多边形知识点及经典习题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多边形
一. 考点:三角形的角度,边长关系,内角和与外角和,用正多边形铺设地板 二. 热点:内角和与外角和 三. 知识讲解
★★★主要知识点:
1、三角形的定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.
2、三角形的分类.
⎪⎩⎪⎨⎧钝角三角形直角三角形锐角三角形
⎪⎪
⎩
⎪⎪⎨⎧)
(等边三角形等腰三角形不等边三角形 3、一般三角形的性质
(1)三角形的内角和定理及性质 定理:三角形的内角和等于180°. 推论1:直角三角形的两个锐角互补。
推论2:三角形的一个外角等于不相邻的两个内角的和。 推论3:三角形的一个外角大于与它不相邻的任何一个内角。
(2)三角形的三边关系:
三角形任意两边之和大于第三边,任意两边之差小于第三边.
(3) (4) 三角形具有稳定性
(5)(见下表):
(1)三角形共有三条中位线,并且它们又重新构成一个新的三角形。 (2)要会区别三角形中线与中位线。
三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。 三角形中位线定理的作用: 位置关系:可以证明两条直线平行。 数量关系:可以证明线段的倍分关系。
三角形 (按角分) 三角形 (按边分)
常用结论:任一个三角形都有三条中位线,由此有:
结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半。 结论2:三条中位线将原三角形分割成四个全等的三角形。 结论3:三条中位线将原三角形划分出三个面积相等的平行四边形。 结论4:三角形一条中线和与它相交的中位线互相平分。
结论5:三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等。 3. 几种特殊三角形的特殊性质 1、等腰三角形的性质
(1)等腰三角形的性质定理及推论:
定理:等腰三角形的两个底角相等(简称:等边对等角)
推论1:等腰三角形顶角平分线平分底边并且垂直于底边。即等腰三角形的顶角平分线、 底边上的中线、底边上的高重合。(三线合一)这条线段所在的直线是等腰三角 形的对称轴。
推论260°。
(1)直角三角形的特殊性质:
A/直角三角形的两个锐角互为余角;
B/在直角三角形中如果 有一个角等于30°,那么这个角的对边等于斜边的一半;
如果有一条边等于另一条边的一半,那么这条边所对的角等于30°。 C/直角三角形斜边上的中线等于斜边的一半
D/直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+
4. 三角形的面积一般三角形:S △ = 2
1
a h ( h 是a 边上的高 )
4、多边形、
1、任意多边形的外角和恒为360°
2、多边形及多边形的对角线
①正多边形:各个角都相等,各条边都相等的多边形叫做正多边形.
②凸凹多边形:画出多边形的任何一条边所在的直线,若整个图形都在这条直线的
同一侧,这样的多边形称为凸多边形;,若整个多边形不都在这条直线的同一侧, 称这样的多边形为凹多边形。
③多边形的对角线的条数:
A.从n 边形的一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形。
B.n 边形共有2)
3(-n n 条对角线。
9、边形的内角和公式及外角和
①多边形的内角和等于(n-2)×180°(n ≥3)。 ②多边形的外角和等于360°。 10、平面镶嵌及平面镶嵌的条件。
①平面镶嵌:用形状相同或不同的图形封闭平面,把平面的一部分既无缝隙,又不重叠地全部覆盖。
②平面镶嵌的条件:有公共顶点、公共边;在一个顶点处各多边形的内角和为360°。
A C
B 第 8 题D
C D
B A 第 14 题
例1: (基础题)
①在△ABC 中,已知∠B = 40°,∠C = 80°,则∠A = (度)
②如图,△ABC 中,∠A = 60°,∠C = 50°,则外角∠CBD = 。
③已知,在△ABC 中, ∠A + ∠B = ∠C ,那么△ABC 的形状为( ) A 、直角三角形 B 、钝角三角形 C 、锐角三角形 D 、以上都不对
④下列长度的三条线段能组成三角形的是( ) A.3cm ,4cm ,8cm B.5cm ,6cm ,11cm C.5cm ,6cm ,10cm D.3cm ,8cm ,12cm
⑤如果一个三角形的三边长分别为x ,2,3,那么x 的取值范围是 。
⑥小华要从长度分别为5cm 、6cm 、11cm 、16cm 的四根小木棒中选出三根摆成一个三角形,那么他选的三根木棒的长度分别是_ .
⑦已知等腰三角形的一边长为6,另一边长为10,则它的周长为
⑧在△ABC 中,AB = AC ,BC=10cm,∠A = 80°,则∠B = ,∠C = 。
BD=______,CD=________
⑨如图,AB = AC ,BC ⊥ AD ,若BC = 6,则BD = 。
例3: (提高)
①△ABC 中,∠C=90°,∠B-2∠A=30°,则∠A= ,∠B=
③在等腰三角形中,一个角是另一个角的2倍,求三个角?_______________________ ④:在等腰三角形中,,周长为40cm,一个边另一个边2倍,求三个边?_________________
例6.ABC 为等边三角形,D 是AC 中点,E 是BC 延长线上一点,且CE = 21
BC
求证: BD = DE
一、选择题:
等腰三角形中,一个角为50°,则这个等腰三角形的顶角的度数为( ) A.150° B.80° C.50°或80° D.70°
2. 在△ABC 中, ∠A =50°, ∠B ,∠C 的角平分线相交于点O ,则∠BOC 的度数是( ) A . 65° B . 115° C . 130° D . 100°
3.如图,如果∠1=∠2=∠3,则AM 为△
AN 为△ 的角平分线。
三、解答题: