ππ⎡⎤⎢⎥⎣⎦上单调递增D .函数()f x 图像的对称轴方程为()315k x k ππ=-∈Z 【正确答案】AD【分析】利用图像判断周期,求出ω,即可判断选项A ;利用特殊点求出ϕ,即可判断选项B ;得到函数的解析式()cos 35f x x π⎛⎫=+ ⎪⎝⎭,分别求出单调区间和对称轴方程,判断选项C 、D.【详解】由图像知函数的周期1322230103T ππππω⎛⎫=⨯-== ⎪⎝⎭,解得:3ω=,所以A 对;由五点对应法得()32102k k ππϕπ⋅+=+∈Z ,因为02ϕπ≤<,所以5πϕ=,所以B 错误,所以()cos 35f x x π⎛⎫=+ ⎪⎝⎭.当()2325k x k k ππππ≤+≤+∈Z 时,函数()f x 单调递减.取1k =,得()f x 的一个单调递减区间为314,515ππ⎡⎤⎢⎥⎣⎦,所以C 错,函数()f x 图像的对称轴方程为()35x k k ππ+=∈Z ,即()315k x k ππ=-∈Z ,所以D 对.故选:AD12.下列命题正确的是()A .若//,//a b b c ,则//a cB .若,a b b c ==,则a c= C .若//a b.则存在唯一实数λ,使得a bλ= D .若点P 为ABC 所在平面上一点,若20PA PC PB ++=,则APB △面积与ABC 面积之比为1:4【正确答案】BD【分析】A 、C 注意零向量的情况;B 由相等向量传递性判断;D 由()PA PB PC PB +=-+确定P 的位置,进而判断面积关系.【详解】A :当b 为零向量时//a c不一定成立,错误;B :由条件知:a b c ==,正确;C :,a b 为零向量时a b λ=中实数λ不唯一,错误;D :由()PA PB PC PB +=-+,易知:P 为ABC 平行于AC 的中位线中点,则2ABC APC S S = 且APB BPC S S = ,故APB △面积与ABC 面积之比为1:4,正确.故选:BD 三、填空题13.已知弧长为πcm 3的弧所对圆周角为6π,则这条弧所在圆的半径为____________cm .【正确答案】1【分析】由弧度制公式lrα=求解即可得出答案.【详解】已知弧长为πcm 3的弧所对圆周角为6π,则所对的圆心角为π3,lrα=,313l r ππα∴===,故1.14.已知tan 2,tan 3,,αβαβ==均为锐角,则αβ+=____________.【正确答案】34π/34π【分析】根据正切函数的和角公式,可得tan tan 23tan()11tan tan 123αβαβαβ+++===---⨯,由角的取值范围,可得答案.【详解】因为tan tan 23tan()11tan tan 123αβαβαβ+++===---⨯,,αβ锐角,0αβ<+<π,所以34αβπ+=.故答案为.34π15.兰州黄河楼,位于黄河兰州段大拐弯处,是一座讲述黄河故事的人文地标,是传承和记录兰州文化的精神产物,展现了甘肃浓厚的历史文化底蕴及黄河文化的独特魅力.某同学为了估算该楼的高度,采用了如图所示的方式来进行测量:在地面选取相距90米的C 、D 两观测点,且C 、D 与黄河楼底部B 在同一水平面上,在C 、D 两观测点处测得黄河楼顶部A 的仰角分别为45,30︒︒,并测得120BCD ∠=︒,则黄河楼AB 的估计高度为_____________米.【正确答案】90【分析】根据仰角分别得出BC AB =,BD =,在BCD △中由余弦定理求解即可.【详解】在Rt ABC △中,45ACB ∠=︒,所以BC AB =,在Rt △ABD ,30ADB ∠=︒,所以tan 30ABBD=︒,即BD ,在BCD △中,120BCD ∠=︒,90CD =,由余弦定理,2222cos120BD BC CD BC CD =+-⋅︒,即2221390290()2AB AB AB =+-⨯⋅-,解得90AB =或45AB =-(舍去),即黄河楼AB 的估计高度为90米.故9016.如图,在等边三角形ABC 中,2AB =,点N 为AC 的中点,点M 是边CB (包括端点)上的一个动点,则AM NM ⋅的最大值为___________.【正确答案】3【分析】以AB 中点为原点,AB 边所在的直线为x 轴,建立直角坐标系,利用向量的坐标运算计算即可得到答案.【详解】以AB 中点为原点,AB 边所在的直线为x 轴,AB 边的垂直平分线为y 轴,建立直角坐标系,则(1,0)A -,(1,0)B ,(C ,AC 中点122N ⎛⎫- ⎪ ⎪⎝⎭.设(,)M x y ,则(1,)AM x y =+,1,22NM x y ⎛=+- ⎝⎭1(1)2AM NM x x y y ⎛⎛⎫⋅=+++ ⎪ ⎝⎭⎝⎭.∵(,)M x y在直线10:BC x y +-=上,∴1x =-,∴2342323AM NM y y y ⎛⎫⎛⎫⎛⋅=--+-=-+ ⎪⎪ ⎪⎪ ⎝⎭⎝⎭⎝⎭,∵0y ≤≤0y =时,·AM NM的最大值为3.故3.四、解答题17.已知复数22(1)i()z m m m m =+-+-∈R ,其中i 为虚数单位.(1)若z 是纯虚数,求实数m 的值;(2)若m =2,设ii(,)iz a b a b z +=+∈-R ,试求a +b 的值.【正确答案】(1)2-(2)75【分析】(1)由实部等于0得到实数m 的值;(2)把复数iiz z +-整理成i a b +的形式,根据复数相等的条件得到a b 、的值进而求出a b +.【详解】(1)由题意可得:220m m +-=,且10m -≠,2m ∴=-;(2)若m =2,则4i z =+,所以2i 42i 2i (2i)34ii i 42i 2i (2i)(2i)5z a b z +++++=====+----+,35a ∴=,45b =,75a b ∴+=.18.已知||6a = ,||4= b ,(2)(3)72a b a b -⋅+=-.(1)求向量a ,b的夹角θ;(2)求|3|a b +.【正确答案】(1)23πθ=(2)()1利用平面向量数量积的分配律求出a b ⋅,然后代入夹角公式求解即可;()2结合()1中a b ⋅的值,利用平面向量数量积的性质:()22222a ba ba ab b +=+=+⋅+ 进行运算,求出23a b + 的值,然后再开方即可.【详解】∵(2)(3)72a b a b -⋅+=-,∴22672a a b b +⋅-=- ,∵6a = ,4b = ,∴3661672a b +⋅-⨯=- ,解得12a b ⋅=-,由平面向量数量积的夹角公式得,∴121cos 642a b a b θ⋅-===-⨯,∵0θπ≤≤∴23πθ=.(2)因为222369a b a a b b +=+⋅+ ,所以()2336612916a b +=+⨯-+⨯ 108=∴3a b += 本题考查平面向量数量积的性质及其夹角公式;考查运算求解能力;属于中档题、常考题型.19.已知α,β为锐角,sin 7α=,11sin()14αβ-=-.(1)求3πsin()sin(π)2πcos()2ααα++-的值;(2)求sin β的值.【正确答案】(1)17(2)7198【分析】(1)已知sin α和sin()αβ-的值,可求cos α和cos()αβ-的值,诱导公式化简后求值;(2)()sin sin βααβ=--⎡⎤⎣⎦,展开后代入已知数据即可求值.【详解】(1)α,β为锐角,sin 7α=,∴1cos 7α==,11sin()14αβ-=-,∴π02αβ-<-<,则cos()14αβ-==,则()3πsin()sin(π)cos sin 12cos πsin 7cos()2ααααααα++-⋅-===-(2)()()()sin sin sin cos cos sin βααβααβααβ⎡⎤=--=---⎣⎦111174⎛⎫-⨯- ⎪⎝⎭=7198=20.如图,在菱形ABCD 中,1,22CF CD CE EB ==.(1)若EF xAB y AD =+ ,求23x y +的值;(2)若6,60AB BAD ∠== ,求AC EF ⋅ .【正确答案】(1)1(2)9【分析】(1)利用向量的线性运算求EF ,结合平面向量的基本定理求得,x y ,进而求得23x y +.(2)先求得AB AD ⋅ ,然后利用转化法求得AC EF ⋅ .【详解】(1)因为1122CF CD AB ==- ,2CE EB= 所以2233EC BC AD == ,所以21213232EF EC CF BC CD AD AB =+=+=- ,所以12,23x y =-=,故231x y +=.(2)AC AB AD =+ ,()221211223263AC EF AB AD AD AB AB AD AD ⎛⎫∴⋅=+⋅-+=-+⋅+ ⎪⎝⎭,ABCD 为菱形,||||6,60AD AB BAD ∠∴=== ,所以66cos6018AB AD ⋅=⨯⨯= ,2211261869263AC EF ∴⋅=-⨯+⨯+⨯= .21.如图,某地计划在一海滩处建造一个养殖场,射线,OA OB 为海岸线,23AOB π∠=,现用长度为1千米的网依托海岸线围成一个POQ的养殖场(1)已知4PQO π∠=,求OP 的长度(2)问如何选取点,P Q ,才能使得养殖场POQ 的面积最大,并求其最大面积【正确答案】(2)OP OQ ==OPQ S平方千米.【分析】(1)运用正弦定理可求出OP 的长度;(2)根据面积公式和余弦定理可求.【详解】(1)在OPQ 中,由正弦定理可得:sin sin PQ OPPOQ PQO =∠∠,代入数据得12ππsin sin 34OP =解之:OP =(2)在OPQ 中,由余弦定理可得2222πcos 32OP OQ PQ OP OQ+-=⋅令,OP a OQ b ==可得2213a b ab ab ab =++≥=,所以1.3ab ≤当且仅当3a b ==时取得又()21sin 2412OPQ S ab POQ ab km =∠=≤OP OQ ∴==OPQ S.22.已知向量33sin ,2ω⎛⎫=- ⎪⎝⎭ m x,ω⎫=⎪⎪⎝⎭n x ,0ω>,函数()f x m n =⋅ .(1)若13ω=,求()f x 在[]0,3π上的单调递减区间;(2)若关于x 的方程()32=-f x 在[]0,1上有3个解,求ω的取值范围.【正确答案】(1)[]2,3ππ(2)10π2π,3⎡⎫⎪⎢⎣⎭.【分析】(1)化简得()1π3sin 36f x x ⎛⎫=- ⎪⎝⎭,由正弦函数的性质可得函数()f x 的单调递减区间为()[2π6π,5π6π]Z k k k ++∈,进而可得在[]0,3π上的单调递减区间;(2)由题意可得π1sin 62x ω⎛⎫-=- ⎪⎝⎭,从而可得4π2π10π4π,0,,,,,33x ωωωω=L L ,结合题意可得10π132π1ωω⎧>⎪⎪⎨⎪≤⎪⎩,求解即可.【详解】(1)解:依题意,()33sin ,2ωω⎫⎛⎫=⋅=-⋅⎪ ⎪⎪⎝⎭⎝⎭f x m n xx 13cos 2ωω⎫=-⎪⎪⎝⎭x x π3sin 6x ω⎛⎫=- ⎪⎝⎭,当13ω=时,()1π3sin 36f x x ⎛⎫=- ⎪⎝⎭.令()π1π3π2π2πZ 2362k x k k +≤-≤+∈,得()2π6π5π6πZ k x k k +≤≤+∈,当0k =时,2π5πx ≤≤,故()f x 在[]0,3π上的单调递减区间为[]2,3ππ;(2)解:依题意,π1sin 62x ω⎛⎫-=- ⎪⎝⎭,则()π7π2πZ 66x k k ω-=+∈或()π11π2πZ 66x k k ω-=+∈,则()4π2πZ 3k x k ωω=+∈或()2π2πZ k x k ω+=∈.则4π2π10π4π,0,,,,33x ωωωω=L L ,则10π132π1ωω⎧>⎪⎪⎨⎪≤⎪⎩,解得10π2π3ω≤<,即ω的取值范围为10π2π,3⎡⎫⎪⎢⎣⎭.。

高一数学第二学期期中考试试卷含答案(共5套)

高一数学第二学期期中考试试卷含答案(共5套)

高一下学期期中考试数学试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分150分,考试时间120分钟。

第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分)1.某质检人员从编号为1~100这100件产品中,依次抽出号码为3,13,23,…,93的产品进行检验,则这样的抽样方法是( )A .简单随机抽样B .系统抽样C .分层抽样D .以上都不对 2.将八进制数135(8)化为二进制数为( ) A .1 110 101(2) B .1 010 101(2) C .1 111 001(2)D .1 011 101(2)3.某产品在某零售摊位上的零售价x (元)与每天的销售量y (个)统计如下表:据上表可得回归直线方程a ˆx b ˆy ˆ+=中的b ˆ=-4,据此模型预计零售价定为16元时,销售量为( )A .48B .45C .50D .514.一组数据的平均数是4.8,方差是3.6,若将这组数据中的每一个数据都加上60,得到一组新数据,则所得新数据的平均数和方差分别是( )A .55.2,3.6B .55.2,56.4C .64.8,63.6D .64.8,3.65.某学校高一、高二、高三三个年级共有学生3 500人,其中高三学生数是高一学生数的两倍,高二学生数比高一学生数多300人,现在按1100的抽样比用分层抽样的方法抽取样本,则应抽取高一学生数为( )A .8B .11C .16D .106.如图是一算法的程序框图,若输出结果为S =720,则在判断框中应填入的条件是( )A .k ≤6B .k ≤7C .k ≤8D .k ≤97.两人的各科成绩如茎叶图所示,则下列说法不正确的是( )A .甲、乙两人的各科平均分相同B .甲的中位数是83,乙的中位数是85C .甲各科成绩比乙各科成绩稳定D .甲的众数是89,乙的众数为878.sin 2(π+α)-cos(π+α)cos(-α)+1的值为( ) A .1 B .2sin 2α C .0 D .29.利用秦九韶算法求f (x )=x 5+x 3+x 2+x +1当x =3时的值为( ) A .121 B .283 C .321 D .23910.如图,矩形长为8,宽为3,在矩形内随机地撒300颗黄豆,数得落在椭圆外的黄豆为96颗,以此试验数据为依据可以估计椭圆的面积为( ) A .7.68 B .8.68 C .16.32D .17.3211.甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a,再由乙猜甲刚才所想的数字,把乙猜的数字记为b,其中a,b ∈{1,2,3,4,5,6},若|a-b|≤1,就称甲、乙“心有灵犀”.现任意找两人玩这个游戏,则他们“心有灵犀”的概率为( )A. 91B. 92C. 187D.9412.《九章算术》是中国古代第一部数学专著,成于公元一世纪左右,系统总结了战国、秦、汉时期的数学成就.其中《方田》一章中记载了计算弧田(弧田就是由圆弧和其所对弦所围成弓形)的面积所用的经验公式:弧田面积=21(弦×矢+矢×矢),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.按照上述经验公式计算所得弧田面积与其实际面积之间存在误差.现有圆心角为32π,弦长为m 340的弧田.其实际面积与按照上述经验公式计算出弧田的面积之间的误差为( )平方米.(其中3≈π,73.13≈) A . 15 B . 16 C . 17 D . 18第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中的横线上)13.调查了某地若干户家庭的年收入x (单位:万元)和年饮食支出y (单位:万元),调查显示年收入x 与年饮食支出y 具有线性相关关系,并由调查数据得到y 对x 的回归方程:y ∧=0.234x +0.521.由回归方程可知,家庭年收入每增加1万元,年饮食支出平均增加________万元. 14.已知sin(π4+α)=32,则sin(3π4-α)的值为________. 15.在抛掷一颗骰子的试验中,事件A 表示“不大于4的偶数点出现”,事件B 表示“小于5的点数出现”,则事件B A Y 发生的概率为________.(B 表示B 的对立事件)16.设函数y =f (x )在区间[0,1]上的图像是连续不断的一条曲线,且恒有0≤f (x )≤1,可以用随机模拟方法近似计算由曲线y =f (x )及直线x =0,x =1,y =0所围成部分的面积S .先产生两组(每组N 个)区间[0,1]上的均匀随机数x 1,x 2,…,x N 和y 1,y 2,…,y N ,由此得到N 个点(x i ,y i )(i =1,2,…N ).再数出其中满足y i ≤f (x i )(i =1,2,…,N )的点数N 1,那么由随机模拟方法可得到S 的近似值为________. 二、解答题(17题10分,其余均12分)17.(10分) 已知|x|≤2,|y|≤2,点P 的坐标为(x ,y),求当x ,y ∈R 时,P 满足(x -2)2+(y -2)2≤4的概率.18.(12分)某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:(1)在给定的坐标系中画出表中数据的散点图;(2)求出y 关于x 的线性回归方程a ˆx b ˆyˆ+= (3)试预测加工10个零件需要多少小时?(注:b ∧=∑ni =1x i y i -n x - y -∑n i =1x i 2-n x -2,a ∧=y --b ∧ x -)零件的个数x(个)2345加工的时间y(小时) 2.5 3 4 4.519.(12分)已知α是第三象限角,f (α)=()()()α-π-•α-π-α-•α-π•α-πsin tan tan )2cos()sin((1)化简f (α);(2)若⎪⎭⎫ ⎝⎛π-α23cos =15,求f (α)的值;20.(12分)某校为了解高三年级学生的数学学习情况,在一次数学考试后随机抽取n 名学生的数学成绩,制成如下所示的频率分布表.(1)求a ,b ,n 的值;(2)若从第三、四、五组中用分层抽样的方法抽取6名学生,并在这6名学生中随机抽取2名与老师面谈,求第三组中至少有1名学生被抽到与老师面谈的概率.21.(12分)一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.(1)从袋中随机取两个球,求取出的球的编号之和不大于4的概率;(2)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,求n≥m+2的概率.22.(12分)在育民中学举行的电脑知识竞赛中,将九年级两个班参赛的学生成绩(得分均为整数)进行整理后分成五组,绘制如图所示的频率分布直方图.已知图中从左到右的第一、第三、第四、第五小组的频率分别是0.30,0.15,0.10,0.05,第二小组的频数是40.(1)求第二小组的频率,并补全这个频率分布直方图;(2)求这两个班参赛的学生人数是多少?(3)求这两个班参赛学生的成绩的中位数.高一下期期中考试数学试题答案一、选择题B D B D A B D D BCD B二、填空题13. 0.234 14.3215.32 16.N1N三、解答题(17题10分,其余均12分)17.解:如图,点P所在的区域为正方形ABCD的内部(含边界),满足(x-2)2+(y-2)2≤9的点的区域为以(2,2)为圆心,2为半径的圆面(含边界).∴所求的概率P1=14π×224×4=π16.18.解:(1)散点图如图.(2)由表中数据得∑4i=1x i y i=52.5,x -=3.5,y -=3.5,∑4i =1x i 2=54. ∴b ∧=0.7,∴a ∧=1.05. ∴y ∧=0.7x +1.05.(3)将x =10代入回归直线方程,得y ∧=0.7×10+1.05=8.05(小时). ∴预测加工10个零件需要8.05小时.19.解:(1)f (α)==-sin α·cos α·tan α-tan α·sin α=cos α.(2)∵cos ⎝ ⎛⎭⎪⎫α-32π=cos ⎝ ⎛⎭⎪⎫32π-α=-sin α,又cos ⎝⎛⎭⎪⎫α-32π=15,∴sin α=-15.又α是第三象限角,∴cos α=-1-sin 2α=-265,∴f (α)=-265.20.解:(1)由表中数据,得5n =0.05,a n =0.35,20n=b ,解得n =100,a =35,b=0.20.(2)由题意,得第三、四、五组分别抽取的学生人数为3060×6=3,2060×6=2,1060×6=1.第三组的3名学生记为a 1,a 2,a 3,第四组的2名学生记为b 1,b 2,第五组的1名学生记为c ,则从6名学生中随机抽取2名,共有15种不同情况,分别为{a 1,a 2},{a 1,a 3},{a 1,b 1},{a 1,b 2},{a 1,c },{a 2,a 3},{a 2,b 1},{a 2,b 2},{a 2,c },{a 3,b 1},{a 3,b 2},{a 3,c },{b 1,b 2},{b 1,c },{b 2,c }.其中第三组的3名学生均未被抽到的情况共有3种,分别为{b 1,b 2},{b 1,c },{b 2,c }. 故第三组中至少有1名学生被抽到与老师面谈的概率为1-315=45.21解:(1)p=3162(2)先从袋中随机取一个球,记下编号m,放回后,再从袋中随机取一个球,记下编号n,可能的结果为(1,1)(1,2)(1,3)(1,4)(2,1)(2,2)(2,3)(2,4)(3,1)(3,2)(3,3)(3,4)(4,1)(4,2)(4,3)(4,4)共16个,满足条件的事件为(1,3)(1,4)(2,4)共3个所以n ≥m+2的概率为p=16322.解:(1)各小组的频率之和为 1.00,第一、三、四、五小组的频率分别是0.30,0.15,0.10,0.05.∴第二小组的频率为:1.00-(0.30+0.15+0.10+0.05)=0.40. ∴落在59.5~69.5的第二小组的小长方形的高=频率组距=0.4010=0.04.则补全的直方图如图所示.(2)设九年级两个班参赛的学生人数为x 人.∵第二小组的频数为40人,频率为0.40,∴40x=0.40,解得x=100(人).所以九年级两个班参赛的学生人数为100人.(3)∵(0.03+0.04)×10>0.5所以九年级两个班参赛学生的成绩的中位数应落在第二小组内.设中位数为x则0.03×10+(x-59.5)×0.04=0.5得x=64.5高一下学期期中数学考试试卷(时间:120分钟满分:150分)第Ⅰ卷 (选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合,,则( )A. B. C. D.2.( )A.0 B.1 C.2 D.43.若,则下列结论正确的是( )A. B.C. D.4.下列函数中,既不是奇函数,也不是偶函数的是( )A.B.C.D.5.函数的定义域是( )A. B. C. D.6.函数过定点( )A. B. C. D.7.已知,,,则=( )A. B. C. D.8.已知函数为幂函数,则实数的值为( )A.或 B.或 C. D.9.已知函数,若,则实数等于( )A .2 B. 45 C .12 D .910.若,则函数与的图象可能是下列四个选项中的( )11.已知是定义在上的奇函数,当时,,则当时,( )AB .C .D .12.若函数是定义在上的偶函数,在上是增函数,且,则使得的的取值范围是( ) A .B . C. D .第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,请把正确答案填在题中横线上) 13.设集合,集合,若,则实数14.若,则=15.如果函数,的增减性相同,则的取值范围是.16.已知是方程的两个根,则的值是.三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤) 17.(本小题满分10分)计算下列各式的值(式中字母都是正数): (1);(2)已知,求的值.18.(本小题满分12分)已知集合,.(1)若,求;(2)⊆,求的取值范围.19.(本小题满分12分)已知函数+2.(1)求在区间上的最大值和最小值;(2)若在上是单调函数,求的取值范围.20.(本小题满分12分)已知函数是R上的奇函数,(1)求的值;(2)先判断的单调性,再证明.21.(本小题满分12分)已知函数,.(1)求函数的定义域;(2)讨论不等式中的取值范围.22.(本小题满分12分)若二次函数满足且. (1)求的解析式;(2)若在区间上不等式恒成立,求实数的取值范围.高一下学期期中考试试卷数学时量:120分钟 总分:150分一、选择题(本大题共12个小题,每小题5分,共60分)1.3x cos y =是( )A .周期为π6的奇函数B .周期为3π的奇函数C .周期为π6的偶函数D .周期为3π的偶函数2.已知sin α=41,则cos 2α的值为( )A .21B .87- C.21- D.873.已知平面向量()()3,2,4,1==→→b a ,则向量=+→→b a 5251( )A .()1,2B .()5,3 C.()3,5 D.()2,14.已知平面向量a =(2,4),b =(-4,m ),且a ⊥b ,则m =( )A .4B .2C .-4D .-25.为得到函数⎪⎭⎫ ⎝⎛+=33sin πx y 的图象,只需将函数y =sin 3x 的图象( )A .向左平移9π个长度单位B .向右平移9π个长度单位C .向左平移3π个长度单位D .向右平移3π个长度单位6.设a =(8,-2),b =(-3,4),c =(2,3),则(a +2b )·c 等于( )A .(4,18)B .22C .-6 D.(18,4)7.已知a ·b =122,|a |=4,a 与b 的夹角为45°,则|b |为( )A .12 A .3 C .6 D .98.若-π2<α<0,则点P (sin α,cos α)位于( )A .第一象限B .第二象限C .第三象限D .第四象限9.已知α∠的终边经过点()31P ,,则=αsin ( )A .21 B .10103C .31D .3310.若=)(x f ⎪⎩⎪⎨⎧>⎪⎭⎫ ⎝⎛-≤≤⎪⎭⎫ ⎝⎛+2,32032sin ππππx x f x x ,,求)32(πf =( ) A.0 B.23C.21 D.1 11.已知2tan -=α,则αααα22cos sin cos sin 3-的值是( ) A .2- B . 3 C .2 D .3- 12.在Rt △ABC 中,∠C =90°,AC =3,则AB →·AC→等于( )A .-3B .-6C .9D .6 二、填空题(本大题共4小题,每小题5分,共20分)13.已知AB →=(2,7),AC →=(-5,8),则BC →=__________________.14.函数()()()R x x x x f ∈-=cos sin 2的最小正周期为________,最大值为________. 15.设a =(5,-2),b =(6,2),则2|a |2-12a ·b =______________.16.已知tan α=-2,tan(α+β)=5,则tan β的值为________. 三、解答题(本大题共6小题,共70分)17.(10分)已知()ππθθ2,,53cos ∈=,求⎪⎭⎫ ⎝⎛+6sin πθ以及⎪⎭⎫ ⎝⎛-4tan πθ的值.18.(10分)设函数()⎪⎭⎫ ⎝⎛+=6sin 2πωx x f ,0>ω,最小正周期为2π. (1)求()0f .(2)求()x f 的解析式.(3)求()x f 的单调递增区间.19.(12分)已知向量a =(3,2),b =(-1,3),c =(5,2).(1)求6a +b -2c ;(2)求满足a =m b +n c 的实数m ,n ; (3)若(a +k c )//(2b -a ),求实数k . 20. (12分)已知23παπ<<,211-tan tan -=αα.(1)求αtan 的值。

高一数学下学期期中测试题含解析 试题

高一数学下学期期中测试题含解析 试题

2021-2021学年高一数学下学期期中测试题〔含解析〕第一卷〔选择题,一共60分〕一、选择题:〔本大题一一共12小题,每一小题5分,一共60分,在每一小题给出的四个选项里面,只有一个选项是符合题目要求的,请将答案填涂在答题卡上〕 1.{}n a 是等差数列,且25a =-,646a a =+,那么1a =〔 〕 A. -9 B. -8C. -7D. -4【答案】B 【解析】 【分析】由*()(,)n m a a n m d m n N =+-∈,得n ma a d n m-=-,进而求出1a .【详解】解:{}n a 是等差数列,且25a=-,646a a =+64364a a d -∴==- 128a a d =-=-应选B.【点睛】此题考察数列的通项公式.纯熟应用数列的通项公式是解题的关键.2.假设实数a ,b ,c ,d 满足a b >,c d >,那么以下不等式成立的是〔 〕 A. a c b d +>+ B. a c b d ->-C. ac bd >D.a b d c> 【答案】A 【解析】试题分析:根据不等式的性质,同向不等式相加,不等号的方向不变,应选A. 考点:不等式的性质.3.等差数列{}n a 前n 项和为n S ,假设1010S =,2060S =,那么40S =〔 〕 A. 110 B. 150C. 210D. 280【答案】D 【解析】 【分析】由等差数列的性质可得10S ,1200S S -,3020S S -,4030S S -也成等差数列,由此求得40S 的值. 【详解】解:等差数列{}n a 前n 项和为n S∴10S ,1200S S -,3020S S -,4030S S -也成等差数列故1000132020()2()S S S S S -+=- ,30=150S ∴又102040303020)(2()()S S S S S S =---+40=280S ∴应选D.【点睛】此题主要考察了等差数列的定义和性质,等差数列前n 项和公式的应用.4.在ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,60A =︒,a =4b =,那么B =〔 〕 A. 30B =︒或者150B =︒ B. 150B =︒ C. 30B =︒ D. 60B =︒【答案】C 【解析】【分析】将代入正弦定理可得1sin 2B =,根据a b >,由三角形中大边对大角可得:60B <︒,即可求得30B =︒.【详解】解:60A =︒,a =4b =由正弦定理得:sin 1sin2b A B a === a b > 60B ∴<︒ 30B ∴=︒应选C.【点睛】此题考察了正弦定理、三角形的边角大小关系,考察了推理才能与计算才能. 5.不等式112x <的解集是〔 〕 A. (,0)(2,)-∞+∞B. (,2)-∞C. (0,2)(,0)-∞D. (2,)+∞【答案】A 【解析】 【分析】由不等式112x <可得0x <或者者2x >,由此解得x 的范围. 【详解】解:由不等式112x <可得0x <或者者2x >∴不等式得解集为(,0)(2,)-∞+∞应选A.【点睛】此题主要考察分式不等式的解法,表达了分类讨论的数学思想.6.在等比数列{}n a 中,2a ,16a 是方程2620x x ++=的两个根,那么2169a a a 的值是〔 〕A.B.或者 【答案】D 【解析】 【分析】利用方程的根与等差数列的性质,求解即可.【详解】解:等比数列{}n a 中,2a ,16a 是方程2620x x ++=的两个根1622a a ∴⋅=216922a a a ⋅==∴9a ∴=应选D.【点睛】此题考察等比数列的性质的应用,考察计算才能.7.在ABC ∆中,假设sin cos cos A B Ca b c==,那么ABC ∆为〔 〕 A. 等边三角形B. 等腰直角三角形C. 有一个内角为30的直角三角形D. 有一个内角为30的等腰三角形【答案】B 【解析】【分析】根据正弦定理及条件等式,求得B 与C 的度数,进而即可判断出三角形的形状。

高一数学下学期期中试卷含答案(共3套)

高一数学下学期期中试卷含答案(共3套)

