人教版数学九年级上册10月月考试卷附答案

合集下载

人教版九年级上册数学月考试卷(含答案)

人教版九年级上册数学月考试卷(含答案)

人教版九年级上册数学月考试卷(含答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.函数1y x =-的自变量x 的取值范围是( )A .1x >B .1x <C .1x ≤D .1≥x2.已知a ,b 满足方程组51234a b a b +=⎧⎨-=⎩则a+b 的值为( ) A .﹣4 B .4 C .﹣2 D .23.实数a ,b ,c 在数轴上的对应点的位置如图所示,则正确的结论是( )A .||4a >B .0c b ->C .0ac >D .0a c +>4.今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为( )A .2.147×102B .0.2147×103C .2.147×1010D .0.2147×10115.若长度分别为,3,5a 的三条线段能组成一个三角形,则a 的值可以是( )A .1B .2C .3D .86.正十边形的外角和为( )A .180°B .360°C .720°D .1440°7.下面四个手机应用图标中是轴对称图形的是( )A .B .C .D .8.如图,∠ACD 是△ABC 的外角,CE 平分∠ACD ,若∠A=60°,∠B=40°,则∠ECD 等于( )A.40°B.45°C.50°D.55°9.如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=()A.75°B.80°C.85°D.90°10.如图,在平面直角坐标系中,矩形ABCD的顶点A,C分别在x轴,y轴的正半轴上,点D(-2,3),AD=5,若反比例函数kyx=(k>0,x>0)的图象经过点B,则k的值为()A.163B.8 C.10 D.323二、填空题(本大题共6小题,每小题3分,共18分)1.计算:2(32)(32)=__________.2.分解因式:33a b ab-=___________.3x2-x的取值范围是__________.4.如图,已知菱形ABCD的周长为16,面积为83E为AB的中点,若P为对角线BD 上一动点,则EP +AP 的最小值为__________.5.如图,某校教学楼AC 与实验楼BD 的水平间距153CD =米,在实验楼顶部B 点测得教学楼顶部A 点的仰角是30,底部C 点的俯角是45︒,则教学楼AC 的高度是__________米(结果保留根号).6.已知抛物线()20y ax bx c a =++≠的对称轴是直线1x =,其部分图象如图所示,下列说法中:①0abc <;②0a b c -+<;③30a c +=;④当13x 时,0y >,正确的是__________(填写序号).三、解答题(本大题共6小题,共72分)1.解方程23111x x x -=--2.关于x 的一元二次方程2223()0m x mx m +++=-有两个不相等的实数根.(1)求m 的取值范围;(2)当m 取满足条件的最大整数时,求方程的根.3.如图,以D 为顶点的抛物线y=﹣x 2+bx+c 交x 轴于A 、B 两点,交y 轴于点C ,直线BC 的表达式为y=﹣x+3.(1)求抛物线的表达式;(2)在直线BC 上有一点P ,使PO+PA 的值最小,求点P 的坐标;(3)在x 轴上是否存在一点Q ,使得以A 、C 、Q 为顶点的三角形与△BCD 相似?若存在,请求出点Q 的坐标;若不存在,请说明理由.4.如图,BD 是菱形ABCD 的对角线,75CBD ∠=︒,(1)请用尺规作图法,作AB 的垂直平分线EF ,垂足为E ,交AD 于F ;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF ,求DBF ∠的度数.5.学校开展“书香校园”活动以来,受到同学们的广泛关注,学校为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计表.学生借阅图书的次数统计表 借阅图书的次数 0次 1次 2次 3次 4次及以上人数7 13 a 10 3请你根据统计图表中的信息,解答下列问题:()1a=______,b=______.()2该调查统计数据的中位数是______,众数是______.()3请计算扇形统计图中“3次”所对应扇形的圆心角的度数;()4若该校共有2000名学生,根据调查结果,估计该校学生在一周内借阅图书“4次及以上”的人数.6.为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的32倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.(1)甲、乙两工程队每天能改造道路的长度分别是多少米?(2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、B3、B4、C5、C6、B7、D8、C9、A10、D二、填空题(本大题共6小题,每小题3分,共18分)12、ab (a+b )(a ﹣b ).3、x 2≥4、5、6、①③④.三、解答题(本大题共6小题,共72分)1、2x =2、(1)6m <且2m ≠;(2)12x =-,243x =- 3、(1)y=﹣x 2+2x+3;(2)P (97 ,127);(3)当Q 的坐标为(0,0)或(9,0)时,以A 、C 、Q 为顶点的三角形与△BCD 相似.4、(1)答案略;(2)45°.5、()117、20;()22次、2次;()372;()4120人.6、(1)乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米.(2)10天.。

人教版九年级上册数学《月考》试卷及答案【完整版】

人教版九年级上册数学《月考》试卷及答案【完整版】

人教版九年级上册数学《月考》试卷及答案【完整版】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.13-的绝对值是( ) A .3 B .3- C .13 D .13- 2.如果()P m 3,2m 4++在y 轴上,那么点P 的坐标是( )A .()2,0-B .()0,2-C .()1,0D .()0,1 3.若关于x 的方程333x m m x x ++--=3的解为正数,则m 的取值范围是( ) A .m <92B .m <92且m ≠32C .m >﹣94D .m >﹣94且m ≠﹣34 4.如果1m n +=,那么代数式()22221m n m n m mn m +⎛⎫+⋅-⎪-⎝⎭的值为( ) A .-3 B .-1 C .1 D .35.已知正多边形的一个外角为36°,则该正多边形的边数为( ).A .12B .10C .8D .6 6.若()()229111181012k --=⨯⨯,则k =( ) A .12 B .10C .8D .6 7.抛物线()2y ax bx c a 0=++≠的部分图象如图所示,与x 轴的一个交点坐标为()4,0,抛物线的对称轴是x 1.=下列结论中:abc 0>①;2a b 0+=②;③方程2ax bx c 3++=有两个不相等的实数根;④抛物线与x 轴的另一个交点坐标为()2,0-;⑤若点()A m,n 在该抛物线上,则2am bm c a b c ++≤++.其中正确的有()A.5个B.4个C.3个D.2个8.如图,A,B是反比例函数y=4x在第一象限内的图象上的两点,且A,B两点的横坐标分别是2和4,则△OAB的面积是()A.4 B.3 C.2 D.19.如图,在矩形ABCD中,点E是边BC的中点,AE⊥BD,垂足为F,则tan∠BDE的值是()A.24B.14C.13D.2310.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为()A.0.7米B.1.5米C.2.2米D.2.4米二、填空题(本大题共6小题,每小题3分,共18分)1.64的算术平方根是__________.2.分解因式:x 3﹣4xy 2=_______.3.若代数式1x x -有意义,则x 的取值范围为__________. 4.如图,在Rt △ACB 中,∠ACB =90°,∠A =25°,D 是AB 上一点,将Rt △ABC 沿CD 折叠,使点B 落在AC 边上的B ′处,则∠ADB ′等于______.5.如图,已知AB 是⊙O 的直径,AB=2,C 、D 是圆周上的点,且∠CDB=30°,则BC 的长为______.6.如图,在菱形ABCD 中,对角线,AC BD 交于点O ,过点A 作AH BC ⊥于点H ,已知BO=4,S 菱形ABCD =24,则AH =__________.三、解答题(本大题共6小题,共72分)1.解分式方程:2311x x x x +=--2.已知关于x 的一元二次方程(3)(2)(1)x x p p --=+.(1)试证明:无论p 取何值此方程总有两个实数根;(2)若原方程的两根1x ,2x 满足222121231x x x x p +-=+,求p 的值.3.已知:如图,平行四边形ABCD ,对角线AC 与BD 相交于点E ,点G 为AD 的中点,连接CG ,CG 的延长线交BA 的延长线于点F ,连接FD .(1)求证:AB=AF ;(2)若AG=AB ,∠BCD=120°,判断四边形ACDF 的形状,并证明你的结论.4.如图,已知AB 是⊙O 的直径,C ,D 是⊙O 上的点,OC ∥BD ,交AD 于点E ,连结BC .(1)求证:AE=ED ;(2)若AB=10,∠CBD=36°,求AC 的长.5.某初中学校举行毛笔书法大赛,对各年级同学的获奖情况进行了统计,并绘制了如下两幅不完整的统计图,请结合图中相关数据解答下列问题:(1)请将条形统计图补全;(2)获得一等奖的同学中有14来自七年级,有14来自八年级,其他同学均来自九年级,现准备从获得一等奖的同学中任选两人参加市内毛笔书法大赛,请通过列表或画树状图求所选出的两人中既有七年级又有九年级同学的概率.6.某商场准备购进A,B两种书包,每个A种书包比B种书包的进价少20元,用700元购进A种书包的个数是用450元购进B种书包个数的2倍,A种书包每个标价是90元,B种书包每个标价是130元.请解答下列问题:(1)A,B两种书包每个进价各是多少元?(2)若该商场购进B种书包的个数比A种书包的2倍还多5个,且A种书包不少于18个,购进A,B两种书包的总费用不超过5450元,则该商场有哪几种进货方案?(3)该商场按(2)中获利最大的方案购进书包,在销售前,拿出5个书包赠送给某希望小学,剩余的书包全部售出,其中两种书包共有4个样品,每种样品都打五折,商场仍获利1370元.请直接写出赠送的书包和样品中,A种,B 种书包各有几个?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、B3、B4、D5、B6、B7、B8、B9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、2、x (x+2y )(x ﹣2y )3、0x ≥且1x ≠. 4、40°.5、16、245三、解答题(本大题共6小题,共72分)1、x=32、(1)证明见解析;(2)-2.3、(1)略;(2)结论:四边形ACDF 是矩形.理由略.4、(1)略;(2)2AC π=5、(1)答案见解析;(2)13. 6、(1)A ,B 两种书包每个进价各是70元和90元;(2)共有3种方案,详见解析;(3)赠送的书包中,A 种书包有1个,B 种书包有个,样品中A 种书包有2个,B 种书包有2个.。

