沪教版 六年级上册数学知识点汇总
2023学年度沪教版六年级数学上册全册知识点归纳
2023学年度沪教版六年级数学上册全册
知识点归纳
本文档总结了2023学年度沪教版六年级数学上册全册的知识点。
以下是各个单元的知识点概述:
第一单元:整数
- 正整数、负整数、零
- 整数的比较与排序
- 整数的加法和减法
- 整数的加减法应用
第二单元:几何图形
- 平行线与垂直线
- 三角形与四边形
- 重点图形的性质:正方形、长方形、等边三角形和等腰三角形
- 图形的面积计算
第三单元:小数
- 小数的读法与写法
- 小数之间的比较与排序
- 小数的加法和减法
- 小数的乘法和除法
第四单元:分数
- 分数的读法与写法
- 分数之间的比较与排序
- 分数的加法和减法
- 分数的乘法和除法
第五单元:图表与数据
- 读取、制作和分析图表
- 对数据进行统计和排序
- 图表的比较和解读
- 问题解决与推理思维
第六单元:整数乘法和除法
- 整数的乘法和除法
- 整数运算的应用
- 在解决实际问题中应用整数运算第七单元:数的算法
- 乘法算法(竖式乘法)
- 除法算法(长除法)
- 运算法则及其应用
第八单元:多位数的加减法
- 多位数的竖式加法
- 多位数的竖式减法
- 两步计算和多步计算
- 分多次计算的应用
第九单元:时间、温度和长度
- 小时、分钟和秒钟的读法和写法
- 温度的读法和写法
- 长度单位的换算
- 解决与时间、温度和长度有关的实际问题
以上是2023学年度沪教版六年级数学上册全册的知识点归纳。
希望对你有帮助!。
沪教版六年级数学上册知识点
沪教版六年级数学上册知识点
以下是沪教版六年级数学上册的知识点:
1.整数的意义及表示法:正整数、负整数、0,绝对值,数轴。
2.四则运算:整数间的加法、减法、乘法和除法,加减法的交换律和结合律。
3.小数的初步认识:小数的定义、读法和写法,小数在数轴上的位置,小数和分数的关系。
4.小数的运算:小数的加法、减法和乘法,小数与整数的运算。
5.小数的比较:小数的大小比较,加零不变的比较法,小数的大小与小数点位置的关系。
6.分数的初步认识:分数的定义和表示法,分数和整数的关系,分数在数轴上的位置。
7.分数的运算:分数的加法、减法和乘法,带分数的四则运算,分数的化简和约分。
8.分数的比较:分数的大小比较,同分母比较法,同分子比较法。
9.倍数与约数:倍数和最小公倍数,约数和最大公约数。
10.面积的初步认识:面积的定义和单位,计算矩形面积的公式,面积的性质和简单应用。
11.尺度:尺度的意义和应用,求实物和图纸的比例尺。
12.长、宽和高:直角坐标系,矩形的长、宽和高的认识和测量。
13.长方体和正方体:长方体和正方体的定义,计算体积的公式,体积的性质和简单应用。
14.长方形和正方形:长方形的性质,正方形的性质,计算周长的公式。
15.面积和周长:计算矩形和正方形的周长和面积,解决与面积和周长有关的问题。
16.鲁迅故居:阅读鲁迅故居的图纸,计算房间面积和旅馆用地面积。
请注意,以上只是列举了一部分知识点,具体的内容可能还有其他的知识点未包含在内。
沪教版六年级数学上学期知识汇总
专题一:整除(数的整除、分解质因数、最大公约数、最小公倍数)(1) 特殊数的整除特征:(2、5)(4、25)(8、125)(3、9)(11)1001(2) 余数定理:和的余数等于余数之和的余数差的余数等于余数之差的余数积的余数等于余数之积的余数(3) 同余原理:若两个数A 、B 除以同一个数C 得到的余数相同,则A 、B 的差一定能被C 整除。
(4)分解质因数:(分解彻底)(5)最大公约数、最小公倍数以及如何求约数,约数和A 、求法:(短除法、分解质因数法、辗转相除法)B 、A ×B=(A 、B )×[A 、B]C 、求约数个数:指数加1在相乘求约数和:从每个因数的零次方开始加,一直加到这个因数本身,然后再把所有的这些和相乘。
例如:18=2×23 约数个数为:(1+1)×(2+1)=6个约数和为:(1022+)×(210333++)=39【汪汪语录】有时,整除出的题咋一看貌似有些小难,但是只要稍微经过分析,就会发现所谓的难题都是”纸老虎”,就算碰到真的老虎,汪汪相信你们个个都是武松!咱要有信心,知道不?!~~~专题二:分数(分数、繁分数计算化简;裂项,分数与小数互化)(1) 分数计算技巧:加减法:能凑整则先凑整、分母相同的放在一起先算(死算时通分) 乘除法:带分数化为假分数、小数化为分数、能约分则尽量约分(2) 繁分数化简计算【汪汪语录】繁分数更多的是一个工具,通常它会出现在分数的混合计算当中来考查学生的化简能力、细心程度。
解题技巧:在计算中碰到小数,尽快转化成分数、做到步步为营,细心决定成败。
(3)分数的裂项:(分母为乘积、分子为和差))1(1+n n =n 1-)1(1+n )1(+n n a)k (1+n n =k 1 [n 1-)(1k n +] )k (+n n a)2)(1(1++n n n = 21 [)1(1+n n -)2)(1(1++n n ] )2)(1(++n n n a )2)((1k n k n n ++= k 21 [)(1k n n +-)2)((1k n k n ++] )2)((k n k n n a ++ 【汪汪语录】1、在一般裂项题目中,分子的构造是与分母的两个或三个因数有关的2、要留意分母中出现的一些“裂项数”:6、12、20、30、42、56、72、90……3、当看到分母不是乘积的形式或者一眼很难看出从哪里开始裂项,直接进行没法做,这时要拿最后一项“开刀”,从最后一项中找到通项,化简通项,再进行裂项。
六年级上册数学知识点(沪教版五四学制)
第一章数的整除1.1整数和整除的意义1.在数物体的时候,用来表示物体个数的数1,2,3,4,5,……,叫做整数2.在正整数1,2,3,4,5,……,的前面添上“—”号,得到的数—1,—2,—3,—4,—5,……,叫做负整数3.零和正整数统称为自然数4.正整数、负整数和零统称为整数5.整数a除以整数b,如果除得的商正好是整数而没有余数,我们就说a能被b整除,或者说b能整除a。
1.2因数和倍数1.如果整数a能被整数b整除,a就叫做b倍数,b就叫做a的因数2.倍数和因数是相互依存的3.一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身4.一个数的倍数的个数是无限的,其中最小的倍数是它本身1.3能被2,5整除的数1.个位数字是0,2,4,6,8的数都能被2整除2.整数可以分成奇数和偶数,能被2整除的数叫做偶数,不能被2整除的数叫做奇数3.在正整数中(除1外),与奇数相邻的两个数是偶数4.在正整数中,与偶数相邻的两个数是奇数5.个位数字是0,5的数都能被5整除6.0是偶数1.4素数、合数与分解素因数1.只含有因数1及本身的整数叫做素数或质数2.除了1及本身还有别的因数,这样的数叫做合数3.1既不是素数也不是合数4.奇数和偶数统称为正整数,素数、合数和1统称为正整数5.每个合数都可以写成几个素数相乘的形式,这几个素数都叫做这个合数的素因数6.把一个合数用素因数相乘的形式表示出来,叫做分解素因数。