高一数学第二学期期中考试试卷试题分值 150分 时间 120分钟一、选择题1、集合}{01032<-+=x x x A ,}{410<+<=x x B ,则)(B C A R ⋂=( )A 、}{21<<-x x B 、}{3215≤<-≤≤-x x x 或C 、}{15-≤<-x xD 、}{15-≤≤-x x2、已知135sin =α,α是第一象限角,则cos(π)α-的值为( ) A.513-B.513C.1213-3、在等差数列{}n a 中,已知112n a n =-,则使前n 项和n S 最大的n 值为( ) A.4 B.5 C.6 D.74、在ABC ∆中,内角C B A 、、所对的边为c b a 、、, 60B =,4a =,其面积S =c =( )A.15B.16C.20D.5、已知平面向量→a , →b 满足|→a |=1,|→b |=2,且(→a +→b )⊥→a ,则→a ,→b 的夹角为A 、23π B 、2π C 、3π D 、6π6、在ABC ∆中,内角C B A 、、所对的边为c b a 、、, 4,30a b A ===,则B =( )A.60°B.60°或120°C.30°D.30°或150° 7、等比数列{}n a 的前m 项和为4,前2m 项和为12,则它的前3m 项和是( ) A.28 B.48 C.36 D.52 8、已知等差数列}{n a 的前15项之和为154π,则789tan()a a a ++=( ) A. 33B. 3C. 1-D. 19、在△ABC 中,2,1AB AC AM AM +==,点P 在AM 上且满足2AP PM =, 则()PA PB PC ⋅+等于( ) A .94 B.34 C.-34 D.-9410、已知))()(()(b a b x a x x f >--=其中,若)(x f 的图象如右图所示:则b a x g x +=)(的图象是( )ABCD11、在△ABC 中,内角C B A 、、所对的边为c b a 、、,若222c a b ab ≤+-,则C 的取值范围为( ) A.(0,]3πB.[,)6ππC.[,)3ππD.(0,]6π12、已知等差数列{}n a 满足公差(1,0)d ∈-,当且仅当9n =时,数列{}n a 的前n 项和n S 取得最大值,则该数列首项1a 的取值范围为( )A.43(,)32ππ B.43,32ππ⎡⎤⎢⎥⎣⎦C.74(,)63ππD.74,63ππ⎡⎤⎢⎥⎣⎦ 二、填空题13、若3sin 5x =,则cos 2x =__________. 14、已知正实数,,a b m ,满足a b <则b a 与 b ma m++的大小关系是15、在矩形ABCD 中,AB=2BC ,M 、N 分别是AB 和CD 的中点,在以A 、B 、C 、D 、M 、N 为起点和终点的所有向量中,相等的非零向量共有 对.16.对于实数b a ,,定义运算⎩⎨⎧>-≤-=⊗⊗11:""b a b b a a b a ,设函数)()2()(22x x x x f -⊗-=,若函数c x f y -=)(的图象与x 轴恰有两个公共点,则实数c 的取值范围是________.三、解答题17. (本小题满分10分)已知等差数列{}n a 满足:3710,26a a ==. (1)求数列{}n a 的通项公式;(2)请问88是数列{}n a 中的项吗?若是,请指出它是哪一项;若不是,请说明理由.18. (本小题满分10分)叙述并证明余弦定理19. (本小题满分12分) 已知向量(cos ,1)2x m =-u r ,2,cos )22x x n =r ,设函数1()2f x m n =⋅+u r r .(1)求函数()f x 的最小正周期;(2)求函数()f x 的单调区间.20. (本小题满分12分)已知数列{}n a 的前n 项和为n S ,且23122n S n n =+,递增的等比数列{}n b 满足:142318,32b b b b +=⋅=.(1)求数列{}{}n n a b 、的通项公式;(2)若*,N n n n c a b n =⋅∈,求数列{}n c 的前n 项和n T .21、(12分)要将两种大小不同的钢板截成A B C 、、三种规格,每张钢板可同时截得三种规格的小钢板的块数如下表所示:今需要A B C 、、三种规格的成品分别15,18,27块,各截这两种钢板多少张可得所需A B C 、、三种规格的成品,且使所用钢板张数最少?213112C 规格B 规格A 规格第一种钢板第二种钢板规格类型钢板类型22、(本小题满分12分) 已知函数)(Z ∈=++-m x x f m m322)(为偶函数,且)5()3(f f <. (1)求m 的值,并确定)(x f 的解析式.(2)若)1,0]()([log ≠>-=a a ax x f y a 且在区间[]3,2上为增函数,求实数a 的取 值范围 .第二学期期中考试 高一文科数学试题试题分值 150分 时间 120分钟 命题教师 侯思超一、选择题1、C2、C.3、B4、C5、A6、B7、A.8、C.9、D10、A 11、A.12、A二、填空题13、725 14、b a >b m a m++15、2416. )43,1(]2,(----∞ 三、解答题 17.解:(1)依题意知73416,4d a a d =-=∴=【3分】()3342n a a n d n ∴=+-=-【5分】(2)令*454588,4288,,N .22n a n n =-==∉Q 即所以 所以88不是数列{}n a 中的项.【10分】 18. 叙述并证明余弦定理解:余弦定理:三角形任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍【2分】即2222cos a b c bc A =+-2222cos b a c ac B =+-2222cos c a b ab C =+-【4分】证明:如图,设,,CB a CA b AB c ===,那么c a b =-,()()2c c c a b a b =⋅=-⋅- 2a a b b a b =⋅+⋅-⋅222cos a b ab C =+-即2222cos c a b ab C =+-同理2222cos b a c ac B =+-,2222cos a b c bc A =+-【12分】C19.解析:(1)依题意得()sin()6f x x π=-,【4分】()2f x T π∴=最小正周期为【6分】(2)由22262k x k πππππ-≤-≤+解得22233k x k ππππ-≤≤+, 从而可得函数()f x 的单调递增区间是:2[2,2],33k k k Z ππππ-+∈【9分】 由322262k x k πππππ+≤-≤+解得252233k x k ππππ+≤≤+,从而可得函数()f x 的单调递减区间是:25[2,2],33k k k Z ππππ++∈【12分】 20. (本小题满分12分)已知数列{}n a 的前n 项和为n S ,且23122n S n n =+,递增的等比数列{}n b 满足:142318,32b b b b +=⋅=.(1)求数列{}{}n n a b 、的通项公式;(2)若*,N n n n c a b n =⋅∈,求数列{}n c 的前n 项和n T . 解析 :(1)当2n ≥时,()()221313111312222n n n a S S n n n n n -⎡⎤=-=+--+-=-⎢⎥⎣⎦111,2n a S ===Q 又时符合,所以31n a n =-【3分】2314b b b b =Q ,14,b b ∴方程218320x x -+=的两根, 41b b >Q 又,所以解得142,16b b ==34182b q q b ∴==∴=112n n n b b q -∴=⋅=【6分】(2)31,2n n n a n b =-=Q ,则n (31)2n C n =-⋅1234225282112(31)2n n T n ∴=⋅+⋅+⋅+⋅++-⋅L 234512225282112(31)2n n T n +=⋅+⋅+⋅+⋅++-⋅L将两式相减得:12341=22+32+2+2+2)(31)2-------------------------------------------8nn n T n +⋅--⋅L -(分2112(12)43(31)212n n n -+⎡⎤-=+--⋅⎢⎥-⎣⎦1(34)28n n +=-+⋅-【10分】所以1=(34)28n n T n +-⋅+.【12分】 21、解:设所需第一种钢板x 张,第一种钢板y 张,共需截这两种钢板z 张,则目标函数为z x y =+约束条件为21521832700x y x y x y x y +≥⎧⎪+≥⎪⎪+≥⎨⎪≥⎪≥⎪⎩ 【3分】可行域如下图【5分】把z x y =+变形为v ,得到斜率为1-,在y 轴上截距为z 的一组平行直线,由上图可知,当直线z x y=+经过可行域上的点M 时,截距z 最小,解方程组327215x y x y +=⎧⎨+=⎩得点1839,55M ⎛⎫⎪⎝⎭,由于1839,55都不是整数,而此问题中最优解(),x y 中,,x y 必须都是整数,所以点1839,55M ⎛⎫⎪⎝⎭不是最优解。

高一数学下学期期中考试测试试卷(含答案)

高一数学下学期期中考试测试试卷(含答案)

部分一:直线和圆1.1.(求圆的方程)以点)1,2(-为圆心且与直线0543=+-y x 相切的圆的方程为( )1.2.(位置关系问题)直线1=+y x 与圆0222=-+ay y x )0(>a 没有公共点,则a 的取值范围是( )1.3.(切线问题)过坐标原点且与圆0252422=++-+y x y x 相切的直线方程为( )解 化为标准方程25)1()2(22=++-y x ,即得圆心)1,2(-C 和半径25=r .设过坐标原点的切线方程为kx y =,即0=-y kx ,∴线心距251122==++=r k k d ,平方去分母得0)3)(13(=+-k k ,解得3-=k 或31,∴所求的切线方程为x y 3-=或x y 31=, 1.4.(弦长问题)设直线03=+-y ax 与圆4)2()1(22=-+-y x 相交于B A 、两点,且弦AB 的长为32,则=a .解 由已知圆4)2()1(22=-+-y x ,即得圆心)2,1(C 和半径2=r .∵线心距112++=a a d ,且222)2(r AB d =+,∴22222)3()11(=+++a a ,即1)1(22+=+a a ,解得0=a .点评:一般在线心距d 、弦长AB 的一半和圆半径r 所组成的直角三角形中处理弦长问题:222)2(r AB d =+.1.5.(夹角问题)从圆012222=+-+-y y x x 外一点)2,3(P 向这个圆作两条切线,则两切线夹角的余弦值为( )(A)21 (B)53(C)23 (D) 0解 已知圆化为1)1()1(22=-+-y x ,即得圆心)1,1(C 和半径1=r .设由)2,3(P 向这个圆作的两条切线的夹角为θ,则在切线长、半径r 和PC 构成的直角三角形中,522cos=θ,∴5312cos 2cos 2=-=θθ,故选(B). 1.6.(圆心角问题)过点)2,1(的直线l 将圆4)2(22=+-y x 分成两段弧,当劣弧所对的圆心角最小时,直线l 的斜率=k .解 由已知圆4)2(22=+-y x ,即得圆心)0,2(C 和半径2=r .设)2,1(P ,则2-=PC k ;∵⊥PC 直线l 时弦最短,从而劣弧所对的圆心角最小,∴直线l 的斜率221=-=PCk k . 1.7.(最值问题)圆0104422=---+y x y x 上的点到直线14-+y x 0=的最大距离与最小距离的差是( )解 已知圆化为18)2()2(22=-+-y x ,即得圆心)2,2(C 和半径23=r .设线心距为d ,则圆上的点到直线014=-+y x 的最大距离为r d +,最小距离为r d -,∴262)()(==--+r r d r d ,BD 部分二:向量2.1.设21,e e 是不共线的向量,已知向量2121212,3,2e e CD e e CB e k e AB -=+=+=,若A,B,D 三点共线,求k 的值 2.2.的两条对角线AC 与BD 交于E ,O 是任意一点,求证:+++=4 解析:证明:∵E 是对角线AC 和BD 的交点 ∴AE =EC =-CE ,BE =ED =-DE在△OAE 中,+=。

2020年高一数学第二学期期中模拟试卷及答案(共五套)

2020年高一数学第二学期期中模拟试卷及答案(共五套)

范文2020年高一数学第二学期期中模拟试卷及答案(共1/ 7五套)2020 年年高一数学第二学期期中模拟试卷及答案(共五套)2020 年年高一数学第二学期期中模拟试卷及答案(一)一、选择题:(本大题共 10 小题,每小题 5 分,共 50 分,有且只有一个选项正确) 1.如果cosθ<0,且tanθ>0,则θ 是() A.第一象限的角 B.第二象限的角 C.第三象限的角 D.第四象限的角2.①某高校为了解学生家庭经济收入情况,从来自城镇的 150 名学生和来自农村的 150 名学生中抽取 100 名学生的样本;②某车间主任从 100 件产品中抽取 10 件样本进行产品质量检验. I.简单随机抽样法;Ⅱ.分层抽样法.上述两问题和两方法配对正确的是() A.①配 I,②配Ⅱ B.①配Ⅱ,②配Ⅰ C.①配 I,②配I D.① 配Ⅱ,②配Ⅱ 3.某研究机构对儿童记忆能力 x 和识图能力 y 进行统计分析,得到如下数据:记忆能力 4 6 8 10 x 识图能力 3 5 6 8 y 由表中数据,求得线性回归方程为, = x+ ,若某儿童的记忆能力为 11 时,则他的识图能力约为() A.8.5 B.8.7 C.8.9 D.9 4.如果如图所示程序执行后输出的结果是 480,那么在程序 UNTIL 后面的“条件”应为() A.i>8 B.i>=8 C.i<8 D.i<=8 5.若,,则 sin(2π﹣α)=() A. B. C. D. 6.天气预报说,在今后的三天中,每一天下雨的概率均为 50%.现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率:先利用计算器产生 0 到 9 之间取整数值的随机数,用 0,1,2,3,4 表示下雨,用 5,6,7,8,9 表示不下雨;再以每三个随机数作为一组,代表这三天的下雨情况.经随机模拟试验产生了如下 20 组随机数: 907 966 191 925 271 932 812 458 569 683 431 257 393 027 556 488 730 113 537 989 据此估计,这三天中恰有两天下雨的概率近似为() A.0.30 B.0.35 C.0.40 D.0.503/ 77.如图的茎叶图表示的是甲、乙两人在 5 次综合测评中的成绩,其中一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率为()A. B. C. D. 8.若sinα= ,cosα=﹣,则在角α 终边上的点是() A.(﹣4,3) B.(3,﹣4) C.(4,﹣3) D.(﹣3,4) 9.记集合 A={x,y)|x2+y2≤4}和集合 B={(x,y)|x﹣y﹣2≤0,x ﹣y+2≥0}表示的平面区域分别为Ω1、Ω2,若在区域Ω1 内任取一点 M (x,y),则点 M 落在区域Ω2 内的概率为()A. B. C. D. 10.当 x= 时,函数 f(x)=Asin(x+φ)(A >0)取得最小值,则函数 y=f(﹣x)是() A.奇函数且图象关于直线 x= 对称 B.偶函数且图象关于点(π,0)对称 C.奇函数且图象关于(,0)对称 D.偶函数且图象关于点(,0)对称二、填空题:(本大题有 4 小题,每小题 5 分,共 20 分.请将正确的答案填在横线上) 11.已知扇形 AOB 的周长是 6,中心角是 2 弧度,则该扇形的面积为. 12.设a=sin33°,b=co s55°,c=tan35°,则 a,b,c 三数由大到小关系为. 13.高一(9)班同学利用国庆节进行社会实践,对[25,55]岁的人群随机抽取 n 人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:则统计表中的 a?p= .组数分组低碳族的人数占本组的频率第一组 [25,30) 120 0.6 第二组 [30,35) 195 p 第三组 [35,40) 100 0.5 第四组 [40,45)a 0.4 第五组 [45,50) 30 0.3 第六组 [50,55) 15 0.3 14.已知函数 f(x)=x+sinπx,则 f(()的值为.)+f ()+f()+…+f 三、解答题:(本大题有 3 个小题,共 30 分.请书写完整的解答过5/ 7程) 15.(10 分)某中学调查了某班全部 50 名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)参加书法社未参加书法社团团参加演讲社团 8 6 未参加演讲社 6 30 团(I)从该班随机选 1 名同学,求该同学至少参加上述一个社团的概率;(II)在既参加书法社团又参加演讲社团的 8 名同学中,有 5 名男同学 A1,A2,A3,A4,A5,3 名女同学 B1,B2,B3,现从这 5 名男同学和 3 名女同学中各随机选 1 人,求 A1 被选中且 B1 未被选中的概率. 16.(10 分)某城市 100 户居民的月平均用电量(单位:度),以 [160,180),[180,200),[200.220),[220,240),[240,260), [260,280),[280,300]分组的频率分布直方图如图示.(Ⅰ)求直方图中 x 的值;(Ⅱ)求月平均用电量的众数和中位数;(Ⅲ)在月平均用电量为[220,240),[240,260),[260,280)的三组用户中,用分层抽样的方法抽取 10 户居民,则月平均用电量在[220,240)的用户中应抽取多少户?17.(10 分)已知:﹣<x<﹣π,tanx=﹣3.(Ⅰ)求 sinx?cosx 的7/ 7。

数学高一下期中经典测试卷(含答案解析)(1)

数学高一下期中经典测试卷(含答案解析)(1)

一、选择题1.(0分)[ID :12425]设曲线31x y x +=-在点25(,)处的切线与直线10ax y +-=平行,则a=( )A .-4B .14-C .14D .42.(0分)[ID :12421]设l 为直线,,αβ是两个不同的平面,下列命题中正确的是( ) A .若//l α,//l β,则//αβB .若l α⊥,l β⊥,则//αβC .若l α⊥,//l β,则//αβD .若αβ⊥,//l α,则l β⊥3.(0分)[ID :12416]水平放置的ABC 的斜二测直观图如图所示,若112A C =,111A B C △的面积为22,则AB 的长为( )A .2B .217C .2D .84.(0分)[ID :12398]已知定义在R 上的函数()21()x m f x m -=-为实数为偶函数,记0.5(log 3),a f 2b (log 5),c (2)f f m ,则,,a b c ,的大小关系为( )A .a b c <<B .c a b <<C .a c b <<D .c b a << 5.(0分)[ID :12377]<九章算术>中,将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥P ABC -为鳖臑,PA ⊥平面,2,4ABC PA AB AC ===,三棱锥P ABC -的四个顶点都在球O 的球面上,则球O 的表面积为( )A .8πB .12πC .20πD .24π6.(0分)[ID :12356]在我国古代数学名著 九章算术 中,将四个面都为直角三角形的四面体称为鳖臑,如图,在鳖臑ABCD 中, AB ⊥平面BCD ,且AB BC CD ==,则异面直线AC 与BD 所成角的余弦值为( )A .12B .12-C 3D .3 7.(0分)[ID :12344]用一个平面去截正方体,则截面不可能是( )A .直角三角形B .等边三角形C .正方形D .正六边形 8.(0分)[ID :12396]若a >b >0,0<c <1,则A .log a c <log b cB .log c a <log c bC .a c <b cD .c a >c b9.(0分)[ID :12395]正方体ABCD ﹣A 1B 1C 1D 1中,E ,F 分别是AD ,DD 1的中点,AB =4,则过B ,E ,F 的平面截该正方体所得的截面周长为( )A .62+45B .62+25C .32+45D .32+25 10.(0分)[ID :12387]α,β为两个不同的平面,m ,n 为两条不同的直线,下列命题中正确的是( )①若α//β,m ⊂α,则m//β; ②若m//α,n ⊂α,则m//n ;③若α⊥β,α∩β=n ,m ⊥n ,则m ⊥β ④若n ⊥α,n ⊥β,m ⊥α,则m ⊥β. A .①③ B .①④ C .②③ D .②④ 11.(0分)[ID :12371]若方程21424x kx k +-=-+ 有两个相异的实根,则实数k 的取值范围是( )A .13,34⎛⎤ ⎥⎝⎦ B .13,34⎛⎫ ⎪⎝⎭ C .53,124⎛⎫ ⎪⎝⎭ D .53,124 12.(0分)[ID :12369]某锥体的三视图如图所示(单位:cm ),则该锥体的体积(单位:cm 3)是( )A .13 B .12 C .16 D .113.(0分)[ID :12410]已知三棱锥S ABC -的所有顶点都在球O 的求面上,ABC ∆是边长为1的正三角形,SC 为球O 的直径,且2SC =,则此棱锥的体积为( ) A 2 B 3C 2 D 2 14.(0分)[ID :12397]若函数6(3)3,7(),7x a x x f x a x ---≤⎧=⎨>⎩单调递增,则实数a 的取值范围是( )A .9,34⎛⎫ ⎪⎝⎭B .9,34⎡⎫⎪⎢⎣⎭C .()1,3D .()2,3 15.(0分)[ID :12360]如图,网格纸上小正方形的边长为1,粗实(虚)线画出的是某多面体的三视图,则该多面体的体积为( )A .64B .643C .16D .163二、填空题16.(0分)[ID :12478]在棱长为1的正方体1111ABCD A B C D -中,BD AC O ⋂=,M 是线段1D O 上的动点,过M 做平面1ACD 的垂线交平面1111D C B A 于点N ,则点N 到点A 的距离最小值是___________.17.(0分)[ID :12463]已知圆22:20(0)M x y ay a +-=>截直线0x y +=所得线段的长度是22,则圆M 与圆22:(1)(1)1N x y -+-=的位置关系是_________.18.(0分)[ID :12462]若一个圆柱的侧面展开图是边长为2的正方形,则此圆柱的体积为 .19.(0分)[ID :12522]在三棱锥P ABC -中,PA ⊥平面ABC ,AB BC ⊥,3AB =,4BC =,5PA =,则三棱锥P ABC -的外接球的表面积为__________20.(0分)[ID :12508]已知P 是抛物线24y x =上的动点,点Q 是圆22:(3)(3)1C x y ++-=上的动点,点R 是点P 在y 轴上的射影,则PQ PR +的最小值是____________.21.(0分)[ID :12443]已知B 与点()1,2,3A 关于点()0,1,2M -对称,则点B 的坐标是______.22.(0分)[ID :12431]已知棱长等于23的正方体1111ABCD A B C D -,它的外接球的球心为O ﹐点E 是AB 的中点,则过点E 的平面截球O 的截面面积的最小值为________.23.(0分)[ID :12430]若直线:20l kx y --=与曲线()2:111C y x --=-有两个不同的交点,则实数k 的取值范围________.24.(0分)[ID :12432]如图所示,二面角l αβ--为60,,A B 是棱l 上的两点,,AC BD 分别在半平面内,αβ,且AC l ⊥,,4,6,8AB AC BD ===,则CD 的长______.25.(0分)[ID :12450]已知球的表面积为20π,球面上有A 、B 、C 三点.如果2AB AC ==,22BC =,则球心到平面ABC 的距离为__________.三、解答题26.(0分)[ID :12628]已知点()1,0P ,圆22:6440C x y x y +-++=.(1)若直线l 过点P 且到圆心C 的距离为2,求直线l 的方程;(2)设过点()0,1Q -的直线m 与圆C 交于A 、B 两点(m 的斜率为负),当||4AB =时,求以线段AB 为直径的圆的方程.27.(0分)[ID :12597]已知点(3,3)M ,圆22:(1)(2)4C x y -+-=.(1)求过点M 且与圆C 相切的直线方程;(2)若直线40()ax y a -+=∈R 与圆C 相交于A ,B 两点,且弦AB 的长为23,求实数a 的值.28.(0分)[ID :12545]如图所示,已知四棱锥P ABCD -中,底面ABCD 为菱形,PA ⊥平面ABCD ,60,,ABC E F ∠=分别是,BC PB 的中点.(1)证明:AE ⊥平面PAD ;(2)若H 为PD 上的动点,EH 与平面PAD 所成最大角的正切值为3,求二面角B AF C --的正切值.29.(0分)[ID :12622]已知圆22C (4)4x y +-=:,直线:(31)(1)40l m x m y ++--=.(1)求直线l 所过定点A 的坐标;(2)求直线l 被圆C 所截得的弦长最短时直线l 的方程及最短弦长;(3)已知点M (-3,4),在直线MC 上(C 为圆心),存在定点N (异于点M ),满足:对于圆C 上任一点P ,都有||||PM PN 为一常数, 试求所有满足条件的点N 的坐标及该常数.30.(0分)[ID :12542]如图,将棱长为2的正方体1111ABCD A B C D -沿着相邻的三个面的对角线切去四个棱锥后得一四面体11A CB D -.(Ⅰ)求该四面体的体积;(Ⅱ)求该四面体外接球的表面积.【参考答案】2016-2017年度第*次考试试卷参考答案 **科目模拟测试一、选择题1.D2.B3.B4.B5.C6.A7.A8.B9.A10.B11.D12.A13.A14.B15.D二、填空题16.【解析】连结易知面面而即在面内且点的轨迹是线段连结易知是等边三角形则当为中点时距离最小易知最小值为17.相交【解析】【分析】根据直线与圆相交的弦长公式求出的值结合两圆的位置关系进行判断即可【详解】解:圆的标准方程为则圆心为半径圆心到直线的距离圆截直线所得线段的长度是即则圆心为半径圆的圆心为半径则即两个18.2π【解析】试题分析:设圆柱的底面半径为r高为h底面积为S体积为V则有2πr=2⇒r=1π故底面面积S=πr2=π×(1π)2=1π故圆柱的体积V=Sh=1π×2=2π考点:圆柱的体积19.【解析】【分析】以为长宽高构建长方体则长方体的外接球是三棱锥的外接球由此能求出三棱锥的外接球的表面积【详解】由题意在三棱锥中平面以为长宽高构建长方体则长方体的外接球是三棱锥的外接球所以三棱锥的外接球20.【解析】根据抛物线的定义可知而的最小值是所以的最小值就是的最小值当三点共线时此时最小最小值是所以的最小值是3【点睛】本题考查了点和圆的位置关系以及抛物线的几何性质和最值问题考查了转化与化归能力圆外的21.【解析】【分析】根据空间直角坐标系中点坐标公式求结果【详解】设B则所以所以的坐标为【点睛】本题考查空间直角坐标系中点坐标公式考查基本分析求解能力属基础题22.【解析】【分析】当过球内一点的截面与垂直时截面面积最小可求截面半径即可求出过点的平面截球的截面面积的最小值【详解】解:棱长等于的正方体它的外接球的半径为3当过点的平面与垂直时截面面积最小故答案为:【23.【解析】【分析】由题意可知曲线为圆的右半圆作出直线与曲线的图象可知直线是过点且斜率为的直线求出当直线与曲线相切时k的值利用数形结合思想可得出当直线与曲线有两个公共点时实数的取值范围【详解】对于直线则24.【解析】【分析】推导出两边平方可得的长【详解】二面角为是棱上的两点分别在半平面内且的长故答案为:【点睛】本题考查线段长的求法考查空间中线线线面面面间的位置关系等基础知识考查运算求解能力考查函数与方程25.【解析】设球的半径为表面积解得∵在中∴从圆心作平面的垂线垂足在斜边的中点处∴球心到平面的距离故答案为点睛:本题考查的知识点是空间点线面之间的距离计算其中根据球心距球半径解三角形我们可以求出所在平面截三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷 参考解析【参考解析】**科目模拟测试一、选择题1.D解析:D【解析】【分析】求出原函数的导函数,得到函数在2x =时的导数,再由两直线平行与斜率的关系求得a 值.【详解】 解:由31x y x +=-,得()()2213411x x y x x ---=---'=, ∴2'|4x y ==-,又曲线31x y x +=-在点25(,)处的切线与直线10ax y +-=平行, ∴4a -=-,即4a =.故选D .【点睛】本题考查利用导数研究过曲线上某点处的切线方程,考查两直线平行与斜率的关系,是中档题.2.B解析:B【解析】A 中,,αβ也可能相交;B 中,垂直与同一条直线的两个平面平行,故正确;C 中,,αβ也可能相交;D 中,l 也可能在平面β内.【考点定位】点线面的位置关系3.B解析:B【解析】【分析】依题意由111A B C △的面积为114B C =,所以8BC =,2AC =,根据勾股定理即可求AB .【详解】依题意,因为111A B C △的面积为所以11111sin 452AC B C ︒=⨯⋅=11122B C ⨯⨯,解得114B C =, 所以8BC =,2AC =,又因为AC BC ⊥,由勾股定理得:AB ====故选B .【点睛】本题考查直观图还原几何图形,属于简单题. 利用斜二测画法作直观图,主要注意两点:一是与x 轴平行的线段仍然与x '轴平行且相等;二是与y 轴平行的线段仍然与y '轴平行且长度减半. 4.B解析:B【解析】由()f x 为偶函数得0m =,所以0,52log 3log 32121312,a =-=-=-=2log 521514b =-=-=,0210c =-=,所以c a b <<,故选B.考点:本题主要考查函数奇偶性及对数运算.5.C解析:C【解析】【分析】先作出三棱锥P ABC -的图像,根据P ABC -四个面都为直角三角形和PA ⊥平面ABC ,可知PC 中点即为球心,利用边的关系求出球的半径,再由24S R π=计算即得.【详解】三棱锥P ABC -如图所示,由于P ABC -四个面都为直角三角形,则ABC 是直角三角形,且2ABC π∠=,2223BC AC AB ∴=-=,又PA ⊥平面ABC ,且PAC 是直角三角形,∴球O 的直径2222PC R PA AB BC ==++2025==,5R ∴=,则球O 的表面积2420S R ππ==.故选:C【点睛】本题考查多面体外接球的表面积,是常考题型.6.A解析:A【解析】如图,分别取,,,BC CD AD BD 的中点,,,M N P Q ,连,,,MN NP PM PQ ,则,MN BD NP AC ,∴PNM ∠即为异面直线AC 和BD 所成的角(或其补角).又由题意得PQ MQ ⊥,11,22PQ AB MQ CD ==. 设2AB BC CD ===,则2PM =又112,222MN BD NP AC ====, ∴PNM ∆为等边三角形,∴60PNM =︒∠,∴异面直线AC 与BD 所成角为60︒,其余弦值为12.选A . 点睛:用几何法求空间角时遵循“一找、二证、三计算”的步骤,即首先根据题意作出所求的角,并给出证明,然后将所求的角转化为三角形的内角.解题时要注意空间角的范围,并结合解三角形的知识得到所求角的大小或其三角函数值. 7.A解析:A【解析】【分析】【详解】画出截面图形如图显然A 正三角形C 正方形:D 正六边形可以画出三角形但不是直角三角形;故选A .用一个平面去截正方体,则截面的情况为:①截面为三角形时,可以是锐角三角形、等腰三角形、等边三角形,但不可能是钝角三角形、直角三角形;②截面为四边形时,可以是梯形(等腰梯形)、平行四边形、菱形、矩形,但不可能是直角梯形;③截面为五边形时,不可能是正五边形;④截面为六边形时,可以是正六边形.故可选A .8.B解析:B【解析】试题分析:对于选项A ,a b 1gc 1gc log c ,log c lg a lg b==,01c <<,10gc ∴<,而0a b >>,所以lg lg a b >,但不能确定lg lg a b 、的正负,所以它们的大小不能确定;对于选项B ,c lg lg log ,log lg lg c a b a b c c ==,lg lg a b >,两边同乘以一个负数1lg c改变不等号方向,所以选项B 正确;对于选项C ,利用c y x =在第一象限内是增函数即可得到c c a b >,所以C 错误;对于选项D ,利用xy c =在R 上为减函数易得a b c c <,所以D 错误.所以本题选B.【考点】指数函数与对数函数的性质【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数的单调性进行比较;若底数不同,可考虑利用中间量进行比较. 9.A解析:A【解析】【分析】利用线面平行的判定与性质证明直线1BC 为过直线EF 且过点B 的平面与平面11BCC B 的交线,从而证得1,,,B E F C 四点共面,然后在正方体中求等腰梯形1BEFC 的周长即可.【详解】作图如下:因为,E F 是棱1,AD DD 的中点,所以11////EF AD BC ,因为EF ⊄平面11BCC B ,1BC ⊂平面11BCC B ,所以//EF 平面11BCC B ,由线面平行的性质定理知,过直线EF 且过点B 的平面与平面11BCC B 的交线l 平行于直线EF ,结合图形知,l 即为直线1BC ,过B ,E ,F 的平面截该正方体所得的截面即为等腰梯形1BEFC ,因为正方体的棱长AB =4,所以11EF BE C F BC ====所以所求截面的周长为+故选:A【点睛】本题主要考查多面体的截面问题和线面平行的判定定理和性质定理;重点考查学生的空间想象能力;属于中档题.10.B解析:B【解析】【分析】在①中,由面面平行的性质定理得m ∥β;在②中,m 与n 平行或异面;在③中,m 与β相交、平行或m ⊂β;在④中,由n ⊥α,m ⊥α,得m ∥n ,由n ⊥β,得m ⊥β.【详解】由α,β为两个不同的平面,m ,n 为两条不同的直线,知:在①中,若α∥β,m ⊂α,则由面面平行的性质定理得m ∥β,故①正确;在②中,若m ∥α,n ⊂α,则m 与n 平行或异面,故②错误;在③中,若α⊥β,α∩β=n ,m ⊥n ,则m 与β相交、平行或m ⊂β,故③错误; 在④中,若n ⊥α,m ⊥α,则m ∥n ,由n ⊥β,得m ⊥β,故④正确.故选:B .【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查空间想象能力、推理论证能力,考查化归与转化思想,是中档题.11.D解析:D【解析】【分析】由题意可得,曲线22(1)4(1)x y y +-=与直线4(2)y k x -=-有2个交点,数形结合求得k 的范围.【详解】如图所示,化简曲线得到22(1)4(1)x y y +-=,表示以(0,1)为圆心,以2为半径的上半圆,直线化为4(2)y k x -=-,过定点(2,4)A ,设直线与半圆的切线为AD ,半圆的左端点为(2,1)B -,当AD AB k k k <,直线与半圆有两个交点,AD 与半圆相切时,2|124|21k k --+=+,解得512AD k =, 4132(2)4AB k -==--,所以53,124k ⎛⎤∈ ⎥⎝⎦. 故选:D【点睛】本题考查直线与圆的位置关系,属于中档题.12.A解析:A【解析】【分析】根据三视图知该几何体对应的三棱锥,结合图中数据求得三棱锥的体积.【详解】由题意可知三棱锥的直观图如图:三棱锥的体积为:111211323⨯⨯⨯⨯=. 故选:A .【点睛】本题考查了利用三视图求几何体体积的应用问题,考查了空间想象能力,是基础题.13.A解析:A【解析】【分析】【详解】根据题意作出图形:设球心为O ,过ABC 三点的小圆的圆心为O 1,则OO 1⊥平面ABC ,延长CO 1交球于点D ,则SD ⊥平面ABC .∵CO 1=233323⨯=, ∴116133OO =-=, ∴高SD=2OO 1=263,∵△ABC 是边长为1的正三角形,∴S △ABC =34, ∴132623436S ABC V -=⨯⨯=三棱锥.考点:棱锥与外接球,体积.【名师点睛】本题考查棱锥与外接球问题,首先我们要熟记一些特殊的几何体与外接球(内切球)的关系,如正方体(长方体)的外接球(内切球)球心是对角线的交点,正棱锥的外接球(内切球)球心在棱锥的高上,对一般棱锥来讲,外接球球心到名顶点距离相等,当问题难以考虑时,可减少点的个数,如先考虑到三个顶点的距离相等的点是三角形的外心,球心一定在过此点与此平面垂直的直线上.如直角三角形斜边中点到三顶点距离相等等等.14.B解析:B【解析】【分析】利用函数的单调性,判断指数函数底数的取值范围,以及一次函数的单调性,及端点处函数值的大小关系列出不等式求解即可【详解】解:函数6(3)3,7(),7x a x x f x a x ---⎧=⎨>⎩单调递增,()301373a a a a ⎧->⎪∴>⎨⎪-⨯-≤⎩解得934a ≤< 所以实数a 的取值范围是9,34⎡⎫⎪⎢⎣⎭.故选:B .【点睛】本题考查分段函数的应用,指数函数的性质,考查学生的计算能力,属于中档题. 15.D 解析:D【解析】根据三视图知几何体是:三棱锥D ABC -为棱长为4的正方体一部分,直观图如图所示:B 是棱的中点,由正方体的性质得,CD ⊥平面,ABC ABC ∆的面积12442S =⨯⨯=,所以该多面体的体积1164433V =⨯⨯=,故选D.二、填空题16.【解析】连结易知面面而即在面内且点的轨迹是线段连结易知是等边三角形则当为中点时距离最小易知最小值为6【解析】连结11B D ,易知面1ACD ⊥面11BDD B ,而1MN ACD ⊥,即1NM D O ⊥,NM 在面11BDD B 内,且点N 的轨迹是线段11B D ,连结1AB ,易知11AB D 是等边三角形,则当N 为11B D 中点时,NA 6 17.相交【解析】【分析】根据直线与圆相交的弦长公式求出的值结合两圆的位置关系进行判断即可【详解】解:圆的标准方程为则圆心为半径圆心到直线的距离圆截直线所得线段的长度是即则圆心为半径圆的圆心为半径则即两个【解析】【分析】根据直线与圆相交的弦长公式,求出a 的值,结合两圆的位置关系进行判断即可.【详解】解:圆的标准方程为222:()(0)M x y a a a +-=>,则圆心为(0,)a ,半径R a =,圆心到直线0x y +=的距离d =,圆22:20(0)M x y ay a +-=>截直线0x y +=所得线段的长度是∴即24a =,2a =,则圆心为(0,2)M ,半径2R =,圆22:(1)(1)1N x y -+-=的圆心为(1,1)N ,半径1r =,则MN =3R r +=,1R r -=,R r MN R r ∴-<<+,即两个圆相交.故答案为:相交.【点睛】本题主要考查直线和圆相交的应用,以及两圆位置关系的判断,根据相交弦长公式求出a 的值是解决本题的关键.18.2π【解析】试题分析:设圆柱的底面半径为r 高为h 底面积为S 体积为V 则有2πr=2⇒r=1π故底面面积S=πr2=π×(1π)2=1π故圆柱的体积V=Sh=1π×2=2π考点:圆柱的体积解析:2π【解析】试题分析:设圆柱的底面半径为r ,高为h ,底面积为S ,体积为V ,则有2πr =2⇒r =1π,故底面面积S =πr 2=π×(1π)2=1π,故圆柱的体积V =Sh =1π×2=2π. 考点:圆柱的体积 19.【解析】【分析】以为长宽高构建长方体则长方体的外接球是三棱锥的外接球由此能求出三棱锥的外接球的表面积【详解】由题意在三棱锥中平面以为长宽高构建长方体则长方体的外接球是三棱锥的外接球所以三棱锥的外接球 解析:50π【解析】以,,AB BC PA 为长宽高构建长方体,则长方体的外接球是三棱锥P ABC -的外接球,由此能求出三棱锥P ABC -的外接球的表面积.【详解】由题意,在三棱锥P ABC -中,PA ⊥平面,,3,4,5ABC AB BC AB BC PA ⊥===, 以,,AB BC PA 为长宽高构建长方体,则长方体的外接球是三棱锥P ABC -的外接球, 所以三棱锥P ABC -的外接球的半径为22215234522R =++=, 所以三棱锥P ABC -的外接球的表面积为225244()502S R πππ==⨯=. 【点睛】 本题主要考查了三棱锥的外接球的表面积的计算问题,其中解答中根据几何体的结构特征,以,,AB BC PA 为长宽高构建长方体,得到长方体的外接球是三棱锥P ABC -的外接球是解答的关键,着重考查了数形结合思想,以及推理与运算能力.20.【解析】根据抛物线的定义可知而的最小值是所以的最小值就是的最小值当三点共线时此时最小最小值是所以的最小值是3【点睛】本题考查了点和圆的位置关系以及抛物线的几何性质和最值问题考查了转化与化归能力圆外的 解析:【解析】根据抛物线的定义,可知1PR PF =-,而PQ 的最小值是1PC -,所以PQ PR +的最小值就是2PF PC +-的最小值,当,,C P F 三点共线时,此时PF FC +最小,最小值是()()2231305CF =--+-= ,所以PQ PR +的最小值是3.【点睛】本题考查了点和圆的位置关系以及抛物线的几何性质和最值问题,考查了转化与化归能力,圆外的点和圆上的点最小值是点与圆心的距离减半径,最大值是距离加半径,抛物线上的点到焦点的距离和到准线的距离相等,这样转化后为抛物线上的点到两个定点的距离和的最小值,即三点共线时距离最小.21.【解析】【分析】根据空间直角坐标系中点坐标公式求结果【详解】设B则所以所以的坐标为【点睛】本题考查空间直角坐标系中点坐标公式考查基本分析求解能力属基础题解析:()1,4,1--【解析】【分析】根据空间直角坐标系中点坐标公式求结果.【详解】设B (),,x y z ,则1230,1,2222x y z +++=-==,所以1,4,1x y z =-=-=,所以B 的坐标为()1,4,1--.【点睛】本题考查空间直角坐标系中点坐标公式,考查基本分析求解能力,属基础题. 22.【解析】【分析】当过球内一点的截面与垂直时截面面积最小可求截面半径即可求出过点的平面截球的截面面积的最小值【详解】解:棱长等于的正方体它的外接球的半径为3当过点的平面与垂直时截面面积最小故答案为:【 解析:3π.【解析】【分析】当过球内一点E 的截面与OE 垂直时,截面面积最小可求截面半径,即可求出过点E 的平面截球O 的截面面积的最小值.【详解】解:棱长等于1111ABCD A B C D -,它的外接球的半径为3,||OE =当过点E 的平面与OE 垂直时,截面面积最小,r 33S ππ=⨯=, 故答案为:3π.【点睛】本题考查过点E 的平面截球O 的截面面积的最小值及接体问题,找准量化关系是关键,属于中档题.23.【解析】【分析】由题意可知曲线为圆的右半圆作出直线与曲线的图象可知直线是过点且斜率为的直线求出当直线与曲线相切时k 的值利用数形结合思想可得出当直线与曲线有两个公共点时实数的取值范围【详解】对于直线则 解析:4,23⎛⎤ ⎥⎝⎦【解析】【分析】由题意可知,曲线C 为圆()()22111x y -+-=的右半圆,作出直线l 与曲线C 的图象,可知直线l 是过点()0,2-且斜率为k 的直线,求出当直线l 与曲线C 相切时k 的值,利用数形结合思想可得出当直线l 与曲线C 有两个公共点时实数k 的取值范围.【详解】对于直线:2l y kx =-,则直线l 是过点()0,2P -且斜率为k 的直线,对于曲线()2:111C y x --=-,则101x x -≥⇒≥,曲线C 的方程两边平方并整理得()()22111x y -+-=,则曲线C 为圆()()22111x y -+-=的右半圆,如下图所示:当直线l 与曲线C 相切时,0k >()222123111k k k k ---==++-,解得43k =, 当直线l 过点()1,0A 时,则有20k -=,解得2k =.结合图象可知,当4,23k ⎛⎤∈ ⎥⎝⎦时,直线l 与曲线C 有两个交点. 故答案为:4,23⎛⎤ ⎥⎝⎦. 【点睛】本题考查利用直线与曲线的交点个数求参数,解题的关键就是将曲线C 化为半圆,利用数形结合思想求解,同时要找出直线与曲线相切时的临界位置,考查数形结合思想的应用,属于中等题.24.【解析】【分析】推导出两边平方可得的长【详解】二面角为是棱上的两点分别在半平面内且的长故答案为:【点睛】本题考查线段长的求法考查空间中线线线面面面间的位置关系等基础知识考查运算求解能力考查函数与方程 解析:217【解析】【分析】推导出CD CA AB BD =++,两边平方可得CD 的长.【详解】二面角l αβ--为60︒,A 、B 是棱l 上的两点,AC 、BD 分别在半平面α、β内, 且AC l ⊥,BD l ⊥,4AB =,6AC =,8BD =,∴CD CA AB BD =++,∴22()CD CA AB BD =++2222CA AB BD CA BD =+++361664268cos12068=+++⨯⨯⨯︒=,CD ∴的长||68217CD ==.故答案为:217.【点睛】本题考查线段长的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.25.【解析】设球的半径为表面积解得∵在中∴从圆心作平面的垂线垂足在斜边的中点处∴球心到平面的距离故答案为点睛:本题考查的知识点是空间点线面之间的距离计算其中根据球心距球半径解三角形我们可以求出所在平面截 3【解析】设球的半径为r ,表面积24π20πS r ==,解得5r =ABC 中,2AB AC ==,22BC =222AB AC BC +=,∴90BAC ∠=︒,从圆心作平面ABC 的垂线,垂足在斜边BC 的中点处,∴球心到平面ABC 的距离22132d r BC ⎛⎫=-= ⎪⎝⎭3 点睛:本题考查的知识点是空间点、线、面之间的距离计算,其中根据球心距d ,球半径R ,解三角形我们可以求出ABC 所在平面截球所得圆(即ABC 的外接圆半径),构造直角三角形,满足勾股定理,我们即可求出球心到平面ABC 的距离是与球相关的距离问题常用方法.三、解答题26.(1)1x =或0y =;(2)()()22134x y -++=.【解析】【分析】(1)对直线l 的斜率是否存在进行分类讨论,利用圆心到直线l 的距离等于2可求得直线l 的方程;(2)先通过点到直线的距离及勾股定理可解得直线m 的斜率,然后将直线m 的方程与圆的方程联立,求出线段AB 的中点,作为圆心,并求出所求圆的半径,进而可得出所求圆的方程.【详解】(1)由题意知,圆C 的标准方程为()()22329x y -++=,∴圆心()3,2C -,半径3r =,①当直线l 的斜率k 存在时,设直线的方程为()01y k x -=-,即kx y k 0--=, 则圆心到直线l的距离为2d ==,0k ∴=.∴直线l 的方程为0y =;②当直线l 的斜率不存在时,直线l 的方程为1x =,此时圆心C 到直线l 的距离为2,符合题意.综上所述,直线l 的方程为1x =或0y =;(2)依题意可设直线m 的方程为1y kx =-,即()100kx y k --=<,则圆心()3,2C -到直线m的距离d === 22320k k ∴+-=,解得12k =或2k =-, 又0k <,2k ∴=-,∴直线m 的方程为210x y ---=即210x y ++=,设点()11,A x y 、()22,B x y ,联立直线m 与圆C 的方程得()()22210329x y x y ++=⎧⎪⎨-++=⎪⎩, 消去y 得251010x x -+=,122x x ∴+=,则线段AB 的中点的横坐标为1212x x +=,把1x =代入直线m 中得3y =-, 所以,线段AB 的中点的坐标为()1,3-, 由题意知,所求圆的半径为:122AB =, ∴以线段AB 为直径的圆的方程为:()()22134x y -++=.【点睛】本题考查利用圆心到直线的距离求直线方程,同时也考查了圆的方程的求解,涉及利用直线截圆所得弦长求参数,考查计算能力,属于中等题.27.(1)3x =或34210x y +-=;(2)34-. 【解析】【分析】(1)考虑切线的斜率是否存在,结合直线与圆相切的的条件d=r ,直接求解圆的切线方程即可.(2)利用圆的圆心距、半径及半弦长的关系,列出方程,求解a 即可.【详解】(1)由圆的方程得到圆心(1,2),半径2r .当直线斜率不存在时,直线3x =与圆C 显然相切;当直线斜率存在时,设所求直线方程为3(3)y k x -=-,即330kx y k -+-=,2=,解得34k =-, ∴ 方程为33(3)4y x -=--,即34210x y +-=. 故过点M 且与圆C 相切的直线方程为3x =或34210x y +-=. (2)∵ 弦长AB为 2.圆心到直线40ax y -+=的距离d =∴2242⎛⎛⎫+= ⎝⎭, 解得34a =-. 【点睛】本题考查直线与圆的位置关系的综合应用,考查切线方程的求法,考查了垂径定理的应用,考查计算能力. 28.(1)见证明;(2) 【解析】【分析】(1)由PA ⊥面ABCD 可知PA AE ⊥,又可证AE BC ⊥,根据线面垂直的判定即可证明(2) 取AB 中点M ,作MN AF ⊥于N ,连CN ,可证MNC ∠是二面角B AF C --的平面角,解三角形即可求解.【详解】(1)PA ⊥面ABCD ,AE ⊂面ABCD ,PA AE ∴⊥; 又底面ABCD 为菱形,60ABC ∠=,E 为BC 中点,,//,,AE BC AD BC AE AD ∴⊥∴⊥AE ∴⊥面PAD ;(2)AE 面PAD ,AHE ∴∠是EH 与面PAD 所成角,tan ,AE AHE AH PO AH∠=⊥时,AH 最小,tan AHE ∠最大,AHE ∠最大, 令2AB =,则3,1AE AH ==,在Rt AHD ∆中,2,30AD ADH =∠=, 在Rt PAD ∆中,233PA = PA ⊥面ABCD ,∴面PAB ⊥面ABCD ,且交线为AB ,取AB 中点M ,正ABC ∆中,,CM AB CM ⊥∴⊥面PAB ,作MN AF ⊥于N ,连CN ,由三垂线定理得CN AF ⊥,MNC ∠是二面角B AF C --的平面角.3CM =.在PAB ∆中,23,2,3BF AF AB ===边AF 上的高11,2BG MN ==, tan 23CM MNC MN∠==【点睛】 本题主要考查了线面垂直的判定,线面垂直的性质,二面角的求法,属于难题. 29.(1)A (1,3);(2)直线l 方程为20x y -+=,最短弦长为223)在直线MC 上存在定点4,43N ⎛⎫-⎪⎝⎭,使得||||PM PN 为常数32. 【解析】【分析】(1)利用直线系方程的特征,直接求解直线l 过定点A 的坐标;(2)当AC ⊥l 时,所截得弦长最短,由题知C (0,4),2r,求出AC 的斜率,利用点到直线的距离,转化求解即可;(3)由题知,直线MC 的方程为4y =,假设存在定点N (t ,4)满足题意,则设。