人教版九年级上册数学月考试卷

人教版九年级上册数学月考试卷

人教版九年级上册数学月考试卷一、选择题(每题3分,共30分)1. 一元二次方程x^2-6x - 5 = 0配方后可变形为()A. (x - 3)^2=14B. (x - 3)^2=4C. (x + 3)^2=14D. (x + 3)^2=42. 下列方程中,是关于x的一元二次方程的是()A. ax^2+bx + c = 0B. (1)/(x^2)+(1)/(x)-2 = 0C. 3(x + 1)^2=2(x + 1)D. x^2+2x=x^2-13. 二次函数y = - (x - 1)^2+5,当m≤slant x≤slant n且mn<0时,y的最小值为2m,最大值为2n,则m + n的值为()A. (5)/(2)B. 2C. (3)/(2)D. (1)/(2)4. 已知二次函数y = ax^2+bx + c(a≠0)的图象如图所示,则下列结论:c<0;a - b +c>0;b^2-4ac<0;④当x> - 1时,y随x的增大而减小。

其中正确的个数是()(此处插入二次函数图象,开口向上,对称轴x = - 1,与y轴交点在y轴负半轴)A. 1个。

B. 2个。

C. 3个。

D. 4个。

5. 若关于x的一元二次方程x^2-2x + kb + 1 = 0有两个不相等的实数根,则一次函数y = kx + b的大致图象可能是()A. 过一、二、三象限。

B. 过一、二、四象限。

C. 过二、三、四象限。

D. 过一、三、四象限。

6. 把抛物线y = - 2x^2向上平移1个单位,再向右平移1个单位,得到的抛物线是()A. y=-2(x + 1)^2+1B. y=-2(x - 1)^2+1C. y=-2(x - 1)^2-1D. y=-2(x + 1)^2-17. 已知二次函数y = x^2-2mx + m^2+3(m是常数)。