7.分解素因数方法:树枝分解法,短除法1.5公因数与最大公因数1.几个数公有的因数,叫做这几个数的公因数,其最大的一个叫做这几个数的最大公因数2.如果两个整数只有公因数1,那么称这两个数互素数3.把两个数公有的素因数连乘,所得的积就是这两个数的最大公因数4.如果两个数中,较小数是较大数的因数,那么这两个数的最大公因数较小的数5.如果两个数是互素数,那么这两个数的最大公因数是11.6公倍数与最小公倍数1.几个数公有的倍数,叫做这几个数的公倍数2.几个数中最小的公因数,叫做这几个数的最小公倍数3.求两个数的最小公倍数,只要把它们所有的公有的素因数和他们各自独有的素因数连乘,所得的积就是他们的最小公倍数4.如果两个数中,较大数是较小数的倍数,那么这两个数的最小公倍数是较大的那个数5.如果两个数是互素数,那么这两个数的最小公倍数是两个数的乘积.第二章分数2.1分数与除法被除数除数p q1.一般地,两个正整数相除的商可用分数表示,即被除数÷除数= 用字母表示为p÷q=(p、q为正整数)2.2分数的基本性质1.分数的分子和分母同时乘以一个不为零的整数,分数的值不变2.分子\分母只有公因数1的分数叫做最简分数3.把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分2.3分数的比较大小1.同分母分数的大小只需要比较分子的大小,分子大的比较大,分子小的比较小2.通分的一般步骤是:(1)求公分母——求分母的最小公倍数;(2)根据分数的基本性质,将每个分数化成分母相同的分数。
沪教版六年级数学知识点汇总
沪教版六年级数学知识点汇总第一章整数1.1 整数和整除的意义1.在数物体的时候;用来表示物体个数的数1,2,3,4,5;……;叫做整数2.在正整数1,2,3,4,5;……;的前面添上“—”号;得到的数—1;—2;—3;—4;—5;……;叫做负整数3. 零和正整数统称为自然数4.正整数、负整数和零统称为整数5.整数a除以整数b;如果除得的商正好是整数而没有余数;我们就说a能被b整除;或者说b能整除a。
1.2 因数和倍数1.如果整数a能被整数b整除;a就叫做b倍数;b就叫做a的因数2.倍数和因数是相互依存的3.一个数的因数的个数是有限的;其中最小的因数是1;最大的因数是它本身4.一个数的倍数的个数是无限的;其中最小的倍数是它本身1.3能被2,5整除的数1.个位数字是0,2,4,6,8的数都能被2整除2.整数可以分成奇数和偶数;能被2整除的数叫做偶数;不能被2整除的数叫做奇数3.在正整数中(除1外);与奇数相邻的两个数是偶数4.在正整数中;与偶数相邻的两个数是奇数5.个位数字是0,5的数都能被5整除6. 0是偶数1.4 素数、合数与分解素因数1.只含有因数1及本身的整数叫做素数或质数2.除了1及本身还有别的因数;这样的数叫做合数3. 1既不是素数也不是合数4.奇数和偶数统称为正整数;素数、合数和1统称为正整数5.每个合数都可以写成几个素数相乘的形式;这几个素数都叫做这个合数的素因数6.把一个合数用素因数相乘的形式表示出来,叫做分解素因数。
7.通常用什么方法分解素因数: 树枝分解法,短除法1.5 公因数与最大公因数1.几个数公有的因数;叫做这几个数的公因数;其最大的一个叫做这几个数的最大公因数2.如果两个整数只有公因数1;那么称这两个数互素数3.把两个数公有的素因数连乘;所得的积就是这两个数的最大公因数4.如果两个数中;较小数是较大数的因数;那么这两个数的最大公因数较小的数5.如果两个数是互素数;那么这两个数的最大公因数是11.6公倍数与最小公倍数1.几个数公有的倍数;叫做这几个数的公倍数2.几个数中最小的公因数;叫做这几个数的最小公倍数3.求两个数的最小公倍数;只要把它们所有的公有的素因数和他们各自独有的素因数连乘;所得的积就是他们的最小公倍数4.如果两个数中;较大数是较小数的倍数;那么这两个数的最小公倍数是较大的那个数5.如果两个数是互素数;那么这两个数的最小公倍数是;两个数的乘积第二章分数2.1分数与除法1.一般地;两个正整数相除的商可用分数表示;即被除数÷除数= 被除数除数用字母表示为p÷q=pq(p、q为正整数)2.2分数的基本性质1.分数的分子和分母同时乘以一个不为零的整数;分数的值不变2.分子分母只有公因数1的分数叫做最简分数3.把一个分数化成同它相等;但分子、分母都比较小的分数;叫做约分2.3分数的比较大小1.同分母分数的大小只需要比较分子的大小;分子大的比较大;分子小的比较小2.通分的一般步骤是:(1)求公分母——求分母的最小公倍数;(2)根据分数的基本性质;将每个分数化成分母相同的分数。
沪教版六年级数学知识点汇总
沪教版六年级数学第一章数的整除1.1整数和整除的意义零和正整数统称为自然数。
正整数、零、负整数统称为整数。
整数a除以整数b,如果除得的商是整数而余数为零,我们就说a能被b整除;或者说b能整除a。
注意整除的条件:1、除数、被除数都是整数2、被除数除以除数,商是整数而余数为零。
1.2因数和倍数整数a能被整数b整除,a就叫做b的倍数,b就叫a的因数(也称为约数)倍数和因数是相互依存的注意:1、一个数的因数的个数是有限的,其中最小的因数是 1,最大的因数是它本身2、一个数的倍数的个数是无限的,其中最小的倍数是它本身1.3能被2,3,5整除的数个位上是0,2,4,6,8的整数都能被2整除。
能被2整除的数叫做偶数,不能被2整除的数叫做奇数。
个位上是0或5的整数都能被5整除。
将一个整数的各位数字相加,如果得到的和能被3整除,那么这个数就能被3整除。
注意:1、在正整数中(除 1 外),与奇数相邻的两个数是偶数2、在正整数中,与偶数相邻的两个数是奇数3、0 是偶数1.4素数、合数与分解素因数一个正整数,如果只有1和它本身两个因数,这样的数叫做素数,也叫做质数;如果除了1和它本身以外还有别的因数,这样的数叫做合数。
1既不是素数,也不是合数。
这样,正整数又可以分为1、素数、合数三类。
(依据:因数的个数)每个合数都可以写成几个素数相乘的形式,其中每个素数都是这个合数的素因数。
把一个合数用素因数相乘的形式表示出来,叫做分解素因数。
用短除法分解素因数的步骤如下:1、先用一个能整除这个合数的素数(通常从最小的开始)去除2、得出的商如果是合数,再按照上面的方法继续除下去,知道得出的商是素数为止。
3、然后把各个除数和最后的商按从小到大的顺序写成连乘的形式。
1.5公因数和最大公因数几个数公有的因数,叫做这几个数的公因数,其中最大的一个叫做这几个数的最大公因数。
如果两个整数只有公因数1,那么称为这两个数互素。
两个整数中,如果某个数是另一个数的因数,那么这个数就是这两个数的最大公因数。
沪教版六年级上数学知识点梳理
六年级上册数学知识点梳理:1.多位数的认识:-多位数由数位和数值组成,数位包括:个位、十位、百位、千位等。
-多位数的数值是由数位上数字的数值相加得到。
2.进位与退位:-进位:数字从个位进位到十位、百位等。
-退位:数字从十位、百位退位到个位。
3.数的读法和写法:-数的读法:可以根据数的位数,将数字分解开来,分别读出每一位的数值并加上对应的数位名词。
-数的写法:可以根据数位和数值,将数字进行组合。
4.数的比较和数的序:-数的比较:可以通过数的大小来判断大小关系。
如果两个数的数值不同,则数值大的数较大;如果两个数的数值相同,则比较数位,数位多的数较大。
-数的序:数的序就是将一组数按照大小从小到大进行排列。
5.数的加减法:-加法:可以通过竖式计算,将相同数位的数字从右到左逐位相加,并将进位加在相邻的高位上。
-减法:可以通过竖式计算,从被减数的个位开始,逐位相减,不够减时向高位借位。
6.数据的整理和统计:-数据整理:可以将一组数据按照其中一种规则进行整理,如从小到大排列等。
-数据统计:可以根据数据的特点和需求,选取不同的统计指标进行分析和统计。
7.分数的认识和大小比较:-分数由分子和分母组成,分子表示分数的份数,分母表示每份的等分数。
-分数的大小比较:可以将分数转化为相同分母后再进行比较,分子小的分数较小。
8.分数的加减法:-分数的加法:可以将两个分数转化为相同分母的分数后再进行相加,结果的分母保持不变,分子相加。
-分数的减法:可以将两个分数转化为相同分母的分数后再进行相减,结果的分母保持不变,分子相减。
9.小数的认识和读法:-小数是由整数与小数点组成的数。