【压轴卷】高一数学下期中试题含答案(1)

【压轴卷】高一数学下期中试题含答案(1)

【压轴卷】高一数学下期中试题含答案(1)一、选择题1.在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成的角为30o ,则该长方体的体积为( )A .8B .62C .82D .832.水平放置的ABC V 的斜二测直观图如图所示,若112A C =,111A B C △的面积为22,则AB 的长为( )A .2B .217C .2D .83.如图为某几何体的三视图,则该几何体的表面积为( )A .202π+B .203π+C .242π+D .243π+4.若函数6(3)3,7(),7x a x x f x a x ---≤⎧=⎨>⎩单调递增,则实数a 的取值范围是( ) A .9,34⎛⎫ ⎪⎝⎭B .9,34⎡⎫⎪⎢⎣⎭C .()1,3D .()2,3 5.已知圆()()22:341C x y -+-=和两点(),A m m -,(),B m m -()0m >,若圆C 上存在点P ,使得90APB ∠=︒,则m 的最大值为( )A .2B .32C 322D .226.设直线,a b 是空间中两条不同的直线,平面,αβ是空间中两个不同的平面,则下列说法正确的是( )A .若a ∥α,b ∥α,则a ∥bB .若a ∥b ,b ∥α,则a ∥αC .若a ∥α,α∥β,则a ∥βD .若α∥β,a α⊂,则a ∥β7.若a >b >0,0<c <1,则A .log a c <log b cB .log c a <log c bC .a c <b cD .c a >c b8.正方体ABCD ﹣A 1B 1C 1D 1中,E ,F 分别是AD ,DD 1的中点,AB =4,则过B ,E ,F 的平面截该正方体所得的截面周长为( )A .62+45B .62+25C .32+45D .32+25 9.点A 、B 、C 、D 在同一个球的球面上,AB=BC=2,AC=2,若四面体ABCD 体积的最大值为23,则这个球的表面积为( ) A .1256π B .8π C .2516π D .254π 10.如图所示,在棱长为a 的正方体1111ABCD A B C D -中,E 是棱1DD 的中点,F 是侧面11CDD C 上的动点,且1//B F 面1A BE ,则F 在侧面11CDD C 上的轨迹的长度是( )A .aB .2aC .2aD .22a 11.已知直线()()():21110l k x k y k R ++++=∈与圆()()221225x y -+-=交于A ,B 两点,则弦长AB 的取值范围是( )A .[]4,10B .[]3,5C .[]8,10D .[]6,1012.如图是正方体的平面展开图,则在这个正方体中:①BM 与ED 平行 ②CN 与BE 是异面直线③CN 与BM 成60︒角 ④DM 与BN 是异面直线以上四个命题中,正确命题的个数是( )A .1B .2C .3D .4二、填空题13.已知棱长为1的正方体ABCD -A 1B 1C 1D 1中,E ,F ,M 分别是线段AB 、AD 、AA 1的中点,又P 、Q 分别在线段A 1B 1、A 1D 1上,且A 1P =A 1Q =x (0<x <1).设平面MEF ∩平面MPQ=l ,现有下列结论:①l ∥平面ABCD ;②l ⊥AC ;③直线l 与平面BCC 1B 1不垂直;④当x 变化时,l 不是定直线.其中不成立的结论是________.(写出所有不成立结论的序号)14.一个直三棱柱的每条棱长都是3,且每个顶点都在球O 的表面上,则球O 的表面积为________15.如图,在四棱锥P ABCD -中,PA ⊥底面,,//,2,1ABCD AD AB AB DC AD DC AP AB ⊥====,若E 为棱PC 上一点,满足BE AC ⊥,则PE EC=__________.16.已知正方体1111ABCD A B C D -的棱长为1,点E 是棱1BB 的中点,则点1B 到平面ADE 的距离为__________.17.如图,在ABC V 中,AB BC ⊥,SA ⊥平面ABC ,DE 垂直平分SC ,且分别交AC ,SC 于点D ,E ,又SA AB =,SB BC =,则二面角E BD C --的大小为_______________.18.在棱长为1的正方体1111ABCD A B C D -中,M 是1BB 的中点,直线1D M 与平面ABCD 交于点N ,则线段AN 的长度为________19.在正方体1111ABCD A B C D -中,E 是棱1DD 的中点,则直线BE 和平面11ABB A 所成的角的正弦值为_____________.20.直线:l y x b =+与曲线2:1C y x =-有两个公共点,则b 的取值范围是______.三、解答题21.如图,梯形ABCD 中,AB ∥CD ,,E F 是线段AB 上的两点,且DE AB ⊥,CF AB ⊥,12AB =,5AD =,42BC =,4DE =.现将△ADE ,△CFB 分别沿DE ,CF 折起,使两点,A B 重合于点G ,得到多面体CDEFG (1)求证:平面DEG ⊥平面CFG ;(2)求多面体CDEFG 的体积22.如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,平面PBD ⊥平面ABCD ,2AD =,25PD =,4AB PB ==,60BAD ∠=︒.(1)求证:AD PB ⊥;(2)E 是侧棱PC 上一点,记PE PCλ=,当PB ⊥平面ADE 时,求实数λ的值 23.已知点(3,3)M ,圆22:(1)(2)4C x y -+-=.(1)求过点M 且与圆C 相切的直线方程;(2)若直线40()ax y a -+=∈R 与圆C 相交于A ,B 两点,且弦AB 的长为23实数a 的值.24.已知圆22:(2)(3)4C x y -+-=外有一点()41-,,过点P 作直线l . (1)当直线l 与圆C 相切时,求直线l 的方程;(2)当直线l 的倾斜角为135︒时,求直线l 被圆C 所截得的弦长.25.(1)用符号表示下来语句,并画出同时满足这四个语句的一个几何图形: ①直线l 在平面α内;②直线m 不在平面α内;③直线m 与平面α交于点A ;④直线l 不经过点A .(2)如图,在长方体1111ABCD A B C D -中,E 为棱1BB 的中点,F 为棱1CC 的三等分点,画出由1,,D E F 三点所确定的平面β与平面ABCD 的交线.(保留作图痕迹)26.如图所示,直角梯形ABCD 中,//AD BC ,,AD AB ⊥22,AB BC AD ===四边形EDCF 为矩形,2DE =,平面EDCF ⊥ABCD .(1)求证://DF 平面ABE ;(2)求二面角B EF D --二面角的正弦值;(3)在线段BE 上是否存在点P ,使得直线AP 与平面BEF 6存在,求出线段BP 的长,若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】首先画出长方体1111ABCD A B C D -,利用题中条件,得到130AC B ∠=o,根据2AB =,求得123BC =,可以确定122CC =,之后利用长方体的体积公式求出长方体的体积.【详解】在长方体1111ABCD A B C D -中,连接1BC ,根据线面角的定义可知130AC B ∠=o,因为2AB =,所以123BC =,从而求得122CC =, 所以该长方体的体积为222282V =⨯⨯= C.【点睛】该题考查的是长方体的体积的求解问题,在解题的过程中,需要明确长方体的体积公式为长宽高的乘积,而题中的条件只有两个值,所以利用题中的条件求解另一条边的长就显得尤为重要,此时就需要明确线面角的定义,从而得到量之间的关系,从而求得结果. 2.B解析:B【解析】【分析】依题意由111A B C △的面积为22114B C =,所以8BC =,2AC =,根据勾股定理即可求AB .【详解】依题意,因为111A B C △的面积为2 所以1111122sin 452AC B C ︒=⨯⋅=1112222B C ⨯⨯⨯,解得114B C =, 所以8BC =,2AC =,又因为AC BC ⊥, 由勾股定理得:22228268217AB AC BC =+=+==故选B .【点睛】本题考查直观图还原几何图形,属于简单题. 利用斜二测画法作直观图,主要注意两点:一是与x 轴平行的线段仍然与x '轴平行且相等;二是与y 轴平行的线段仍然与y '轴平行且长度减半. 3.B解析:B【解析】该几何体是一个正方体与半圆柱的组合体,表面积为2215221122032S πππ=⨯+⨯⨯+⨯⨯=+,故选B . 4.B解析:B【解析】【分析】利用函数的单调性,判断指数函数底数的取值范围,以及一次函数的单调性,及端点处函数值的大小关系列出不等式求解即可【详解】解:Q 函数6(3)3,7(),7x a x x f x a x ---⎧=⎨>⎩…单调递增, ()301373a a a a ⎧->⎪∴>⎨⎪-⨯-≤⎩解得934a ≤< 所以实数a 的取值范围是9,34⎡⎫⎪⎢⎣⎭.故选:B .【点睛】本题考查分段函数的应用,指数函数的性质,考查学生的计算能力,属于中档题. 5.B解析:B【解析】【分析】根据使得90APB ∠=︒的点P 在以AB 为直径的圆上,再分析轨迹圆与圆C 的关系即可.【详解】由题, 使得90APB ∠=︒的点P 在以AB 为直径的圆上,又两点(),A m m -,(),B m m -, 所以圆心为()0,0.=.故P 的轨迹方程为2222x y m +=. 又由题意知,当圆()()22:341C x y -+-=内切于222x y m +=时m 取最大值.16==,故m =故选:B【点睛】本题主要考查了圆与圆的位置关系,重点是根据90APB ∠=︒求出点P 的轨迹.属于中等题型. 6.D解析:D【解析】【分析】利用空间直线和平面的位置关系对每一个选项逐一分析判断得解.【详解】A. 若a ∥α,b ∥α,则a 与b 平行或异面或相交,所以该选项不正确;B. 若a ∥b ,b ∥α,则a ∥α或a α⊂,所以该选项不正确;C. 若a ∥α,α∥β,则a ∥β或a β⊂,所以该选项不正确;D. 若α∥β,a α⊂,则a ∥β,所以该选项正确.故选:D【点睛】本题主要考查空间直线平面位置关系的判断,意在考查学生对这些知识的理解掌握水平.7.B解析:B【解析】试题分析:对于选项A ,a b 1gc 1gc log c ,log c lg a lg b==,01c <<Q ,10gc ∴<,而0a b >>,所以lg lg a b >,但不能确定lg lg a b 、的正负,所以它们的大小不能确定;对于选项B ,c lg lg log ,log lg lg c a b a b c c ==,lg lg a b >,两边同乘以一个负数1lg c改变不等号方向,所以选项B 正确;对于选项C ,利用c y x =在第一象限内是增函数即可得到c c a b >,所以C 错误;对于选项D ,利用xy c =在R 上为减函数易得a b c c <,所以D 错误.所以本题选B.【考点】指数函数与对数函数的性质【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数的单调性进行比较;若底数不同,可考虑利用中间量进行比较. 8.A解析:A【解析】【分析】利用线面平行的判定与性质证明直线1BC 为过直线EF 且过点B 的平面与平面11BCC B 的交线,从而证得1,,,B E F C 四点共面,然后在正方体中求等腰梯形1BEFC 的周长即可.【详解】作图如下:因为,E F 是棱1,AD DD 的中点,所以11////EF AD BC ,因为EF ⊄平面11BCC B ,1BC ⊂平面11BCC B ,所以//EF 平面11BCC B ,由线面平行的性质定理知,过直线EF 且过点B 的平面与平面11BCC B 的交线l 平行于直线EF ,结合图形知,l 即为直线1BC ,过B ,E ,F 的平面截该正方体所得的截面即为等腰梯形1BEFC ,因为正方体的棱长AB =4, 所以1122,25,42EF BE C F BC ====所以所求截面的周长为2+5故选:A【点睛】本题主要考查多面体的截面问题和线面平行的判定定理和性质定理;重点考查学生的空间想象能力;属于中档题.9.D解析:D【解析】试题分析:根据题意知,ABC V 是一个直角三角形,其面积为1.其所在球的小圆的圆心在斜边AC 的中点上,设小圆的圆心为Q ,若四面体ABCD 的体积的最大值,由于底面积ABC S V 不变,高最大时体积最大,所以,DQ 与面ABC 垂直时体积最大,最大值为12·33ABC S DQ =V ,即12133DQ ⨯⨯=,∴2DQ =,设球心为O ,半径为R ,则在直角AQO V 中,222OA AQ OQ =+,即()22212R R =+-,∴54R =,则这个球的表面积为:2525444S ππ⎛⎫== ⎪⎝⎭;故选D.考点:球内接多面体,球的表面积.10.D解析:D【解析】【分析】设H ,I 分别为1CC 、11C D 边上的中点,由面面平行的性质可得F 落在线段HI 上,再求HI 的长度即可.【详解】解:设G ,H ,I 分别为CD 、1CC 、11C D 边上的中点,则ABEG 四点共面,且平面1//A BGE 平面1B HI ,又1//B F Q 面1A BE ,F ∴落在线段HI 上,Q 正方体1111ABCD A B C D -中的棱长为a ,1122HI CD a ∴==, 即F 在侧面11CDD C 上的轨迹的长度是2a . 故选D .【点睛】本题考查了面面平行的性质及动点的轨迹问题,属中档题.11.D解析:D【解析】【分析】由直线()()21110k x k y ++++=,得出直线恒过定点()1,2P -,再结合直线与圆的位置关系,即可求解.【详解】由直线()()():21110l k x k y k R ++++=∈,可得()210k x y x y ++++=,又由2010x y x y +=⎧⎨++=⎩,解得12x y =⎧⎨=-⎩,即直线恒过定点()1,2P -,圆心()1,2C , 当CP l ⊥时弦长最短,此时2222AB CP r ⎛⎫+= ⎪⎝⎭,解得min 6AB =, 再由l 经过圆心时弦长最长为直径210r =,所以弦长AB 的取值范围是[]6,10.故选:D.【点睛】本题主要考查了直线系方程的应用,以及直线与圆的位置关系的应用,其中解答中熟练利用直线的方程,得出直线恒过定点,再结合直线与圆的位置关系求解是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.12.B解析:B【解析】【分析】把平面展开图还原原几何体,再由棱柱的结构特征及异面直线定义、异面直线所成角逐一核对四个命题得答案.【详解】把平面展开图还原原几何体如图:由正方体的性质可知,BM 与ED 异面且垂直,故①错误;CN 与BE 平行,故②错误;连接BE ,则BE CN P ,EBM ∠为CN 与BM 所成角,连接EM ,可知BEM ∆为正三角形,则60EBM ∠=︒,故③正确;由异面直线的定义可知,DM 与BN 是异面直线,故④正确.∴正确命题的个数是2个.故选:B .【点睛】本题考查棱柱的结构特征,考查异面直线定义及异面直线所成角,是中档题.二、填空题13.④【解析】【详解】连接BDB1D1∵A1P=A1Q =x∴PQ∥B1D1∥BD∥EF 则PQ∥平面MEF 又平面MEF∩平面MPQ =l∴PQ∥ll∥EF∴l∥平面ABCD 故①成立;又EF⊥AC∴l⊥AC 故解析:④【解析】【详解】连接BD ,B 1D 1,∵A 1P =A 1Q =x ,∴PQ ∥B 1D 1∥BD ∥EF ,则PQ ∥平面MEF , 又平面MEF ∩平面MPQ =l ,∴PQ ∥l ,l ∥EF ,∴l ∥平面ABCD ,故①成立;又EF ⊥AC ,∴l ⊥AC ,故②成立;∵l ∥EF ∥BD ,故直线l 与平面BCC 1B 1不垂直,故③成立;当x 变化时,l 是过点M 且与直线EF 平行的定直线,故④不成立.即不成立的结论是④.14.【解析】【分析】设此直三棱柱两底面的中心分别为则球心为线段的中点利用勾股定理求出球的半径由此能求出球的表面积【详解】∵一个直三棱柱的每条棱长都是且每个顶点都在球的球面上∴设此直三棱柱两底面的中心分别 解析:21π【解析】【分析】设此直三棱柱两底面的中心分别为12,O O ,则球心O 为线段12O O 的中点,利用勾股定理求出球O 的半径2R ,由此能求出球O 的表面积.【详解】∵一个直三棱柱的每条棱长都是3,且每个顶点都在球O 的球面上,∴设此直三棱柱两底面的中心分别为12,O O ,则球心O 为线段12O O 的中点,设球O 的半径为R ,则2223232132324R ⎛⎫⎛⎫=+⨯⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭∴球O 的表面积2S 4R 21ππ== .故答案为:21π.【点睛】本题考查球的表面积的求法,空间思维能力,考查转化化归思想、数形结合思想、属于中档题.15.【解析】【分析】过作交于连接根据可得平面通过解三角形求得的值也即求得的值【详解】过作交于连接根据可得平面故由于所以由于所以在直角三角形中所以而故根据前面证得可得【点睛】本小题主要考查空间点位置的确定 解析:13 【解析】 【分析】 过B 作BF AC ⊥,交AC 于F ,连接EF ,根据BE AC ⊥,可得AC ⊥平面BEF ,通过解三角形求得:AF FC 的值,也即求得PE EC 的值. 【详解】过B 作BF AC ⊥,交AC 于F ,连接EF ,根据BE AC ⊥,可得AC ⊥平面BEF ,故AC EF ⊥,由于PA AC ⊥,所以//EF PA .由于AD CD =,所以π4DAC BAC ∠=∠=.在直角三角形ABF 中,π1,4AB BAF =∠=,所以2222AF AB ==,而22AC =,故:1:3AF FC =.根据前面证得//EF PA ,可得::1:3PE EC AF FC ==.【点睛】本小题主要考查空间点位置的确定,考查线面垂直的证明,考查简单的解特殊角三角形的知识.属于基础题.16.【解析】【分析】点到平面的距离等价于点到平面的距离过作交于证得平面利用等面积法求得点到平面的距离也即点到平面的距离【详解】由于是的中点故点到平面的距离等价于点到平面的距离过作交于由于故平面在直角三角 解析:5 【解析】 【分析】点1B 到平面ADE 的距离等价于点B 到平面ADE 的距离,过B 作BF AE ⊥,交AE 于F ,证得BF ⊥平面ADE ,利用等面积法求得点B 到平面ADE 的距离,也即点1B 到平面ADE 的距离.【详解】由于E 是1BB 的中点,故点1B 到平面ADE 的距离等价于点B 到平面ADE 的距离,过B 作BF AE ⊥,交AE 于F ,由于BF AD ⊥,AD AE E ⋂=,故BF ⊥平面ADE .在直角三角形ABE 中,151,,22AB BE AE ===,所以1122AB BE AE BF ⋅⋅=⋅⋅,解得5BF =.【点睛】本小题主要考查点到面的距离,考查等面积法求高,考查线面垂直的证明,属于基础题. 17.60°【解析】【分析】首先证得是二面角的平面角解直角三角形求得的大小【详解】由于是的中点所以由于所以平面所以由于平面所以而所以平面所以所以是二面角的平面角设则所以所以在中所以所以故答案为:【点睛】本 解析:60°【解析】【分析】首先证得EDC ∠是二面角E BD C --的平面角,解直角三角形求得EDC ∠的大小.【详解】由于SB BC =,E 是SC 的中点,所以SC BE ⊥,由于,SC DE DE BE E ⊥⋂=,所以SC ⊥平面BDE ,所以SC BD ⊥.由于SA ⊥平面ABC ,所以SA BD ⊥,而SA SC S ⋂=,所以BD ⊥平面SAC ,所以,BD DC BD DE ⊥⊥,所以EDC ∠是二面角E BD C --的平面角.设1SA AB ==,则SB BC ==2SC =,所以在Rt SAC ∆中,12SA SC =,所以30SCA ∠=o ,所以60EDC ∠=o . 故答案为:60o【点睛】 本小题主要考查二面角的求法,考查空间想象能力和逻辑推理能力,属于中档题. 18.【解析】【分析】在平面中与的交点即为求出长即可求解【详解】连在正方体中所以四边形为矩形相交其交点为平面的交点是的中点为的中位线为中点正方体各棱长为1故答案为:【点睛】本题考查空间线面位置关系确定直线【解析】【分析】在平面11BB D D 中,1D M 与BD 的交点即为N ,求出BN 长,即可求解.【详解】连BD ,在正方体1111ABCD A B C D -中,11111,//,BB DD BB DD DD BD =⊥,所以四边形11BB D D 为矩形,1,BD D M 相交,其交点为1D M 平面ABCD 的交点N ,Q M 是1BB 的中点,111,//2BM DD BM DD ∴=, BM 为1DD N V 的中位线,B 为DN 中点,正方体各棱长为1,BN BD ∴==,1,135ABN AB BN ABN ==∠=o V ,2222cos AN AB BN AB BN ABN =+-⋅⋅∠2321252=+⨯⨯⨯=,5AN ∴=. 故答案为:5.【点睛】本题考查空间线面位置关系,确定直线与平面交点是解题的关键,意在考查直观想象能力,属于中档题.19.【解析】【分析】作出直线和平面所成的角解直角三角形求得线面角的正弦值【详解】设为的中点连接根据正方体的性质可知平面所以是直线和平面所成的角设正方体的边长为在中所以故答案为:【点睛】本小题主要考查线面解析:23【解析】【分析】作出直线BE 和平面11ABB A 所成的角,解直角三角形求得线面角的正弦值.【详解】设F 为1AA 的中点,连接,,EF EB BF ,根据正方体的性质可知EF ⊥平面11ABB A ,所以EBF ∠是直线BE 和平面11ABB A 所成的角.设正方体的边长为2,在Rt EBF ∆中2EF =,2222213BE =++=,所以2sin 3EF EBF BE ∠==. 故答案为:23【点睛】本小题主要考查线面角的求法,考查空间想象能力,属于基础题.20.【解析】【分析】由题意曲线表示以原点为圆心1为半径的半圆根据图形得出直线与半圆有两个公共点时抓住两个关键点一是直线与圆相切时二是直线过时分别求出的值即可确定的范围【详解】如图所示是个以原点为圆心1为 解析:2⎡⎣【解析】【分析】由题意,曲线2:1C y x =-表示以原点为圆心,1为半径的半圆,根据图形得出直线:l y x b =+与半圆有两个公共点时抓住两个关键点,一是直线:l y x b =+与圆相切时,二是直线:l y x b =+过()1,0A -时分别求出b 的值,即可确定b 的范围。