把该函数的图象沿y轴平移后,得到的函数图象与x轴只有一个公共点,则应把该函数的图象()A. 向上平移3个单位。

九年级上学期月考数学试卷(10月份)附答案

九年级上学期月考数学试卷(10月份)附答案

九年级上学期月考数学试卷(10月份)一、选择题(每题4分,40分)1.下列函数中,是二次函数的是()A.B.y=x2﹣(x﹣1)2C.D.2.把方程(x﹣)(x+)+(2x﹣1)2=0化为一元二次方程的一般形式是()A.5x2﹣4x﹣4=0 B.x2﹣5=0 C.5x2﹣2x+1=0 D.5x2﹣4x+6=03.抛物线y=x2的图象向左平移2个单位,再向下平移1个单位,则所得抛物线的解析式为()A.y=x2+2x﹣2 B.y=x2+2x+1 C.y=x2﹣2x﹣1 D.y=x2﹣2x+14.将一元二次方程2x2﹣3x+1=0配方,下列配方正确的是()A.(x﹣)2=16 B.2(x﹣)2=C.(x﹣)2=D.以上都不对5.已知三角形两边长分别为2和9,第三边的长为二次方程x2﹣14x+48=0的根,则这个三角形的周长为()A.11 B.17 C.17或19 D.196.已知抛物线y=ax2+bx,当a>0,b<0时,它的图象经过()A.一,二,三象限B.一,二,四象限C.一,三,四象限D.一,二,三,四象限7.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元,如果平均每月增长率为x,则由题意列方程应为()A.200(1+x)2=1000 B.200+200×2x=1000C.200+200×3x=1000 D.200[1+(1+x)+(1+x)2]=10008.抛物线y=ax2+bx+c的图象如图,OA=OC,则()A.a c+1=b B.a b+1=c C.b c+1=a D.以上都不是9.已知二次函数y=2(x﹣3)2+1.下列说法:①其图象的开口向上;②其图象的对称轴为直线x=﹣3;③其图象顶点坐标为(3,﹣1);④当x<2,y随x的增大而减小;⑤当x=0时,y最小值为1.则其中说法正确的有()A.1个B.2个C.3个D.4个10.关于x的一元二次方程(a﹣1)x2﹣2x+3=0有实数根,则整数a的最大值是()A.2B.1C.0D.﹣1二、填空题(每空4分,20分)11.使分式的值等于零的x的值是.12.已知点P(a,m)和Q(b,m)是抛物线y=2x2+4x﹣3上的两个不同点,则a+b=.13.一元二次方程2x2﹣3x﹣1=0与x2﹣x+3=0的所有实数根的和等于.14.若关于x的方程a(x+m)2+b=0的两个根﹣1和4(a.m.b均为常数,a≠0),则方程a(x+m﹣3)2+b=0是.15.如图所示的是二次函数y=ax2+bx+c的图象,某学霸从下面五条信息中:(1)a<0;(2)b2﹣4ac>0;(3)c>1;(4)2a﹣b>0;(5)a+b+c<0.准确找到了其中错误的信息,它们分别是(只填序号)三、解答题16.(16分)解方程①(5x﹣1)2=3(5x﹣1)②x2+2x=7.17.若抛物线y=ax2+bx+c的顶点是A(﹣2,1),且经过点B(1,0),求该抛物线的函数解析式.18.若﹣3+是方程x2+kx+4=0的一个根,求另一根和k的值.19.某工厂大门是一抛物线形水泥建筑物(如图),大门地面宽AB=4米,顶部C离地面高度为4.4米.现有一辆满载货物的汽车欲通过大门,货物顶部距地面2.8米,装货宽度为2.4米.请通过计算,判断这辆汽车能否顺利通过大门?20.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利45元,为了扩大销售、增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出4件,若商场平均每天盈利2100元,每件衬衫应降价多少元?21.如图,线段AB的长为2,C为线段AB上一个动点,分别以AC、BC为斜边在AB的同侧作两个等腰直角三角形△ACD和△BCE.(1)设DE的长为y,AC的长为x,求出y与x的函数关系式;(2)求出DE的最小值.22.如图,一位篮球运动员在离篮圈水平距离4m处跳起投篮,球沿一条抛物线运行,当球运行的水平距离为2.5m时,达到最大高度3.5m,然后准确落入篮框内.已知篮圈中心离地面高度为3.05m.(1)建立图中所示的直角坐标系,求抛物线所对应的函数关系式;(2)若该运动员身高1.8m,这次跳投时,球在他头顶上方0.25m处出手.问:球出手时,他跳离地面多高?23.如图所示,矩形ABCD的边AB=3,AD=2,将此矩形置入直角坐标系中,使AB在x轴上,点C 在直线y=x﹣2上.(1)求矩形各顶点坐标;(2)若直线y=x﹣2与y轴交于点E,抛物线过E、A、B三点,求抛物线的关系式;(3)判断上述抛物线的顶点是否落在矩形ABCD内部,并说明理由.一、选择题(每题4分,40分)1.下列函数中,是二次函数的是()A.B.y=x2﹣(x﹣1)2C.D.考点:二次函数的定义.分析:根据二次函数的定义逐一进行判断.解答:解:A、等式的右边不是整式,不是二次函数,故本选项错误;B、原式化简后可得,y=2x﹣1,故本选项错误;C、符合二次函数的定义,故本选项正确;D、分母中含有未知数,不是整式方程,因而不是一元二次方程,故本选项错误;故选C.点评:本题考查了二次函数的定义,要知道:形如y=ax2+bx+c(其中a,b,c是常数,a≠0)的函数叫做二次函数,其中a称为二次项系数,b为一次项系数,c为常数项.x为自变量,y为因变量.等号右边自变量的最高次数是2.2.把方程(x﹣)(x+)+(2x﹣1)2=0化为一元二次方程的一般形式是()A.5x2﹣4x﹣4=0 B.x2﹣5=0 C.5x2﹣2x+1=0 D.5x2﹣4x+6=0考点:一元二次方程的一般形式.分析:先把(x﹣)(x+)转化为x2﹣2=x2﹣5;然后再把(2x﹣1)2利用完全平方公式展开得到4x2﹣4x+1.再合并同类项即可得到一元二次方程的一般形式.解答:解:(x﹣)(x+)+(2x﹣1)2=0即x2﹣2+4x2﹣4x+1=0移项合并同类项得:5x2﹣4x﹣4=0故选:A.点评:本题主要考查了利用平方差公式和完全平方公式化简成为一元二次方程的一般形式.3.抛物线y=x2的图象向左平移2个单位,再向下平移1个单位,则所得抛物线的解析式为()A.y=x2+2x﹣2 B.y=x2+2x+1 C.y=x2﹣2x﹣1 D.y=x2﹣2x+1考点:二次函数图象与几何变换.分析:由于抛物线的图象向左平移2个单位,再向下平移1个单位,则x'=x﹣2,y'=y﹣1,代入原抛物线方程即可得平移后的方程.解答:解:由题意得:,代入原抛物线方程得:y'+1=(x'+2)2,变形得:y=x2+2x+1.故选B.点评:本题考查了二次函数图象的几何变换,重点是找出平移变换的关系.4.将一元二次方程2x2﹣3x+1=0配方,下列配方正确的是()A.(x﹣)2=16 B.2(x﹣)2=C.(x﹣)2=D.以上都不对考点:解一元二次方程-配方法.分析:方程移项后,方程两边除以2变形得到结果,即可判定.解答:解:方程移项得:2x2﹣3x=﹣1,方程两边除以2得:x2﹣x=﹣,配方得:x2﹣x+=,即(x﹣)2=,故选C.点评:此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.5.已知三角形两边长分别为2和9,第三边的长为二次方程x2﹣14x+48=0的根,则这个三角形的周长为()A.11 B.17 C.17或19 D.19考点:解一元二次方程-因式分解法;三角形三边关系.分析:易得方程的两根,那么根据三角形的三边关系,得到合题意的边,进而求得三角形周长即可.解答:解:解方程x2﹣14x+48=0得第三边的边长为6或8,依据三角形三边关系,不难判定边长2,6,9不能构成三角形,2,8,9能构成三角形,∴三角形的周长=2+8+9=19.故选D.点评:求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否成三角形的好习惯.6.已知抛物线y=ax2+bx,当a>0,b<0时,它的图象经过()A.一,二,三象限B.一,二,四象限C.一,三,四象限D.一,二,三,四象限考点:二次函数图象与系数的关系.分析:由a>0可以得到开口方向向上,由b<0,a>0可以推出对称轴x=﹣>0,由c=0可以得到此函数过原点,由此即可确定可知它的图象经过的象限.解答:解:∵a>0,∴开口方向向上,∵b<0,a>0,∴对称轴x=﹣>0,∵c=0,∴此函数过原点.∴它的图象经过一,二,四象限.故选B.点评:此题主要考查二次函数的以下性质.7.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元,如果平均每月增长率为x,则由题意列方程应为()A.200(1+x)2=1000 B.200+200×2x=1000C.200+200×3x=1000 D.200[1+(1+x)+(1+x)2]=1000考点:由实际问题抽象出一元二次方程.专题:增长率问题.分析:先得到二月份的营业额,三月份的营业额,等量关系为:一月份的营业额+二月份的营业额+三月份的营业额=1000万元,把相关数值代入即可.解答:解:∵一月份的营业额为200万元,平均每月增长率为x,∴二月份的营业额为200×(1+x),∴三月份的营业额为200×(1+x)×(1+x)=200×(1+x)2,∴可列方程为200+200×(1+x)+200×(1+x)2=1000,即200[1+(1+x)+(1+x)2]=1000.故选:D.点评:考查由实际问题抽象出一元二次方程中求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.得到第一季度的营业额的等量关系是解决本题的关键.8.抛物线y=ax2+bx+c的图象如图,OA=OC,则()A.a c+1=b B.a b+1=c C.b c+1=a D.以上都不是考点:二次函数图象与系数的关系.分析:由OA=OC可以得到点A、C的坐标为(﹣c,0),(0,c),把点A的坐标代入y=ax2+bx+c得ac2﹣bc+c=0,c(ac﹣b+1)=0,然后即可推出ac+1=b.解答:解:∵OA=OC,∴点A、C的坐标为(﹣c,0),(0,c),∴把点A的坐标代入y=ax2+bx+c得,ac2﹣bc+c=0,∴c(ac﹣b+1)=0,∵c≠0∴ac﹣b+1=0,∴ac+1=b.故选A.点评:此题考查了点与函数的关系,解题的关键是灵活应用数形结合思想.9.已知二次函数y=2(x﹣3)2+1.下列说法:①其图象的开口向上;②其图象的对称轴为直线x=﹣3;③其图象顶点坐标为(3,﹣1);④当x<2,y随x的增大而减小;⑤当x=0时,y最小值为1.则其中说法正确的有()A.1个B.2个C.3个D.4个考点:二次函数的性质.专题:计算题.分析:利用抛物线的顶点式和二次函数的性质分别进行判断.解答:解:∵a=2>,∴抛物线开口向上,所以①正确;∵y=2(x﹣3)2+1,∴抛物线的对称轴为直线x=3,顶点坐标为(3,1),所以②③错误;当x<3时,y随x的增大而减小,所以④错误;当x=3时,y有最小值1,所以⑤错误.故选A.点评:本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣,),对称轴直线x=﹣,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:当a>0时,抛物线y=ax2+bx+c (a≠0)的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y随x的增大而增大;x=﹣时,y取得最小值,即顶点是抛物线的最低点.当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小;x=﹣时,y取得最大值,即顶点是抛物线的最高点.10.关于x的一元二次方程(a﹣1)x2﹣2x+3=0有实数根,则整数a的最大值是()A.2B.1C.0D.﹣1考点:根的判别式.分析:根据方程有实数根,得到根的判别式的值大于等于0,且二次项系数不为0,即可求出整数a的最大值.解答:解:根据题意得:△=4﹣12(a﹣1)≥0,且a﹣1≠0,解得:a≤,a≠1,则整数a的最大值为0.