-小数的读法:小数点后面的数字依次读出,可以用“点”或“句点”表示小数点。
10.小数的位置与大小比较:-小数点的位置决定了小数的大小,小数点左边的部分增大,小数变大;小数点右边的部分增大,小数变小。
沪教版数学六年级上册知识点
沪教版数学六年级上册知识点沪教版数学六年级上册知识点(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
“分数乘整数〞指的是第二个因数必须是整数,不能是分数。
2、一个数乘分数的意义就是求一个数的几分之几是多少。
“一个数乘分数〞指的是第二个因数必须是分数,不能是整数。
(第一个因数是什么都可以)(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
(1)为了计算简便能约分的可先约分再计算。
(整数和分母约分)(2)约分是用整数和下面的分母约掉公因数。
(整数千万不能与分母相乘,计算结果必须是最简分数)。
2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
(分子乘分子,分母乘分母)(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。
(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。
(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。
a×b=c,当b 1时,ca。
一个数(0除外)乘小于1的数,积小于这个数。
a×b=c,当b 1时,ca(b≠0)。
p=一个数(0除外)乘等于1的数,积等于这个数。
a×b=c,当b =1时,c=a 。
在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
(四)分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。
2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。
乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)乘法分配律:a×(b±c)=a×b±a×c(五)倒数的意义:乘积为1的两个数互为倒数。
沪教版六年级上册--数学知识点梳理
沪教版六年级上册--数学知识点梳理(共5页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--沪教版六年级上册数学知识点梳理一、数的整除1.内容要目数的整除性、因数和倍数、奇数和偶数、素数和合数、公因数和最大公因数、公倍数和最小公倍数、分解素因数;能被2和5整除的正整数的特征。
2.教学目标(1)知道数的整除性、因数和倍数,奇数和偶数、素数和合数、公因数和公倍数等的意义;知道能被2、5整除的正整数的特征。
(2)会用短除法分解素因数;会求两个正整数的最大公因数和最小公倍数。
3.重点、难点及易错点重点:正确的分解素因数,并会求两个正整数的最大公因数和最小公倍数。
难点:会求两个正整数的最小公倍数。
易错点:1既不是素数也不是合数,概念易混淆。
4.中考必考题型及分数占比结合概率考察素数合数等问题一道填空题4分5.知识结构二、分数1.内容要目(1)分数的概念,分数的加减乘除运算法则,分数与小数的互划与运算;(2)异分母分数的运算,通分、约分的技巧。
2.教学目标(1)知道分数的意义,学会分数的运算法则;(2)通过对分数的学习,提高运算能力和解决实际问题的能力,初步掌握转化的思维方法;(3)能够比较分数与小数的关系及混合运算。
3.重点、难点及易错点重点:分数的乘除混合运算以及通分和约分;易错点:乘除法则的运算4.中考必考题型及分数占比分数的混合运算,一道选择题或者一道填空题,占4分5.知识结构三、比和比例1.内容要目(1)必和比例的概念,比的基本性质,比和比例的有关性质;(2)百分比的概念及应用,百分比与小数、分数的关系。
(3)等可能事件2.教学目标(1)理解比和比例的有关概念及意义,根据比例的概念和基本性质,会解决简单的比例问题;(2)了解百分比在生活中的简单应用,会解决有关比和百分比的简单问题,从中体会数学与现实生活的联系;(3)了解等可能事件,学习用数量来描述一个事件发生的可能性的大小,初步体会概率思想。
六年级数学上册知识汇总(沪教版)
六年级数学上册知识汇总(沪教版)六年级上册第一章数的整除第一节整数和整除1.1整数和整除的意义1.2因数和倍数1.3能被2、5整除的数第二节分解质因数1.4素数、合数与分解质因数1.5公因数与最大公因数1.6公倍数与最小公倍数第二章分数第一节分数的意义和性质2.1分数与除法2.2分数的基本性质2.3分数的大小比较第二节分数的运算2.4分数的加减法2.5分数的乘法2.6分数的除法2.7分数与小数的互化第三章比和比例第一节比和比例3.1比的意义3.2比的基本性质3.3比例第二节百分比3.4百分比的意义3.5百分比的应用3.6等可能事件第四章圆和扇形第一节圆的周长和弧长4.1圆的周长4.2弧长第二节圆和扇形的面积4.3圆的面积4.4扇形的面积第一章整数1.1 整数和整除的意义1.在数物体的时候;用来表示物体个数的数1,2,3,4,5;……;叫做整数2.在正整数1,2,3,4,5;……;的前面添上“—”号;得到的数—1;—2;—3;—4;—5;……;叫做负整数3. 零和正整数统称为自然数4.正整数、负整数和零统称为整数5.整数a除以整数b;如果除得的商正好是整数而没有余数;我们就说a能被b整除;或者说b能整除a。
1.2 因数和倍数1.如果整数a能被整数b整除;a就叫做b倍数;b就叫做a的因数2.倍数和因数是相互依存的3.一个数的因数的个数是有限的;其中最小的因数是1;最大的因数是它本身4.一个数的倍数的个数是无限的;其中最小的倍数是它本身1.3能被2,5整除的数1.个位数字是0,2,4,6,8的数都能被2整除2.整数可以分成奇数和偶数;能被2整除的数叫做偶数;不能被2整除的数叫做奇数3.在正整数中(除1外);与奇数相邻的两个数是偶数4.在正整数中;与偶数相邻的两个数是奇数5.个位数字是0,5的数都能被5整除6. 0是偶数1.4 素数、合数与分解素因数1.只含有因数1及本身的整数叫做素数或质数2.除了1及本身还有别的因数;这样的数叫做合数3. 1既不是素数也不是合数4.奇数和偶数统称为正整数;素数、合数和1统称为正整数5.每个合数都可以写成几个素数相乘的形式;这几个素数都叫做这个合数的素因数6.把一个合数用素因数相乘的形式表示出来,叫做分解素因数。
沪教版六年级数学知识点