人教版高一年级第二学期期中考试数学试卷与答案解析(共五套)

人教版高一年级第二学期期中考试数学试卷与答案解析(共五套)
A. B. C. D.2
8.已知 ,且 ,则 ( )
A.4B.3C. D.
9.在△ 中, 为 边上的中线, 为 的中点,则
A. B.
C. D.
10.△ABC的内角A、B、C的对边分别为 、b、c.已知 , , ,则b=
A. B. C.2D.3
11.已知向量 , 是不平行于 轴的单位向量,且 ,则 ( )
解得 ( 舍去),故选D.
11.已知向量 , 是不平行于 轴的单位向量,且 ,则 ( )
A. B. C. D.
【答案】B
【解析】设 ,其中 ,则 .
由题意得 ,解得 ,即 .
故选:B.
12.若非零向量 满足 ,且 ,则 的夹角为
A. B.
C. D.
【答案】A
【解析】∵ ,所以 ,即 ,
即 ,∴
,又 ,故 ,故选A.
A.3B.2C. D.
【答案】D
【解析】点 是 所在平面上一点,过 作 ,如下图所示:
由 ,
故 ,
所以 与 的面积之比为 ,
故选:D.
7.设复数z满足(1+i)z=2i,则|z|=( )
A. B. C. D.2
【答案】C
【解析】题意, ,所以 .故选:C.
8.已知 ,且 ,则 ( )
A.4B.3C. D.
(2)因为 为三角形内角,
所以 ,

由正弦定理得: ,
又∵ .
,解得 或 (舍).

22.在 中,角 所对的边分别为 ,已知 .
(1)求角 的大小;
(2)若 ,求 的取值范围.
【答案】(1) ;(2)
【解析】(1)∵ ,
∴ ,
即 ,
∵ ,∴ ,∴ .

高一数学下学期期中考试试卷含答案(word版)

高一数学下学期期中考试试卷含答案(word版)

高一年级第二学期期中考试试题数学第1卷 选择题(共60分)一、选择题(本大题12题,每小题5分,共60分) 1. 若0a b <<,则下列不等式成立的是( ) A .11a b< B .2ab b < C .||||a b < D .2a ab > 2. 设n S 是等差数列{}n a 的前n 项和,若1356a a a ++=,则5S =( ) A .5 B .7 C .9 D .103. 在ABC ∆中, a =b =o45B =,则A 为( )A .o60或o120 B .o60 C .o30或o150 D .o304. 公差下为0的等差数列{}n a 中, 12a =,且248,,a a a 成等比数列,数列{}n a 的前n 项和为n S ,则8S =( )A .72B .56 C. 36 D .285. 在ABC ∆中, o o 45,60AB A B ===,则BC =( )A .3-B C. 2 D .3+ 6. 不等式组2(2)01x x x +⎧>⎨<⎩的解集为( )A .(2,1)--B .(1,0)- C. (0,1) D .(1,)+∞7. 已知不等式210ax bx --≥的解集是11[,]23--,则不等式20x bx a --<的解集是( ) A .(2,3) B .(,2)(3,)-∞+∞ C. 11(,)32 D .11(,)(,)32-∞+∞ 8. 设{}n a 是由正数组成的等比数列, n S 为其前n 项和,已知241a a =,37S =,则5S 等于( ) A .152 B .314 C. 334 D .1729. 已知ABC ∆的内角,,A B C 的对边分别为,,a b c ,1cos ,7,65A a c ===,则b =( ) A .8B .7 C. 6 D .510. 已知0,0x y >>,且2x y +=,则14x y+的最小值是( ) A .72 B .4 C. 92D .5 11. 设ABC ∆的三内角A B C 、、成等差数列, sin sin sin A B C 、、成等比数列,则这个三角形的形状是( ) A.直角三角形B.钝角三角形C.等腰直角三角形D.等边三角形12. 如图所示,为测一树的高度,在地上选取A B 、两点,从A B 、两点分别测得望树尖的仰角为oo30,45,且A B 、两点之间的距离为60m ,则树的高度为( )A .(30303)m +B .(30153)m + C. (15303)m + D .(1533)m +第Ⅱ卷(非选择题 共90分)二、填空题(本大题4题,每小题5分,共20分) 13. 不等式2340x x --+>的解集为 . 14. ABC ∆中内角,,A B C 的对边分别为,,a b c ,已知,13A b π==,其面积为3,则a = .15. 若对任意1x >,不等式2471x x a x -+≥-恒成立,则实数a 的取值范围是 . 16. 两千多年前,古希腊毕达哥拉斯学派的数学家曾经在沙滩上研究数学问题,他们在沙滩上画点或用小石子来表示数,按照点或小石子能排列的形状对数进行分类,如图2中的实心点个数1,5,12,22,,被称为五角形数,其中第1个五角形数记作11a =,第2个五角形数记作25a =,第3个五角形数记作312a =,第4个五角形数记作422a =,……,若按此规律继续下去,则n a = .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 已知等差数列{}n a 满足1210a a +=,432a a +=. (1)求{}n a 的通项公式;(2)设等比数列{}n b 满足2337,b a b a ==,问:6b 与数列{}n a 的第几项相等?18.已知ABC ∆的内角,,A B C 所对的边分别为,,a b c ,且32,cos 5a B ==. (1)若4b =,求sin A 的值;(2)若ABC ∆的面积4ABC S ∆=,求,b c 的值.19.设数列{}n a 的前n 项和为n S ,且12n n S a =-+. (I)求{}n a 的通项公式;(Ⅱ)若21log n n b a +=,且数列{}n b 的前n 项和为n T ,求12111nT T T +++. 18. 如图,在ABC ∆中, ACB ∠为钝角, 2,2AB BC ==,6A π=,D 为AC 延长线上一点,且31CD =+.(1)求BCD ∠的大小;(2)求BD 的长及ABC ∆的面积.21. 设数列{}n a 的前n 项和为n S ,已知12323n a a a na ++++*(1)2()n n S n n N =-+∈(1)求23a a ,的值;(2)求证:数列{+2}n S 是等比数列; (3)设814=2n n n b S -+,数列{}n b 的前n 项和为n T ,求满足0n T >的最小自然数n 的值.22.已知函数2()1()f x mx mx m R =--∈ (1)当0m >,解关于x 的不等式()23f x x <-(2)对于[1,3]x ∈,()1f x m x >-+-,恒成立,求m 的取值范围.第二学期高一年级期中考试数学答案第1卷 选择题(共60分)一、选择题(本大题12题,每小题5分,共60分)二、填空题(本大题4题,每小题5分,共20分)13. (4,1)-(,2]-∞ 16. 232n n na -=三、解答题(本大题6题,共70分) 17. 解析:(1)设等差数列{}n a 的公差为d . 因为432a a -=,所以2d =.又因为1210a a +=,所以1210a d +=,故14a =. 所以42(1)22n a n n =+-=+ (1,2,)n =.(2)设等比数列{}n b 的公比为q . 因为238b a ==,3716b a ==, 所以12,4q b ==.所以61642128b -=⨯=.18. 解:(1)3cos 05B =>,且0B π<<, 4sin 5B ∴==.由正弦定理得sin sin a bA B=, 42sin 25sin 45a B A b ⨯∴===. (2) 1sin 42ABC S ac B ∆==,142425c ∴⨯⨯⨯=.5c ∴=.由余弦定理得2222cos b b c ac B =+-,b ∴===19.解:(I)当1n =时, 11112a S a ==-+解得11a = 当2n ≥时, 1n n n a S S -=-=1(12)(12)n n a a --+--+ 整理得,12n n a a -=即12nn a a -= 故数列{}n a 是首项为1,公比为2的等比数列,故通项公式为12n n a -= (Ⅱ) 212log log 2nn n b a n +===,于是前n 项和为12n n T b b b =+++=(1)122n n n ++++=, 从而1222(1)1n T n n n n ==-++ 故121112212n T T T ⎛⎫+++=-+ ⎪⎝⎭2222231n n ⎛⎫⎛⎫-++- ⎪ ⎪+⎝⎭⎝⎭222111n n n =-=++ 20.(1)在ABC ∆中,因为2,,6AB A BC π===由正弦定理可得sin sin ABBCACB A=∠,即21sin sin 62ACB π===∠ 所以sin 2ACB ∠=. 因为ACB ∠为钝角, 所以34ACB π∠=,所以4BCD π∠-; (2)在BCD ∆中,由余弦定理可知222BDCB DC =+2cos CB DC BCD -⋅⋅∠,即2221)BD =---21)cos4π⨯,整理得2BD =.在ABC ∆中,由余弦定理可知2222cos BC AB AC AB AC A =+-⋅⋅,即222222cos6AC AC π=+-⨯⨯⨯,整理得220AC -+=,解得1AC =±。

2023-2024学年湖北省武汉市高一下学期期中月考数学试题1(含答案)

2023-2024学年湖北省武汉市高一下学期期中月考数学试题1(含答案)

2023-2024学年湖北省武汉市高一下册期中联考数学试题一、单选题1.若角的顶点在原点,始边与x 轴的非负半轴重合,则与2023 角终边相同的最小正角为()A .23°B .137°C .223°D .337°【正确答案】C【分析】运用终边相同的角的定义求解即可.【详解】因为20233605223︒︒︒=⨯+,所以与2023︒角终边相同的最小正角为223︒.故选:C.2.已知向量()1,1a = ,()8,6b =- ,则2a b -的值为()A .12B .10C .8D .6【正确答案】B【分析】现根据平面向量坐标的线性运算求得2a b -,进而根据向量的模长公式求解即可.【详解】由()1,1a =,()8,6b =- ,可得()()()22,28,66,8a b -=--=-,所以210a b -=.故选:B.3.已知4sin 5α=,则7cos 2πα⎛⎫+= ⎪⎝⎭()A .35B .35-C .45D .-45【正确答案】C【分析】运用诱导公式化简即可.【详解】7π7ππ4cos()cos(4π)cos()sin 2225αααα+=+-=-==.故选:C.4.已知G 是△ABC 的重心,若(),R AG xAB y AC x y =+∈)则2x y -=()A .-1B .1C .13D .-13【正确答案】D【分析】根据三角形重心的定义和向量的线性运算进行解决.【详解】由题意,画图如下:由重心的定义,可知:()2211133233AG AD AB AC AB AC =++=⋅= ,则11122333x y -=-⨯=-.故选:D.5.函数3πcos tan 02y x x x ⎛=⋅≤< ⎝且π2x ⎫≠⎪⎭的图象是下列图象中的()A.B.C .D.【正确答案】C【分析】根据函数的自变量,将函数变形为π3πsin ,0,22πsin ,.2x x x y x x ππ⎧≤<≤<⎪⎪=⎨⎪-<<⎪⎩或结合正弦函数的性质与图象,根据选项即可求解.【详解】依题意,π3πsin ,0,22cos tan πsin ,.2x x x y x x x x ππ⎧≤<≤<⎪⎪=⋅=⎨⎪-<<⎪⎩或由此判断出正确的选项为C.故选:C.6.已知平行四边形ABCD 中,4,2,4AB AD AB AD ==⋅= ,点P 在线段CD 上(不包含端点),则PA PB ⋅的取值范围是()A .[)1,8-B .()0,8C .[)1,10D .()0,10【正确答案】A【分析】根据平面向量的数量积的定义,由4AB AD ⋅= 可得π3A =,再以A 为原点,以AB 所在的直线为x 轴,以AB 的垂线为y 轴,建立坐标系,设(()15P x x <<,进而根据向量坐标的线性运算即数量积的坐标表示可得()221PA PB x ⋅=-- ,结合二次函数的性质即可求解.【详解】∵4AB =,2AD =,4AB AD ⋅=,∴cos 4AB AD A ⨯⨯=,即1cos 2A =,即π3A =,以A 为原点,以AB 所在的直线为x 轴,以AB 的垂线为y 轴,建立如图所示的坐标系,∴()0,0A ,()4,0B ,(D ,(C ,设(()15P x x <<,∴((,,4,PA x PB x =-=--,∴()()22434321PA PB x x x x x ⋅=-+=-+=-- ,设()()221f x x =--,∴()f x 在()1,2上单调递减,在[)2,5上单调递增,∴()()min 21f x f ==-,()()58f x f <=,则PA PB ⋅的取值范围是[)1,8-.故选:A.7.已知函数()()tan (0,0)f x x ωϕωϕπ=-><<与x 轴交于A ,B 两点,且线段AB 长度的最小值为π3,若将函数()f x 的图象向左平移π12个单位后恰好为奇函数,则ϕ的值为()A .π4B .π2C .3π4D .π4或3π4【正确答案】D【分析】根据题意求得()f x 的最小正周期为π3T =,得到3ω=,结合三角函数的图象变换,得到()tan(3π4)g x x ϕ=-+,由()g x 为奇函数,求得ππ,Z 42k k ϕ=-∈,进而求得ϕ的值.【详解】因为函数()()tan f x x ωϕ=-与x 轴交于A ,B 两点,且线段AB 长度的最小值为π3,可得函数()f x 的最小正周期为π3T =,所以2π3Tω==,所以()()tan 3f x x ϕ=-,将函数()f x 的图象向左平移π12个单位长度,得到()tan(3π4)g x x ϕ=-+,又因为()g x 为奇函数,可得ππ,Z 42k k ϕ-=∈,即ππ,Z 42k k ϕ=-∈,因为0ϕπ<<,当0k =时,可得π4ϕ=;当1k =-时,可得43πϕ=,所以ϕ的值为π4或3π4.故选:D.8.我国汉代数学家赵爽为了证明勾股定理,创造了一幅“勾股圆方图”,后人称其为“赵爽弦图”,类比赵爽弦图,用3个全等的小三角形拼成了如图所示的等边ABC ,若2,sin 14EF ACF =∠=,则AC =()A .8B .7C .6D .5【正确答案】B【分析】在ACF △中,设AF CE t ==,根据题意利用正弦定理可得73AC t =,然后利用余弦定理即可求解.【详解】在ACF △中,18060120AFC ∠=-= ,设AF CE t ==,则2CF t =+,由正弦定理可知,sin sin AF ACACF AFC=∠∠=,则73AC t =,在ACF △中,222||||2cos AC AF CF AF CF AFC =+-∠,()()22249122292t t t t t ⎛⎫=++-+⨯- ⎪⎝⎭,又0t >,则3t =,故773AC t ==,故选:B.二、多选题9.已知函数()f x 的图象可由函数()1πsin 224g x x ⎛⎫=+ ⎪⎝⎭的图象向左平移π8个单位长度得到,则下列说法正确的是()A .()f x 的最小正周期为πB .()f x 是偶函数C .()f x 在π[0,4上单调递增D .当π0,4x ⎡⎤∈⎢⎥⎣⎦时,()f x 的取值范围为1[0,]2【正确答案】ABD【分析】运用图象平移变换求得()f x 的解析式,运用公式2π||T ω=可判断A 项,运用偶函数的定义可判断B 项,求()f x 的单调递减区间,判断π[0,]4是否包含于()f x 的单调递减区间即可判断C 项,运用()f x 在π[0,]4上单调递减求()f x 的值域即可判断D 项.【详解】由题意知,1ππ1π1()sin(2()sin(2cos 2284222f x x x x =++=+=,对于A 项,2ππ2T ==,故A 项正确;对于B 项,()f x 的定义域为R ,11()cos(2)cos 2()22f x x x f x -=-==,所以()f x 为偶函数,故B 项正确;对于C 项,因为2π2π2πk x k ≤≤+,Z k ∈,解得:πππ2k x k ≤≤+,Z k ∈,所以()f x 单调递减区间为π[π,π]2k k +,Z k ∈,又因为ππ[0,][π,π]42k k ⊆+,Z k ∈,所以()f x 在π[0,4上单调递减,故C 项错误;对于D 项,由C 项知,()f x 在π[0,4上单调递减,1(0)2f =,π1π()cos 0422f ==,所以()f x 的值域为1[0,]2,故D 项正确.故选:ABD.10.蜜蜂的巢房是令人惊叹的神奇天然建筑物.巢房是严格的六角柱状体,它的一端是平整的六角形开口,另一端是封闭的六角菱形的底,由三个相同的菱形组成,巢中被封盖的是自然成熟的蜂密,如图是一个蜂巢的正六边形开口ABCDEF ,则下列说法正确的是()A .FB FD AE-= B .2AD AF AF⋅= C .AD 在AB 上的投影向量为ABD .32AC AE AD+= 【正确答案】BCD【分析】可得DB与AE为相反向量可判断A ;利用数量积公式计算可判断B ;由投影向量的定义可判断C ;由图得直线AD 平分EAC ∠,且与EC 的交点H 为EC 中点,利用,EDH AEH 均为含π6的直角三角形,可判断D.【详解】对于A ,FB FD DB -= ,显然由图可得DB与AE 为相反向量,故A 错误;对于B ,π3DAF ∠=,AD AF =2 ,所以2πcos 3AD AF AD AF AF ⋅== ,故B 正确;对于C ,因为π2ABD ∠=,则AD 在AB 上的投影向量为AB,故C 正确;对于D ,由图易得AE AC =,直线AD 平分EAC ∠,且与EC 的交点H 为EC中点,且ACE △为正三角形,根据平行四边形法则有2AC AE AH += 与AD共线且同方向,ππ,26DHE DHC HED HCD ∠==∠=∠=,故3,33EH AH DH === ,则4AD DH = ,而26AH DH = ,故232AH AD= ,故32AC AE AD += ,故D 正确.故选:BCD.11.已知ABC 的内角A 、B 、C 所对的边分别为a 、b 、c ,则下列四个命题中正确的命题是()A .若cos cos cos a b cA B C==,则ABC 一定是等边三角形B .若cos cos a A b B =,则ABC 一定是等腰三角形C .若2220a b c +->,则ABC 一定是锐角三角形D .若tan tan tan 0A B C ++<,则ABC 一定是钝角三角形【正确答案】AD【分析】利用正弦定理以及正切函数的单调性可判断A 选项;利用正弦定理结合二倍角公式可得出A 、B 的关系,可判断B 选项;利用余弦定理可判断C 选项;分析可知tan A 、tan B 、tan C 中一定有一个小于0成立,可判断D 选项.【详解】对于A 选项,因为cos cos cos a b c A B C==,由正弦定理可得sin sin sin cos cos cos A B CA B C ==,则tan tan tan A B C ==,因为ABC 至少有两个锐角,从而可得tan tan tan 0A B C ==>,故ABC 为锐角三角形,因为正切函数tan y x =在π0,2⎛⎫ ⎪⎝⎭上为增函数,故A B C ==,所以,ABC 为等边三角形,A 对;对于B 选项,因为cos cos a A b B =,由正弦定理可得sin cos sin cos A A B B =,即sin 2sin 2A B =,因为A 、()0,πB ∈,所以,sin 0A >,sin 0B >,又因为A 、B 中至少有一个为锐角,则sin cos sin cos 0A A B B =>,则A 、B 均为锐角,所以,2A 、()20,π∈B ,所以,22A B =或22πA B +=,即A B =或π2A B +=,ABC 为等腰三角形或直角三角形,B 错;对于C 选项,2220a b c +->时,由余弦定理可得222cos 02a b c C ab+-=>,即C 为锐角,但A 、B 是否都是锐角,不能保证,因此ABC 不一定是锐角三角形,C 错;对于D 选项,因为A 、B 、()0,πC ∈,由tan tan tan 0A B C ++<,因为A 、B 、C 至少有两个锐角,则tan A 、tan B 、tan C 中至少有两个正数,可得tan A 、tan B 、tan C 中一定有一个小于0成立,不妨设tan 0C <,可得π,π2C ⎛⎫∈ ⎪⎝⎭,所以ABC 为钝角三角形,所以D 正确.故选:AD .12.已知ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c ,O 为ABC 的外心,4,5b c ==,ABC的面积S 满足()22b c a +-=.若AO AB AC λμ=+,则下列结论正确的是()A .π3A =B .S =C .92AO BC ⋅=-D .1320λμ+=【正确答案】ACD【分析】结合题意和余弦定理得出π3A =,判断选项A ;利用三角形面积公式判断选项B ;利用平面向量的数量积运算判断选项C ;利用平面向量的基本定理即可求解D【详解】由()22b c a +-=,得2222sin b c a bc A+-+=2cos 2sin bc A bc A +=,即cos 1A A+得π1sin 62A ⎛⎫-= ⎪⎝⎭,又0πA <<,故ππ5π666A -<-<,∴ππ66A -=,即π3A =所以A正确;1sin 2S bc A ==,所以B 错误;()22119||||222AO BC AO AC AB AC AB ⋅=⋅-=-=- ,所以C 正确;由AO AB AC λμ=+ ,可知22AO AB AB AC ABAO AC AB AC AC λμλμ⎧⋅=+⋅⎪⎨⎪⋅=⋅+⎩得252510281016λμλμ⎧=+⎪⎨⎪=+⎩解得:12,45μλ==,故1320λμ+=,所以D 正确.故选:ACD.三、填空题13.已知向量,a b 满足1,2,22a b a b ==-= ,则a 与b 的夹角为___.【正确答案】3π/13π【分析】根据平面向量数量积的性质求解即可.【详解】设a 与b的夹角为θ,由22a b -= ,可得224a b -= ,即22444a a b b -⋅+= ,即2244cos 4a a b b θ-⋅⋅+=,即48cos 44θ-+=,即1cos 2θ=,又[]0,πθ∈,所以π3θ=故答案为.π314.已知定义在R 上的函数()f x 不是常数函数,且同时具有下列两个性质:①()()=f x f x -;②()π4f x f x ⎛⎫+= ⎪⎝⎭.请你写出符合上述条件的一个函数()f x =___.【正确答案】cos8x (答案不唯一)【分析】根据偶函数和周期性直接写出一个符合题意的函数即可.【详解】由题意可知,()f x 为偶函数,且周期为π4,所以可以取()cos8f x x =.故cos8x (答案不唯一)15.已知ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,π3ABC ∠=,ABC ∠的角平分线交AC于点D ,且BD ,则a c +的最小值为___.【正确答案】4【分析】利用等面积法可得出ABC ABD BCD S S S =+△△△,化简可得111a c+=,将代数式a c +与11a c +相乘,展开后利用基本不等式可求得a c +的最小值.【详解】因为π3ABC ∠=,ABC ∠的角平分线交AC 于点D ,且BD =因为ABC ABD BCD S S S =+△△△,即1π1π1πsin sin sin 232626ac c BD a BD =⋅+⋅,即)44ac c a =+,即ac a c =+,所以,111c a ac a c +=+=,所以,()11224c a a c a c a c a c ⎛⎫+=++=++≥+= ⎪⎝⎭,当且仅当2a c ==时,等号成立,故a c +的最小值为4.故答案为.416.已知函数()πsin (0)6f x x ωω⎛⎫=+> ⎪⎝⎭),若方程()2[]1f x =在()0,3π上恰有5个实数解,则实数ω的取值范围为___.【正确答案】1316,99⎛⎤⎥⎝⎦【分析】由2[()]1f x =可得()1f x =±,运用换元法令πππ3π666x t t ωω⎛⎫+=<<+ ⎪⎝⎭,将问题转化为sin y t =在ππ,366ωπ⎛⎫+ ⎪⎝⎭上恰有5条对称轴,画sin y t =图象运用数形结合列式即可求得结果.【详解】当03πx <<时,πππ3π666x ωω<+<+,因为函数()πsin 6f x x ω⎛⎫=+ ⎪⎝⎭在区间(0,3π)上恰好有5个x ,使得()1f x =±,故()f x 在(0,3π)上恰有5条对称轴.令πππ3π666x t t ωω⎛⎫+=<<+ ⎪⎝⎭,则sin y t =在ππ,366ωπ⎛⎫+ ⎪⎝⎭上恰有5条对称轴,如图:所以9ππ11π3π262ω<+≤,解得1316,99ω⎛⎤∈ ⎥⎝⎦.故答案为.1316,99⎛⎤ ⎥⎝⎦四、解答题17.已知平面向量()()1,2,3,2a b ==-- .(1)若()2c a b ⊥+ ,且5c = c 的坐标;(2)若a 与a b λ+ 的夹角为锐角,求实数λ的取值范围.【正确答案】(1)()2,1--或()2,1(2)()5,00,7⎛⎫-∞⋃ ⎪⎝⎭【分析】(1)根据平面向量数量积的坐标表示及垂直求解即可;(2)由题意可得()0a a b λ⋅+> 且a 与a b λ+ 不共线,进而根据平面向量数量积和共线的坐标表示求解即可.【详解】(1)由()()1,2,3,2a b ==-- ,所以()()()22,43,21,2a b +=+--=- ,设(),c x y = ,因为()2c a b ⊥+ ,所以()220c a b x y ⋅+=-+= ,因为5c = 225x y +=解得21x y =-⎧⎨=-⎩,或21x y =⎧⎨=⎩,所以c的坐标为()2,1--或()2,1.(2)由()()1,2,3,2a b ==-- ,所以()()()1,23,213,22a b λλλλλ+=+--=-- ,因为a 与a b λ+ 的夹角为锐角,所以()0a a b λ⋅+> 且a 与a b λ+ 不共线,()()132********λλλλ⎧-+->⎪⎨-≠-⎪⎩,解得57λ<且0λ≠,即实数λ的取值范围为()5,00,7⎛⎫-∞⋃ ⎪⎝⎭.18.函数()()πsin (0,0)2f x A x A ωϕωϕ=+>><的部分图像如图所示.(1)求函数()y f x =的解析式;(2)求()f x 在[]π,0-上的单调递减区间及对称轴.【正确答案】(1)()π2sin 26f x x ⎛⎫=+ ⎪⎝⎭;(2)单调减区间为5ππ,63⎡⎤--⎢⎥⎣⎦;对称轴方程为5π6x =-和π3x =-【分析】(1)由函数图像得2A =,计算得周期πT =,从而得2ω=,再代入最大值计算可得ϕ值,从而可得函数解析式;(2)由整体法计算函数()f x 的单调递减区间和对称轴方程,然后结合[]π,0-的范围,可得答案.【详解】(1)由图可得2A =,周期为2ππ2π2π36T ω⎛⎫=-== ⎪⎝⎭,所以2ω=,因为0ω>,所以2ω=;根据图像可得ππ22π,62k k ϕ⨯+=+∈Z ,解得π2π,6k k ϕ=+∈Z ,因为π2ϕ<,所以π6ϕ=,所以()π2sin 26f x x ⎛⎫=+ ⎪⎝⎭(2)令ππ3π2π22π,262k x k k +≤+≤+∈Z ,解得π2πππ,63k x k k +≤≤+∈Z ,令ππ2π,62x k k +=+∈Z ,解得对称轴方程为:ππ,26k x k =+∈Z ;所以()f x 单调递减区间为()π2ππ,π63k k k ⎡⎤++∈⎢⎥⎣⎦Z ;对称轴方程为:ππ,26k x k =+∈Z 所以()f x 在[]π,0-上的单调减区间为5ππ,63⎡⎤--⎢⎥⎣⎦;()f x 在[]π,0-上的对称轴方程为5π6x =-和π3x =-19.已知π,02α⎛⎫∈- ⎪⎝⎭,且函数()sin tan f ααα=(1)化简()f α;(2)若函数()()2π222g x f x f x ⎛⎫=---+ ⎪⎝⎭,试求其最大值.【正确答案】(1)cos α-(2)338【分析】(1)由π,02α⎛⎫∈- ⎪⎝⎭可得sin 0,cos 0αα<>,结合同角三角函数关系化简即可;(2)根据题意可得()g x 的定义域为π,02⎛⎫- ⎪⎝⎭,化简可得()21332sin 48g x x ⎛⎫=-++ ⎪⎝⎭,进而求解.【详解】(1)π,02α⎛⎫∈- ⎪⎝⎭,sin 0,cos 0αα∴<>()sin tan f ααα∴=-sin sin cos ααα=1cos sin cos sin sin cos sin ααααααα+=⋅-⋅--cos α=-.(2)π,02x ⎛⎫∈- ⎪⎝⎭,ππ,022x ⎛⎫∴--∈- ⎪⎝⎭,()g x ∴的定义域为π,02⎛⎫- ⎪⎝⎭,由()222π1332cos cos 22sin sin 42sin 248g x x x x x x ⎛⎫⎛⎫=+--+=--+=-++ ⎪ ⎪⎝⎭⎝⎭,π,02x ⎛⎫∈- ⎪⎝⎭,∴当sin 14x =-时,()g x 取最大值338.20.如图,在菱形ABCD 中,4,60AB BAD ∠== ,E ,F 分别是边AB ,BC 上的点,且AE EB = ,3BF FC = ,连接ED 、AF ,交点为G .(1)设AG t AF = ,求t 的值;(2)求EGF ∠的余弦值.【正确答案】(1)411t =(2)【分析】(1)324t AG t AF t AE AD ==+ ,由,,D G E 三点共线得DG DE λ= ,(1)AG AE AD λλ=+- ,结合平面向量基本定理可求得t ;(2)取,AB AD 作为平面的一组基底,用基底表示出向量,DE AF uuu r uu u r ,求出DE AF ⋅ ,DE ,AF ,由向量夹角公式即可求得答案.【详解】(1)()33244t t AG t AF t AB BF t AB AD t AE AD ==+=+=+ ,又D ,G ,E 三点共线,则DG DE λ= ,则()()1AG AD DG AD DE AD AE AD AE AD λλλλ=+=+=+-=+- ,因为AD ,AE 不共线,由平面向量基本定理,得2t λ=且314t λ=-,解得411t =.(2)取AB ,AD 作为平面的一组基底,则,1324DE AE AD AB AD AB B A A AF F B D =-=-=+=+ ,则44cos608AB AD ⋅=⨯⨯= ,221315324284DE AF AB AD AB AD AB AB AD AD ⎛⎫⎛⎫⋅=-⋅+=-⋅- ⎪ ⎪⎝⎭⎝⎭ 221534849284=⨯-⨯-⨯=-.DE ====,AF ====cos cos ,74DE AF EGF DE AF DE AF ⋅∠===- .21.已知函数()21cos cos 2f x x x x =-+.(1)若123f α⎛⎫= ⎪⎝⎭,且π02,α⎛∈⎫ ⎪⎝⎭,求sin α的值;(2)在锐角ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,若122C f ⎛⎫= ⎪⎝⎭,求a b 的取值范围.【正确答案】(2)12,2⎛⎫ ⎪⎝⎭【分析】(1)化简()f x 解析式,由123f α⎛⎫= ⎪⎝⎭得到π1sin 63α⎛⎫-= ⎪⎝⎭,从而求得πcos 63α⎛⎫-= ⎪⎝⎭,进而求得sin α.(2)由122C f ⎛⎫= ⎪⎝⎭求得C ,利用正弦定理化简a b ,通过tan B 的取值范围,求得a b 的取值范围.【详解】(1)因为()2cos211πs 1cos co in 2226s 2f x x x x x x x +⎛⎫=-+==-+ ⎝-⎪⎭,所以π1sin 263f αα⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,又π02,α⎛∈⎫ ⎪⎝⎭,则ππ,663πα⎛⎫-∈- ⎪⎝⎭,所以πcos 63α⎛⎫-== ⎪⎝⎭,又ππππππsin sin sin cos cos sin 666666αααα⎡⎤⎛⎫⎛⎫⎛⎫=-+=-+- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,故11sin 332α=⨯=(2)由π1sin 262C f C ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,又ππππ0,,2663C C ⎛⎫∈-<-< ⎪⎝⎭,所以ππ66C -=,即π3C =.由正弦定理sin sin a b A B =,可得2πsin sin 13sin sin 2B a A b B B ⎛⎫- ⎪⎝⎭===+,因为ABC 是锐角三角形,所以π022ππ032B B ⎧<<⎪⎪⎨⎪<-<⎪⎩,即ππ62B <<.所以3tan 0,32tan 2B B ⎛⎫>∈ ⎪⎝⎭,所以11,222a b ⎛⎫= ⎪⎝⎭.即a b 的取值范围为12,2⎛⎫ ⎪⎝⎭.22.某公园有一块矩形空地ABCD ,其中AB BC ⊥,AB =2BC =百米.为迎接“五一”观光游,欲从边界AD 上的中点P 处开始修建观赏小径PM ,PN ,MN ,其中M ,N 分别在边界AB ,CD 上,小径PM 与PN 相互垂直,区域PMA 和区域PND 内种植绣球花,区域PMN 内种植玫瑰花,区域BMNC 内种植杜鹃花.设APM α∠=.(1)设种植绣球花的区域的面积为S ,试将S 表示为关于α的函数,并求其取值范围;(2)为了节省建造成本,公园负责人要求观赏小径的长度之和(即PMN 的周长l )最小.试分析当α为何值时,PMN 的周长l 最小,并求出其最小值,【正确答案】(1)11tan 2tan S αα⎛⎫=+ ⎪⎝⎭;⎡⎢⎣⎦(2)当π4α=时,PMN 的周长l 取得最小值,最小值为2百米【分析】(1)结合题意可得ππ,63α⎡⎤∈⎢⎥⎣⎦,进而可得11tan 2tan PAM PDN S S S αα⎛⎫=+=+ ⎪⎝⎭ ,再结合对勾函数的性质即可求解;(2)在直角PAM △中,1cos PM α=,在直角PND △中,1sin PN α=,由勾股定理得,1cos sin MN αα=,可得()1sin cos sin cos f ααααα++=,令sin cos t αα=+,进而求解即可.【详解】(1)由题意,当点M 位于点B 时,角α取最大值,此时tan α=因为π02α<<,所以π3α=,当点N 位于点C 时,由对称性知DPN ∠取最大值π3,角α取最小值πππ236-=,所以角α的取值范围是ππ,63⎡⎤⎢⎥⎣⎦,在直角PAM △中,tan AM α=;在直角PND △中,1tan DN α=,所以种植绣球花的区域的面积1111tan 222tan PAM PDN S S S PA AM PD DN αα⎛⎫=+=⋅+⋅=+ ⎪⎝⎭,令tan x α=,则由ππ,63α⎡⎤∈⎢⎥⎣⎦知,3x ∈⎣,所以112S x x ⎛⎫=+ ⎪⎝⎭,由对勾函数的性质知,函数在,13⎫⎪⎪⎝⎭上单调递减,在(上单调递增,12,3x x ⎡+∈⎢⎣⎦,所以S的取值范围为⎡⎢⎣⎦.(2)在直角PAM △中,1cos PM α=,在直角PND △中,πcos cos sin 2PD DPN PN ∠αα⎛⎫=-== ⎪⎝⎭且1PD =,所以1sin PN α=,在直角PMN 中,由勾股定理得,2222222111cos sin cos sin MN PM PN αααα=+=+=,因为ππ,63α⎡⎤∈⎢⎥⎣⎦,所以sin 0,cos 0a α>>,所以1cos sin MN αα=,所以()1111sin cos sin cos sin cos sin cos f ααααααααα++=++=,ππ,63α⎡⎤∈⎢⎥⎣⎦,令sin cos t αα=+,因为ππ,63α⎡⎤∈⎢⎥⎣⎦,所以π4t α⎛⎫=+∈ ⎪⎝⎭⎣,又由21sin cos 2t αα-=,可得()212112t g t t t +==--,且()g t在⎣上单调递减,当t =时,() min 2g t ==,此时π4t α⎛⎫=+= ⎪⎝⎭π4α=,综上,当π4α=时,PMN 的周长l取得最小值,最小值为2百米。