故选C.点评:此题考查了根的判别式,一元二次方程的定义,弄清题意是解本题的关键.二、填空题(每空4分,20分)11.使分式的值等于零的x的值是6.考点:分式的值为零的条件.专题:计算题.分析:分式的值为零:分子为0,分母不为0.解答:解:根据题意,得x2﹣5x﹣6=0,即(x﹣6)(x+1)=0,且x+1≠0,解得,x=6.故答案是:6.点评:本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.12.已知点P(a,m)和Q(b,m)是抛物线y=2x2+4x﹣3上的两个不同点,则a+b=﹣2.考点:二次函数图象上点的坐标特征.专题:压轴题.分析:由于P、Q两点的纵坐标相等,故这两点是抛物线上关于对称轴对称的两点;而抛物线y=2x2+4x ﹣3的对称轴为x=﹣1,根据对称轴x=,可求a+b的值.解答:解:已知点P(a,m)和Q(b,m)是抛物线y=2x2+4x﹣3上的两个不同点,因为点P(a,m)和Q(b,m)点的纵坐标相等,所以,它们关于其对称轴对称,而抛物线y=2x2+4x﹣3的对称轴为x=﹣1;故有a+b=﹣2.故答案为:﹣2.点评:本题考查了函数图象上的点的坐标与函数解析式的关系,以及关于y轴对称的点坐标之间的关系.13.一元二次方程2x2﹣3x﹣1=0与x2﹣x+3=0的所有实数根的和等于.考点:根与系数的关系.专题:计算题.分析:先判断x2﹣x+3=0没有实数解,则两个方程的所有实数根的和就是2x2﹣3x﹣1=0的两根之和,然后根据根与系数的关系求解.解答:解:方程2x2﹣3x﹣1=0的两根之和为∵x2﹣x+3=0没有实数解,∴方程2x2﹣3x﹣1=0与x2﹣x+3=0的所有实数根的和等于.故答案为.点评:本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=,x1x2=.14.若关于x的方程a(x+m)2+b=0的两个根﹣1和4(a.m.b均为常数,a≠0),则方程a(x+m﹣3)2+b=0x1=2,x2=7.考点:解一元二次方程-直接开平方法.分析:先利用直接开平方法得方程a(x+m)2+b=0的解为x=﹣m±,则﹣m+,=1,﹣m ﹣,=﹣2,再解方程a(x+m﹣2)2+b=0得x=3﹣m±,然后利用整体代入的方法得到方程a (x+m﹣3)2+b=0的根.解答:解:解:解方程a(x+m)2+b=0得x=﹣m±,∵方程a(x+m)2+b=0(a,m,b均为常数,a≠0)的根是x1=﹣1,x2=4,∴﹣m+,=﹣1,﹣m﹣,=4,∵解方程a(x+m﹣3)2+b=0得x=3﹣m±,∴x1=3﹣1=2,x2=3+4=7.故答案为x1=2,x2=7.点评:本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.15.如图所示的是二次函数y=ax2+bx+c的图象,某学霸从下面五条信息中:(1)a<0;(2)b2﹣4ac>0;(3)c>1;(4)2a﹣b>0;(5)a+b+c<0.准确找到了其中错误的信息,它们分别是(1)(2)(5)(只填序号)考点:二次函数图象与系数的关系.分析:由抛物线的开口方向判断a与0的关系;根据抛物线与x轴交点个数判断b2﹣4ac与0的关系;由抛物线与y轴的交点判断c与1的关系;根据对称轴在x=﹣1的左边判断2a﹣b与0的关系;把x=1,y=0代入y=ax2+bx+c,可判断a+b+c<0是否成立.解答:解:(1)∵抛物线的开口向下,∴a<0,故本信息正确;(2)根据图示知,该函数图象与x轴有两个交点,故△=b2﹣4ac>0;故本信息正确;(3)由图象知,该函数图象与y轴的交点在点(0,1)以下,所以c<1,故本信息错误;(4)由图示,知对称轴x=﹣>﹣1;又∵a<0,∴﹣b<﹣2a,即2a﹣b<0,故本信息错误;(5)根据图示可知,当x=1,即y=a+b+c<0,所以a+b+c<0,故本信息正确;故答案为(1)(2)(5).点评:主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.三、解答题16.(16分)解方程①(5x﹣1)2=3(5x﹣1)②x2+2x=7.考点:解一元二次方程-因式分解法;解一元二次方程-配方法.分析:①先移项,再把等号左边因式分解,最后分别解方程即可;②先在等号左右两边加上一次项系数的一半的平方,再进行配方,然后开方即可得出答案.解答:解:①(5x﹣1)2=3(5x﹣1),(5x﹣1)2﹣3(5x﹣1)=0,(5x﹣1)(5x﹣1﹣3)=0,(5x﹣1)(5x﹣4)=0,x1=,x2=;②x2+2x=7,x2+2x+1=8,(x+1)2=8,x+1=±2,x1=﹣1+2,x2=﹣1﹣2.点评:本题考查了一元二次方程的解法,解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.17.若抛物线y=ax2+bx+c的顶点是A(﹣2,1),且经过点B(1,0),求该抛物线的函数解析式.考点:待定系数法求二次函数解析式.分析:设抛物线的解析式为y=a(x+2)2+1,将点B(1,0)代入解析式即可求出a的值,从而得到二次函数解析式.解答:解:设抛物线的解析式为y=a(x+2)2+1,将B(1,0)代入y=a(x+2)2+1得,a=﹣,函数解析式为y=﹣(x+2)2+1,展开得y=﹣x2﹣x+.所以该抛物线的函数解析式为y=﹣x2﹣x+.点评:本题考查了待定系数法求函数解析式,知道二次函数的顶点式是解题的关键.18.若﹣3+是方程x2+kx+4=0的一个根,求另一根和k的值.考点:根与系数的关系.分析:设方程的另一个根是m,根据韦达定理,可以得到两根的积等于4,两根的和等于﹣k,即可求解.解答:解:设方程的另一个根是m,根据韦达定理,可以得到:(﹣3+)•m=4,且﹣3++m=﹣k,解得:m=﹣3﹣,k=6.即方程的另一根为﹣3﹣,k=6.点评:本题主要考查了一元二次方程的根与系数的关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=,x1x2=.19.某工厂大门是一抛物线形水泥建筑物(如图),大门地面宽AB=4米,顶部C离地面高度为4.4米.现有一辆满载货物的汽车欲通过大门,货物顶部距地面2.8米,装货宽度为2.4米.请通过计算,判断这辆汽车能否顺利通过大门?考点:二次函数的应用.专题:压轴题.分析:本题只要计算大门顶部宽2.4米的部分离地面是否超过2.8米即可.如果设C点是原点,那么A的坐标就是(﹣2,﹣4.4),B的坐标是(2,﹣4.4),可设这个函数为y=kx2,那么将A的坐标代入后即可得出y=﹣1.1x2,那么大门顶部宽2.4m的部分的两点的横坐标就应该是﹣1.2和1.2,因此将x=1.2代入函数式中可得y≈﹣1.6,因此大门顶部宽2.4m部分离地面的高度是4.4﹣1.6=2.8m,因此这辆汽车正好可以通过大门.解答:解:根据题意知,A(﹣2,﹣4.4),B(2,﹣4.4),设这个函数为y=kx2.将A的坐标代入,得y=﹣1.1x2,∴E、F两点的横坐标就应该是﹣1.2和1.2,∴将x=1.2代入函数式,得y≈﹣1.6,∴GH=CH﹣CG=4.4﹣1.6=2.8m,因此这辆汽车正好可以通过大门.点评:本题主要结合实际问题考查了二次函数的应用,得出二次函数式进而求出大门顶部宽2.4m部分离地面的高度是解题的关键.20.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利45元,为了扩大销售、增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出4件,若商场平均每天盈利2100元,每件衬衫应降价多少元?考点:一元二次方程的应用.专题:销售问题.分析:商场平均每天盈利数=每件的盈利×售出件数;每件的盈利=原来每件的盈利﹣降价数.设每件衬衫应降价x元,然后根据前面的关系式即可列出方程,解方程即可求出结果.解答:解:设每件衬衫应降价x元,可使商场每天盈利2100元.根据题意得(45﹣x)=2100,解得x1=10,x2=30.因尽快减少库存,故x=30.答:每件衬衫应降价30元.点评:需要注意的是:(1)盈利下降,销售量就提高,每件盈利减,销售量就加;(2)在盈利相同的情况下,尽快减少库存,就是要多卖,降价越多,卖的也越多,所以取降价多的那一种.21.如图,线段AB的长为2,C为线段AB上一个动点,分别以AC、BC为斜边在AB的同侧作两个等腰直角三角形△ACD和△BCE.(1)设DE的长为y,AC的长为x,求出y与x的函数关系式;(2)求出DE的最小值.考点:二次函数的应用.分析:(1)设AC=x,则BC=2﹣x,然后分别表示出DC、EC,继而在RT△DCE中,利用勾股定理求出DE长度的表达式;(2)利用函数的性质进行解答即可.解答:解:如图,设AC=x,则BC=2﹣x,∵△ACD和△BCE分别是等腰直角三角形,∴∠DCA=45°,∠ECB=45°,DC=x,CE=(2﹣x),∴∠DCE=90°,故DE2=DC2+CE2=x2+(2﹣x)2=x2﹣2x+2=(x﹣1)2+1,∴y=.(2)y=当x=1时,DE取得最小值,DE也取得最小值,最小值为1.点评:此题考查了二次函数最值及等腰直角三角形,难度不大,关键是表示出DC、CE,得出DE的表达式,还要求我们掌握配方法求二次函数最值.22.如图,一位篮球运动员在离篮圈水平距离4m处跳起投篮,球沿一条抛物线运行,当球运行的水平距离为2.5m时,达到最大高度3.5m,然后准确落入篮框内.已知篮圈中心离地面高度为3.05m.(1)建立图中所示的直角坐标系,求抛物线所对应的函数关系式;(2)若该运动员身高1.8m,这次跳投时,球在他头顶上方0.25m处出手.问:球出手时,他跳离地面多高?考点:二次函数的应用.分析:(1)设抛物线的表达式为y=ax2+3.5,依题意可知图象经过的坐标,由此可得a的值.(2)设球出手时,他跳离地面的高度为hm,则可得h+2.05=﹣0.2×(﹣2.5)2+3.5.解答:解:(1)∵抛物线的顶点坐标为(0,3.5),∴可设抛物线的函数关系式为y=ax2+3.5.∵蓝球中心(1.5,3.05)在抛物线上,将它的坐标代入上式,得 3.05=a×1.52+3.5,∴a=﹣,∴y=﹣x2+3.5.(2)设球出手时,他跳离地面的高度为hm,因为(1)中求得y=﹣0.2x2+3.5,则球出手时,球的高度为h+1.8+0.25=(h+2.05)m,∴h+2.05=﹣0.2×(﹣2.5)2+3.5,∴h=0.2(m).答:球出手时,他跳离地面的高度为0.2m.点评:本题考查了函数类综合应用题,对函数定义、性质,以及在实际问题中的应用等技能进行了全面考查,对学生的数学思维具有很大的挑战性.23.如图所示,矩形ABCD的边AB=3,AD=2,将此矩形置入直角坐标系中,使AB在x轴上,点C 在直线y=x﹣2上.(1)求矩形各顶点坐标;(2)若直线y=x﹣2与y轴交于点E,抛物线过E、A、B三点,求抛物线的关系式;(3)判断上述抛物线的顶点是否落在矩形ABCD内部,并说明理由.考点:二次函数综合题.专题:综合题.分析:(1)由于AD=2,即C点的纵坐标为2,将其代入已知的直线解析式中,即可求得C点的横坐标,进而由AB的长,求得A、D的横坐标,由此可确定矩形的四顶点的坐标.(2)根据直线y=x﹣2可求得E点的坐标,进而可利用待定系数法求出该抛物线的解析式.(3)根据(2)所得抛物线的解析式,即可由配方法或公式法求得其顶点坐标,进而根据矩形的四顶点坐标,来判断此顶点是否在矩形的内部.解答:解:(1)如答图所示.∵y=x﹣2,AD=BC=2,设C点坐标为(m,2),把C(m,2)代入y=x﹣2,即2=m﹣2,∴m=4,∴C(4,2),∴OB=4,AB=3,∴OA=4﹣3=1,∴A(1,0),B(4,0),C(4,2),D(1,2).(2)∵y=x﹣2,∴令x=0,得y=﹣2,∴E(0,﹣2).设经过E(0,﹣2),A(1,0),B(4,0)三点的抛物线关系式为y=ax2+bx+c,∴,解得;∴y=.(3)抛物线顶点在矩形ABCD内部.∵y=,∴顶点为,∵,∴顶点在矩形ABCD内部.点评:此题主要考查了函数图象上点的坐标意义、矩形的性质、二次函数解析式的确定等知识,难度不大,细心求解即可.。