沪教版六年级数学第一章数的整除1.1整数和整除的意义零和正整数统称为自然数.正整数、零、负整数统称为整数.整数a除以整数b,如果除得的商是整数而余数为零,我们就说a能被b整除;或者说b能整除a.注意整除的条件:1、除数、被除数都是整数2、被除数除以除数,商是整数而余数为零.1.2因数和倍数整数a能被整数b整除,a就叫做b的倍数,b就叫a的因数〔也称为约数〕倍数和因数是相互依存的注意:1、一个数的因数的个数是有限的,其中最小的因数是 1,最大的因数是它本身2、一个数的倍数的个数是无限的,其中最小的倍数是它本身1.3能被2,3,5整除的数个位上是0,2,4,6,8的整数都能被2整除.能被2整除的数叫做偶数,不能被2整除的数叫做奇数.个位上是0或5的整数都能被5整除.将一个整数的各位数字相加,如果得到的和能被3整除,那么这个数就能被3整除.注意:1、在正整数中〔除 1 外〕 ,与奇数相邻的两个数是偶数2、在正整数中,与偶数相邻的两个数是奇数3、0 是偶数1.4素数、合数与分解素因数一个正整数,如果只有1和它本身两个因数,这样的数叫做素数,也叫做质数;如果除了1和它本身以外还有别的因数,这样的数叫做合数.1既不是素数,也不是合数.这样,正整数又可以分为1、素数、合数三类.〔依据:因数的个数〕每个合数都可以写成几个素数相乘的形式,其中每个素数都是这个合数的素因数.把一个合数用素因数相乘的形式表示出来,叫做分解素因数.用短除法分解素因数的步骤如下:1、先用一个能整除这个合数的素数〔通常从最小的开始〕去除2、得出的商如果是合数,再按照上面的方法继续除下去,知道得出的商是素数为止.3、然后把各个除数和最后的商按从小到大的顺序写成连乘的形式.1.5公因数和最大公因数几个数公有的因数,叫做这几个数的公因数,其中最大的一个叫做这几个数的最大公因数.如果两个整数只有公因数1,那么称为这两个数互素.两个整数中,如果某个数是另一个数的因数,那么这个数就是这两个数的最大公因数.如果这两个数互素,那么它们的最大公因数就是1.1.6公倍数和最小公倍数几个整数的公有的倍数叫做它们的公倍数,其中最小的一个叫做它们的最小公倍数.求两个整数的最小公倍数,只要取它们所有公有的素因数,再取它们各自剩余的素因数,将这些连乘,所得的积就是这两个数的最小公倍数.如果两个整数中某一个数是另一个数的倍数,那么这个数就是它们的最小公倍数.如果两个数互素,那么它们的乘积就是它们的最小公倍数.第二章分数2.1分数与除法两个正整数p、q相除,可以用分数错误!表示,即p÷q=错误!错误!,其中p为分子,q为分母.2.2分数的基本性质分数的分子和分母都乘以或都除以同一个不为零的数,所得的分数与原分数大小相等,即错误!= 错误!错误!= 错误!错误!<b≠0,k≠0,n≠0>.分子和分母互素的分数叫做最简分数.把一个分数的分子和分母的公因数约去的过程,称为约分.2.3分数的大小比较将异分母的分数分别化成与原分母大小相等的同分母的分数,这个过程叫做通分.2.4分数加减法同分母分数相加减,分母不变,分子相加减.异分母的分数相加减,先通分,然后按照同分母分数加减法的法则进行运算,结果化成最简分数.分子比分母小的分数叫做真分数,分子大于或等于分母的分数叫做假分数.一个正整数与一个真分数相加所成的数叫做带分数.带分数的加减运算,可将它们的整数部分和真分数部分分别相加减,再将所得的结果合并起来;或者将带分数化成假分数在进行加减运算.注意列方程求未知数的一般书写步骤:〔1〕设未知数为 x;〔2〕根据题意列出方程:〔3〕根据加减互为逆运算,表示出 x 等于那些数相加减;〔4〕计算出 x 的值,并写出上结论2.5分数的乘法两个分数相乘,将分子相乘的积作积的分子分母相乘的积作积的分母.整数与分数相乘,整数与分数的分子的积作积的分子,分母不变.2.6分数的除法1除以一个不为零的数得到的商,叫做这个数的倒数.a的倒数是错误!<a≠0>,错误!的倒数是错误!<p≠0,q≠0>.互为倒数的两个数的乘积为1.甲数除以乙数〔0除外〕,等于甲数乘以乙数的倒数.用字母表示就是:错误!÷ 错误!= 错误!× 错误!<n≠0,p≠0,q≠0>.2.7分数和小数的互化一个最简分数,如果分母中只含有素因数2和5,再无其他素因数那么这个分数可以化成有限小数.一个小数从小数部分的某一位起,一个数字或者几个数字依次不断地重复出现,这个小数叫做循环小数.一个循环小数的小数部分中依次不断地重复出现大的第一个最少的数字组,叫做这个循环小数的循环节.一个分数总可以化为有限小数或无线循环小数2.8 分数、小数的四则混合运算分数、2.9 分数运算的应用分数运算的应用第三章比和比例3.1比的意义a,b是两个数或两个同类的量,为了把b和a相比较,将a与b相除,叫做a与b的比.记作a:b,或写成a/b,其中b≠0;读作a比b,或a与b的比.a叫做比的前项,b叫做比的后项.前项a除以后项b所得的商叫做比值.求两个同类量的比值时,如果单位不同,必须把这两个量化成相同的单位.比值可以用整数、分数或小数表示注意比、分数和除法三者之间的关系是:1、比的前项相当于分数的分子和除式中的被除数;2、比的后项相当于分数的分母和除式中的除数;3、比值相当于分数的分数值和除式中的商.3.2比的基本性质比的基本性质:比的前项和后项同时乘以或除以相同的数〔0除外〕,比值不变.注意三项连比的性质是:1、如果a:b=m:n,b:c=n:k,那么a:b:c=m:n:k.2、如果k≠0,那么a:b:c=ak:bk:ck=ak:bk:ck.注意求三项连比的一般步骤是: .1、寻找关联量,求关联量对应的两个数的最小公倍数2、根据比的基本性质,把两个比中关联量化成相同的数3、对应写出三项连比注意关联量:1、将三个整数比化为最简整数比,就是给每项除以最大公约数2、将三个分数化为最简整数比,先求分母的最小公倍数,再给各项乘以分母的最小公倍数;3、将三个小数比化为最简整数比先给各项同乘以 10,100,1000 等,化为整数比,再化为最简整数比3.3比例a 〔第一比例项〕 :b 〔第二比例项〕=c 〔第三比例项〕 :d 〔第四比例项〕 ;其中 a 、d 叫 做比例外项,b 、c 叫做比例内项如果两个比例内项相同,即a :b =b :c,那么把b 叫做a 和c 的比例中项.比例的基本性质:如果a :b =c :d 或a b =c d,那么ad =bc.简单的说,就是内项之积等于外项之积列方程解应用题的一般书写步骤分四步:〔1〕设未知数〔2〕列方程〔3〕解方程〔4〕答注意:1、列比例方程时,一定要注意对应关系,一定要注意同类量的单位要对应统一3.4百分比的意义 把两个数量的比值写成100n 的形式,成为百分数,也叫做百分比或百分率,记作n %,读作百分之n.符号"%〞叫做百分号.3.5百分比的应用在生产和工作中常用的百分率有: 与格率= 及格人数总人数100%; 合格率=合格产品数产品总数×100%; 增产率=增加的产量原来的产量×100%; 出勤率=实际出勤人数应该出勤人数×100%;等等. 盈利率=盈利成本×100%=售价-成本成本×100% 亏损率=亏损成本×100%=成本-售价成本×100%. 银行利息的结算和本金、利率和期数有关〔注意:贷款利息不纳税〕利息=本金×利率×期数;利息税=利息×20%;税后本息和=本金+税后利息=本金+利息-利息税=本金+利息×〔1-20%〕增长率=增长的量/原来的基数×100%注意:1、三个关键词:是,占,的2、一条主线:求部分占全体的百分数; 三类情景:一般文字题,统计图和统计表,恩格尔系数3.6 等可能事件P =发生的结果数÷所有等可能的结果数. 第四章圆和扇形4.1 圆的周长圆的周长÷直径=圆周率C =πd 或C =2πr 其中π是一个无限不循环小数,通常取π=3.14注意:1、会根据题意,有其中 2 个量求第三个量的值4.2弧长 1°圆心角所对弧长=1360×2πr =1180πr n °圆心角所对弧长=360n ×2πr =180nπr4.3 圆的面积圆的面积S =πr ×r =πr 2环形的面积=大圆的面积-小圆的面积,S =π〔R 2-r 2〕 4.4 扇形的面积扇形面积公式S 扇=360n πr 2=12lr注意:1、要求阴影部分面积,要善于抓住图形间的位置关系和数量关系进行适当的割补 第五章 有理数5.1有理数的意义 整数和分数统称为有理数有理数 整数:正整数、零、负整数分数:正分数、负分数5.2正数和负数零是正数和负数的分界.只有符号不同的两个数,我们称其中一个数为另一个数的相反数,也称为这两个数互为相反数,零的相反数是零.数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴.任何一个有理数都可以用数轴上的一个点表示.