【典型题】高一数学下期中模拟试卷(附答案)

【典型题】高一数学下期中模拟试卷(附答案)

3.C
解析:C
【解析】
【分析】
根据题意作出图形,欲求球的半径 r .利用截面的性质即可得到三棱锥 S ABC 的体积可
看成是两个小三棱锥 S ABO 和 C ABO 的体积和,即可计算出三棱锥的体积,从而建立
关于 r 的方程,即可求出 r ,从而解决问题.
【详解】
解:根据题意作出图形:
设球心为 O ,球的半径 r .
19.如图,AB 是底面圆 O 的直径,点 C 是圆 O 上异于 A、B 的点,PO 垂直于圆 O 所在的平
面,且 PO OB 1, BC 2 ,点 E 在线段 PB 上,则 CE OE 的最小值为________.
20.已知双曲线
的半焦距为 ,过右焦点且斜率为 1 的直线与双曲
线的右支交于两点,若抛物线
(1)求证: OM / / 平面 ABD ; (2)若 AB BC 2 ,求三棱锥 M ABD 的体积. 23.已知过原点的动直线 l 与圆 C1 : x2 y2 6x 5 0 相交于不同的两点 , . (1)求圆 C1 的圆心坐标; (2)求线段 的中点 的轨迹 C 的方程;
(3)是否存在实数 k ,使得直线 L: y k x 4 与曲线 C 只有一个交点?若存在,求出
25.如图,已知四棱锥
的底面
是菱形,
平面
,点 为 的中点.
(1)求证: ∥平面 ;
(2)求证:
.
26.已知直线 l1 : ax y a 2 0 , l2 : x ay 2 0 ,点 P(5,0)
(1)当 l1 //l2 时,求 a 的值;
(2)求直线 l1 所过的定点 Q ,并求当点 P 到直线 l1 的距离最大时直线 l1 的方程.
17.三棱锥 P ABC 中, PA PB 5 , AC BC 2 , AC BC , PC 3 ,则

高一数学下学期期中考试数学试卷含答案(共5套)

高一数学下学期期中考试数学试卷含答案(共5套)
又 ,说明甲战士射击情况波动大,因此乙战士比甲战士射击情况稳定.
所以选乙战士去更合适;
21.(6分)(1) , ,
,所以 .
(2)(6分)根据表格数据可知在2012至2018年该地区农村居民家庭人均纯收入在逐年增加,平均每年增加 千元;
令 ,得 (千元),
即预测该地区2020年农村居民家庭人均纯收入 千元.
A.至少摸出 个白球B.至少摸出 个红球
C.摸出 个白球D.摸出 个白球或摸出 个红球
二、填空题(每题5分,共4小题)
13.如图是某路段的一个检测点对200辆汽车的车速进行检测所得结果的频率直方图,利用组中值估计,则下列说法正确的是________(填序号).
①平均数为62.5;②中位数为62.5;③众数为65.
5887 3522 2468 3748 1685 9527 1413 8727 1495 5656
A.09B.02C.15D.18
6.小李同学从网上购买了一本数学辅导书,快递员计划周日上午 之间送货到家,小李上午有两节视频课,上课时间分别为 和 ,则辅导书恰好在小李同学非上课时间送到的概率为()
A. B. C. D.
(1)求 边所在直线的方程;(5分)
(2)若 ,求 边所在直线的方程.(5分)
18.圆 经过三点: , , .
(1)求圆 的方程.(6分)
(2)求圆 与圆 : 的公共弦的长.(6分)
19.已知点 点 在圆 上运动,点 为线段 的中点.(1)求点 的轨迹方程;(6分)
(2)求点 到直线 的距离的最大值和最小值.(6分)
A.(-1,0)B.(1,0)C. D.
4.如图所示的程序框图,输出的结果是()
A. B. C. D.

2023-2024学年河北省石家庄市河北高一下学期期中数学质量检测模拟试题(含解析)

2023-2024学年河北省石家庄市河北高一下学期期中数学质量检测模拟试题(含解析)

2023-2024学年河北省石家庄市河北高一下册期中数学试题一、单选题1.复数z 满足()3i 12i z +=-(i 为虚数单位),则z 的虚部为()A .34B .3i4C .7i 10-D .710-【正确答案】D【分析】利用复数的除法运算求得z ,进而求得z 的虚部.【详解】()()()()12i 3i 12i 17i 17i 3i 3i 3i 101010z ----====-++-,则复数z 的虚部为710-.故选:D2.如图,在矩形ABCD 中,M 是CD 的中点,若AC AM AB λμ=+,则λμ+=()A .12B .1C .32D .2【正确答案】C【分析】由向量的平行四边形法则以及三角形法则得出12AC AM AB =+,进而得出λμ+.【详解】12AC AD AB AM MD AB AM AB =+=++=+ ,∴1λ=,12μ=,∴32λμ+=,故选:C .3.在△ABC 中,π3A =,6BC =,AB =,则C =()A .π6B .π4C .π3D .π4或3π4【正确答案】B【分析】利用正弦定理求得sin C ,进而求得C .【详解】由正弦定理得sin sin a cA C=,2,sinsin62CC==,由于c a<,所以C为锐角,所以π4C=.故选:B4.数据1,2,3,4,5,6,7,8,9的80%分位数为()A.7B.7.2C.7.5D.8【正确答案】D【分析】根据百分位数的定义计算即可得出答案.【详解】解:因为980%7.2⨯=,所以第80%分位数为第8个数,故数据1,2,3,4,5,6,7,8,9的第80百分位数为8.故选:D.5.已知向量()2,4a=r,()1,b x=,若向量a b⊥,则实数x的值是().A.2-B.12-C.12D.2【正确答案】B【分析】利用向量垂直的坐标表示即可求解.【详解】,240a b x⊥∴+=,解得12x=-.故选:B6.在ABC中,内角A,B,C所对应的边分别是a,b,c,若ABC的面积是)2224b c a+-,则A=()A.π3B.2π3C.π6D.5π6【正确答案】A【分析】根据正余弦定理及面积公式化简计算即可.【详解】由余弦定理可得:()2222cos,0,πb c a bc A A+-=∈由条件及正弦定理可得:)2221sin cos242b c aS bc A A+-===,所以tan A =,则π3A =.故选:A7.已知某企业有职工8000人,其职工年龄情况和绿色出行情况分别如图1和图2所示,则下列说法正确的是()A .该企业老年职工绿色出行的人数最多B .该企业青年职工绿色出行的人数最多C .该企业老年职工绿色出行的人数和青年职工绿色出行的人数之和与中年职工绿色出行的人数相等D .该企业绿色出行的人数占总人数的80%【正确答案】D由图中所给数据可求出该企业老年职工绿色出行的人数、中年职工绿色出行的人数和青年职工绿色出行的人数,从而进行比较即可得答案【详解】由图可知该企业老年职工绿色出行的人数是800030%90%2160⨯⨯=,中年职工绿色出行的人数是800040%80%2560⨯⨯=,青年职工绿色出行的人数是800030%70%1680⨯⨯=,则该企业职工绿色出行的人数占总人数的比例为21602560168080%8000++=,故A ,B ,C 错误,D 正确故选:D8.ABC 的外接圆圆心为O ,2AB =,3AC =,BC =AO BC ⋅=()A .52B .72C .53D .73【正确答案】A【分析】设D 是BC 边中点,由OD BC ⊥,1()2AD AB AC =+ ,BC AC AB=-,再利用数量积的运算律计算可得.【详解】如图,设D 是BC 边中点,连接,OD AO ,则OD BC ⊥,1()2AD AB AC =+ ,2211()()()()22AO BC AD DO BC AD BC DO BC AB AC AC AB AC AB ⋅=+⋅=⋅+⋅=+⋅-=- 2215(32)22=⨯-=.故选:A.二、多选题9.若11i z =+,22i z =,则()A .212z z =B .121z z z -=C .21z z 在复平面内对应的点在第二象限D .122z z -+是实数【正确答案】ABD【分析】利用复数的四则运算法则及复数的摸公式,结合复数的复数的几何意义及复数的概念即可求解.【详解】因为()22211i 12i i 2i z =+=++=,所以A 正确;因为121i z z -=-=,11i z =+=B 正确;因为()()()2212i 1i 2i 2i 2i 1i 1i 1i 1i 2z z --====+++-,它在复平面内对应的点为()1,1,所以21z z 在复平面内对应的点在第一象限,所以C 错误;因为()12221i 2i 2z z -+=-++=-,所以122z z -+是实数,所以D 正确.故选:ABD.10.下列四式可以化简为PQ的是()A .()AB PA BQ ++ B .()()AB PC BA QC ++-C .QC CQ QP +-D .PA AB BQ+- 【正确答案】ABC【分析】根据向量的运算法则依次计算即可.【详解】对选项A :()()AB PA BQ AB BQ AP AQ AP PQ ++=+-=-=,正确;对选项B :()()()()AB PC BA QC AB AB PC CQ PQ ++-=-++=,正确;对选项C :QC CQ QP QP PQ +-=-=,正确;对选项D :PA AB BQ PB BQ PQ +-=-≠,错误.故选:ABC11.2021年4月至2021年12月我国规模以上工业天然气产量保持平稳,日均产量(亿立方米)与当月增速(%)如图所示,则()备注:日均产品产量是以当月公布的我国规模以上工业企业总产量除以该月日历天数计算得到.当月增速100%-=⨯当月产量去年同期产量去年同期产量.A .2021年12月份我国规模以上工业天然气产量当月增速比上月放缓2.1个百分点B .2021年4月至2021年12月我国规模以上工业天然气产量当月增速的极差为12.6%C .2021年7月份我国规模以上工业天然气产量为153亿立方米D .2021年4月至2021年12月我国规模以上工业天然气日均产量的40%分位数为5.3亿立方米【正确答案】ABD【分析】对于A 选项,对比11月份与12月份的增速即可判断;对于B 选项,利用极差的定于即可判断;对于C 选项,计算可知7月我国规模以上工业天然气产量为5.131158.1⨯=亿立方米,从而判断C 选项错误;对于D 选项,根据40%分位数的含义求解即可【详解】2021年12月份我国规模以上工业天然气产量当月增速为2.3个百分点,11月份增速为4.4个百分点,比上月放缓2.1个百分点.故A 正确;2021年4月至12月我国规模以上工业天然气产量当月增速的极差为13.1%0.5%12.6%-=.故B 正确;2021年7月我国规模以上工业天然气产量为5.131158.1⨯=亿立方米.故C 错误2021年4月至12月我国规模以上工业天然气日均产量从小到大为5.1,5.1,5.2,5.3,5.4,5.6,5.7,5.9,6.2,因为90.4 3.6⨯=,所以该组数据的40%分位数为5.3亿立方米.故D 正确故选:ABD12.在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知60,4B b =︒=,则下列判断中正确的是()A .若π4A =,则a =B .若92a =,则该三角形有两解C .ABC 周长有最大值12D .ABC面积有最小值【正确答案】ABC【分析】对于ABC ,根据正、余弦定理结合基本不等式即可解决;对于D,由正弦定理得164sin sin sin 23ABC S ac B A C == ,根据三角恒等变换解决即可.【详解】对于A ,60,4B b ︒==,π4A =,由正弦定理得sin sin b a B A =,所以4sin 2sin 3b Aa B⨯==,故A 正确;对于B ,由正弦定理得sin sin b a B A=得,所以9sin 22sin 1416a B Ab ⨯====<,因为a b A B >⇒>,则A 有两个解,所以该三角形有两解,故B 正确;对于C ,由2222cos b a c ac B =+-,得2222223116()3()()()44a c ac a c ac a c a c a c =+-=+-≥+-+=+,所以8a c +≤,当且仅当4a c ==时取等号,此时三角形周长最大为等边三角形,周长为12,故C 正确;对于Dsin sin sin b a cB AC ===得,a A c C =,故164sin sin sin 23ABC S ac B A C ==sin(120)A A ︒=-1sin (cos sin )322A A A =+12(1cos 2)4A A ⎤=+-⎥⎣⎦11cos(260)22A ︒⎡⎤=-+⎢⎥⎣⎦1cos(2120)2A ︒⎤=-+⎥⎣⎦由于1(0,120),2120(120,120),cos(2120),12A A A ︒︒︒︒︒︒⎛⎤∈---∈- ⎝∈⎥⎦,无最小值,所以ABC面积无最小值,有最大值为D 错误.故选:C.三、填空题13.已知一组数据3,2,4,5,1,9a a --的平均数为3(其中a R ∈),则中位数为_____________.【正确答案】3.5【分析】首先根据平均数求出参数a ,即可一一列出数据,再求出数据的中位数即可;【详解】解:因为数据3,2,4,5,1,9a a --的平均数为3,所以32451936a a -+++-++=⨯,解得2a =,所以则组数据分别是3,4,4,3,1,9-,按从小到大排列分别为3,1,3,4,4,9-,故中位数为343.52+=故3.514.已知向量()1,2a =r,()4,b k = .若()()22a b a b -⊥+ ,则实数k 的值为______.【正确答案】2±【分析】根据两个向量垂直的坐标公式计算求解即可.【详解】因为()1,2a =r,()4,b k = ,所以()()22,4,26,4a b k a b k -=--+=+ ,又因为()()22a b a b -⊥+ ,所以()()()()222264440a b a b k k k -⋅+=-⨯+-+=-= ,所以2k =±.故答案为:2±.15.如图,小李开车在一条水平的公路上向正西方向前进,到A 处时测得公路北侧一山顶D 在西偏北30°的方向上,行驶1200m 后到达B 处,测得此山顶在西偏北75°的方向上,仰角为45°,则此山的高度为______m【正确答案】【分析】利用正弦定理即可求解.【详解】由题,作出空间图形如下,则有1200m,30,105AB CAB CBA =∠=∠= ,因为到达B 处仰角为45°,所以CB CD =,在ABC 中,1803010545ACB ∠=--= ,由正弦定理可得sin sin CB AB CAB ACB=∠∠解得CB =,所以CB CD ==,故答案为:.16.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,sin 2sin B A =,()()sin sin sin sin sin 0b B a B A a c C a B +-+--=,则ca=__________.【分析】利用正弦定理,将已知条件中的角化边,再由齐次式进行求解即可.【详解】∵sin 2sin B A =,∴由正弦定理,得2b a =;又∵()()sin sin sin sin sin 0b B a B A a c C a B +-+--=,∴由正弦定理,得()()20b a b a a c c ab +-+--=,将2b a =代入上式,化简整理得2230c ac a --=,两边同除以2a ,得230c ca a⎛⎫--= ⎪⎝⎭,解得c a =0c a =<(舍).故答案为.12+四、解答题17.已知z 是复数,3i z -为实数,5i2iz ---为纯虚数(i 为虚数单位).(1)求复数z ;(2)求i1z-的模.【正确答案】(1)13i z =+【分析】(1)设复数i(,R)z a b a b =+∈,根据题意3i z -为实数,5i2iz ---为纯虚数,利用复数的运算即可求解;(2)根据复数的除法运算和复数模的计算公式即可求解.【详解】(1)设复数i(,R)z a b a b =+∈,因为()3i 3i z a b -=+-为实数,所以3b =,则复数3i(R)z a a =+∈,又因为()()()()2i 2i 2i 22(4)i 224i 2i 2i 255i i 52i 5a a a a a z a --+--++-+===+--=------+为纯虚数,则22040a a -=⎧⎨+≠⎩,得1a =,所以复数13i z =+.(2)由(1)可知复数13i z =+,则()()()()1+3i 1i 1+3i 24i 12i 1i 1i 1i 1i 2z +-+====-+---+,所以i1z-=18.已知ABC 的三个内角,,A B C 所对的边分别是,,a b c ,且12,3,cos 4a b C ===-.(1)求ABC 的周长;(2)求AB 边上的高.【正确答案】(1)9(2)8【分析】(1)运用余弦定理求得c 的值即可.(2)运用同角三角函数平方关系求得sin C 的值,再运用等面积法求得AB 边上的高即可.【详解】(1)在△ABC 中,12,3,cos 4a b C ===-,由余弦定理得2222491cos 22234a b c c C ab +-+-===-⨯⨯,解得4c =,∴△ABC 的周长为2349a b c ++=++=.(2)∵1cos 4C =-,∴sin 4C ==.设AB 边上的高为h ,则11sin 22ab C ch =,即11234242h ⨯⨯⨯=⨯,解得h =.所以AB .19.在ABC 中,角A B C 、、的对边分别为,,a b c ,且满足()2cos cos 0c b A a C ++=.(1)求角A 的值;(2)若14,6a c ==,求ABC 的面积.【正确答案】(1)2π3A =;(2)【分析】(1)先用正弦定理边化角,再逆用两角和的正弦公式进行化简即可求解;(2)利用余弦定理求出b 边,然后代入三角形面积公式计算即可.【详解】(1)解:由题意知()2cos cos 0b c A a C ++=,在ABC 中,将正弦定理代入有()2sin sin cos sin cos 0B C A A C ++=,所以2sin cos sin cos sin cos 0B A C A A C ++=,即()2sin cos sin 0B A C A ++=,即()2sin cos sin π0B A B +-=,即2sin cos sin 0B A B +=,因为0πB <<,所以sin 0B ≠,所以1cos 2A =-,因为0πA <<,所以2π3A =;(2)由(1)知2π3A =,在ABC 中,由余弦定理可知222cos 2b c a A bc+-=,即2221614226b b +--=⨯⨯,解得10b =或16-(舍),所以11sin 106222ABC S bc A ==⨯⨯⨯= .20.已知向量()()()2,1,1,2,3,4a b c =-==- ,求:(1)若c ma nb =+ ﹐求m n +;(2)若()ka b c +∥ ,求k 的值.【正确答案】(1)1(2)2-【分析】(1)利用求出ma nb + ,再利用向量相等的坐标表示即可求出结果;(2)先求出ka b + ,再利用向量平行的坐标表示即可求出结果.【详解】(1)因为()()()2,1,1,2,3,4a b c =-==- ,所以(2,)ma m m =- ,(,2)nb n n = ,所以(2,2)ma nb m n m n +=+-+ ,又因为c ma nb =+ ,所以2324m n m n +=⎧⎨-+=-⎩,解得2,1m n ==-,所以1m n +=.(2)因为()()()2,1,1,2,3,4a b c =-==- ,所以(21,2)ka b k k +=+-+ ,又()ka b c +∥ ,所以(21)(4)3(2)0k k +⨯--⨯-+=,即5100k --=,所以2k =-.21.2021年3月18日,位于孝感市孝南区长兴工业园内的湖北福益康医疗科技有限公司正式落地投产,这是孝感市第一家获批的具有省级医疗器械生产许可证资质的企业,也是我市首家“一次性使用医用口罩、医用外科口罩”生产企业。

【好题】高一数学下期中模拟试卷(含答案)(1)

【好题】高一数学下期中模拟试卷(含答案)(1)