人教版九年级上册数学月考试卷附答案

人教版九年级上册数学月考试卷附答案

人教版九年级上册数学月考试卷附答案 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若分式211x x -+的值为0,则x 的值为( ) A .0 B .1 C .﹣1 D .±12.若实数m 、n 满足 402n m -+=-,且m 、n 恰好是等腰△ABC 的两条边的边长,则△ABC 的周长是 ( )A .12B .10C .8或10D .63.关于x 的一元二次方程2(3)0x k x k -++=的根的情况是( )A .有两不相等实数根B .有两相等实数根C .无实数根D .不能确定4. 某企业今年3月份产值为万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是( )A .(-10%)(+15%)万元B .(1-10%)(1+15%)万元C .(-10%+15%)万元D .(1-10%+15%)万元5.预计到2025年,中国5G 用户将超过460 000 000,将460 000 000用科学计数法表示为( )A .94.610⨯B .74610⨯C .84.610⨯D .90.4610⨯6.一个等腰三角形的两条边长分别是方程27100x x -+=的两根,则该等腰三角形的周长是( )A .12B .9C .13D .12或97.如图,在OAB 和OCD 中,,,,40OA OB OC OD OA OC AOB COD ==>∠=∠=︒,连接,AC BD 交于点M ,连接OM .下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠.其中正确的个数为( ).A .4B .3C .2D .18.如图是二次函数2y=ax +bx+c 的部分图象,由图象可知不等式2ax +bx+c<0的解集是( )A .1<x<5-B .x>5C .x<1-且x>5D .x <-1或x >59.如图,函数 y 1=﹣2x 与 y 2=ax +3 的图象相交于点 A (m ,2),则关于 x 的不等式﹣2x >ax +3 的解集是( )A .x >2B .x <2C .x >﹣1D .x <﹣110.如图,抛物线y =ax 2+bx +c(a ≠0)的对称轴为直线x =1,与x 轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac <b 2;②方程ax 2+bx +c =0的两个根是x 1=-1,x 2=3;③3a +c >0;④当y >0时,x 的取值范围是-1≤x <3;⑤当x <0时,y 随x 增大而增大.其中结论正确的个数是( )A .4个B .3个C .2个D .1个二、填空题(本大题共6小题,每小题3分,共18分)1.计算:124503⨯+=_____. 2.分解因式:x 3﹣16x =_____________.3.若式子x 2-在实数范围内有意义,则x 的取值范围是__________.4.如图,在△ABC 中,AD ⊥BC 于D ,BE ⊥AC 于E ,AD 与BE 相交于点F ,若BF =AC ,则∠ABC =__________度.5.如图,从一块半径为1m 的圆形铁皮上剪出一个圆周角为120°的扇形ABC ,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为_________m .6.现有下列长度的五根木棒:3,5,8,10,13,从中任取三根,可以组成三角形的概率为________.三、解答题(本大题共6小题,共72分)1.解分式方程:241244x x x x -=--+2.计算:()011342604sin π-----+().3.如图,一次函数y=x+4的图象与反比例函数y=k x(k 为常数且k ≠0)的图象交于A (﹣1,a ),B 两点,与x 轴交于点C(1)求此反比例函数的表达式;(2)若点P 在x 轴上,且S △ACP =32S △BOC ,求点P 的坐标.4.周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸边的一棵大树,将其底部作为点A ,在他们所在的岸边选择了点B ,使得AB 与河岸垂直,并在B 点竖起标杆BC ,再在AB 的延长线上选择点D 竖起标杆DE ,使得点E 与点C 、A 共线.已知:CB ⊥AD ,ED ⊥AD ,测得BC =1m ,DE =1.5m ,BD =8.5m .测量示意图如图所示.请根据相关测量信息,求河宽AB .5.我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示填写下表;平均数(分)中位数(分)众数(分)初中部85高中部85 100(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.平均数(分)中位数(分)众数(分)初中部85 85 85 高中部85 80 1005.某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.(1)求出y与x的函数关系式;(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?(3)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、A4、B5、C6、A7、B8、D9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、2、x(x+4)(x–4).3、x2≥4、455、1 36、2 5三、解答题(本大题共6小题,共72分)1、4x=2、33、(1)y=-3x(2)点P(﹣6,0)或(﹣2,0)4、河宽为17米5、(1)(2)初中部成绩好些(3)初中代表队选手成绩较为稳定6、(1)y=﹣2x+80(20≤x≤28);(2)每本纪念册的销售单价是25元;(3)该纪念册销售单价定为28元时,才能使文具店销售该纪念册所获利润最大,最大利润是192元.。

2023-2024学年重庆市九年级(上)月考数学试卷(10月份)(含解析)

2023-2024学年重庆市九年级(上)月考数学试卷(10月份)(含解析)