一个数在数轴上所对应的点与原点的距离,叫做这个数的绝对值注意:1、一个正数的绝对值是它本身.2、一个负数的绝对值是它的相反数.3、零的绝对值是零.4、两个负数,绝对值大的那个数反而小.5.3有理数的加减有理数加法法则:1、同号两数相加,取原来的符号,并把绝对值相加.2、异号两数相加,绝对值相等时和为零,绝对值不相等时,其和的绝对值为较大绝对值减去较小的绝对值所得的差,其和的符号取绝对值较大的加数的符号.3、一个数同零相加,仍得这个数.有理数加法的运算律1、交换律:a+b=b+a2、结合律:〔a+b〕+ c=a+<b+c>有理数的减法法则1、减去一个数,等于加上这个数的相反数2、a-b=a+<-b>5.4有理数的乘除两数相乘的符号法则正正得正,正负得负,负正得负,负负得正.有理数的乘法法则1、两数相乘,同号得正,异号得负,并把绝对值相乘.2、任何数与零相乘,都得零.注意连成的符号:1、几个不等于零的数相乘,积的符号由负因数的个数决定2、当负因数有奇数个时,积为负3、当负因数有偶数个时,积为正4、几个数相乘,有因数为零,积就为零有理数除法法则1、两数相除,同号得正,异号得负,并把绝对值相除.2、零除以任何一个不为零的数,都得零.5.5有理数的乘方求N个相同因数的积的运算,叫做乘方.乘法的结果叫做幂.在a n中,a叫做底数,n叫做指数,读作a的n次方,a n看做是a的n次方结果时,读作a的n次幂.注意:1、正数的任何次幂都是正数,负数的奇数次幂是负数,负数的偶数次幂是正数.2、有理数混合运算的顺序:先乘方,后乘除,再加减;统计运算从左到右;如果有括号,先算小括号,后算中括号,再算大括号.3、把一个数写成a*10n<其中1≤a<10,n是正整数,这种形式的计数方法叫做科学计数法第六章一次方程〔组〕与一次不等式〔组〕6.1方程的意义用字母x、y、等表示所要求的未知的数量,这些字母称为未知数.含有未知数的等式叫做方程.在方程中,所含的未知数又称为元.为了求得未知数,在未知数和已知数之间建立一种等量关系式,就是列方程.如果未知数所取的某个值能使方程左右两边的值相等看,那么这个未知数的值叫做方程的解6.2一次方程的意义只含有一个未知数且未知数的次数是一次的方程叫做一元一次方程等式性质:1、等式两边同时加上〔或减去〕同一个数或一个含有字母的式子,说得结果仍是等式.2、等式两边同时乘以同一个数〔或除以同一个不为零的数〕,所得结果仍是等式.去括号的法则是:括号前带"+〞号,去掉括号时括号内各项都不变符号.括号前带"—〞号,去掉括号时括号内各项都改变符号.6.3一次方程的解法解一元一次方程的一般步骤是:1、去分母;2、去括号;3、移项;4、化成ax=b〔a≠0〕的形式5、两边同除以未知数的系数,得到方程的解x=b/a列方程解应用题的一般步骤是:1、设未知数〔元〕;2、列方程;3、解方程;4、检验并作答.6.4不等式的意义与解法用不等号"<〞">〞"≤〞"≥〞表示的关系式,叫做"不等式〞.不等式性质:1、不等式的两边同时加上〔或减去〕同一个数或同一个含有字母的式子,不等号的方向不变,即:如果a>b,那么a+m>b+m如果a<b,那么a+m<b+m2、不等式的两边同时乘以〔或除以〕同一个正数,不等号的方向不变,即:如果a>b,且m>0,那么am>bm〔或a/m>b/m〕如果a<b,且m>0,那么am<bm〔或a/m<b/m=3、不等式的两边同时乘以〔或除以〕同一个负数,不等号的方向改变,即:如果a>b,且m<0,那么am<bm〔或a/m>b/m〕如果a<b,且m<0,那么am>bm〔或a/m<b/m〕在含有未知数的不等式中,能使不等式成立的未知数的值,叫做不等式的解.一般情况下,一元一次方程的解只有一个,一元一次不等式的解可以有无数个.不等式的解的全体叫做不等式的解集.只含有一个未知数且未知数的次数是一次的不等式叫做一元一次不等式.解一元一次不等式的一般步骤与解一元一次方程类似.不等式组由几个含有同一个未知数的一次不等式组成的不等式组,叫做一元一次不等式组.不等式组中所有不等式的解集的公共部分叫做这个不等式组的解集.求不等式组的解集的过程叫做解不等式组.如果各个不等式的解集没有公共部分,那么这个不等式组无解.解一元一次不等式组的一般步骤是:1、求出不等式组中各个不等式的解集;2、在数轴上表示各个不等式的解集;3、确定各个不等式解集的公共部分,就得到这个不等式组的解集.二元一次方程含有两个未知数的一次方程叫做二元一次方程.使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.二元一次方程的解有无数个,二元一次的解的全体叫做这个二元一次方程的解集.由几个方程组成的一组方程叫做方程组.如果方程组中含有两个未知数,且含未知数的项的二元一次方程组次数都是一次,那么这样的方程组叫做二元一次方程组.在二元一次方程组中,使每个方程都适合的解,叫做二元一次方程组的解.通过"代入〞消去一个未知数,将方程式转化为一元一次方程,这种解法叫做代入消元法,简称代入法.通过将两个方程相加〔或相减〕消去一个未知数,将方程组转化为一元一次方程,这种解法叫做加减消元法.如果方程组中有三个未知数,且含有未知数的项的次数都是一次,这样的方程组叫做三元一次方程组.注意:1、列方程解应用题时要灵活选择未知数的个数.2、对于含有两个未知数的应用题一般采用列二元一次方程组求解;对于含有三个未知数的应用题一般采用列三元一次方程组求解.第七章线段与角的画法7.1直线的画法7.2射线的画法7.3线段的画法联结两点的线段的长度叫做两点之间的距离.两条线段可以相加〔或相减〕,它们的和〔或差〕也是一条线段,其长度等于这两条线段的长度的和〔或差〕.将一条线段分成两条相等线段的店叫做这条线段的中点.7.4角的画法角是具有公共端点的两条射线组成的图形.公共端点叫做角的顶点,两条射线叫做角的边.角是由一条射线绕着它的端点旋转到另一个位置所成的图形.处于初始位置的那条射线叫做角的始边,终止位置的那条射线叫做角的终边.两个角可以相加〔或相减〕,它们的和〔或差〕也是一个角,它的度数等于这两个角的角度的和〔或差〕.从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线.7.5角的测量如果两个角的度数的和是90°,那么这两个角叫做互为余角,简称互余.其中一个角成为另一个角的余角.如果两个角的度数的和是180°,那么这两个角叫做互为补角,简称互补.其中一个角称为另一个角的补角.注意:1、同角〔或等角〕的余角相等;2、同角〔或等角〕的补角相等;提问:1、一个角与它的余角相等,这个角是怎样的角?是锐角2、一个角与它的补角相等,这个角是怎样的角?是直角3、互补的两个角能否都是锐角?不能4、互补的两个角能否都是直角?可能5、互补的两个角能否都是钝角?不能第八章长方体的再认识长方体的顶点;长方体的棱;长方体的面;长方体的表面积;长方体的体积公式;1、长方体有六个面,八个顶点,十二条棱.2、长方体的每个面都是长方形.3、长方体的十二条棱可以分为三组,每组中的四条棱的长度相等.4、长方体的六个面可以分为三组,每组中的两个面的形状和大小都相同.5、第115页:长方体中棱与棱位置关系的认识:如图:棱EH与棱EF所在的直线在同一个面内,它们有惟一的公共点,我们称这两条棱相交.棱EF与棱AB所在的直线在同一个面内,但它们没有公共点,我们称这两条棱平行.棱EH与棱AB所在的直线既不平行,也不相交,我们称这两条棱异面.6、一般地,如果直线AB与直线CD在同一平面内,具有惟一公共点,那么称这两条直线的位置关系为相交,读作:直线AB与直线CD相交.7、如果直线AB与直线CD在同一平面内,但没有公共点,那么称这两条直线的位置关系为平行,记作:AB∥CD,读作:直线AB与直线CD平行.8、如果直线AB与直线CD既不平行,也不相交,那么称这两条直线的位置关系为异面,读作:直线AB与直线CD异面.9、直线PQ垂直于平面ABCD,记住:直线PQ⊥平面ABCD,读作:直线PQ垂直于平面ABCD.10、如何检验直线与平面垂直呢?可以用"铅垂线〞检验.如果细棒垂直于墙面,可以用"三角尺〞检验.还可以用"合页型折纸〞检验直线是否垂直于平面.11、直线PQ平行于平面ABCD,记作:直线PQ∥平面ABCD, 读作:直线PQ平行于平面ABCD.12、如何检验直线与平面平行呢?可以用"铅垂线〞检验.也可以用"长方形纸片〞检验.。