【好题】高一数学下期中模拟试卷(含答案)(1)一、选择题1.设曲线31x y x +=-在点25(,)处的切线与直线10ax y +-=平行,则a=( ) A .-4B .14-C .14D .42.设l 为直线,,αβ是两个不同的平面,下列命题中正确的是( ) A .若//l α,//l β,则//αβ B .若l α⊥,l β⊥,则//αβ C .若l α⊥,//l β,则//αβD .若αβ⊥,//l α,则l β⊥3.已知,,,A B C D 是同一球面上的四个点,其中ABC ∆是正三角形,AD ⊥平面ABC ,26AD AB ==,则该球的体积为( )A .48πB .24πC .16πD .323π4.三棱锥P -ABC 中,P A ⊥平面ABC ,AB ⊥BC ,P A =2,AB =BC =1,则其外接球的表面积为( ) A .6πB .5πC .4πD .3π5.如图,已知正方体1111ABCD A B C D -中,异面直线1AD 与1A C 所成的角的大小是()A .30oB .60oC .90oD .120o 6.已知圆截直线所得线段的长度是,则圆与圆的位置关系是( )A .内切B .相交C .外切D .相离7.四棱锥P ABCD -的底面ABCD 为正方形,PA ⊥底面ABCD ,2AB =,72PA =,若该四棱锥的所有顶点都在同一球面上,则该球的表面积为( ) A .812πB .814πC .65πD .652π8.若直线20ax y +-=和直线()2140x a y +-+=平行,则a 的值为( ) A .1-或2B .1-C .2D .不存在9.正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为( ) A .814πB .16πC .9πD .274π10.若方程21424x kx k +-=-+ 有两个相异的实根,则实数k 的取值范围是( )A .13,34⎛⎤ ⎥⎝⎦B .13,34⎛⎫ ⎪⎝⎭C .53,124⎛⎫ ⎪⎝⎭D .53,124纟çúçú棼11.如图在正方体中,点为线段的中点. 设点在线段上,直线与平面所成的角为,则的取值范围是( )A .B .C .D .12.若圆的参数方程为12cos ,32sin x y θθ=-+⎧⎨=+⎩(θ为参数),直线的参数方程为21,61x t y t =-⎧⎨=-⎩(t 为参数),则直线与圆的位置关系是( ) A .相交且过圆心 B .相交但不过圆心 C .相切 D .相离 二、填空题13.给出下面四个命题:①“直线l ⊥平面α内所有直线”的充要条件是“l ⊥平面α”; ②“直线//a 直线b ”的充要条件是“a 平行于b 所在的平面”; ③“直线a ,b 为异面直线”的充分不必要条件是“直线a ,b 不相交”;④“平面//α平面β”的必要不充分条件是“α内存在不共线三点到β的距离相等”. 其中正确命题的序号是____________________14.已知A ,B ,C ,D 是同一球面上的四个点,其中ABC ∆是正三角形,AD ⊥平面ABC ,26AD AB ==,则该球的体积为_________.15.若一个圆柱的侧面展开图是边长为2的正方形,则此圆柱的体积为 .16.已知直线40Ax By A +-=与圆O :2236x y +=交于M ,N 两点,则线段MN 中点G 的轨迹方程为______.17.若过点(8,1)P 的直线与双曲线2244x y -=相交于A ,B 两点,且P 是线段AB 的中点,则直线AB 的方程为________. 18.若圆的方程为2223()(1)124kx y k +++=-,则当圆的面积最大时,圆心坐标和半径分别为 、 .19.将一张坐标纸折叠一次,使点(10,0)与点(6,8)-重合,则与点(4,2)-重合的点是______. 20.如图所示,二面角l αβ--为60,,A B o是棱l 上的两点,,AC BD 分别在半平面内,αβ,且AC l ⊥,,4,6,8AB AC BD ===,则CD 的长______.三、解答题21.如图,在三棱台DEF ABC -中,2,,AB DE G H =分别为,AC BC 的中点.(Ⅰ)求证://BD 平面FGH ;(Ⅱ)若CF ⊥平面ABC ,,AB BC CF DE ⊥=,45BAC ∠=o ,求平面FGH 与平面ACFD 所成角(锐角)的大小.22.如图,四棱锥P -ABCD 的底面ABCD 是平行四边形,BA =BD =2,AD =2,PA =PD =5,E ,F 分别是棱AD ,PC 的中点.(1)证明:EF ∥平面PAB ; (2)若二面角P -AD -B 为60°. ①证明:平面PBC ⊥平面ABCD ; ②求直线EF 与平面PBC 所成角的正弦值.23.如图1,有一边长为2的正方形ABCD ,E 是边AD 的中点,将ABE △沿着直线BE 折起至A BE 'V 位置(如图2),此时恰好A E A C ''⊥,点A '在底面上的射影为O .(1)求证:A E BC '⊥;(2)求直线A B '与平面BCDE 所成角的正弦值.24.如图,在四棱锥P ABCD -中,底面ABCD 为正方形,PA ⊥平面ABCD ,PA AB =,AC 与BD 交于点O ,E ,F 分别为AB ,PC 的中点.(Ⅰ)求证:EF ∥平面PAD ; (Ⅱ)求证:AF ⊥平面POD .25.如图,在四棱锥P ABCD -中,CB ⊥平面PBD ,AD ⊥平面PBD ,PH BD ⊥于H ,10CD =,8BC AD ==.(1)求证:CD PH ⊥; (2)若13BH BD =,12PH BD =,在线段PD 上是否存在一点M ,使得HM ⊥平面PAD ,且直线HA 与平面PAD 35.若存在,求PM 的长;若不存在,请说明理由.26.若圆M 的方程为22(2)(5)10x y -+-=,△ABC 中,已知(1,1)A ,(4,2)B ,点C 为圆M 上的动点.(1)求AC 中点D 的轨迹方程; (2)求△ABC 面积的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】求出原函数的导函数,得到函数在2x =时的导数,再由两直线平行与斜率的关系求得a 值. 【详解】解:由31x y x +=-,得()()2213411x x y x x ---=---'=, ∴2'|4x y ==-, 又曲线31x y x +=-在点25(,)处的切线与直线10ax y +-=平行, ∴4a -=-,即4a =. 故选D . 【点睛】本题考查利用导数研究过曲线上某点处的切线方程,考查两直线平行与斜率的关系,是中档题.2.B解析:B 【解析】A 中,,αβ也可能相交;B 中,垂直与同一条直线的两个平面平行,故正确;C 中,,αβ也可能相交;D 中,l 也可能在平面β内. 【考点定位】点线面的位置关系3.D解析:D 【解析】 【分析】根据球的性质可知球心O 与ABC ∆外接圆圆心O '连线垂直于平面ABC ;在Rt POE ∆和Rt OO A ∆'中利用勾股定理构造出关于半径R 和OO '的方程组,解方程组求得R ,代入球的体积公式可得结果. 【详解】设O '为ABC ∆的外心,如下图所示:由球的性质可知,球心O 与O '连线垂直于平面ABC ,作OE AD ⊥于E 设球的半径为R ,OO x '=ABC ∆为等边三角形,且3AB = 3AO '∴=OO '⊥Q 平面ABC ,AD ⊥平面ABC ,OE AD ⊥OO AE x '∴==,3OE AO '==在Rt POE ∆和Rt OO A ∆'中,由勾股定理得:22222OE PE O O O A R ''+=+=,即()222363x x R +-=+=解得:3x =,3R =∴球的体积为:343233V R ππ==本题正确选项:D 【点睛】本题考查棱锥外接球的体积求解问题,关键是能够确定棱锥外接球球心的位置,从而在直角三角形中利用勾股定理构造方程求得半径.4.A解析:A 【解析】分析:将三棱锥的外接球转化为以,,AP AB BC 为长宽高的长方体的外接球,从而可得球半径,进而可得结果.详解:因为PA ⊥平面AB ,,AB BC ⊂平面ABC ,PA BC ∴⊥,,PA AB AB BC ⊥⊥Q ,所以三棱锥的外接球,就是以,,AP AB BC 为长宽高的长方体的外接球, 外接球的直径等于长方体的对角线, 即24116R =++=246R ππ=,故选A.点睛:本题主要考查三棱锥外接球表面积的求法,属于难题.要求外接球的表面积和体积,关键是求出求的半径,求外接球半径的常见方法有:①若三条棱两垂直则用22224R a b c =++(,,a b c 为三棱的长);②若SA ⊥面ABC (SA a =),则22244R r a =+(r 为ABC ∆外接圆半径)③可以转化为长方体的外接球; ④特殊几何体可以直接找出球心和半径.5.C解析:C 【解析】 【分析】在正方体1111ABCD A B C D -中,利用线面垂直的判定定理,证得1AD ⊥平面1A DC ,由此能求出结果. 【详解】如图所示,在正方体1111ABCD A B C D -中,连结1A D ,则1AD DC ⊥,11A D AD ⊥, 由线面垂直的判定定理得1AD ⊥平面1A DC ,所以11AD AC ⊥, 所以异面直线1AD 与1A C 所成的角的大小是90o . 故选C .【点睛】本题主要考查了直线与平面垂直的判定与证明,以及异面直线所成角的求解,其中解答中牢记异面直线所成的求解方法和转化思想的应用是解答的关键,平时注意空间思维能力的培养,着重考查了推理与论证能力,属于基础题.6.B解析:B 【解析】 化简圆到直线的距离,又两圆相交. 选B7.B解析:B 【解析】 【分析】根据题意可知,该四棱锥的外接球即为其所在长方体的外接球,根据公式即可求得. 【详解】根据题意,为方便说明,在长方体中找出该四棱锥如图所示:由图可知在长方体中的四棱锥P ABCD -完全满足题意, 故该四棱锥的外接球即是长方体的外接球,故外接球半径222722294R ⎛⎫++ ⎪⎝⎭==, 故该球的表面积为28144S R ππ==. 故选:B . 【点睛】本题考查四棱锥外接球的问题,关键的步骤是将问题转化为求长方体的外接球.8.C解析:C 【解析】 【分析】直接根据直线平行公式得到答案. 【详解】直线20ax y +-=和直线()2140x a y +-+=平行,则()12a a -=,解得2a =或1a =-.当1a =-时,两直线重合,排除. 故选:C . 【点睛】本题考查了根据直线平行求参数,意在考查学生的计算能力,多解是容易发生的错误.9.A解析:A 【解析】 【分析】 【详解】正四棱锥P-ABCD 的外接球的球心在它的高1PO 上, 记为O ,PO=AO=R ,14PO =,1OO =4-R , 在Rt △1AOO 中,12AO =由勾股定理()2224R R =+-得94R =, ∴球的表面积814S π=,故选A.考点:球的体积和表面积10.D解析:D 【解析】 【分析】由题意可得,曲线22(1)4(1)x y y +-=…与直线4(2)y k x -=-有2个交点,数形结合求得k 的范围. 【详解】如图所示,化简曲线得到22(1)4(1)x y y +-=…,表示以(0,1)为圆心,以2为半径的上半圆,直线化为4(2)y k x -=-,过定点(2,4)A ,设直线与半圆的切线为AD ,半圆的左端点为(2,1)B -,当AD AB k k k <…,直线与半圆有两个交点, AD 221k =+,解得512AD k =,4132(2)4AB k -==--,所以53,124k ⎛⎤∈ ⎥⎝⎦.故选:D 【点睛】本题考查直线与圆的位置关系,属于中档题.11.B解析:B 【解析】 【分析】 【详解】设正方体的棱长为,则,所以,.又直线与平面所成的角小于等于,而为钝角,所以的范围为,选B.【考点定位】空间直线与平面所成的角.12.B解析:B 【解析】 【分析】根据题意,将圆和直线的参数方程变形为普通方程,分析可得圆心不在直线上,再利用点到直线的距离公式计算可得圆心(1,3)-到直线320y x --=的距离2d <,得到直线与圆的位置关系为相交. 【详解】根据题意,圆的参数方程为1232x cos y sin θθ=-+⎧⎨=+⎩(θ为参数),则圆的普通方程为22(1)(3)4x y ++-=,其圆心坐标为(1,3)-,半径为2.直线的方程为2161x t y t =-⎧⎨=-⎩(t 为参数),则直线的普通方程为13(1)y x +=+,即320y x --=,圆心不在直线上.∴圆心(1,3)-到直线320y x --=的距离为33(1)2210219d -⨯--==<+,即直线与圆相交. 故选A. 【点睛】本题考查直线、圆的参数方程,涉及直线与圆的位置关系,解答本题的关键是将直线与圆的参数方程变形为普通方程.二、填空题13.①④【解析】【分析】利用直线与直线平面与平面间的位置关系及性质判断前后两个条件的推出关系利用充要条件的定义得结论【详解】解:对于①直线与平面垂直的定义是直线与平面内的所有直线垂直故①正确;对于②平行解析:①④【解析】【分析】利用直线与直线、平面与平面间的位置关系及性质判断前后两个条件的推出关系,利用充要条件的定义得结论.【详解】解:对于①直线与平面垂直的定义是直线与平面内的所有直线垂直,故①正确; 对于②,a 平行于b 所在的平面//a b ⇒或a 与b 异面,故②错;对于③,直线a 、b 不相交⇒直线a ,b 异面或平行,故③错;对于④,平面//α平面βα⇒内存在不共线三点到β的距离相等;α内存在不共线三点到β的距离相等⇒平面//α平面β或相交,故④正确故答案为:①④【点睛】本题考查直线与直线间的位置关系及性质;充要条件的判断.命题真假的判断,属于中档题.14.【解析】【分析】取正的外心为过作平面的垂线在上取点使得即得是三棱锥外接球球心求出球半径可得体积【详解】如图是外心延长线与交于点是中点过作平面取∵平面AB C∴到的距离相等∴是三棱锥外接球球心∴所以故答解析:【解析】【分析】取正ABC 的外心为M ,过M 作平面ABC 的垂线,在上取点O ,使得12OM AD =,即得O 是三棱锥A BCD -外接球球心,求出球半径可得体积.【详解】如图,M 是ABC ∆外心,AM 延长线与BC 交于点E ,E 是BC 中点,过M 作MO ⊥平面ABC ,取12OM AD =, ∵AD ⊥平面ABC ,∴//MO AD ,O 到,A D 的距离相等,∴O 是三棱锥A BCD -外接球球心,233332AM =⨯⨯=,3OM =,∴22223(3)23OA OM AM =+=+=, 所以2344()(23)32333V OA πππ==⨯=. 故答案为:323π.【点睛】本题考查求球的体积,解题关键是作出外接球球心.三棱锥外接球球心在过各面中点且与面垂直的直线上.15.2π【解析】试题分析:设圆柱的底面半径为r 高为h 底面积为S 体积为V 则有2πr=2⇒r=1π故底面面积S=πr2=π×(1π)2=1π故圆柱的体积V=Sh=1π×2=2π考点:圆柱的体积解析:【解析】试题分析:设圆柱的底面半径为,高为,底面积为,体积为,则有,故底面面积,故圆柱的体积. 考点:圆柱的体积 16.【解析】【分析】直线过定点设代入方程利用点差法计算得到答案【详解】直线过定点设则两式相减得到即故整理得到:故答案为:【点睛】本题考查了轨迹方程意在考查学生对于点差法的理解和掌握解析:()2224x y -+=【解析】【分析】直线40Ax By A +-=过定点()4,0,设()()1122,,,M x y N x y ,(),G x y ,代入方程利用点差法计算得到答案.【详解】直线40Ax By A +-=过定点()4,0,设()()1122,,,M x y N x y ,(),G x y ,则221136x y +=,222236x y +=,两式相减得到()()()()121212120x x x x y y y y +-++-=,即220x ky +=. 故2204y x y x +=-,整理得到:()2224x y -+=. 故答案为:()2224x y -+=.【点睛】本题考查了轨迹方程,意在考查学生对于点差法的理解和掌握.17.【解析】【分析】设出的坐标代入双曲线方程两式相减根据中点的坐标可知和的值进而求得直线的斜率根据点斜式求得直线的方程【详解】设则直线的方程为即故答案为【点睛】本题主要考查双曲线的方程直线的斜率公式直线 解析:2150x y --=【解析】【分析】设出,A B 的坐标,代入双曲线方程,两式相减,根据中点的坐标可知12x x +和12y y +的值,进而求得直线AB 的斜率,根据点斜式求得直线的方程.【详解】设()()1122,,,A x y B x y ,则1216x x +=,122y y +=,2222112244,44x y x y -=-=Q ,()()()()121212120x x x x y y y y ∴+--+-=()()12121680x x y y ∴---=,12121628y y x x -==- 2AB k ∴=,∴直线的方程为()128y x -=-,即2150x y --=,故答案为2150x y --=.【点睛】本题主要考查双曲线的方程、直线的斜率公式、直线点斜式方程的应用,意在考查灵活运用所学知识解答问题的能力,属于中档题. 涉及弦长的中点问题,常用“点差法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来,相互转化.18.【解析】试题分析:圆的面积最大即半径最大此时所以圆心为半径为1考点:圆的方程解析:(0,1)-,1【解析】试题分析:圆的面积最大即半径最大,此时0k =()2211x y ∴++=,所以圆心为(0,1)-半径为1考点:圆的方程 19.【解析】【分析】先求得点的垂直平分线的方程然后根据点关于直线对称点的求法求得的对称点由此得出结论【详解】已知点点可得中点则∴线段AB 的垂直平分线为:化为设点关于直线的对称点为则解得∴与点重合的点是故 解析:()4,2-【解析】【分析】先求得点()()10,0,6,8-的垂直平分线的方程,然后根据点关于直线对称点的求法,求得()4,2-的对称点,由此得出结论.【详解】已知点(10,0)A ,点(6,8)B -,可得中点(2,4)M . 则816102AB k ==---. ∴线段AB 的垂直平分线为:42(2)y x -=-,化为20x y -=.设点()4,2-关于直线20x y -=的对称点为(,)P a b , 则2214422022b a a b -⎧⨯=-⎪⎪--⎨-++⎪⨯-=⎪⎩,解得42a b =⎧⎨=-⎩. ∴与点()4,2-重合的点是()4,2-.故答案为:()4,2-.【点睛】本小题主要考查线段垂直平分线方程的求法,考查点关于直线对称点的坐标的求法,属于中档题.20.【解析】【分析】推导出两边平方可得的长【详解】二面角为是棱上的两点分别在半平面内且的长故答案为:【点睛】本题考查线段长的求法考查空间中线线线面面面间的位置关系等基础知识考查运算求解能力考查函数与方程解析:【解析】【分析】推导出CD CA AB BD =++u u u r u u u r u u u r u u u r,两边平方可得CD 的长.【详解】Q 二面角l αβ--为60︒,A 、B 是棱l 上的两点,AC 、BD 分别在半平面α、β内, 且AC l ⊥,BD l ⊥,4AB =,6AC =,8BD =,∴CD CA AB BD =++u u u r u u u r u u u r u u u r,∴22()CD CA AB BD =++u u u r u u u r u u u r u u u r 2222CA AB BD CA BD =+++u u u r u u u r u u u r u u u r u u u r g361664268cos12068=+++⨯⨯⨯︒=, CD ∴的长||68217CD ==u u u r .故答案为:217.【点睛】本题考查线段长的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.三、解答题21.(Ⅰ)略;(Ⅱ)60o【解析】试题分析:(Ⅰ)思路一:连接,DG CD ,设CD GF O ⋂=,连接OH ,先证明//OH BD ,从而由直线与平面平行的判定定理得//BD 平面HDF ;思路二:先证明平面//FGH 平面ABED ,再由平面与平面平行的定义得到//BD 平面HDF .(Ⅱ)思路一:连接,DG CD ,设CD GF O ⋂=,连接OH ,证明,,GB GC GD 两两垂直, 以G 为坐标原点,建立如图所示的空间直角坐标系G xyz -,利用空量向量的夹角公式求解;思路二:作HM AC ⊥于点M ,作MN GF ⊥于点N ,连接NH ,证明MNH ∠即为所求的角,然后在三角形中求解.试题解析:(Ⅰ)证法一:连接,DG CD ,设CD GF O ⋂=,连接OH ,在三棱台DEF ABC -中,2,AB DE G =为AC 的中点可得//,DF GC DF GC =所以四边形DFCG 为平行四边形则O 为CD 的中点又H 为BC 的中点所以//OH BD又OH ⊂平面,FGH BD ⊂平面,FGH所以//BD 平面FGH .证法二:在三棱台DEF ABC -中,由2,BC EF H =为BC 的中点可得//,,BH EF BH EF =所以四边形BHFE 为平行四边形可得//BE HF在ABC ∆中,G 为AC 的中点,H 为BC 的中点,所以//GH AB又GH HF H ⋂=,所以平面//FGH 平面ABED因为BD ⊂平面ABED所以//BD 平面FGH(Ⅱ)解法一:设2AB =,则1CF =在三棱台DEF ABC -中,G 为AC 的中点 由12DF AC GC ==, 可得四边形DGCF 为平行四边形,因此//DG CF又FC ⊥平面ABC所以DG ⊥平面ABC在ABC ∆中,由,45AB BC BAC o⊥∠=,G 是AC 中点,所以,AB BC GB GC =⊥因此,,GB GC GD 两两垂直,以G 为坐标原点,建立如图所示的空间直角坐标系G xyz -所以())()()0,0,0,2,0,0,2,0,0,0,1G B C D 可得()22,0,2,122H F ⎛⎫ ⎪ ⎪⎝⎭ 故()22,2,1GH GF ⎫==⎪⎪⎝⎭u u u r u u u r 设(),,n x y z r =是平面FGH 的一个法向量,则由0,{0,n GH n GF ⋅=⋅=u u u r r u u u r r 可得0{20x y z +=+= 可得平面FGH 的一个法向量(1,2n r =-因为GB uuu r 是平面ACFD 的一个法向量,)2,0,0GB =u u u r 所以21cos ,222GB n GB n GB n ⋅===⋅u u u r r u u u r r u u u r r 所以平面与平面所成的解(锐角)的大小为60o解法二:作HM AC ⊥于点M ,作MN GF ⊥于点N ,连接NH由FC ⊥平面ABC ,得HM FC ⊥又FC AC C ⋂=所以HM ⊥平面ACFD因此GF NH ⊥所以MNH ∠即为所求的角在BGC ∆中,12//,,22MH BG MH BG == 由GNM ∆∽GCF ∆ 可得,MN GM FC GF= 从而66MN =由MH ⊥平面,ACFD MN ⊂平面ACFD得,MH MN ⊥ 因此tan 3HM MNH MN∠==所以60MNH ∠=o所以平面FGH 与平面ACFD 所成角(锐角)的大小为60o .考点:1、空间直线与平面的位置关系;2、二面角的求法;3、空间向量在解决立体几何问题中的应用.22.(1)证明见解析;(2)①证明见解析;②1111. 【解析】试题分析:(1)要证明//EF 平面PAB ,可以先证明平面//EF MA ,利用线面平行的判定定理,即可证明//EF 平面PAB ;(2)①要证明平面PBC ⊥平面ABCD ,可用面面垂直的判定定理,即只需证明PB ⊥平面ABCD 即可;②由①BE ⊥平面PBC ,所以FEB ∠为直线EF 与平面PBC 所成的角,由3PB =ABP ∠为直角,即可计算,AM EF 的长度,在Rt EBF ∆中,即计算直线EF 与平面PBC 所成的角的正弦值. 试题解析:(1)证明:如图,取PB 中点M ,连接MF ,AM .因为F 为PC 中点,故MF ∥BC 且MF =12BC .由已知有BC ∥AD ,BC =AD . 又由于E 为AD 中点,因而MF ∥AE 且MF =AE ,故四边形AMFE 为平行四边形, 所以EF ∥AM .又AM ⊂平面PAB ,而EF ⊄平面PAB ,所以EF ∥平面PAB .(2)①证明:如图,连接PE ,BE .因为PA =PD ,BA =BD ,而E 为AD 中点,故PE ⊥AD ,BE ⊥AD ,所以∠PEB 为二面角P -AD -B 的平面角.在△PAD 中,由PA =PD =5,AD =2,可解得PE =2. 在△ABD 中,由BA =BD =2,AD =2,可解得BE =1.在△PEB 中,PE =2,BE =1,∠PEB =60°,由余弦定理,可解得PB =3,从而∠PBE =90°,即BE ⊥PB .又BC ∥AD ,BE ⊥AD ,从而BE ⊥BC ,因此BE ⊥平面PBC .又BE ⊂平面ABCD ,所以平面PBC ⊥平面ABCD .②连接BF .由①知,BE ⊥平面PBC ,所以∠EFB 为直线EF 与平面PBC 所成的角. 由PB =3及已知,得∠ABP 为直角.而MB =12PB =3,可得AM =112,故EF =112. 又BE =1,故在Rt △EBF 中,sin ∠EFB =BE EF =21111. 所以直线EF 与平面PBC 所成角的正弦值为21111.考点:直线与平面平行的判定及直线与平面垂直的判定与性质;直线与平面所成角的求解.【方法点晴】本题主要考查了直线与平面平行的判定及直线与平面垂直的判定与性质,直线与平面所成角的求解,熟练掌握线面位置关系的判定定理与性质定理是解答基础,同时根据题设条件确定直线与平面所成的角是解答的关键,本题的第二问的解答中,根据BE ⊥平面PBC ,可以确定FEB ∠为直线EF 与平面PBC 所成的角,可放置在Rt EBF ∆中,即计算直线EF 与平面PBC 所成的角的正弦值.23.(1)证明见解析(23【解析】【分析】(1)利用直线与平面垂直的判定定理证明A E '⊥面A BC ',再根据直线与平面垂直的性质可得A E BC '⊥;(2)依题意得就是直线A B '与面BCDE 所成角,延长EO 交BC 于H ,连接A H ',在直角三角形A EH '中得60A EH '=︒,在直角三角形A EO '中得3A O '=A OB '中得3sin 4A BO '∠=. 【详解】 (1)证明:∵A E A B ''⊥,A E A C ''⊥又∵A B A C A '''⋂=∴A E '⊥面A BC '∴A E BC '⊥.(2)∵点A '在底面上的射影为O .∴AO '⊥面BCDE∴A BO '∠就是直线A B '与面BCDE 所成角.延长EO 交BC 于H ,连接A H '如图:∵A E BC '⊥,AO BC '⊥且A O A E A '''⋂=∴BC ⊥面A EO '∴BC EO ⊥∵E 为AD 中点∴H 为BC 中点∵1A E '=,2EH =由(1)知A E A H ''⊥∴60A EH '=︒∴3A O '=∴332sin 2A O BO A A B '∠==''=所以直线A B '与平面BCDE 所成角的正弦值为34 【点睛】本题考查了直线与平面垂直的判定和性质,考查了直线与平面所成角的计算,属于中档题.24.(Ⅰ)证明见解析;(Ⅱ)证明见解析.【解析】【分析】(Ⅰ)取PD 中点G ,连接AG 、FG ,由题意结合中位线性质可得//FG AE 且FG AE =,即可得四边形FGAE 为平行四边形,进而可得//FE AG ,再由线面平行的判定即可得证;(Ⅱ)由线面垂直的性质和正方形的性质可得DO ⊥平面PAC ,进而可得DO AF ⊥,由平面几何知识可得AF PO ⊥,再由线面垂直的判定即可得证.【详解】(Ⅰ)证明:取PD 中点G ,连接AG 、FG ,Q E ,F 分别为AB ,PC 的中点,底面ABCD 为正方形∴//FG CD 且12FG CD =,//AE CD 且12AE CD =, ∴//FG AE 且FG AE =,∴四边形FGAE 为平行四边形,∴//FE AG ,又FE ⊄平面PAD ,AG ⊂平面PAD ,∴//EF 平面PAD .(Ⅱ)证明:Q 底面ABCD 为正方形,PA ⊥平面ABCD ,∴PA DO ⊥,AC DO ⊥,Q PA AC A =I ,∴DO ⊥平面PAC ,∴DO AF ⊥, 在PAC V 中,设PO AF H =I ,如图,由题知90PAC ∠=o , O ,F 分别为AC ,PC 的中点,∴AF FC =即CAFFCA ??, 设PA a =,则2AC a =,22AO a =, ∴APO ACP V V ∽,∴APO PCA ??,∴90AHP ∠=o 即AF PO ⊥,又PO OD O =I ,∴AF ⊥平面POD .【点睛】本题考查了线面平行和线面垂直的判定,考查了空间思维能力,属于中档题.25.(1)证明见详解(2)存在,95PM = 【解析】 【分析】 (1)由线面垂直的性质定理可证AD PH ⊥,再由BD PH ⊥即可求证;(2)要证HM ⊥平面PAD ,即证MH PD ⊥,可作HM PD ⊥,连接AM ,经几何关系验证,恰好满足直线HA 与平面PAD 所成角的正弦值为3525,求得95PM =; 【详解】(1)AD ⊥平面PBD ,PH 在平面PBD 上,所以,AD PH ⊥,又BD PH ⊥,AD 交BD 于D ,所以,PH ⊥平面ABCD ,所以,PH CD ⊥(2)由题可知,6BD =,又13BH BD =,所以4HD =,132PH BD ==,5PD =,要证HM ⊥平面PAD ,由题设可知AD ⊥平面PBD ,则AD HM ⊥,即证HM PD ⊥, 作HM PD ⊥,在PHD ∆中,由等面积法可知125PH HD HM PD ⋅==, 2245HA HD AD =+=,直线HA 与平面PAD 所成角正弦值即为12355sin 45HAM ∠==,此时3393555PH PM ==⨯= 【点睛】本题考查线面垂直的证明,由线面垂直和线面角反求满足条件的点具体位置,逻辑推理与数学计算能力,属于中档题26.(1)2235()(3)22x y -+-=(2)12【解析】【分析】(1)利用相关点法求出点D 的轨迹方程;(2)首先求出直线AB 的方程,求出圆心到直线的距离,圆心到直线的距离减去半径即圆上的点到直线的距离的最小值,即可求出ABC ∆面积的最小值。

【好题】高一数学下期中模拟试卷(附答案)(1)

【好题】高一数学下期中模拟试卷(附答案)(1)