2023-2024学年重庆市九年级(上)月考数学试卷(10月份)一、选择题(本大题共10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.(4分)﹣3的相反数是( )A.﹣B.3C.﹣3D.2.(4分)下图是由大小相同的5个小正方体搭成的几何体,则它的主视图是( )A.B.C.D.3.(4分)在Rt△ABC中,∠C=90°,AC=5,则sin B的值为( )A.B.C.D.4.(4分)估计的值应在( )A.8和9之间B.9和10之间C.10和11之间D.11和12之间5.(4分)若点A(﹣2,y1)、B(2,y2)、C(5,y3)都在反比例函数的图象上,则y1,y2,y3的大小关系是( )A.y1<y3<y2B.y1<y2<y3C.y3<y1<y2D.y3<y2<y1 6.(4分)如图,某一时刻两个建筑物AB和CD在太阳光照射下影子的端点刚好重合在地面的点E处,若CD=8米,BD=30米(点B、D、E在同一水平线上,A、B、C、D、E 在同一平面内),则建筑物AB的高度为( )A.8米B.16米C.24米D.32米7.(4分)用正方形按如图所示的规律拼图案,其中第①个图案中有4个正方形,第②个图案中有9个正方形,….按此规律排列下去,则第8个图案中正方形的个数为( )A.64B.72C.81D.1008.(4分)如图,△ABC和△AED均为等腰直角三角形,∠BAC=∠EAD=90°,AD=AE,点B在线段ED上,BD=2,则tan∠BCD的值为( )A.B.C.D.39.(4分)如图,在正方形ABCD中,E为BC上一点,DF⊥AE于点F,连接BF,若DF=2AF,则∠ABF一定等于( )A.B.90°﹣3αC.D.45°﹣α10.(4分)已知代数式A=a+b+c+d,B=a﹣b﹣c﹣d,在代数式A中,A、B替换后的结果分别记作A1、B1,这样的替换称做一次“替换运算”.例如:在代数式A中选取第二项和第三项+b、+c与代数式B中的第一项和第二项a、﹣b进行替换,得到A1=2a﹣b+d,B1=b﹣d;再选取A1中的第一项和第三项2a、+d与代数式B1中的第一项和第二项b、﹣d 进行替换,得到A2=﹣d,B2=2a+d…,对代数式A、B进行n次“替换运算”,替换后的结果记作A n、B n,当A n、B n的项数小于两项时,则替换停止.下列说法:①存在“替换运算”,使得A1+B1=2a+b;②当A n=0时,n的最小值为1;③所有的A1共有36种不同的运算结果.其中正确的个数是( )A.0B.1C.2D.3二、填空题(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11.(4分)计算:sin30°+||= .12.(4分)已知点(4,﹣2)、(1,n)都在同一反比例函数图象上,则n的值为 .13.(4分)已知一个不透明的盒子里装有4个球,其中2个红球,2个黄球,不放回,然后再从剩下的球中随机摸出一个球 .14.(4分)已知m是关于x的一元二次方程2x2﹣5x﹣2023=0的一个根,则代数式10m﹣4m2﹣2023的值为 .15.(4分)如图,点A是反比例函数y=(k<0,x<0)图象上的一点,点D为x轴正半轴上一点且DO=2BO,连接AD交y轴于点C,则k的值为 .16.(4分)若关于x的一元一次不等式组有且仅有5个整数解,且关于y的分式方程,则所有满足条件的整数a的值之和是 .17.(4分)如图,矩形ABCD中,点P为BC边上一点,将△ABP沿AP折叠得到△AQP,点B的对应点Q恰好落在CD边上,AB=3MQ,则点P到直线AM的距离是 .18.(4分)一个四位正整数m,如果m满足各个数位上的数字均不为0,千位数字与个位数字相等,则称m为“对称数”.将m的千位数字与百位数字对调.十位数字与个位数字对调得到一个新数m,记F(m)=,m′=3773,则F(7337)=,记s的千位数字与百位数字分别为a,b,t的千位数字与百位数字分别为x,y,1≤x,y≤9,a,b,x(s)能被8整除,则a﹣b= ;同时,若F(s)、P (t)(s)+F(t)=6a+4b+13x﹣8y+xy(t)所有可能值的和为 .三、解答题(本大题共8个小题,20题8分,其余各题每题10分,共78分),解题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.19.(10分)计算:(1)(x﹣y)2﹣x(x﹣3y);(2).20.(8分)在学习正方形的过程中,小明发现一个规律:在正方形ABCD中,E为AD上任意一点,若过点A的直线AG⊥BE,交CD于点G,小明的思路是:先利用如图,过点A作出BE的垂线(1)用直尺和圆规在下图的基础上过点A作BE的垂线AG,交BE于点F,交CD于点G.(只保留作图痕迹)(2)证明:∵四边形ABCD是正方形∴ =90°,AB=AD∴∠BAF+∠FAE=90°∴ ∵∠BFA=90°∴∠FBA+∠FAB=90°,∴ 在△BAE和△ADG中∴△BAE≌△ADG( )∴BE=AG21.(10分)北京时间8月24日中午12点,日本福岛第一核电站启动核污染水排海,预估排放时间将长达30年.某学校为了解该校学生对此事件的关注与了解程度,得分采用百分制,得分越高(得分用x表示,且得分为整数,共分为5组,A组:0≤x<60,B组:60≤x<70,C组:70≤x<80,D组:80≤x<90,E组:90≤x≤100),下面给出了部分信息:七年级被抽取的学生测试得分的所有数据为:48,62,79,88,70,55,74,88,93,90,74,63,68,82;八年级被抽取的学生测试得分中C等级包含的所有数据为:72,77,78,75;七年级、八年级被抽取的学生测试得分统计表平均数众数中位数七年级77a80.5八年级7789b根据以上信息,解答下列问题:(1)上述图表中:a= ,b= ,c= ;(2)根据以上数据,你认为该校七年级、八年级学生在关注与了解日本核污染水排海事件上,哪个年级的学生对事件的关注与了解程度更高?请说明理由(一条理由即可);(3)若该校七年级有学生900人,八年级有学生800人,估计该校这两个年级的学生测试得分在C组的人数一共有多少人?22.(10分)重百商场有A、B两款电器.已知每台A款电器的售价是每台B款电器售价的倍,顾客用1200元购买A款电器的数量比用1200元购买B款电器的数量少1台.(1)求每台B款电器的售价为多少元?(2)经统计,商场每月卖出A款电器100台,每台A款电器的利润为100元.为了尽快减少库存,每台A款电器的售价每降低10元,那么平均每月可多售出20台.重百商场要想每月销售A款电器的利润达到10800元23.(10分)如图1,在平行四边形ABCD中,∠A=30°,AD=4,点E为AD中点,沿折线A→B→A方向运动,当动点P返回到A点时停止运动.动点Q以每秒1个单位长度的速度从点C出发,到达点B时停止运动.P、Q两点同时出发,设运动时间为x秒1,△BDQ的面积为y2.(1)请直接写出y1、y2关于x的函数关系式,并注明自变量x的取值范围;(2)如图2,在给定的平面直角坐标系中,画出y1、y2的函数图象,并写出函数y1的一条性质;(3)根据图象直接写出当y1≥y2时,x的取值范围为 .24.(10分)周末,小明和小红相约爬山到山顶点C处观景(山脚处的点A、B在同一水平线上).小明在A点处测得山顶点C的仰角为30°,沿AC爬山到达山顶C.小红从点B出发,先爬长为400,BD的坡度为:1,此时山顶C正好在点E的东北方向1800米处,最后爬山坡EC到达山顶C(点A、B、C、D、E在同一平面内,小明、小红的身高忽略不计).(参考数据:≈1.414,≈1.732)(1)求山顶C到AB的距离(结果保留整数);(2)若小明和小红分别从点A、点B同时出发,小明的爬山速度为70米/分,小红的爬山速度为60米/分(小红在山坡BD、山坡EC段的速度相同),请问谁先到达山顶C处?请通过计算说明理由.25.(10分)在平面直角坐标系中,直线l1与x轴交于点B,与y轴交于点A,点E为线段AB的中点.直线l2经过点E,且与x轴交于点,与y轴交于点D.(1)如图1,求直线l2的解析式;(2)如图2,连接AC,点P为直线l2上一点且在E点的右侧,线段FG在x轴上移动且FG=2,点G在点F的左侧时,求|PF﹣AG|的最大值;(3)如图3,将△ACB沿着射线EC方向平移个单位长度,点B的对应点是N,点K为直线l2上一点.在平面直角坐标系中是否存在点H,使以M、N、K、H四点构成的四边形是以MN为边的菱形,若存在;若不存在,请说明理由.26.(10分)在△ABC中,过点B作BD⊥AC于点D,∠BAC=2∠ACB.(1)如图1,若∠ACB=15°,,求线段AB的长;(2)如图2,点E为AC的中点,以EC为边在EC上方作等边三角形ECF,点G为EF 上一点,连接DF、GH、FH,GH=DF,求证:AB=2EG;(3)如图3,在(1)的条件下,点P为直线AB上一动点,将DP绕着点D顺时针方向旋转90°得到DQ,延长DQ到H,连接AH,当AH最小时,将△CBH沿着直线BH翻折得到△GBH,连接GD、HD参考答案与试题解析一、选择题(本大题共10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.【分析】根据相反数的概念解答求解.【解答】解:﹣3的相反数是﹣(﹣3)=4.故选:B.【点评】本题考查了相反数的意义,理解相反数的意义是解题的关键.2.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一层有3个正方形,第二层最左边有一个正方形.