六年级上册数学知识点沪教版(供参考)
1.1 整数和整除的意义1.在数物体的时候,用来表示物体个数的数1,2,3,4,5,……,叫做整数2.在正整数1,2,3,4,5,……,的前面添上“—”号,得到的数—1,—2,—3,—4,—5,……,叫做负整数3. 零和正整数统称为自然数4.正整数、负整数和零统称为整数5.整数a除以整数b,如果除得的商正好是整数而没有余数,我们就说a能被b整除,或者说b能整除a。
1.2 因数和倍数1.如果整数a能被整数b整除,a就叫做b倍数,b就叫做a的因数2.倍数和因数是相互依存的3.一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身4.一个数的倍数的个数是无限的,其中最小的倍数是它本身1.3能被2,5整除的数1.个位数字是0,2,4,6,8的数都能被2整除2.整数可以分成奇数和偶数,能被2整除的数叫做偶数,不能被2整除的数叫做奇数3.在正整数中(除1外),与奇数相邻的两个数是偶数4.在正整数中,与偶数相邻的两个数是奇数5.个位数字是0,5的数都能被5整除6. 0是偶数1.4 素数、合数与分解素因数1.只含有因数1及本身的整数叫做素数或质数2.除了1及本身还有别的因数,这样的数叫做合数3. 1既不是素数也不是合数4.奇数和偶数统称为正整数,素数、合数和1统称为正整数5.每个合数都可以写成几个素数相乘的形式,这几个素数都叫做这个合数的素因数6.把一个合数用素因数相乘的形式表示出来,叫做分解素因数。
7.分解素因数方法: 树枝分解法,短除法1.5 公因数与最大公因数1.几个数公有的因数,叫做这几个数的公因数,其最大的一个叫做这几个数的最大公因数2.如果两个整数只有公因数1,那么称这两个数互素数3.把两个数公有的素因数连乘,所得的积就是这两个数的最大公因数4.如果两个数中,较小数是较大数的因数,那么这两个数的最大公因数较小的数5.如果两个数是互素数,那么这两个数的最大公因数是11.6公倍数与最小公倍数1.几个数公有的倍数,叫做这几个数的公倍数2.几个数中最小的公因数,叫做这几个数的最小公倍数3.求两个数的最小公倍数,只要把它们所有的公有的素因数和他们各自独有的素因数连乘,所得的积就是他们的最小公倍数4.如果两个数中,较大数是较小数的倍数,那么这两个数的最小公倍数是较大的那个数5.如果两个数是互素数,那么这两个数的最小公倍数是两个数的乘积.第二章分数2.1分数与除法1.一般地,两个正整数相除的商可用分数表示,即被除数÷除数= 被除数除数用字母表示为p÷q=pq(p、q为正整数)2.2分数的基本性质1.分数的分子和分母同时乘以一个不为零的整数,分数的值不变2.分子\分母只有公因数1的分数叫做最简分数3.把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分2.3分数的比较大小1.同分母分数的大小只需要比较分子的大小,分子大的比较大,分子小的比较小2.通分的一般步骤是:(1)求公分母——求分母的最小公倍数;(2)根据分数的基本性质,将每个分数化成分母相同的分数。
沪教版六年级上册知识点详细梳理
上册上海数学知识点梳理版本——沪教版(6)年级上一、数得整除1.内容要目数得整除性、因数与倍数、奇数与偶数、素数与合数、公因数与最大公因数、公倍数与最小公倍数、分解素因数;能被2与5整除得正整数得特征。
2.教学目标(1)知道数得整除性、因数与倍数,奇数与偶数、素数与合数、公因数与公倍数等得意义;知道能被2、5整除得正整数得特征。
(2)会用短除法分解素因数;会求两个正整数得最大公因数与最小公倍数。
3.重点、难点及易错点重点:正确得分解素因数,并会求两个正整数得最大公因数与最小公倍数。
难点:会求两个正整数得最小公倍数。
易错点:1既不就是素数也不就是合数,概念易混淆。
4.中考必考题型及分数占比结合概率考察素数合数等问题一道填空题4分5.知识结构二、分数1.内容要目(1)分数得概念,分数得加减乘除运算法则,分数与小数得互划与运算;(2)异分母分数得运算,通分、约分得技巧。
2.教学目标(1)知道分数得意义,学会分数得运算法则;(2)通过对分数得学习,提高运算能力与解决实际问题得能力,初步掌握转化得思维方法; (3)能够比较分数与小数得关系及混合运算。
3.重点、难点及易错点重点:分数得乘除混合运算以及通分与约分;难点:通分与约分易错点:乘除法则得运算4.中考必考题型及分数占比分数得混合运算,一道选择题或者一道填空题,占4分5.知识结构三、比与比例1.内容要目(1)必与比例得概念,比得基本性质,比与比例得有关性质;(2)百分比得概念及应用,百分比与小数、分数得关系。
(3)等可能事件2.教学目标(1)理解比与比例得有关概念及意义,根据比例得概念与基本性质,会解决简单得比例问题;(2)了解百分比在生活中得简单应用,会解决有关比与百分比得简单问题,从中体会数学与现实生活得联系;(3)了解等可能事件,学习用数量来描述一个事件发生得可能性得大小,初步体会概率思想。
3.重点、难点、易错点重点:比例内项、比例中项难点:百分比结合实际生活问题易错点:百分比得运用及比例中项4.中考题型及分数占比线段得比例关系,结合生活得实际应用问题,占4分,一题填空题5.知识结构四、圆与扇形1.内容要目(1)圆得周长与面积、弧长与扇形得面积等有关概念与计算公式;(2)运用所学结合实际生活问题。
沪教版数学六年级上册知识点
沪教版数学六年级上册知识点一、整数1. 整数的概念整数是由正整数、负整数以及零组成的数集。
2. 整数的比较•整数的比较是按照绝对值的大小进行比较的。
绝对值大的整数比绝对值小的整数大。
•如果两个整数的绝对值相等,则比较它们的符号,正整数大于零,零大于负整数。
3. 整数的加减法•同号整数相加,保留符号,数值相加;•异号整数相加,取绝对值大的整数符号,绝对值作差;•整数相减,变成加上被减数的相反数,然后按照整数的加法规则进行计算。
4. 整数的乘法•同号整数相乘,结果为正数;•异号整数相乘,结果为负数;5. 整数的除法•同号整数相除,结果为正数;•异号整数相除,结果为负数;6. 整数的运算律•加法交换律:a + b = b + a•加法结合律:(a + b) + c = a + (b + c)•加法的零元素:a + 0 = a•加法的负元素:a + (-a) = 0•乘法交换律:a × b = b × a•乘法结合律:(a × b) × c = a × (b × c)•乘法的零元素:a × 0 = 0•乘法的单位元素:a × 1 = a7. 整数的绝对值整数的绝对值表示整数与零的距离,即一个整数的绝对值等于它与零的距离。
8. 整数的相反数对于一个整数a,它的相反数是一个与a相加为0的整数,记作-a。
9. 整数的倒数整数的倒数是指一个整数的倒数是它的倒数的倒数等于它本身。
对于一个整数a,它的倒数记为1/a。
二、分数1. 分数的概念分数是整数与整数以及整数与自然数构成的有理数集合。
2. 分数与单位分数•分数的分子和分母都是整数,分母不为0。
•分数可以表示部分数量,可以用来表示比例关系。