【好题】高一数学下期中模拟试卷(附答案)(1)一、选择题1.设曲线31x y x +=-在点25(,)处的切线与直线10ax y +-=平行,则a=( ) A .-4 B .14- C .14 D .42.三棱锥P -ABC 中,P A ⊥平面ABC ,AB ⊥BC ,P A =2,AB =BC =1,则其外接球的表面积为( )A .6πB .5πC .4πD .3π 3.已知(2,0)A -,(0,2)B ,实数k 是常数,M ,N 是圆220x y kx ++=上两个不同点,P 是圆220x y kx ++=上的动点,如果M ,N 关于直线10x y --=对称,则PAB ∆面积的最大值是( )A .3B .4C .6D .3+4.<九章算术>中,将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥P ABC -为鳖臑,PA ⊥平面,2,4ABC PA AB AC ===,三棱锥P ABC -的四个顶点都在球O 的球面上,则球O 的表面积为( )A .8πB .12πC .20πD .24π5.设α表示平面,a ,b 表示直线,给出下列四个命题:①a α//,a b b α⊥⇒//; ②a b //,a b αα⊥⇒⊥;③a α⊥,a b b α⊥⇒⊂;④a α⊥,b a b α⊥⇒//,其中正确命题的序号是( )A .①②B .②④C .③④D .①③6.已知m 和n 是两条不同的直线,α和β是两个不重合的平面,那么下面给出的条件中一定能推出m ⊥β的是( )A .α⊥β,且m ⊂αB .m ⊥n ,且n ∥βC .α⊥β,且m ∥αD .m ∥n ,且n ⊥β7.四棱锥P ABCD -的底面ABCD 为正方形,PA ⊥底面ABCD ,2AB =,72PA =,若该四棱锥的所有顶点都在同一球面上,则该球的表面积为( ) A .812π B .814π C .65π D .652π 8.用一个平面去截正方体,则截面不可能是( )A .直角三角形B .等边三角形C .正方形D .正六边形9.某几何体的三视图如图所示,则该几何体的体积为( )A .12B .18C .24D .3010.长方体的三个相邻面的面积分别为2,3,6,则该长方体外接球的表面积为( ) A .72π B .56π C .14π D .64π11.如图1,ABC ∆是以B 为直角顶点的等腰直角三角形,T 为线段AC 的中点,G 是BC 的中点,ABE ∆与BCF ∆分别是以AB 、BC 为底边的等边三角形,现将ABE ∆与BCF ∆分别沿AB 与BC 向上折起(如图2),则在翻折的过程中下列结论可能正确的个数为( )图1 图2(1)直线AE ⊥直线BC ;(2)直线FC ⊥直线AE ;(3)平面//EAB 平面FGT ;(4)直线//BC 直线AE .A .1个B .2个C .3个D .4个12.如图,在正方体1111ABCD A B C D -中,M ,N 分别是1BC ,1CD 的中点,则下列说法错误..的是( )A .MN 与1CC 垂直B .MN 与AC 垂直 C .MN 与BD 平行 D .MN 与11A B 平行二、填空题13.在学习公理四“平行于同一条直线的两条直线平行”时,有同学进行类比,提出了下列命题:① 平行于同一平面的两个不同平面互相平行;② 平行于同一直线的两个不同平面互相平行;③ 垂直于同一直线的两个不同平面互相平行;④ 垂直于同一平面的两个不同平面互相平行;其中正确的有________14.已知棱台的上下底面面积分别为4,16,高为3,则该棱台的体积为________.15.过点(1,2)-且与直线2390x y -+=垂直的直线方程为____________.16.一个直三棱柱的每条棱长都是3,且每个顶点都在球O 的表面上,则球O 的表面积为________17.若圆1C :220x y ax by c ++++=与圆2C :224x y +=关于直线21y x =-对称,则c =______.18.已知动点,A B 分别在x 轴和直线y x =上,C 为定点()2,1,则ABC ∆周长的最小值为_______.19.已知双曲线的半焦距为,过右焦点且斜率为1的直线与双曲线的右支交于两点,若抛物线的准线被双曲线截得的弦长是(为双曲线的离心率),则的值为__________.20.如图,在体积为1V 的圆柱中挖去以圆柱上下底面为底面、共顶点的两个圆锥,剩余部分的体积为2V,则21V V =__________.三、解答题21.如图,在三棱锥S ABC -中,SAC ∆为等边三角形,4AC =,43BC =BC AC ⊥,3cos 4SCB ∠=-,D 为AB 的中点.(1)求证:AC SD ⊥;(2)求直线SD 与平面SAC 所成角的大小.22.在四棱锥S ABCD -中,平面SAB ⊥平面ABCD ,平面SAD ⊥平面ABCD .(Ⅰ)证明:SA ⊥平面ABCD ;(Ⅱ)若底面ABCD 为矩形,23SA AD AB ==,F 为SC 的中点,23BE BC =u u u v u u u v ,求直线EF 与平面SCD 所成角的正弦值.23.如图,在ABC V 中AC BC ⊥且点O 为AB 的中点,矩形ABEF 所在的平面与平面ABC 互相垂直.(1)设EC 的中点为M ,求证://OM 平面ACF ;(2)求证:AC ⊥平面CBE24.如图所示的等腰梯形ABCD 中,//AB CD ,12AB AD BC CD a ====,E 为CD 中点.若沿AE 将三角形DAE 折起,并连接DB ,DC ,得到如图所示的几何体D-ABCE ,在图中解答以下问题:(1)设G 为AD 中点,求证://DC 平面GBE ;(2)若平面DAE ⊥平面ABCE ,且F 为AB 中点,求证:DF AC ⊥.25.已知过点()0,2P -的圆M 的圆心(),0a 在x 轴的非负半轴上,且圆M 截直线20x y +-=所得弦长为22.(1)求M 的标准方程;(2)若过点()0,1Q 且斜率为k 的直线l 交圆M 于A 、B 两点,若PAB △的面积为33,求直线l 的方程.26.如图,在三棱锥P ABC -中,PA ⊥平面ABC ,且2PA AB BC ===,2 2.AC =(1)证明:三棱锥P ABC -为鳖臑;(2)若D 为棱PB 的中点,求二面角D AC P --的余弦值.注:在《九章算术》中鳖臑是指四面皆为直角三角形的三棱锥.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】求出原函数的导函数,得到函数在2x =时的导数,再由两直线平行与斜率的关系求得a 值.【详解】 解:由31x y x +=-,得()()2213411x x y x x ---=---'=, ∴2'|4x y ==-, 又曲线31x y x +=-在点25(,)处的切线与直线10ax y +-=平行, ∴4a -=-,即4a =.故选D .【点睛】本题考查利用导数研究过曲线上某点处的切线方程,考查两直线平行与斜率的关系,是中档题.2.A解析:A【解析】分析:将三棱锥的外接球转化为以,,AP AB BC 为长宽高的长方体的外接球,从而可得球半径,进而可得结果.详解:因为PA ⊥平面AB ,,AB BC ⊂平面ABC ,PA BC ∴⊥,,PA AB AB BC ⊥⊥Q ,所以三棱锥的外接球,就是以,,AP AB BC 为长宽高的长方体的外接球,外接球的直径等于长方体的对角线,即2R ==246R ππ=,故选A.点睛:本题主要考查三棱锥外接球表面积的求法,属于难题.要求外接球的表面积和体积,关键是求出求的半径,求外接球半径的常见方法有:①若三条棱两垂直则用22224R a b c =++(,,a b c 为三棱的长);②若SA ⊥面ABC (SA a =),则22244R r a =+(r 为ABC ∆外接圆半径) ③可以转化为长方体的外接球;④特殊几何体可以直接找出球心和半径.3.D解析:D【解析】【分析】根据圆上两点,M N 关于直线10x y --=对称,可知圆心在该直线上,从而求出圆心坐标与半径,要使得PAB ∆面积最大,则要使得圆上点P 到直线AB 的距离最大,所以高最大为12+,PAB S ∆最大值为3 【详解】由题意,圆x 2+y 2+kx=0的圆心(-2k ,0)在直线x-y-1=0上, ∴-2k -1=0,∴k=-2,∴圆x 2+y 2+kx=0的圆心坐标为(1,0),半径为1 ∵A (-2,0),B (0,2), ∴直线AB 的方程为2x -+2y =1,即x-y+2=0∴圆心到直线AB .∴△PAB 面积的最大值是112||(1)2222AB +=⨯= 故选D .【点睛】 主要考查了与圆有关的最值问题,属于中档题.该题涉及到圆上动点到定直线(圆与直线相离)的最大距离.而圆上动点到定直线的最小距离为圆心到直线距离减去半径,最大距离为圆心到直线距离加上半径.4.C解析:C【解析】【分析】先作出三棱锥P ABC -的图像,根据P ABC -四个面都为直角三角形和PA ⊥平面ABC ,可知PC 中点即为球心,利用边的关系求出球的半径,再由24S R π=计算即得.【详解】三棱锥P ABC -如图所示,由于P ABC -四个面都为直角三角形,则ABC V 是直角三角形,且2ABC π∠=,BC ∴=PA ⊥平面ABC ,且PAC V 是直角三角形,∴球O 的直径2PC R ===R ∴=,则球O 的表面积2420S R ππ==.故选:C【点睛】本题考查多面体外接球的表面积,是常考题型.5.B解析:B【解析】【分析】【详解】①a ∥α,a ⊥b ⇒b 与α平行,相交或b ⊂α,故①错误;②若a ∥b ,a ⊥α,由直线与平面垂直和判定定理得b ⊥α,故②正确;③a ⊥α,a ⊥b ⇒b 与α平行,相交或b ⊂α,故③错误;④若a ⊥α,b ⊥α,则由直线与平面垂直的性质得a ∥b ,故④正确.故选B .6.D解析:D【解析】【分析】根据所给条件,分别进行分析判断,即可得出正确答案.【详解】解:αβ⊥且m α⊂⇒m β⊂或//m β或m 与β相交,故A 不成立;m n ⊥且//n β⇒m β⊂或//m β或m 与β相交,故B 不成立;αβ⊥且//m α⇒m β⊂或//m β或m 与β相交,故C 不成立;//m n 且n β⊥⇒m β⊥,故D 成立;故选:D【点睛】本题考查直线与平面的位置关系,线面垂直判定,属于基础题.7.B解析:B【解析】【分析】根据题意可知,该四棱锥的外接球即为其所在长方体的外接球,根据公式即可求得.【详解】根据题意,为方便说明,在长方体中找出该四棱锥如图所示:由图可知在长方体中的四棱锥P ABCD-完全满足题意,故该四棱锥的外接球即是长方体的外接球,故外接球半径2 22722294R⎛⎫++ ⎪⎝⎭==,故该球的表面积为28144S Rππ==.故选:B.【点睛】本题考查四棱锥外接球的问题,关键的步骤是将问题转化为求长方体的外接球. 8.A解析:A【解析】【分析】【详解】画出截面图形如图显然A正三角形C正方形:D正六边形可以画出三角形但不是直角三角形;故选A.用一个平面去截正方体,则截面的情况为:①截面为三角形时,可以是锐角三角形、等腰三角形、等边三角形,但不可能是钝角三角形、直角三角形;②截面为四边形时,可以是梯形(等腰梯形)、平行四边形、菱形、矩形,但不可能是直角梯形;③截面为五边形时,不可能是正五边形;④截面为六边形时,可以是正六边形.故可选A.9.C解析:C【解析】试题分析:由三视图可知,几何体是三棱柱消去一个同底的三棱锥,如图所示,三棱柱的高为,消去的三棱锥的高为,三棱锥与三棱柱的底面为直角边长分别为和的直角三角形,所以几何体的体积为,故选C.考点:几何体的三视图及体积的计算.【方法点晴】本题主要考查了几何体的三视图的应用及体积的计算,着重考查了推理和运算能力及空间想象能力,属于中档试题,解答此类问题的关键是根据三视图的规则“长对正、宽相等、高平齐”的原则,还原出原几何体的形状,本题的解答的难点在于根据几何体的三视图还原出原几何体和几何体的度量关系,属于中档试题.10.C解析:C 【解析】 【分析】由题意首先求得长方体的棱长,然后求解其外接球的表面积即可. 【详解】设长方体的棱长分别为,,a b c ,则236ab bc ac =⎧⎪=⎨⎪=⎩,所以()236abc =,于是213a b c =⎧⎪=⎨⎪=⎩,设球的半径为R ,则2222414R a b c =++=,所以这个球面的表面积为24R π=14π. 本题选择C 选项. 【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.11.C解析:C 【解析】 【分析】(1)翻折时使得平面ABE ⊥平面ABC ,由面面垂直的性质定理得出BC ⊥平面ABE ,从而使得(1)有可能;(2)翻折时使得点E 、F 两点重合,利用勾股定理可证得此时AE CE ⊥,即AE FC ⊥;(3)翻折时使得平面ABE 和平面BCF 同时与平面ABC 垂直,利用面面垂直的性质定理、直线与平面平行的判定定理以及面面平行的判定定理可证明出平面//EAB 平面FGT ;(4)利用反证法,可推出//BC AE 不成立. 【详解】(1)翻折时,若平面ABE ⊥平面ABC ,由于ABC ∆是以B 为直角顶点的等腰直角三角形,则BC AB ⊥,又Q 平面ABE I 平面ABC AB =,BC ⊂平面ABC ,BC ∴⊥平面ABE ,AE ⊂Q 平面ABC ,此时AE BC ⊥;(2)设AB BC a ==,则2AC a =,且有AE CF a ==,翻折时,若点E 、F 重合,则AE CE a ==,222AE CE AC ∴+=,此时,AE CE ⊥, 即AE FC ⊥;(3)如下图所示:翻折时,若平面ABE 和平面BCF 同时与平面ABC 垂直, 取AB 的中点D ,连接DE 、FG 、GT 、FT .ABE ∆Q 是等边三角形,且D 为AB 的中点,DE AB ⊥∴.Q 平面ABE ⊥平面ABC ,平面ABE I 平面ABC AB =,DE ⊂平面ABE .DE ∴⊥平面ABC ,同理可证FG ⊥平面ABC ,//DE FG ∴, DE ⊄Q 平面FGT ,FG ⊂平面FGT ,//DE ∴平面FGT .G Q 、T 分别为BC 、AC 的中点,//AB GT ∴,AB ⊄Q 平面FGT ,GT ⊂平面FGT ,//AB ∴平面FGT . DE AB D =Q I ,∴平面//EAB 平面FGT ;(4)假设AE 与BC 可能平行,BC AB ⊥Q ,则AE AB ⊥,事实上60BAE ∠=o , 即AE 与AB 不垂直,假设不成立,因此,AE 与BC 不可能平行. 因此,可能正确命题的个数为3. 故选:C. 【点睛】本题考查的是线面位置关系的判定,判断时要熟悉线面、面面平行与垂直的判定、性质定理,考查推理能力,属于中等题.12.D解析:D 【解析】 【分析】先利用三角形中位线定理证明//MN BD ,再利用线面垂直的判定定理定义证明MN 与1CC 垂直,由异面直线所成的角的定义证明MN 与AC 垂直,即可得出结论.【详解】如图:连接1C D ,BD ,Q 在三角形1C DB 中,//MN BD ,故C 正确.1CC ⊥Q 平面ABCD ,1CC BD ∴⊥,MN ∴与1CC 垂直,故A 正确;AC BD ^Q ,//MN BD ,MN ∴与AC 垂直,B 正确;∵//MN BD ,MN ∴与11A B 不可能平行,D 错误 故选:D . 【点睛】本题主要考查了正方体中的线面关系,线线平行与垂直的证明,异面直线所成的角及其位置关系,熟记正方体的性质是解决本题的关键.二、填空题13.①③【解析】【分析】对4个命题分别进行判断即可得出结论【详解】解:①平行于同一平面的两个不同平面互相平行正确;②平行于同一直线的两个不同平面互相平行或相交不正确;③垂直于同一直线的两个不同平面互相平解析:①③ 【解析】 【分析】对4个命题分别进行判断,即可得出结论. 【详解】解:①平行于同一平面的两个不同平面互相平行,正确; ②平行于同一直线的两个不同平面互相平行或相交,不正确; ③垂直于同一直线的两个不同平面互相平行,正确; ④垂直于同一平面的两个不同平面互相平行或相交,不正确. 故答案为:①③. 【点睛】本题考查类比推理,考查学生分析解决问题的能力,属于基础题.14.28【解析】【分析】由题意结合棱台的体积公式求解棱台的体积即可【详解】由棱台的体积公式可得棱台的体积:故答案为:28【点睛】本题主要考查棱台的体积公式及其应用意在考查学生的转化能力和计算求解能力解析:28 【解析】【分析】由题意结合棱台的体积公式求解棱台的体积即可. 【详解】由棱台的体积公式可得棱台的体积:(()1211416832833V S S h =⨯++⨯=⨯++⨯=.故答案为:28. 【点睛】本题主要考查棱台的体积公式及其应用,意在考查学生的转化能力和计算求解能力.15.【解析】【分析】因为直线l 与已知直线垂直根据两直线垂直时斜率的乘积为-1由已知直线的斜率求出直线l 的斜率然后根据(-12)和求出的斜率写出直线l 的方程即可【详解】因为直线2x-3y+9=0的斜率为所 解析:3210x y +-=【解析】 【分析】因为直线l 与已知直线垂直,根据两直线垂直时斜率的乘积为-1,由已知直线的斜率求出直线l 的斜率,然后根据(-1,2)和求出的斜率写出直线l 的方程即可. 【详解】因为直线2x-3y+9=0的斜率为23 ,所以直线l 的斜率为32- , 则直线l 的方程为:3212y x -=-+() ,化简得3210x y +-=.即答案为3210x y +-=. 【点睛】本题考查学生掌握两直线垂直时斜率的关系,会根据一点和斜率写出直线的点斜式方程,是一道基础题.16.【解析】【分析】设此直三棱柱两底面的中心分别为则球心为线段的中点利用勾股定理求出球的半径由此能求出球的表面积【详解】∵一个直三棱柱的每条棱长都是且每个顶点都在球的球面上∴设此直三棱柱两底面的中心分别 解析:21π【解析】 【分析】设此直三棱柱两底面的中心分别为12,O O ,则球心O 为线段12O O 的中点,利用勾股定理求出球O 的半径2R ,由此能求出球O 的表面积. 【详解】∵一个直三棱柱的每条棱长都是3,且每个顶点都在球O 的球面上, ∴设此直三棱柱两底面的中心分别为12,O O ,则球心O 为线段12O O 的中点,设球O 的半径为R ,则222323213234R ⎛⎫⎛⎫=+⨯⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭∴球O 的表面积2S 4R 21ππ== . 故答案为:21π.【点睛】本题考查球的表面积的求法,空间思维能力,考查转化化归思想、数形结合思想、属于中档题.17.【解析】【分析】两圆关于直线对称即圆心关于直线对称则两圆的圆心的连线与直线垂直且中点在直线上圆的半径也为即可求出参数的值【详解】解:因为圆:即圆心半径由题意得与关于直线对称则解得圆的半径解得故答案为 解析:165-【解析】 【分析】两圆关于直线对称即圆心关于直线对称,则两圆的圆心的连线与直线21y x =-垂直且中点在直线21y x =-上,圆1C 的半径也为2,即可求出参数,,a b c 的值. 【详解】解:因为圆1C :220x y ax by c ++++=,即22224224ab a b cx y 骣骣+-琪琪+++=琪琪桫桫, 圆心111,22C a b ⎛⎫-- ⎪⎝⎭,半径224a b cr +-=由题意,得111,22C a b ⎛⎫-- ⎪⎝⎭与()20,0C 关于直线21y x =-对称,则112,122112221,22bab a⎧-⎪=-⎪⎪-⎨⎪--⎪⎪=⨯-⎩解得85=-a,45b=,圆1C的半径2242a b cr+-==,解得165 c=-.故答案为:16 5 -【点睛】本题考查圆关于直线对称求参数的值,属于中档题.18.【解析】【分析】点C关于直线y=x的对称点为(12)点C关于x轴的对称点为(2﹣1)三角形PAB周长的最小值为(12)与(2﹣1)两点之间的直线距离【详解】点C关于直线y=x的对称点为(12)点C关解析:10【解析】【分析】点C关于直线y=x的对称点为C'(1,2),点C关于x轴的对称点为C''(2,﹣1).三角形PAB周长的最小值为C'(1,2)与C''(2,﹣1)两点之间的直线距离.【详解】点C关于直线y=x的对称点为C'(1,2),点C关于x轴的对称点为C''(2,﹣1).三角形PAB周长的最小值为C'(1,2)与C''(2,﹣1)两点之间的直线距离,|C C'''(2,﹣1)|=22(21)(12)-+--=10.故答案为:10.【点睛】本题考查点到直线的距离公式,解题时要认真审题,仔细解答,注意合理地进行等价转化.19.62【解析】试题分析:由题意得抛物线的准线为x=-c它正好经过双曲线的左焦点所以准线被双曲线截得的弦长为2b2a所以2b2a=223be2即ba=23e2所以整理得2e4-9e2+1=0解得e=62解析:【解析】试题分析:由题意,得抛物线的准线为,它正好经过双曲线的左焦点,所以准线被双曲线截得的弦长为,所以,即,所以,整理,得,解得或.又过焦点且斜率为1的直线与双曲线的右支交于两点,所以.考点:1、抛物线与双曲线的几何性质;2、直线与双曲线的位置关系.【方法点睛】关于双曲线的离心率问题,主要是有两类试题:一类是求解离心率的值,一类是求解离心率的范围.基本的解题思路是建立椭圆和双曲线中的关系式,求值问题就是建立关于的等式,求取值范围问题就是建立关于的不等式.20.【解析】分析:设上下圆锥的高分别为圆柱的底面圆的半径为圆柱的高为h 再求详解:设上下圆锥的高分别为圆柱的底面圆的半径为圆柱的高为h 则故答案为:点睛:(1)本题主要考查圆锥圆柱体积的计算意在考查学生对这 解析:23【解析】分析:设上下圆锥的高分别为12,,h h 圆柱的底面圆的半径为r ,圆柱的高为h,再求21V V . 详解:设上下圆锥的高分别为12,,h h 圆柱的底面圆的半径为r ,圆柱的高为h, 则222212222111()233.3r h r h h r h r hV V r hr hππππππ-+-===故答案为:23. 点睛:(1)本题主要考查圆锥圆柱体积的计算,意在考查学生对这些知识的掌握水平.(2)圆柱的体积为2V sh r h π==,圆锥的体积为21133V sh r h π==. 三、解答题21.(1)证明见解析;(2)6π. 【解析】 【分析】(1)取AC 的中点O ,连接OS 、OD ,证明出OS AC ⊥,OD AC ⊥,利用直线与平面垂直的判定定理可得出AC ⊥平面SOD ,即可证明出AC SD ⊥;(2)延长SO ,过点D 作SO 延长线的垂线,垂足记为H ,说明直线SD 与平面SAC 所成的角为OSD ∠,求出OSD ∆三边边长,利用余弦定理求出OSD ∠,即可求出直线SD 与平面SAC 所成角的大小. 【详解】(1)取AC 的中点O ,连接OS 、OD ,SAC ∆Q 为等边三角形,O 为AC 的中点,SO AC ∴⊥,D Q 、O 分别为AB 、AC 的中点,//OD BC ∴,BC AC ⊥Q ,OD AC ∴⊥, SO OD O =Q I ,AC ∴⊥平面SOD ,SD ⊂Q 平面SOD ,AC SD ∴⊥;(2)延长SO ,过点D 作SO 延长线的垂线,垂足记为H , AC ⊥Q 平面SOD ,DH ⊂平面SOD ,DH AC ∴⊥,DH SO ⊥Q ,SO AC O =I ,DH ∴⊥平面SAC ,所以,直线SD 与平面SAC 所成的角为OSD ∠,由(2)知,1232OD BC ==AC BC ⊥Q ,228AB AC BC ∴+=. SAC ∆Q 是边长为4的等边三角形,4sin233SO π∴==在SBC ∆中,4SC =,43BC=由余弦定理得2222cos 88SB SC BC SC BC SCB =+-⋅⋅∠=,222SB ∴=由余弦定理得2221cos 28SA AB SB SAB SA AB +-∠==-⋅,2222cos 36SD SA AD SA AD SAD ∴=+-⋅⋅∠=,6SD ∴=.在SOD ∆中,由余弦定理得2223cos 2SO SD OD OSD SO SD +-∠==⋅. 0OSD π<∠<Q ,6OSD π∴∠=,因此,直线SD 与平面SAC 所成角的大小为6π. 【点睛】本题考查利用线面垂直的性质证明线线垂直,同时也考查了直线与平面所成角的计算,涉及到利用余弦定理解三角形,考查推理能力与计算能力,属于中等题. 22.(Ⅰ)证明见解析;(Ⅱ)205205. 【解析】试题分析:(Ⅰ)由题意1l ⊥平面SAB ,得到所以1l SA ⊥,同理可证2l SA ⊥,利用线面垂直的判定定理,即可证得SA ⊥平面ABCD ;(Ⅱ)分别以AB u u u r 、AD u u u r 、AS u u u r所在方向为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系A xyz -,求得向量EF u u u r和平面SCD 的一个法向量为n r,利用向量的夹角公式,即可求解直线与平面所成的角的正弦值.试题解析:(Ⅰ)证法1:在平面ABCD 内过点C 作两条直线1l ,2l , 使得1l AB ⊥,2l AD ⊥.因为AB AD A ⋂=,所以1l ,2l 为两条相交直线.因为平面SAB ⊥平面ABCD ,平面SAB ⋂平面ABCD AB =,1l ⊂平面ABCD ,1l AB ⊥,所以1l ⊥平面SAB .所以1l SA ⊥.同理可证2l SA ⊥.又因为1l ⊂平面ABCD ,2l ⊂平面ABCD ,12l l C ⋂=,所以SA ⊥平面ABCD .证法2:在平面SAB 内过点S 作1l AB ⊥,在平面SAD 内过点S 作2l AD ⊥. 因为平面SAB ⊥平面ABCD ,平面SAB ⋂平面ABCD AB =,1l ⊂平面SAB ,1l AB ⊥,所以1l ⊥平面ABCD .同理可证2l ⊥平面ABCD .而过点S 作平面ABCD 的垂线有且仅有一条,所以1l 与2l 重合.所以1l ⊂平面SAD .所以,直线1l 为平面SAB 与平面SAD 的交线.所以,直线1l 与直线SA 重合.所以SA ⊥平面ABCD .(Ⅱ)如图,分别以AB u u u v 、AD u u u v 、AS u u u v所在方向为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系A xyz -.设6SA =,则2AB =,3AD =,()2,0,0B ,()2,3,0C ,()0,3,0D ,()0,0,6S .由F 为SC 的中点,得31,,32F ⎛⎫⎪⎝⎭;由23BE BC =u u u v u u u v ,得()2,2,0E .所以11,,32EF u u u v ⎛⎫=-- ⎪⎝⎭,()2,3,6SC =-u uu v ,()2,0,0DC =u u u v .设平面SCD 的一个法向量为(),,n x y z =v,则00n SC n DC ⎧⋅=⎨⋅=⎩u u u v v u u u v v ,即236020x y z x +-=⎧⎨=⎩.取1z =,则2y =,0x =.所以()0,2,1n =v .所以cos ,EF n u u u vv EF n EF n ⋅=⋅u u u v v u u u v v ()11023121190414⎛⎫-⨯+-⨯+⨯ ⎪⎝⎭=++⨯++ 4205=. 所以,直线EF 与平面SCD 所成角的正弦值为4205. 23.(1)证明见解析(2)证明见解析 【解析】 【分析】(1)取CF 中点N ,连结AN ,MN ,可知四边形ANMO 为平行四边形,从而可知//OM AN ,由线面平行的判定定理可证//OM 平面ACF .(2)由BE AB ⊥以及平面ABEF ⊥平面ABC ,可得BE ⊥平面ABC ,从而可证BE AC ⊥,结合AC BC ⊥,即能证明AC ⊥平面CBE .【详解】证明:(1)取CF 中点N ,连结AN ,MN .Q M 为CE 中点,//MN EF ∴且12MN EF =. 又在矩形ABEF 中,//AB EF 且AB EF =,//MN AB ∴且12MN AB =.O Q 为AB 中点,//MN OA ∴且MN OA =.∴四边形ANMO 为平行四边形, ∴//OM AN ,且OM ⊄平面ACF ,AN ⊂平面ACF ,//OM Q 平面ACF .(2)由平面ABEF ⊥平面ABC ,平面ABEF I 平面ABC AB =,BE ⊂平面ABEFQ 矩形ABEF 中,BE AB ⊥,∴BE ⊥平面ABC .又AC ⊂平面ABC ,∴BE AC ⊥又AC BC ⊥且BC BE B =I ,,BC BE ⊂平面CBE ,AC ∴⊥平面CBE .【点睛】本题考查了线面平行的判定,考查了线面垂直的判定,考查了面面垂直的性质.证明线线平行时,常结合三角形的中位线、平行四边形的对边、线面平行的性质.证明线线垂直时,常结合勾股定理、等腰三角形三线合一、菱形对角线垂直、线面垂直、面面垂直的性质.24.(1)证明见解析;(2)证明见解析【解析】【分析】(1)连接AC 交BE 于点O ,连接OG ,先证明四边形ABCE 为平行四边形,再通过证明//OG DC ,即可得到//DC 平面GBE ;(2)通过证明AC ⊥平面DFH ,即可得到DF AC ⊥.【详解】(1)连接AC 交BE 于点O ,连接OG .因为//AB CD ,12AB AD BC CD a ====, E 为CD 中点 所以AB CE =,即四边形ABCE 为平行四边形所以O 为AC 的中点因为G 分别为AD 的中点,所以//OG DC ,又因为OG ⊂平面GBE ,DC ⊄平面GBE ,所以//DC 平面GBE ;(2)取AE 中点H ,连接,DH FH .因为,F H 分别为,AB AE 中点,所以//FH BE ,易知,四边形ABCE 为菱形,所以AC BE ⊥,所以AC FH ⊥,又因为DA DE =,H 为AE 中点,所以DH AE ⊥,又平面DAE ⊥平面ABCE ,所以DH ⊥平面ABCE ,所以DH AC ⊥,又因为DH FH H ⋂=,所以AC ⊥平面DFH ,则DF AC ⊥.【点睛】本题主要考查线面平行和线线垂直的判定,考查学生的空间想象能力和推理证明能力,体现了数形结合的数学思想.25.(1)224x y +=;(2)1y =.【解析】【分析】(1)根据题意可得圆M 的方程为()2224x a y a -+=+,求出圆心到直线20x y +-=的距离,结合M 截直线20x y +-=所得弦长为利用勾股定理列方程可得a 的值,代入圆M 的方程即可得结果;(2)设直线l 的方程为1y kx =+,结合直线与圆的位置关系可得AB 的值,求出点P 到直线AB 的距离,由三角形面积公式可得21321d AB k⨯⨯=⨯=+'k 的值,代入直线l 的方程即可得结果. 【详解】(1)根据题意,圆M 的圆心(),0a 且经过点()0,2-,则圆M 的方程为()2224x a y a -+=+,圆心M 到直线20x y +-=的距离d =,若圆M 截直线20x y +-=所得弦长为则有22242a ⎛+=+ ⎝⎭, 解可得:0a =,则2244r a =+=,则圆M 的方程为224x y +=;(2)根据题意,设直线l 的方程为1y kx =+,即10kx y -+=,圆M 的方程为224x y +=,则圆心M 到直线l 的距离d =,则2AB==又由()0,2P-,则P到直线l的距离'd==,若PAB△的面积为21321d ABk⨯⨯=⨯=+'解可得:0k=,则直线l的方程为1y=.【点睛】本题主要考查圆的方程、直线与圆方的位置关系,以及点到直线的距离公式与三角形面积公式的应用,涉及直线与圆相交弦长的计算,属于基础题.求圆的弦长有两种方法:一是利用弦长公式12l x=-,结合韦达定理求解;二是利用半弦长,弦心距,圆半径构成直角三角形,利用勾股定理求解.26.(1)见解析;(2)3【解析】【分析】(1)由条件已经知道ABC PAB∆∆、,PAC∆均为直角三角形,只需证PBC∆为直角三角形即可得证.(2)利用空间向量求得两个面的法向量,求得cos,m nv v即可.【详解】(1)∵2AB BC==,AC=222AB BC AC+=,∴AB BC⊥,ABC∆为直角三角形.∵PA⊥平面ABC,∴PA BC⊥,PA AB⊥,PAB∆,PAC∆均为直角三角形.∵AB PA A⋂=,∴BC⊥平面PAB.又PB⊂平面PAB,∴BC PB⊥,PBC∆为直角三角形.故三棱锥P ABC-为鳖臑.(2)解:以B为坐标原点,建立空间直角坐标系B xyz-,如图所示,则()2,0,0A,()0,2,0C,()1,0,1D,则()1,0,1AD=-u u u v,()2,2,0AC=-u u u v.设平面ACD的法向量为(),,n x y z=v,则0,220,n AD x zn AC x y⎧⋅=-+=⎨⋅=-+=⎩u u u vvu u v u u u v令1x=,则()1,1,1n=v.易知平面PAC的一个法向量为()1,1,0m=v,则6cos ,32m n ==⨯v v . 由图可知二面角D AC P --为锐角,则二面角D AC P --的余弦值为63.【点睛】本题考查线面垂直的证明,考查四面体是否为鳖臑的判断与求法,考查二面角的求法,考查推理论证能力、运算求解能力、空间想象能力,考查空间向量的应用,是中档题.。