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.【分析】直接根据直角三角形中锐角三角函数的定义解答即可.【解答】解:∵Rt△ABC中,∠C=90°,AC=5,∴sin B=.故选:D.【点评】此题比较简单,考查的是锐角三角函数的定义,关键是根据直角三角形中锐角三角函数的定义解答.4.【分析】将原式计算后再进行估算即可.【解答】解:原式=+3,∵49<54<64,∴7<<3,∴10<+3<11,即原式的值在10和11之间,故选:C.【点评】本题考查二次根式的运算及无理数的估算,熟练掌握估算无理数大小的方法是解题的关键.5.【分析】先根据k>0判断出反比例函数图象所在的象限,再由各点横坐标的大小判断出各点所在的象限,进而可得出结论.【解答】解:∵反比例函数,∴此函数图象的两个分支分别位于一、三象限.∵﹣2<8<2<5,∴点A(﹣5,y1)位于第三象限,B(2,y7),C(﹣5,y3)位于第一象限,∴y6>y3>y1.故选:A.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.6.【分析】根据相似三角形的判定和性质定理即可得到结论.【解答】解:由题意得,△CDE∽△ABE,∴,∴,∴AB=24米,答:建筑物AB的高度为24米,故选:C.【点评】本题考查了相似三角形的应用,熟练掌握相似三角形的判定和性质定理是解题的关键.7.【分析】根据图形的变化规律得出第n个图形中有(4n+1)个正方形即可.【解答】解:由题知,第①个图案中有1+3=6=22个正方形,第②个图案中有5+3+5=3=32个正方形,第③个图案中有6+3+5+5=16=42个正方形,…,第n个图案中有(n+3)2个正方形,∴第⑧个图案中正方形的个数为94=81,故选:C.【点评】本题主要考查图形的变化规律,根据图形的变化得出第n个图形中有(n+1)2个正方形是解题的关键.8.【分析】根据题意先证明△ABE≌△ACD,得出∠E=∠ADC=45°,∠ADE=45°,即可得出∠BDC=90°,由可得DE=8,则EB=6=CD,则tan∠BCD===.【解答】解:∵∠BAC=∠EAD=90°,∴∠EAB=∠DAC,∵AB=AC,AD=AE,∴△ABE≌△ACD(SAS),∠E=∠EDA=45°,∴EB=DC,∠E=∠ADC=45°,∴∠BDC=90°,∵,∴DE=8,∴EB=DC=6,∴tan∠BCD===.故选:A.【点评】本题考查旋转的性质,全等三角形的判定和性质,等腰三角形的性质,解直角三角形,熟练掌握以上性质是解题关键.9.【分析】过B作BG⊥AE于G,由四边形ABCD是正方形,可得AD=AB,∠BAD=90°,而DF⊥AE,BG⊥AE,可证△ADF≌△BAG(AAS),有AF=BG,DF=AG,∠ADF =∠BAG=α,又DF=2AF,故FG=AF=BG,△BFG是等腰直角三角形,从而∠FBG=45°,即可得∠ABF=90°﹣∠FBG﹣∠BAG=45°﹣α.【解答】解:过B作BG⊥AE于G,如图:∵四边形ABCD是正方形,∴AD=AB,∠BAD=90°,∵DF⊥AE,BG⊥AE,∴∠AFD=90°=∠AGB,∠ADF=90°﹣∠DAE=∠BAG,在△ADF和△BAG中,,∴△ADF≌△BAG(AAS),∴AF=BG,DF=AG,∵DF=2AF,∴AG=2AF,∴FG=AF=BG,∴△BFG是等腰直角三角形,∴∠FBG=45°,∴∠ABF=90°﹣∠FBG﹣∠BAG=90°﹣45°﹣α=45°﹣α,故选:D.【点评】本题考查正方形性质及全等三角形判定与性质,解题的关键是作辅助线,构造全等三角形解决问题.10.【分析】根据新定义分别对①②③验证即可.【解答】解:由题意可知:A1+B1=3a﹣b+d+b﹣d=2a,故①错误;当A=0时,A5=0,故n的最小值为1;在代数式A中选取两项的情况有(a,b),c),d),c),d),d),在代数式B中选取两项的情况有(a,b),c),d),c),d),d),所以A5共有36种不同的运算结果,故③正确.故答案选:C.【点评】本题考查整式的加减运算以及新定义下的运算,理解题意是解决问题的关键.二、填空题(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11.【分析】利用特殊锐角的三角函数值及绝对值的性质计算即可.【解答】解:原式=+﹣=,故答案为:.【点评】本题考查实数的运算,熟练掌握相关运算法则是解题的关键.12.【分析】将A坐标代入反比例解析式求出k的值,确定出反比例解析式,将B坐标代入反比例解析式即可求出n的值.【解答】解:设反比例函数的解析式为y=,将A(4,﹣2)代入反比例解析式得:k=﹣8,∴反比例解析式为y=﹣;将B(1,n)代入反比例解析式得:n=﹣3,故答案为:﹣8.【点评】本题考查了反比例函数图象上的坐标特征,图象上的点的坐标适合解析式.13.【分析】画树状图得出所有等可能的结果数以及摸出的两个球恰好是一个红球和一个黄球的结果数,再利用概率公式可得出答案.【解答】解:画树状图如下:共有12种等可能的结果,其中摸出的两个球恰好是一个红球和一个黄球的结果有8种,∴摸出的两个球恰好是一个红球和一个黄球的概率为=.故答案为:.【点评】本题考查列表法与树状图法,熟练掌握列表法与树状图法以及概率公式是解答本题的关键.14.【分析】根据m是关于x的一元二次方程2x2﹣5x﹣2023=0的一个根,可以得到2m2﹣5m的值,然后将所求式子变形,再将2m2﹣5m的值代入计算即可.【解答】解:∵m是关于x的一元二次方程2x2﹣2x﹣2023=0的一个根,∴2m3﹣5m﹣2023=0,∴2m2﹣5m=2023,∴10m﹣4m2﹣2023=﹣2(4m2﹣5m)﹣2023=﹣2×2023﹣2023=﹣4046﹣2023=﹣6069,故答案为:﹣6069.【点评】本题考查一元二次方程的解,解答本题的关键是明确方程的解一定使得原方程成立.15.【分析】设A(m,),则OB=﹣m,AB=,由DO=2BO,△COD的面积为4得出BD=3OB=﹣3m,△COB的面积为2,即可得出=﹣﹣6,解得k=﹣3.【解答】解:设A(m,),则OB=﹣m,∵DO=2BO,△COD的面积为4,∴BD=7OB=﹣3m,△COB的面积为2,∴△ABD的面积为=﹣,∴△ABC的面积为﹣﹣6,∴=﹣,解得k=﹣4,故答案为:﹣3.【点评】本题考查了反比例函数的比例系数k的几何意义,反比例函数图象上点的坐标特征,得到关于k的方程是解题的关键.16.【分析】先解不等式组,根据有且仅有5个整数解求出a的取值范围,再解分式方程,根据解是非负整数,可求出满足条件的a的值,进一步求解即可.【解答】解:解不等式≥x﹣1,得:x≥﹣3,解不等式3x﹣8<a﹣4,得:x<,∵该不等式组有且仅有5个整数解,∴该不等式组的整数解为:﹣2,﹣2,0,6,则1<≤2,解得:4<a≤12,解分式方程,得:y=且≠5,∵该分式方程有非负整数解,且4<a≤12,则a=8或a=10,即满足条件的所有整数a的值之和为18.故答案为:18.【点评】本题考查了分式方程的解,一元一次不等式组的整数解,正确掌握解一元一次不等式组的方法和解分式方程得方法是解题的关键.17.【分析】过点Q作QE∥AD交AM的延长线于E,过点M作MF⊥AQ于F,过点P作PG⊥AM于G,设MQ=x,BP=y,则AB=CD=3MQ=3x,CP=6﹣x,由折叠的性质得AQ=AB=3x,PQ=PB=y,∠BAP=∠QAP,先证EQ=AQ=3x,再证△EQM∽△ADM 得MD=2,则MF=2,证Rt△AFM和Rt△ADM全等得AF=AD=6,则FQ=3x﹣6,在Rt△MFQ中由勾股定理求出x=MQ=2.5,进而得AB=CD=3x=7.5,CQ=3,在Rt△PCQ中由勾股定理求出y=PB=,在Rt△ABP中由勾股定理可求出AP=,然后证△APG为等腰直角三角形,最后在Rt△APM中由勾股定理求出PG即可.【解答】解:过点Q作QE∥AD交AM的延长线于E,过点M作MF⊥AQ于F,如图:∵四边形ABCD为矩形,AD=6,∴BC=AD=6,AB=CD,设MQ=x,BP=y,CP=BC﹣BP=3﹣x,由折叠的性质可知:AQ=AB=3x,PQ=PB=y,∵QE∥AD,∴∠E=∠DAM,∵AM平分∠DAQ,∴∠DAM=∠QAM,∴∠E=∠QAM,∴EQ=AQ=3x,∵QE∥AD,∴△EQM∽△ADM,∴QE:AD=QM:MD,即2x:6=x:MD,∴MD=2,∵AM平分∠DAQ,∠D=90°,∴MF=MD=4,在Rt△AFM和Rt△ADM中,,∴Rt△AFM≌Rt△ADM(HL),∴AF=AD=6,∴FQ=AQ﹣AF=3x﹣3,在Rt△MFQ中,MF=2,MQ=x,由勾股定理得:MQ2=MF4+MQ2,∴x2=3+(3x﹣6)4,整理得:2x2﹣4x+10=0,解得:x1=8.5,x2=8(不合题意,舍去),∴MQ=2.5,∴AB=CD=6x=7.5,∴CQ=CD﹣DM﹣MQ=6.5﹣2﹣2.5=3,在Rt△PCQ中,CQ=8,PQ=y,由勾股定理得:PQ2=CQ2+CP2,∴y2=9+(3﹣y)2,解得:y=,∴PB=y=,在Rt△ABP中,PB=,由勾股定理得:AP==,∵∠BAP=∠QAP,∠DAM=∠QAM,∴∠BAP+∠DAM=∠QAP+∠QAM,∵∠BAD=90°,∴∠BAP+∠DAM=∠QAP+∠QAM=45°,即∠MAP=45°,∵PG⊥AM,∴△APG为等腰直角三角形,∴PG=AG,在Rt△APM中,PG=AG,由勾股定理得:PG2+AG4=AP2,∴PG=•AP=×=.故答案为:.