3. 分数的读法•分母为2、3、4、5、6、7、8、9、10、12的分数,可以用。
六年级数学上册知识汇总(沪教版)
六年级数学教材目录(沪教版)六年级上册第一章数的整除第一节整数和整除1.1整数和整除的意义1.2因数和倍数1.3能被2、5整除的数第二节分解质因数1.4素数、合数与分解质因数1.5公因数与最大公因数1.6公倍数与最小公倍数第二章分数第一节分数的意义和性质2.1分数与除法2.2分数的基本性质2.3分数的大小比较第二节分数的运算2.4分数的加减法2.5分数的乘法2.6分数的除法2.7分数与小数的互化第三章比和比例第一节比和比例3.1比的意义3.2比的基本性质3.3比例第二节百分比3.4百分比的意义3.5百分比的应用3.6等可能事件第四章圆和扇形第一节圆的周长和弧长4.1圆的周长4.2弧长第二节圆和扇形的面积4.3圆的面积4.4扇形的面积第一章整数1.1 整数和整除的意义1.在数物体的时候,用来表示物体个数的数1,2,3,4,5,……,叫做整数2.在正整数1,2,3,4,5,……,的前面添上“—”号,得到的数—1,—2,—3,—4,—5,……,叫做负整数3. 零和正整数统称为自然数4.正整数、负整数和零统称为整数5.整数a除以整数b,如果除得的商正好是整数而没有余数,我们就说a能被b整除,或者说b能整除a。
1.2 因数和倍数1.如果整数a能被整数b整除,a就叫做b倍数,b就叫做a的因数2.倍数和因数是相互依存的3.一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身4.一个数的倍数的个数是无限的,其中最小的倍数是它本身1.3能被2,5整除的数1.个位数字是0,2,4,6,8的数都能被2整除2.整数可以分成奇数和偶数,能被2整除的数叫做偶数,不能被2整除的数叫做奇数3.在正整数中(除1外),与奇数相邻的两个数是偶数4.在正整数中,与偶数相邻的两个数是奇数3.求两个数的最小公倍数,只要把它们所有的公有的素因数和他们各自独有的素因数连乘,所得的积就是他们的最小公倍数4.如果两个数中,较大数是较小数的倍数,那么这两个数的最小公倍数是较大的那个数5.如果两个数是互素数,那么这两个数的最小公倍数是;两个数的乘积第二章分数2.1分数与除法1.一般地,两个正整数相除的商可用分数表示,即被除数÷除数= 用字母表示为p÷q= (p、q为正整数)2.2 分数的基本性质1.分数的分子和分母同时乘以一个不为零的整数,分数的值不变2.分子分母只有公因数1的分数叫做最简分数3.把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分2.3 分数的比较大小1.同分母分数的大小只需要比较分子的大小,分子大的比较大,分子小的比较小2.通分的一般步骤是:(1)求公分母——求分母的最小公倍数;(2)根据分数的基本性质,将每个分数化成分母相同的分数。
沪教版六年级数学知识点
沪教版六年级数学第一章数的整除1.1整数和整除的意义零和正整数统称为自然数。
正整数、零、负整数统称为整数。
整数a除以整数b,如果除得的商是整数而余数为零,我们就说a能被b整除;或者说b能整除a。
注意整除的条件:1、除数、被除数都是整数2、被除数除以除数,商是整数而余数为零。
1.2因数和倍数整数a能被整数b整除,a就叫做b的倍数,b就叫a的因数(也称为约数)倍数和因数是相互依存的注意:1、一个数的因数的个数是有限的,其中最小的因数是 1,最大的因数是它本身2、一个数的倍数的个数是无限的,其中最小的倍数是它本身1.3能被2,3,5整除的数个位上是0,2,4,6,8的整数都能被2整除。
能被2整除的数叫做偶数,不能被2整除的数叫做奇数。
个位上是0或5的整数都能被5整除。
将一个整数的各位数字相加,如果得到的和能被3整除,那么这个数就能被3整除。
注意:1、在正整数中(除 1 外),与奇数相邻的两个数是偶数2、在正整数中,与偶数相邻的两个数是奇数3、0 是偶数1.4素数、合数与分解素因数一个正整数,如果只有1和它本身两个因数,这样的数叫做素数,也叫做质数;如果除了1和它本身以外还有别的因数,这样的数叫做合数。
1既不是素数,也不是合数。
这样,正整数又可以分为1、素数、合数三类。
(依据:因数的个数)每个合数都可以写成几个素数相乘的形式,其中每个素数都是这个合数的素因数。
把一个合数用素因数相乘的形式表示出来,叫做分解素因数。
用短除法分解素因数的步骤如下:1、先用一个能整除这个合数的素数(通常从最小的开始)去除2、得出的商如果是合数,再按照上面的方法继续除下去,知道得出的商是素数为止。
3、然后把各个除数和最后的商按从小到大的顺序写成连乘的形式。
1.5公因数和最大公因数1几个数公有的因数,叫做这几个数的公因数,其中最大的一个叫做这几个数的最大公因数。
如果两个整数只有公因数1,那么称为这两个数互素。
两个整数中,如果某个数是另一个数的因数,那么这个数就是这两个数的最大公因数。
六年级数学上册知识汇总 沪教版
六年级数学教材目录(沪教版)六年级上册第一章数的整除第一节整数和整除1.1整数和整除的意义1.2因数和倍数1.3能被2、5整除的数第二节分解质因数1.4素数、合数与分解质因数1.5公因数与最大公因数1.6公倍数与最小公倍数第二章分数第一节分数的意义和性质2.1分数与除法2.2分数的基本性质2.3分数的大小比较第二节分数的运算2.4分数的加减法2.5分数的乘法2.6分数的除法2.7分数与小数的互化第三章比和比例第一节比和比例3.1比的意义3.2比的基本性质3.3比例第二节百分比3.4百分比的意义3.5百分比的应用3.6等可能事件第四章圆和扇形第一节圆的周长和弧长4.1圆的周长4.2弧长第二节圆和扇形的面积4.3圆的面积4.4扇形的面积第一章整数1.1 整数和整除的意义1.在数物体的时候,用来表示物体个数的数1,2,3,4,5,……,叫做整数2.在正整数1,2,3,4,5,……,的前面添上“—”号,得到的数—1,—2,—3,—4,—5,……,叫做负整数3. 零和正整数统称为自然数4.正整数、负整数和零统称为整数5.整数a除以整数b,如果除得的商正好是整数而没有余数,我们就说a能被b整除,或者说b能整除a。
1.2 因数和倍数1.如果整数a能被整数b整除,a就叫做b倍数,b就叫做a的因数2.倍数和因数是相互依存的3.一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身4.一个数的倍数的个数是无限的,其中最小的倍数是它本身1.3能被2,5整除的数1.个位数字是0,2,4,6,8的数都能被2整除2.整数可以分成奇数和偶数,能被2整除的数叫做偶数,不能被2整除的数叫做奇数3.在正整数中(除1外),与奇数相邻的两个数是偶数4.在正整数中,与偶数相邻的两个数是奇数5.个位数字是0,5的数都能被5整除6. 0是偶数1.4 素数、合数与分解素因数1.只含有因数1及本身的整数叫做素数或质数2.除了1及本身还有别的因数,这样的数叫做合数3. 1既不是素数也不是合数4.奇数和偶数统称为正整数,素数、合数和1统称为正整数5.每个合数都可以写成几个素数相乘的形式,这几个素数都叫做这个合数的素因数6.把一个合数用素因数相乘的形式表示出来,叫做分解素因数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
2018年暑期六年级上册数学知识点汇总
第一章整数
1.1 整数和整除的意义
1.在数物体的时候,用来表示物体个数的数1,2,3,4,5,,,,叫做整数
2.在正整数1,2,3,4,5,,,,的前面添上“—”号,得到的数—
1,—2,—3,—4,—5,,,,叫做负整数
3. 零和正整数统称为自然数4.正整数、负整数和零统称为整数