新高一数学下期中模拟试题附答案

新高一数学下期中模拟试题附答案

新高一数学下期中模拟试题附答案一、选择题1.已知m ,n 表示两条不同直线,α表示平面,下列说法正确的是( ) A .若//,//,m n αα则//m n B .若m α⊥,n α⊂,则m n ⊥ C .若m α⊥,m n ⊥,则//n αD .若//m α,m n ⊥,则n α⊥2.已知直线l 过点(1,0),且倾斜角为直线0l :220x y --=的倾斜角的2倍,则直线l 的方程为( ) A .4330x y --= B .3430x y --= C .3440x y --=D .4340x y --=3.设l 为直线,,αβ是两个不同的平面,下列命题中正确的是( )A .若//l α,//l β,则//αβB .若l α⊥,l β⊥,则//αβC .若l α⊥,//l β,则//αβD .若αβ⊥,//l α,则l β⊥4.已知正四棱锥P ABCD -的所有顶点都在同一球面上,若球的半径为3,则该四棱锥的体积的最大值为( ) A .643B .32C .54D .645.已知三棱锥S ABC -的所有顶点都在球O 的求面上,ABC ∆是边长为1的正三角形,SC 为球O 的直径,且2SC =,则此棱锥的体积为( )A .26B .3 C .23D .226.已知定义在R 上的函数()21()x mf x m -=-为实数为偶函数,记0.5(log 3),af 2b(log 5),c (2)f f m ,则,,a b c ,的大小关系为( )A .a b c <<B .c a b <<C .a c b <<D .c b a <<7.如图是某四面体ABCD 水平放置时的三视图(图中网格纸的小正方形的边长为1,则四面体ABCD 外接球的表面积为A .20πB .1256π C .25π D .100π8.在我国古代数学名著 九章算术 中,将四个面都为直角三角形的四面体称为鳖臑,如图,在鳖臑ABCD 中, AB ⊥平面BCD ,且AB BC CD ==,则异面直线AC 与BD所成角的余弦值为( )A .12B .12-C .3 D .3-9.矩形ABCD 中,4AB =,3BC =,沿AC 将矩形ABCD 折成一个直二面角B ACD --,则四面体ABCD 的外接球的体积是( )A .12512π B .1259π C .1256π D .1253π 10.,为两个不同的平面,,为两条不同的直线,下列命题中正确的是( ) ①若,,则; ②若,,则; ③若,,,则④若,,,则.A .①③B .①④C .②③D .②④11.已知直线()()():21110l k x k y k R ++++=∈与圆()()221225x y -+-=交于A ,B 两点,则弦长AB 的取值范围是( )A .[]4,10B .[]3,5C .[]8,10D .[]6,1012.α,β是两个不重合的平面,在下列条件中,可判断平面α,β平行的是( ) A .m ,n 是平面α内两条直线,且//m β,//n β B .α内不共线的三点到β的距离相等 C .α,β都垂直于平面γD .m ,n 是两条异面直线,m α⊂,n β⊂,且//m β,//n α二、填空题13.设P ,A ,B ,C 是球O 表面上的四个点,PA ,PB ,PC 两两垂直,且1PA PB PC ===,则球O 的表面积为____________.14.已知平面α与正方体的12条棱所成角相等,设所成角为θ,则sin θ=______. 15.在学习公理四“平行于同一条直线的两条直线平行”时,有同学进行类比,提出了下列命题:① 平行于同一平面的两个不同平面互相平行;② 平行于同一直线的两个不同平面互相平行;③ 垂直于同一直线的两个不同平面互相平行;④ 垂直于同一平面的两个不同平面互相平行;其中正确的有________16.正方体1111ABCD A B C D -的棱长为1,P 为1CC 上的动点,Q 为1BD 上的动点,则线段PQ 的长度的最小值为______.17.在平面直角坐标xOy 系中,设将椭圆()2222110y x a a a +=>-绕它的左焦点旋转一周所覆盖的区域为D ,P 为区域D 内的任一点,射线()02x y x =≥-上的点为Q ,若PQ 的最小值为a ,则实数a 的取值为_____.18.已知直线:0l x my m ++=,且与以A (-1,1)、B (2,2)为端点的线段相交,实数m 的取值范围为___________.19.如图,AB 是底面圆O 的直径,点C 是圆O 上异于A 、B 的点,PO 垂直于圆O 所在的平面,且1,2PO OB BC ===,点E 在线段PB 上,则CE OE +的最小值为________.20.已知点(,)P x y 是直线4(0)y kx k =-->上的一个动点,PA ,PB 是圆22:20C x y y +-=的两条切线,A ,B 是切点,若四边形PACB 的面积的最小值为2,则实数k 的值为__________.三、解答题21.如图1所示,在等腰梯形ABCD 中,4524AB CD BAD AB CD ∠=︒==∥,,,点E 为AB 的中点.将ADE ∆沿DE 折起,使点A 到达P 的位置,得到如图2所示的四棱锥P EBCD -,点M 为棱PB 的中点.(1)求证:PD MCE ∥平面;(2)若PDE EBCD ⊥平面平面,求三棱锥M BCE -的体积.22.如图,在正三棱柱111ABC A B C -中,点D 、E 、F 分别是BC 、1AC 、1BB 的中点.(1)求证:AD ⊥平面11BCC B ;(2)求证://EF 平面111A B C .23.如图,在Rt AOB 中,30OAB ∠=︒,斜边4AB =,Rt AOC 可以通过Rt AOB 以直线AO 为轴旋转得到,且平面AOB ⊥平面AOC .动点D 在斜边AB 上.(1)求证:平面COD ⊥平面AOB ;(2)当D 为AB 的中点时,求异面直线AO 与CD 所成角的正切值.24.如图,在直三棱柱111ABCA B C 中,AC BC ⊥,14CC =,M 是棱1CC 上的一点.(1)求证:BC AM ⊥;(2)若N 是AB 的中点,且//CN 平面1AB M ,求CM 的长.25.如图,直三棱柱111ABC A B C -的底面是边长为4的正三角形,M ,N 分别是BC ,1CC 的中点.(1)证明:平面AMN ⊥平面11B BCC ;(2)若直线1A C 与平面11A ABB 所成的角为30,试求三棱锥M ANC -的体积. 26.如图,在梯形ABCD 中,AB CD ∥,1AD DC BC ===,60ABC ∠=︒,四边形ACFE 为矩形,平面ACFE ⊥平面ABCD ,1CF =.(1)证明:BC ⊥平面ACFE ;(2)设点M 在线段EF 上运动,平面MAB 与平面FCB 所成锐二面角为θ,求cos θ的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】试题分析:线面垂直,则有该直线和平面内所有的直线都垂直,故B 正确. 考点:空间点线面位置关系.2.D解析:D 【解析】设直线0l 的倾斜角为α,则斜率01tan 2k α==,所以直线l 的倾斜角为2α,斜率22tan 4tan 21tan 3k ααα===-,又经过点(1,0),所以直线方程为4(1)3y x =-,即4340x y --=,选D.3.B解析:B 【解析】A 中,,αβ也可能相交;B 中,垂直与同一条直线的两个平面平行,故正确;C 中,,αβ也可能相交;D 中,l 也可能在平面β内. 【考点定位】点线面的位置关系4.A解析:A 【解析】 【分析】设底面ABCD 的边长为a ,四棱锥的高为h ,可得22122a h h =-,得出四棱锥的体积关于h 的函数()V h ,求出V 的极大值点,即可得到四棱锥的体积的最大值. 【详解】正四棱锥P ABCD -的所有顶点都在同一球面上,若球的半径为3,设底面ABCD 的边长为a ,四棱锥的高为h ,设正四棱锥的底面ABCD 的中心为1O . 则22a OA =,1PO ⊥ 平面ABCD . 则22211OO O A OA +=,即()2222332a h ⎛⎫+-= ⎪ ⎪⎝⎭,可得22122a h h =-. 则该四棱锥的体积为()221112233V a h h h h =⨯=- 令()()2122f h h hh =-,则()2246f h h h'=-当04h <<时,()0f h '>,f h 单调递增. 当4h >时,()0f h '<,f h 单调递减.所以当4h =时,该四棱锥的体积有最大值,最大值为:()216412424433⨯⨯-⨯⨯=. 故选:A【点睛】本题考查了四棱锥与球的组合体,求椎体的体积,关键是利用了导数求体积的最值.属于中档题.5.A解析:A 【解析】 【分析】 【详解】根据题意作出图形:设球心为O ,过ABC 三点的小圆的圆心为O 1,则OO 1⊥平面ABC ,延长CO 1交球于点D ,则SD ⊥平面ABC .∵CO 1=233323⨯=, ∴116133OO =-=, ∴高SD=2OO 1=26,∵△ABC 是边长为1的正三角形,∴S △ABC =3,∴132623S ABC V -=⨯⨯=三棱锥.考点:棱锥与外接球,体积. 【名师点睛】本题考查棱锥与外接球问题,首先我们要熟记一些特殊的几何体与外接球(内切球)的关系,如正方体(长方体)的外接球(内切球)球心是对角线的交点,正棱锥的外接球(内切球)球心在棱锥的高上,对一般棱锥来讲,外接球球心到名顶点距离相等,当问题难以考虑时,可减少点的个数,如先考虑到三个顶点的距离相等的点是三角形的外心,球心一定在过此点与此平面垂直的直线上.如直角三角形斜边中点到三顶点距离相等等等.6.B解析:B 【解析】由()f x 为偶函数得0m =,所以0,52log 3log 32121312,a =-=-=-=2log 521514b =-=-=,0210c =-=,所以c a b <<,故选B.考点:本题主要考查函数奇偶性及对数运算.7.C解析:C 【解析】 【分析】 【详解】由三视图可知,这是三棱锥的三视图,如下图所示,三角形BCD 为等腰直角三角形, 其外心为BD 中点1O ,设O 为AD 中点, 则O 为外接球球心,半径长度为1522AD =, 所以表面积为25π.8.A解析:A 【解析】如图,分别取,,,BC CD AD BD 的中点,,,M N P Q ,连,,,MN NP PM PQ ,则,MN BD NP AC ,∴PNM ∠即为异面直线AC 和BD 所成的角(或其补角). 又由题意得PQ MQ ⊥,11,22PQ AB MQ CD ==. 设2AB BC CD ===,则2PM =又112,222MN BD NP AC ==== ∴PNM ∆为等边三角形, ∴60PNM =︒∠,∴异面直线AC 与BD 所成角为60︒,其余弦值为12.选A . 点睛:用几何法求空间角时遵循“一找、二证、三计算”的步骤,即首先根据题意作出所求的角,并给出证明,然后将所求的角转化为三角形的内角.解题时要注意空间角的范围,并结合解三角形的知识得到所求角的大小或其三角函数值.9.C【解析】 【分析】由矩形的对角线互相平分且相等即球心到四个顶点的距离相等推出球心为AC 的中点,即可求出球的半径,代入体积公式即可得解. 【详解】因为矩形对角线互相平分且相等,根据外接球性质易知外接球球心到四个顶点的距离相等,所以球心在对角线AC 上,且球的半径为AC 长度的一半,即22115222r AC AB BC ==+=,所以334451253326V r πππ⎛⎫==⋅= ⎪⎝⎭.故选:C 【点睛】本题考查球与几何体的切、接问题,二面角的概念,属于基础题.10.B解析:B 【解析】 【分析】在①中,由面面平行的性质定理得m ∥β;在②中,m 与n 平行或异面;在③中,m 与β相交、平行或m ⊂β;在④中,由n ⊥α,m ⊥α,得m ∥n ,由n ⊥β,得m ⊥β. 【详解】由α,β为两个不同的平面,m ,n 为两条不同的直线,知:在①中,若α∥β,m ⊂α,则由面面平行的性质定理得m ∥β,故①正确; 在②中,若m ∥α,n ⊂α,则m 与n 平行或异面,故②错误;在③中,若α⊥β,α∩β=n ,m ⊥n ,则m 与β相交、平行或m ⊂β,故③错误; 在④中,若n ⊥α,m ⊥α,则m ∥n , 由n ⊥β,得m ⊥β,故④正确. 故选:B . 【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查空间想象能力、推理论证能力,考查化归与转化思想,是中档题.11.D【解析】 【分析】由直线()()21110k x k y ++++=,得出直线恒过定点()1,2P -,再结合直线与圆的位置关系,即可求解. 【详解】由直线()()():21110l k x k y k R ++++=∈,可得()210k x y x y ++++=, 又由2010x y x y +=⎧⎨++=⎩,解得12x y =⎧⎨=-⎩,即直线恒过定点()1,2P -,圆心()1,2C ,当CP l ⊥时弦长最短,此时2222AB CP r ⎛⎫+= ⎪⎝⎭,解得min 6AB =,再由l 经过圆心时弦长最长为直径210r =, 所以弦长AB 的取值范围是[]6,10. 故选:D. 【点睛】本题主要考查了直线系方程的应用,以及直线与圆的位置关系的应用,其中解答中熟练利用直线的方程,得出直线恒过定点,再结合直线与圆的位置关系求解是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.12.D解析:D 【解析】 【分析】A 中,根据面面平行的判定定理可得:α∥β或者α与β相交.B 中,根据面面得位置关系可得:α∥β或者α与β相交.C 中,则根据面面得位置关系可得:α∥β或者α与β相交.D 中,在直线n 上取一点Q ,过点Q 作直线m 的平行线m ′,所以m ′与n 是两条相交直线,m ′⊂β,n ⊂β,且m ′∥β,n ∥α,根据面面平行的判定定理可得α∥β,即可得到答案. 【详解】由题意,对于A 中,若m ,n 是平面α内两条直线,且m∥β,n∥β,则根据面面平行的判定定理可得:α∥β或者α与β相交.所以A 错误.对于B 中,若α内不共线的三点到β的距离相等,则根据面面得位置关系可得:α∥β或者α与β相交.所以B 错误.对于C 中,若α,β都垂直于平面γ,则根据面面得位置关系可得:α∥β或者α与β相交.所以C 错误.对于D 中,在直线n 上取一点Q ,过点Q 作直线m 的平行线m′,所以m′与n 是两条相交直线,m′⊂β,n ⊂β,且m′∥β,n∥α,根据面面平行的判定定理可得α∥β,所以D 正确. 故选D .【点睛】本题主要考查了平面与平面平行的判定与性质的应用,其中解答中灵活运用平面与平面平行额判定与性质进行判定是解答的关键,着重考查学生严密的思维能力和空间想象能力,属于基础题.二、填空题13.【解析】【分析】利用条件两两垂直且把三棱锥扩展为正方体球的直径即是正方体的体对角线长由球的表面积公式求解【详解】先把三棱锥扩展为正方体则正方体的体对角线的长为所以球的半径为所以球的表面积为【点睛】本 解析:3π【解析】 【分析】利用条件PA ,PB ,PC 两两垂直,且1PA PB PC ===把三棱锥P ABC -扩展为正方体,球的直径即是正方体的体对角线长,由球的表面积公式求解. 【详解】先把三棱锥P ABC -,所以球的半径为2,所以球的表面积为24π3π⨯=⎝⎭.【点睛】本题主要考查了球的体积公式:343V r π=球(其中r 为球的半径)及长方体的体对角线长公式:l =,,a b c 分别是长方体的长、宽、高).14.【解析】【分析】棱与平面所成的角相等所以平面就是与正方体的12条棱的夹角均为θ的平面之一设出棱长即可求出【详解】因为棱与平面所成的角相等所以平面就是与正方体的条棱的夹角均为的平面设棱长为:易知故答案解析:3【解析】 【分析】棱11111,,A A A B A D 与平面11AB D 所成的角相等,所以平面11AB D 就是与正方体的12条棱的夹角均为θ的平面之一,设出棱长,即可求出sin θ. 【详解】因为棱11111,,A A A B A D 与平面11AB D 所成的角相等,所以平面11AB D 就是与正方体的12条棱的夹角均为θ的平面,1A AO θ∠=,设棱长为:1,126AO AO ==,易知232sin 36θ==. 故答案为:33【点睛】本题考查了线面所成的角,解题的关键是作出线面角,属于基础题.15.①③【解析】【分析】对4个命题分别进行判断即可得出结论【详解】解:①平行于同一平面的两个不同平面互相平行正确;②平行于同一直线的两个不同平面互相平行或相交不正确;③垂直于同一直线的两个不同平面互相平解析:①③ 【解析】 【分析】对4个命题分别进行判断,即可得出结论. 【详解】解:①平行于同一平面的两个不同平面互相平行,正确; ②平行于同一直线的两个不同平面互相平行或相交,不正确; ③垂直于同一直线的两个不同平面互相平行,正确; ④垂直于同一平面的两个不同平面互相平行或相交,不正确. 故答案为:①③. 【点睛】本题考查类比推理,考查学生分析解决问题的能力,属于基础题.16.【解析】【分析】首先根据数形结合分析可知线段的长度的最小值转化为在平面上投影线段的最小值然后转化为点到直线的距离的最小值【详解】当平面时线段与其在平面上投影相等当与平面不平行时是斜线段大于其在平面上 解析:22【解析】 【分析】首先根据数形结合分析可知线段PQ 的长度的最小值转化为PQ 在平面ABCD 上投影线段的最小值,然后转化为点到直线的距离的最小值. 【详解】当//PQ 平面ABCD 时,线段PQ 与其在平面ABCD 上投影相等,当PQ 与平面ABCD 不平行时,PQ 是斜线段,大于其在平面ABCD 上投影的长度,∴求线段PQ 的最小值就是求其在平面ABCD 上投影的最小值,点P 在平面ABCD 的投影是点C ,点Q 在平面ABCD 的投影在BD 上,∴求线段PQ 的最小值转化为点C 到BD 的距离的最小值,连接,AC BD ,交于点O ,AC BD ⊥,∴点C 到BD 的距离的最小值22CO =.故答案为:22【点睛】本题考查几何体中距离的最小值,意在考查空间想象能力和数形结合分析问题的能力,属于中档题型.17.【解析】【分析】先确定轨迹再根据射线上点与圆的位置关系求最值即得结果【详解】所以为以为圆心为半径的圆及其内部设射线的端点为所以的最小值为故答案为:【点睛】本题考查动点轨迹以及点与圆位置关系考查数形结 解析:1132-+ 【解析】 【分析】先确定D 轨迹,再根据射线上点与圆的位置关系求最值,即得结果. 【详解】2222222(1)1,111,y x c a a c a a =+∴=--=∴=-,所以D 为以(1,0)F -为圆心,1a +为半径的圆及其内部, 设射线()02x y x =≥-的端点为(2,2)A ,所以PQ 的最小值为131||(1),1312,AF a a a a --+=∴-==. 故答案为:113-+. 【点睛】本题考查动点轨迹以及点与圆位置关系,考查数形结合思想以及基本分析求解能力,属中档题.18.【解析】【分析】由直线系方程求出直线所过定点再由两点求斜率求得定点与线段两端点连线的斜率数形结合求得实数的取值范围【详解】解:由直线可知直线过定点又如图∵∴由图可知直线与线段相交直线的斜率或斜率不存解析:21,32⎡⎤-⎢⎥⎣⎦【解析】 【分析】由直线系方程求出直线所过定点,再由两点求斜率求得定点与线段两端点连线的斜率,数形结合求得实数m 的取值范围. 【详解】解:由直线:0l x my m ++=可知直线过定点()0,1P -, 又()1,1A -,()2,2B ,如图∵()11201PA K --==---,123022PB K --==-,∴由图可知,直线与线段相交,直线l 的斜率(]3,2,2k ⎡⎫∈-∞-+∞⎪⎢⎣⎭,或斜率不存在, ∴(]13,2,2m ⎡⎫-∈-∞-+∞⎪⎢⎣⎭,或0m =, 即203m -≤<或102m <≤,或0m =,∴21,32m ⎡⎤∈-⎢⎥⎣⎦ 故答案为:21,32⎡⎤-⎢⎥⎣⎦.【点睛】本题主要考查直线系方程的应用,考查了直线的斜率计算公式,考查了数形结合的解题思想方法,属于中档题.19.【解析】【分析】首先求出即有将三棱锥展开当三点共线时值最小可证为中点从而可求从而得解【详解】在中所以同理所以在三棱锥中将侧面绕旋转至平面使之与平面共面如图所示当共线时取得最小值又因为所以垂直平分即为 解析:26+ 【解析】 【分析】首先求出2PB PC ==,即有PB PC BC ==,将三棱锥展开,当三点共线时,值最小,可证E 为PB 中点,从而可求OC OE EC ''=+,从而得解.【详解】在POB 中,1PO OB ==,90POB ∠=︒, 所以22112PB =+=,同理2PC =,所以PB PC BC ==,在三棱锥P ABC -中,将侧面BCP 绕PB 旋转至平面BC P ', 使之与平面ABP 共面,如图所示,当O ,E ,C '共线时,CE OE +取得最小值, 又因为OP OB =,C P C B '=', 所以OC '垂直平分PB ,即E 为PB 中点, 从而2626222OC OE EC ''=+=+= 亦即CE OE +的最小值为:262, 26+ 【点睛】本题主要考查了空间中线段和最小值问题,考查了空间想象能力、推理论证能力,考查了数形结合思想、化归与转化思想,属于中档题.20.【解析】分析:画出图形(如图)根据圆的性质可得然后可将问题转化为切线长最小的问题进而转化为圆心到直线距离的最小值的问题处理详解:根据题意画出图形如下图所示由题意得圆的圆心半径是由圆的性质可得四边形的解析:【解析】分析:画出图形(如图),根据圆的性质可得2PBCPACB S S =四边形,然后可将问题转化为切线长最小的问题,进而转化为圆心到直线距离的最小值的问题处理.详解:根据题意画出图形如下图所示.由题意得圆22:20C x y y +-=的圆心()0,1,半径是1r =,由圆的性质可得2PBCPACB S S =四边形,四边形PACB 的最小面积是2,∴PBC S的最小值112S rd ==(d 是切线长), ∴2d =最小值,∵圆心到直线的距离就是PC 的最小值,2221251k+==+又0k >, ∴2k =.点睛:本题考查圆的性质、切线长定理的运用,解题时注意转化思想方法的运用,结合题意将问题逐步转化为点到直线的距离的问题处理.三、解答题21.(1)见解析;(22【解析】 【分析】(1)连接BD ,交CE 于点O ,连接OM ,易知底面EBCD 是平行四边形,则O 为BD 中点,又M 是BP 中点,可知PD MO ,则结论可证.(2)先证明ADE 是等腰直角三角形,由条件中的面面垂直可得PD ⊥平面BCDE ,则由(1)可知MN ⊥平面BCDE ,则MN 为三棱锥M BCE -的高,底面BCE 的面积容易求得,根据公式求三棱锥M BCE -的体积. 【详解】(1)在平面图中,因为12BE AB CD ==且//BE CD , 所以四边形EBCD 是平行四边形; 在立体图中,连接BD ,交CE 于点O ,连接OM ,所以点O 是BD 的中点,又因为点M 为棱PB 的中点,所以//OM PD ,因为PD ⊄平面MCE ,OM ⊂平面MCE , 所以//PD 平面MCE ; (2)在平面图中,因为EBCD 是平行四边形,所以DE BC =,因为四边形ABCD 是等腰梯形, 所以AD BC =,所以AD DE =,因为45BAD ∠=︒,所以AD DE ⊥; 在立体图中,PD DE ⊥,又平面PDE ⊥平面EBCD ,且平面PDE ⋂平面EBCD DE =,PD ⊂平面PDE 所以PD ⊥平面EBCD ,由(1)知//OM PD ,所以OM ⊥平面EBCD , 在等腰直角三角形ADE 中,因为2AE =,所以2AD DE ==所以112222OM PD AD ===,又1BCE ADE S S ∆∆==, 所以1236M BCE BCE V S OM -∆=⋅⋅=.【点睛】本题考查平面几何与立体几何的关系,线面平行的证明,面面垂直的性质等,有一定的综合性,属中等题.22.(1)见解析;(2)见解析. 【解析】 【分析】(1)可证1AD CC ⊥,AD BC ⊥,从而可证AD ⊥平面11BCC B .(2)取11A C 的中点为G ,连接1,EG B G ,可证1//EF B G ,从而可证//EF 平面111A B C . 【详解】由正三棱柱111ABC A B C -可得1C C ⊥平面ABC ,而AD ⊂平面ABC , 故1AD CC ⊥.因为ABC ∆为等边三角形,BD DC =,故AD BC ⊥, 因为1BCCC C =,BC ⊂平面11BCC B ,1C C ⊂平面11BCC B ,所以AD ⊥平面11BCC B .(2)取11A C 的中点为G ,连接1,EG B G .在11A AC ∆,因为111,A G GC AE EC ==,故111//,2EG AA EG AA =. 由正三棱柱111ABC A B C -可得四边形11ABB A 为平行四边形,故1111,//AA BB AA BB =, 而1112B F BB =,所以11111//,2B F AA B F AA =,故11//,EG B F EG B F =, 故四边形1B FEG 为平行四边形,1//EF B G .因为EF ⊄平面111A B C , 1B G ⊂平面111A B C ,故//EF 平面111A B C .【点睛】本题考查线面垂直与线面平行的证明,前者转化为线线垂直,注意平面中的两条直线需为相交直线,后者转化为线线平行,注意一条线是平面外,另一条线是平面内,本题属于中档题.23.(1)证明见解析;(2)15. 【解析】 【分析】(1)平面AOB ⊥平面AOC ,OC OA ⊥,可证OC ⊥平面AOB ,即可证明结论; (2)取OB 中点E ,连DE ,则//DE AO ,CDE ∠(或补角)为异面直线AO 与CD 所成的角,解Rt CDE ∆,即可求出结论. 【详解】(1)平面AOB ⊥平面AOC ,平面AOB平面AOC OA =,,OC OA OC ⊥⊂平面,AOC OC ∴⊥平面AOB ,OC ⊂平面,COD ∴平面COD ⊥平面AOB ;(2)取OB 中点E ,连DE ,D 为AB 的中点,//DE AO ∴,CDE ∠(或补角)为异面直线AO 与CD 所成的角,,,,OA OB OA OC OB OC O OA ⊥⊥=∴⊥平面BOC ,DE ∴⊥平面BOC ,CE ⊂平面,BOC DE CE ∴⊥,在Rt AOB 中,30OAB ∠=︒,斜边4AB =,2223,2,3,()52OB OA OB OC DE CE OC ∴===∴==+=, 15tan 3CE CDE DE ∴∠==, 所以异面直线AO 与CD 所成角的正切值为15.【点睛】本题考查空间线、面位置关系,证明直线与平面垂直,注意空间垂直间的相互转化,求异面直线所成的角,要掌握空间角的解题步骤,“做”“证”“算”缺一不可,考查直观想象能力,属于中档题.24.(1)证明见解析;(2)2CM =. 【解析】 【分析】(1)由已知可得1CC BC ⊥,结合AC BC ⊥,可得BC ⊥平面11AAC C ,即可证明结论;(2)取1AB 中点D ,连,MD ND ,则//ND CM ,由//CN 平面1AB M ,可证//CN MD ,得到四边形CMDN 为平行四边形,即可求CM 的长. 【详解】(1)在直三棱柱111ABCA B C 中,1CC ⊥平面ABC ,1CC BC ∴⊥,又11,,,AC BC AC CC C AC CC ⊥=⊂平面11AAC C ,BC ∴⊥平面11AAC C ,AM ⊂平面11AAC C ,BC AM ⊥∴;(2)取1AB 中点D ,连,MD ND ,N 是AB 的中点,11111//,22DN BB DN BB CC ∴==,又11//,//BB CC DN CM ∴, ,DN CM ∴可确定平面,CMDN CN ∴⊂平面CMDN , //CN 平面1AB M ,平面1AB M平面CMDN DM =,//,CN DM ∴∴四边形CMDN 为平行四边形,1122CM DN CC ∴===.【点睛】本题考查异面直线垂直的证明,注意空间垂直间的相互转化,以及直线与平面平行性质定理的应用,意在考查直观想象、逻辑分析能力,属于中档题. 25.(1)证明见解析(246【解析】 【分析】(1)先证明AM ⊥平面11BB C C ,即可由线面垂直推证面面垂直; (2)根据线面角求得棱柱的高,即可由棱锥的体积公式求得结果. 【详解】(1)证明:如图,由直三棱柱111ABC A B C -知1AM BB ⊥, 又M 为BC 的中点知AM BC ⊥,又1BB BC B =,所以AM ⊥面11B BCC , 又AM ⊂平面AMN , 所以平面AMN ⊥平面11B BCC .(2)如图:设AB 的中点为D ,连接1A D ,CD .因为ABC 是正三角形,所以CD AB ⊥.由直三棱柱111ABC A B C -知1CD AA ⊥.所以CD ⊥平面11A ABB ,所以1CA D ∠为直线1A C 与平面11A ABB 所成的角.即130CA D ∠=︒, 所以13224432A C CD ==⨯=,所以16A D =, 在1Rt AA D △中, 221136442AA A D AD =-=-=111422222AA NC =⨯== 三棱锥M ANC -的体积即为三棱锥N AMC -的体积,所以2113146422332AMC S V NC ⎫⋅=⨯⨯⨯=⎪⎪⎝⎭=△. 【点睛】本题考查由线面垂直推证面面垂直,以及由线面角求线段长,涉及棱锥的体积求解,属综合中档题.26.(1)证明见解析 (2)71cos 2θ⎤∈⎥⎣⎦【解析】【分析】(1)先证明BC AC ⊥,结合面面垂直性质定理即可得到BC ⊥平面ACFE ;(2) 建立分别以直线CA ,CB ,CF 为x 轴,y 轴,z 轴的如图所示的空间直角坐标系, 求出平面MAB 与平面FCB 的法向量,表示cos θ,求函数的值域即可.【详解】解:(1)证明:在梯形ABCD 中,因为//AB CD ,1===AD DC CB ,60ABC ∠=︒所以2AB =,所以2222cos603AC AB BC AB BC ︒=+-=,所以222AB AC BC =+,所以BC AC ⊥.因为平面ACFE ⊥平面ABCD ,平面ACFE ⋂平面ABCD AC =,因为BC ⊂平面ABCD ,所以BC ⊥平面ACFE .(2)由(1)可建立分别以直线CA ,CB ,CF 为x 轴,y 轴,z 轴的如图所示的空间直角坐标系, 令()03FM λλ=≤≤,则()0,0,0C ,()3,0,0A ,()0,1,0B ,(),0,1M λ. ∴()3,1,0AB =-,(),1,1BM λ=-.设()1,,n x y z =为平面MAB 的一个法向量,由11·0·0n AB n BM ⎧=⎪⎨=⎪⎩得300x y x y z λ⎧+=⎪⎨-+=⎪⎩,取1x =,则()11,3,3n λ=, ∵()21,0,0n =是平面FCB 的一个法向量1212cos n n n n θ⋅∴==⋅()21331λ++-⨯()2134λ=-+∵03λ≤≤0λ=时,cos θ有最小值77,当3λ=cos θ有最大值12. ∴71cos 72θ⎤∈⎥⎣⎦. 【点睛】本题考查线面垂直的证明,二面角的度量,考查推理能力、计算能力以及空间想象能力,属于中档题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本题正确选项: D
【点睛】
本题考查棱锥外接球的体积求解问题,关键是能够确定棱锥外接球球心的位置,从而在直
角三角形中利用勾股定理构造方程求得半径.
4.C
解析:C 【解析】
【分析】
【详解】

由线面垂直的判定定理知,只有当 和 为相交
线时,才有
错误;

此时由线面平行的判定定理可知,只有当 在平面 外时,才有
直接计算得到高的数值.
8.D
解析:D
【解析】
该几何体为半圆柱,底面为半径为 1 的半圆,高为 2,因此表面积为
,选 D.
9.B
解析:B 【解析】 【分析】 在①中,由面面平行的性质定理得 m∥β;在②中,m 与 n 平行或异面;在③中,m 与 β 相 交、平行或 m⊂β;在④中,由 n⊥α,m⊥α,得 m∥n,由 n⊥β,得 m⊥β. 【详解】 由 α,β 为两个不同的平面,m,n 为两条不同的直线,知: 在①中,若 α∥β,m⊂α,则由面面平行的性质定理得 m∥β,故①正确;
两互相垂直,则球心到截面 ABC 的距离为________.
17.若直线 y x b 与曲线 y 3 4x x2 有公共点,则 b 的取值范围是______. 18.已知 P 是抛物线 y2 4x 上的动点,点 Q 是圆 C : (x 3)2 ( y 3)2 1上的动点,点 R 是点 P 在 y 轴上的射影,则 PQ + PR 的最小值是____________. 19.如图,在四棱锥 P ABCD 中, PA 底面
【典型题】高一数学下期中模拟试卷(含答案)(1)
一、选择题 1.设 l 为直线,, 是两个不同的平面,下列命题中正确的是( )
A.若 l / / , l / / ,则 / /
B.若 l , l ,则 / /
C.若 l , l / / ,则 / /
D.若 , l / / ,则 l
则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.②等积法:等积
法包括等面积法和等体积法.等积法的前提是几何图形(或几何体)的面积(或体积)通过已知
条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高,特别是在求三角形
的高和三棱锥的高时,这一方法回避了通过具体作图得到三角形(或三棱锥)的高,而通过
5.C
解析:C 【解析】 【分析】
先作出三棱锥 P ABC 的图像,根据 P ABC 四个面都为直角三角形和 PA ⊥平面 ABC ,可知 PC 中点即为球心,利用边的关系求出球的半径,再由 S 4 R2 计算即得.
【详解】
三棱锥 P ABC 如图所示,由于 P ABC 四个面都为直角三角形,则 ABC 是直角三
7.B
解析:B 【解析】 【分析】 当 P 与 A 重合时,异面直线 CP 与 BA1 所成的角最大,由此能求出当异面直线 CP 与 BA1 所 成的角最大时,三棱锥 C﹣PA1D1 的体积. 【详解】 如图,当 P 与 A 重合时,
异面直线 CP 与 BA1 所成的角最大, ∴当异面直线 CP 与 BA1 所成的角最大时, 三棱锥 C﹣PA1D1 的体积:
2.陀螺是汉族民间最早的娱乐工具之一,也称陀罗,北方叫做“打老牛”.陀螺的主体形
状一般是由上面部分的圆柱和下面部分的圆锥组成.如图画出的是某陀螺模型的三视图,已
知网格纸中小正方形的边长为 1,则该陀螺模型的体积为( )
A. 107 3
B. 32 45 3
C. 16 32 3
D. 32 33 3
3.已知 A, B,C, D 是同一球面上的四个点,其中 ABC 是正三角形, AD 平面 ABC ,
AD 2AB 6 ,则该球的体积为( )
A.48π
B.24π
C.16π
D. 32 3 π
4.对于平面 、 、 和直线 a 、 b 、 m 、 n ,下列命题中真命题是( )
A.若 a m, a n, m , n , ,则 a
①若 ,
,则 ;
②若 , ,则 ;
③若 ,

,则
④若 , ,
,则
.
A.①③
B.①④
C.②③
D.②④
10.若圆锥的高等于底面直径,则它的底面积与侧面积之比为
A.1∶2
B.1∶ 3
C.1∶ 5
D. 3 ∶2
11.如图,在正方体 ABCD A1B1C1D1 中, M , N 分别是 BC1 , CD1 的中点,则下列说
法错.误.的是( )
A. MN 与 CC1 垂直
B. MN 与 AC 垂直
C. MN 与 BD 平行
D. MN 与 A1B1 平行
12.如图,正方体 ABCD﹣A1B1C1D1 的棱长为 1,线段 B1D1 上有两个动点 E、F,且
EF= 1 .则下列结论中正确的个数为 2
①AC⊥BE;
②EF∥平面 ABCD;
OO 平面 ABC , AD 平面 ABC , OE AD
OO AE x , OE AO 3 在 RtPOE 和 RtOOA 中,由勾股定理得:
OE2 PE2 OO2 OA2 R2 ,即 3 6 x2 x2 3 R2
解得: x 3 , R 2 3
球的体积为:V 4 R3 32 3 3
ABCD, AD AB, AB / /DC, AD DC AP 2, AB 1,若 E 为棱 PC 上一点,满足 BE AC ,则 PE __________.
EC
20.正四棱锥 S-ABCD 的底面边长和各侧棱长都为 2 ,点 S、A、B、C、D 都在同一个球
面上,则该球的体积为______.
锥体的体积计算公式即得该陀螺模型的体积.
【详解】
由三视图可知,该陀螺模型是由一个正四棱锥、一个圆柱、一个圆锥组合而成.
所以该陀螺模型的体积V 1 42 2 32 3 1 32 2 32 33 .
3
3
3
故选: D .
【点睛】
本题考查三视图,考查学生的空间想象能力,属于基础题.
③三棱锥 A﹣BEF 的体积为定值;
④ AEF 的面积与 BEF 的面积相等,
A.4
B.3
二、填空题
C.2
D.1
13.在棱长为 1 的正方体 ABCD A1B1C1D1 中, BD AC O , M 是线段 D1O 上的动
点,过 M 做平面 ACD1 的垂线交平面 A1B1C1D1 于点 N ,则点 N 到点 A 的距离最小值是
(Ⅱ)求凸多面体 ABCDE 的体积.
23.如图所示,四棱锥 B AEDC 中,平面 AEDC 平面 ABC , F 为 BC 的中点, P 为 BD 的中点,且 AE∥DC, ACD BAC 90 , DC AC AB 2AE .
(Ⅰ)证明:平面 BDE 平面 BCD; (Ⅱ)若 DC 2 ,求三棱锥 E BDF 的体积. 24.已知点 A(3, 4), B(9, 0) , C, D 分别为线段 OA,OB 上的动点,且满足 AC BD (1)若 AC 4, 求直线 CD 的方程; (2)证明: OCD 的外接圆恒过定点(异于原点). 25.如图,在 ABC 中 AC BC 且点 O 为 AB 的中点,矩形 ABEF 所在的平面与平面 ABC 互相垂直.
3.D
解析:D 【解析】
【分析】
根据球的性质可知球心 O 与 ABC 外接圆圆心 O 连线垂直于平面 ABC ;在 RtPOE 和
RtOOA 中利用勾股定理构造出关于半径 R 和 OO 的方程组,解方程组求得 R ,代入球
的体积公式可得结果. 【详解】
设 O 为 ABC 的外心,如下图所示:
由球的性质可知,球心 O 与 O 连线垂直于平面 ABC ,作 OE AD 于 E 设球的半径为 R , OO x ABC 为等边三角形,且 AB 3 AO 3
三、解答题
21.在平面直角坐标系 xOy 中,已知圆 C 经过 A0, 2 , O0,0 , Dt,0 ( t 0 )三 点,M 是线段 AD 上的动点, l1 , l2 是过点 B1,0 且互相垂直的两条直线,其中 l1 交 y 轴
于点 E, l2 交圆 C 于 P、Q 两点. (1)若 t PQ 6 ,求直线 l2 的方程; (2)若 t 是使 AM 2 BM 恒成立的最小正整数 ①求 t 的值; ②求三角形 EPQ 的面积的最小值. 22.如图,正方形 ABCD 所在平面与三角形 CDE 所在平面相交于 CD , AE⊥平面 CDE ,且 AE 1, AB 2 . (Ⅰ)求证: AB 平面 ADE ;

错误;
由面面平行的性质定理:若两平面平行,第三个平面与他们都相交,则交线平行,可判断,若
/ / , a , b ,则 a / /b 为真命题, 正确;

此时由面面平行的判定定理可知,只有当 、 为相
交线时,才有 / /, D 错误.
故选 C. 考点:考查直线与直线,直线与平面,平面与平面的位置关系.
___________.
14.若一个圆柱的侧面展开图是边长为 2 的正方形,则此圆柱的体积为 . 15.如图,在圆柱 O1 O2 内有一个球 O,该球与圆柱的上、下底面及母线均相切.记圆柱 O1
O2
的体积为 V1
,球 O 的体积为 V2
,则 V1 V2
的值是_____
16.已知正三棱锥 P ABC,点 P,A,B,C 都在半径为 3 的求面上,若 PA,PB,PC 两
5
值.
【参考答案】***试卷处理标记,请不要删除
一、选择题 1.B 解析:B
【解析】
A 中,, 也可能相交;B 中,垂直与同一条直线的两个平面平行,故正确;C 中,,
也可能相交;D 中, l 也可能在平面 内.
【考点定位】点线面的位置关系
相关文档
最新文档