5.整数a 除以整数b ,如果除得的商正好是整数而没有余数,我们就说a 能被b 整除,或者说b 能整除a 。
1.2 因数和倍数
1.如果整数a 能被整数b 整除,a 就叫做b 倍数,b 就叫做a 的因数2.倍数和因数是相互依存的
3.一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身
4.一个数的倍数的个数是无限的,其中最小的倍数是它本身1.3能被2,5整除的数1.个位数字是
0,2,4,6,8的数都能被2整除
2.整数可以分成奇数和偶数,能被2整除的数叫做偶数,不能被
2整除的数叫做奇数
3.在正整数中(除1外),与奇数相邻的两个数是偶数
4.在正整数中,与偶数相邻的两个数是奇数
5.个位数字是0,5的数都能被5整除
6. 0是偶数
1.4 素数、合数与分解素因数1.只含有因数
1及本身的整数叫做素数或质数
2.除了1及本身还有别的因数,这样的数叫做合数3. 1既不是素数也不是合数
4.奇数和偶数统称为正整数,素数、合数和1统称为正整数5.每个合数都可以写成几个素数相乘的形式,这几个素数都叫做这个合数的素因数
6.把一个合数用素因数相乘的形式表示出来,叫做分解素因数。
7.通常用什么方法分解素因数: 树枝分解法,短除法
1.5 公因数与最大公因数
1.几个数公有的因数,叫做这几个数的公因数,其最大的一个叫做这几个数的最大公因数2.如果两个整数只有公因数
1,那么称这两个数互素数
3.把两个数公有的素因数连乘,所得的积就是这两个数的最大公因数
4.如果两个数中,较小数是较大数的因数,那么这两个数的最大公因数较小的数5.如果两个数是互素数,那么这两个数的最大公因数是 1
1.6公倍数与最小公倍数
1.几个数公有的倍数,叫做这几个数的公倍数2.几个数中最小的公因数,叫做这几个数的最小公倍数
3.求两个数的最小公倍数,只要把它们所有的公有的素因数和他们各自独有的素因数连乘,
所得的积就是他们的最小公倍数
2
4.如果两个数中,较大数是较小数的倍数,那么这两个数的最小公倍数是较大的那个数5.如果两个数是互素数,那么这两个数的最小公倍数是;两个数的乘积
第二章分数
2.1分数与除法
1.一般地,两个正整数相除的商可用分数表示,即被除数÷除数=
被除数除数
用字母表示为p ÷q=
p q
(p 、q 为正整数)
2.2
分数的基本性质
1.分数的分子和分母同时乘以一个不为零的整数,分数的值不变2.分子分母只有公因数
1的分数叫做最简分数
3.把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分2.3
分数的比较大小
1.同分母分数的大小只需要比较分子的大小,分子大的比较大,分子小的比较小2.通分的一般步骤是:(1)求公分母——求分母的最小公倍数;
(2)
根据分数的基本性质,将每个分数化成分母相同的分数。
3.异分母分数比较大小需要先通分成同分母分数再按照同分母分数比较大小2.4分数的加减法
1.同分母分数相加减,分母不变,分子相加减
2.异分母分数相加减,先通分成同分母分数,再按照同分母分数相加减3.分子比分母小的分数
,叫做真分数
4.分子大于或者等于分母的分数叫假分数
5.整数与真分数相加所成的分数叫做带分数
6.假分数化为带分数:分母不变,整数部分为原分子除以分母的商
,分子则为原分子除以分母的余数
7.列方程求未知数的一般书写步骤:
(1)设未知数为x ;(2)根据题意列出方程:(3)根据加减互为逆运算,表示出
x
等于那些数相加减;(4)计算出x 的值,并写出上结论2.5 分数的乘法
1.两个分数相乘,分子相乘作为分子,分母相乘作为分母2.如果乘数是带分数,先化成假分数,再进行运算2.6 分数的除法
1.一个数与其相乘的积为
1的数为这个数的倒数;
0没有倒数
2.除以一个分数等于乘以这个分数的倒数
3.被除数或除数中有带分数的先化成假分数再进行运算2.7分数与小数的互化
1.一个分数能不能化为有限小数和分数的分母有关
2.从小数点后某一位开始不断地重复出现前一个或一节数字的无限小数叫做循环小数3.被重复的一个或一节数码称为循环小数的循环节4.一个分数总可以化为有限小数或无线循环小数
3
第三章比和比例
3.1比的意义
1.将a 与b 相除叫a 与b 的比,记作a :b ,读作a 比b 2.求a 与b 的比,b 不能为零
3.a 叫做比例前项,b 叫做比例后项,前项a 除以后项b 的商叫做比值
4.求两个同类量的比值时,如果单位不同,先统一单位再做比
5.比值可以用整数、分数或小数表示3.2 比的基本性质1.比的基本性质是
比的前项和后项同时乘以或除以相同的数(
0除外),比值不变
2.利用比的基本性质,可以把比华为最简整数比
3.两个数的比,可以用比号的形式表示,也可以用分数的形式表示4.三项连比性质是:如果
a :b=m :n ,
b :c=n :k ,那么a :b :c=m :n :k
如果k ≠0,那么a :b :c=ak :bk :ck=
a k
:
b k
:
c k
5.将三个整数比化为最简整数比,就是给每项除以最大公约数;
将三个分数化为最简整数比,先求分母的最小公倍数,再给各项乘以分母的最小公倍数;将三个小数比化为最简整数比先给各项同乘以
10,100,1000等,化为整数比,再化为最简整数比
6.求三项连比的一般步骤是:(1)。
寻找关联量,求关联量对应的两个数的最小公倍数(2)根据毕的基本性质,把两个比中关联量化成相同的数(3)对应写出三项连比3.3 比例
1.a (第一比例项):b (第二比例项)=c (第三比例项):d (第四比例项);其中a 、d 叫做比例外项,b 、c 叫做比例内项
2.如果两个比例内项(外项)相同,即a :b=b :c ,那么b 叫做a 、c 的比例中项
3.利用比例的基本性质,可以把比例方程转化化为我们常见的形式
ad=bc ,简单的说,就是内项之积等于外项之积
4.列方程解应用题的一般书写步骤分四步:
(1)设未知数(2)列方程(3)解方程(4)答
5.列比例方程时,一定要注意对应关系,一定要注意同类量的单位要对应统一3.5 百分比的应用
3.赢利问题的俩个基本公式:售价-成本=赢利,赢利率=赢利/成本×100%;在售价、成本和赢利三个量中,只要知
道其中的两个量,就可以计算出赢利率
打折问题的一个基本公式:原(售)价×折数=现(售)价;在原价、现价和折数三个量中,只要知道其中两个量,
就可以计算出第三个量
亏损时赢利意义相对的量:赢利
=售价-成本,亏损
=成本-售价
4.银行利息的结算和本金、利率和期数有关(注意:贷款利息不纳税)
利息=本金×利率×期数;利息税=利息×20%;
税后本息和=本金+税后利息=本金+利息-利息税=本金+利息×(1-20%)
增长率=增长的量/原来的基数×
100%
4
3.6等可能事件
1.从实际生活中感悟那些事件是可能事件,哪些事件是不可能事件2.可能性的大小可以用一个真分数或百分数表示
第四章圆和扇形
4.1圆的周长1.周长公式
C=πd=2πr ,其中π是一个无限不循环小数,通常取
π=3.14
2.会根据题意,有其中
2个量求第三个量的值
4.2弧长1.如图,圆上
A 、
B 两点间的部分就是弧,记作
AB 读作弧AB ,∠AOB 称为圆心角
2.n 圆心角所对的弧长是圆周长的360
n 3.设圆的半径为
r ,n
圆心角所对的弧长是
l ,弧长公式:l =
180
n πr
4.3圆的面积1.圆的面积
S=π2
r
2.环形的面积=大圆的面积-小圆的面积
S=π(2R -2
r )
4.4 扇形的面积1.扇形面积公式
S 扇=
360
n π2
r
=
12
lr
2.要求阴影部分面积,要善于抓住图形间的位置关系和数量关系进行适当的割补
.。