【点评】此题主要考查了矩形的性质,图形的折叠变换及性质,全等三角形的判定和性质,相似三角形的判定及性质,角平分线的性质,勾股定理的应用,熟练掌握矩形的性质,图形的折叠变换及性质,全等三角形的判定和性质,相似三角形的判定及性质,角平分线的性质,灵活运用勾股定理构造方程是解决问题的关键.18.【分析】根据对称数定义表示出s=1001a+110b,s′=1001b+110a,得到F(s)==11(a﹣b),根据F(s)能被8整除,1≤b<a≤9,得到a﹣b=8;同理得F(t)==11(x﹣y),根据条件得到1la﹣11b+11x﹣11y=6a+4b+13x﹣8y+xy,由a﹣b=8,1≤b<a<9得到a=9,b=1,得到2x+3y+xy=30,根据x,y均为整数,分别列举出x,y的值代入F(t)求和即可.【解答】解:∵s的千位数字与百位数字分别为a,b,∴s=100la+110b,s′=1001b+110a,∴F(s)==11(a﹣b),∵F(s)能被8整除,且1≤b<a≤8,∴a﹣b=8;同理得F(t)==11(x﹣y),∵F(s)+F(t)=6a+6b+13x﹣8y+xy,∴1la﹣11b+3lx﹣1ly=6a+8b+13x﹣8y+xy,∵a﹣b=8,4≤b<a≤9,∴a=9,b=4,∴2x+3y+xy=30,即y=,∵x,y均为整数,当x=1时,y==,符合题意;当x=2时,y===,当x=3时,y==,符合题意;当x=7时,y===;当x=5时,y==,不符合题意;当x=5时,y==,符合题意;当x=7时,y==,不符合题意;当x=8时,y===,当x=5时,y==,不符合题意;∴F(t)所有可能值的和为﹣66+(﹣11)+44+88=55,故答案为:8;55.【点评】本题考查了新定义,因式分解的应用,数的整除性,关键是正确理解新定义,利用代数式的值进行相关分类讨论,把新知识转化为熟悉的知识进行解答.三、解答题(本大题共8个小题,20题8分,其余各题每题10分,共78分),解题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.19.【分析】(1)根据单项式乘多项式的方法进行解题即可;(2)利用平方差公式和分式的混合运算进行解题即可.【解答】解:(1)原式=x2﹣2xy+y8﹣(x2﹣3xy)=x7﹣2xy+y2﹣x7+3xy=xy+y2;(2)原式=÷()=÷()=×=m+5.【点评】本题考查分式的混合运算、单项式乘多项式和完全平方公式,熟练掌握相关的知识点是解题的关键.20.【分析】(1)根据过一点作已知直线的垂线的方法作图即可;(2)根据正方形的性质得到∠EAB=∠GDA=90°,AB=AD,利用余角的性质得到∠FBA=∠EAF,利用ASA证明△BAE≌△ADG,即可得到结论.【解答】解:(1)如图,AG即为所求;(2)证明:∵四边形ABCD是正方形,∴∠EAB=∠GDA=90°,AB=AD,∴∠BAF+∠FAE=90°,∵AG⊥BE,∴∠BFA=90°,∴∠FBA+∠FAB=90°,∴∠FBA=∠EAF,在△BAE和△ADG中,,∴△BAE≌△ADG(ASA),∴BE=AG.【点评】本题考查了正方形的性质,全等三角形的判定和性质,余角的性质,尺规作图,解题的关键是掌握全等三角形的判定和性质.21.【分析】(1)根据众数的定义确定七年级的众数a;根据中位数的定义确定八年级的中位数b;根据八年级C组所占百分比确定C的值;(2)根据平均数或中位数或众数的意义回答即可;(3)将样本中七年级得分再C组的比例乘以900,将样本中八年级得分再C组的比例乘以800,再相加即可.【解答】解:(1)∵被抽取的学生测试得分的所有数据中,88出现3次是出现次数最多的数据,∴a=88;∵C组占比为:=25%,∴c=25;∵八年级被抽取的学生测试得分A组有:20×15%=5(个),B组有:20×(100%﹣15%﹣25%﹣30%﹣10%)=4(个),∴八年级被抽取的学生测试得分的中位数是第10,第11个数据是C组的77,∴b==77.8.故答案为:88,77.5;(2)答案不唯一,比如:七年级更高.理由:因为七,八年级成绩的平均数相同,所以七年级的学生对事件的关注与了解程度更高;(3)∵七年级处于C组的有4个数据,占比,八处于C组的占比25%,∴估计该校这两个年级的学生测试得分在C组的人数一共有20%×900+25%×800=380(人),答:估计该校这两个年级的学生测试得分在C组的人数一共有380人.【点评】本题考查频数分布直方图,扇形统计图,平均数,中位数,众数,用样本估计总体,能从统计图中获取信息,理解相关概念的大于是解题的关键.22.【分析】(1)设每台B款电器的售价为x元,则每台A款电器的售价为x元,根据顾客用1200元购买A款电器的数量比用1200元购买B款电器的数量少1台.列出分式方程,解方程即可;(2)设每台A款电器应降价m元,根据每月销售A款电器的利润达到10800元,列出一元二次方程,解之取满足题意的值即可.【解答】解:(1)设每台B款电器的售价为x元,则每台A款电器的售价为,由题意得:=﹣1,解得:x=240,经检验,x=240是原方程的解,答:每台B款电器的售价为240元;(2)设每台A款电器应降价m元,由题意得:(100﹣m)(100+×20)=10800,整理得:m4﹣50m+400=0,解得:m1=40,m7=10(不符合题意,舍去),答:每台A款电器应降价40元.【点评】本题考查了一元二次方程的应用以及分式方程的应用,找准等量关系,正确列出分式方程和一元二次方程是解题的关键.23.【分析】(1)直接确定三角形的底和高求解即可;(2)y1,y2都是一次函数,只需描两个点即可画出图象,再观察y1的图象,可以从增减性写出函数的一条性质;(3)先从图象上确定交点的横坐标,再利用y1≥y2确定y2在y1下面的范围即可.【解答】解:(1)过点E作EF⊥AB于点F,过点D作DH⊥CB,∵∠A=30°,AD=4,∴EF=AE=1,∵四边形ABCD是平行四边形,∴∠C=∠A=30°,AB=CD=8,∴DH=CD=4,当7<x<4时,y1=AP•EF=;当4≤x<8时,y3=AP•EF=.当0<x<6时,y2=BQ•DH=.∴y6关于x的函数关系式为y1=,y2关于x的函数关系式为y2=﹣2x+8(0≤x<3);(2)画出y1,y2的函数图象如下,函数y3的一条性质:当0<x<4时,y随x的增大而增大;当5≤x<8,y随x的增大而减小(答案不唯一);(3)观察图象可得:当y1≥y3时,x的取值范围是.故答案为:≤x<4.【点评】本题考查了动点的函数,包括求函数的解析式,画函数图象,根据图象写函数的性质,比较函数值的大小,正确求出函数解析式并画出图象是解题的关键.24.【分析】(1)过点D作DF⊥BA,垂足为F,延长DE交CH于点G,根据题意可得:DG ⊥CH,CH⊥BA,DF=GH,∠CEG=45°,在Rt△BDF中,根据已知易得tan B=,从而可得∠B=60°,然后利用锐角三角函数的定义求出DF,BF的长,再在Rt△CEG 中,利用锐角三角函数的定义求出CG的长,最后利用线段的和差关系进行计算,即可解答;(2)利用(1)的结论,然后在Rt△ACH中,利用含30度角的直角三角形的性质可求出AC的长,最后进行计算比较即可解答.【解答】解:(1)如图:过点D作DF⊥BA,垂足为F,由题意得:DG⊥CH,CH⊥BA,∠CEG=45°,在Rt△BDF中,tan B===,∴∠B=60°,∵BD=400米,∴DF=BD•sin60°=400×=600(米),BF=BD•cos60°=400×=200,∴DF=GH=600米,在Rt△CEG中,CE=1800米,∴CG=CE•sin45°=1800×=900,∴CH=CG+GH=600+900≈1873(米),∴山顶C到AB的距离约为1873米;(2)小红先到达山顶C,理由:在Rt△ACH中,∠A=30°)米,∴AC=2CH=(1200+1800)米,∵DE=900米,小明的爬山速度为70米/分,小红的平路速度为90米/分,∴小明到达山顶C需要的时间==≈53.5(分),小红到达山顶C需要的时间=+=+≈51.5(分),∵51.5分<53.5分,∴小红先到达山顶C.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,坡度坡角问题,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.25.【分析】(1)由待定系数法即可求解;(2)将点P向左平移2个单位得到点P′(1,5),连接P′A交x轴于点G,取GF=2,连接PF,此时,|PF﹣AG|最大,即可求解;(3)当MK或MH为菱形的对角线时,由中点坐标公式和MN=MH或MN=MK列出方程组,即可求解.【解答】解:(1)直线l1与x轴交于点B,与y轴交于点A,则点A、B的坐标为(4、(7,∵点E为线段AB的中点,则点E(2,设直线E、C的表达式为:y=k(x﹣),将点E的坐标代入上式得:1=k(2﹣),解得:k=4,即直线l8的解析式为:y=4x﹣7;(2)设点P(t,3t﹣7),则四边形PACB的面积=S△PBC+S梯形PTOC﹣S△AOC﹣S△ATP=(4﹣(t+2×﹣,解得:t=3,即点P(3,3);将点P向左平移2个单位得到点P′(1,2),取GF=2,此时,理由:∵P′P=GF且P′P∥GF,则四边形PFGP′为平行四边形,则PF=P′G,则|PF﹣AG|=P′G﹣AG=AP′为最大,即|PF﹣AG|最大值=AP′==;(3)存在,理由:由图象的平移知,将△ACB沿着射线EC方向平移,相当于向左平移3个单位,则点M,﹣2),﹣4)6=20,设点K(t,4t﹣7),n),当MK或MH为菱形的对角线时,由中点坐标公式和MN=MH或MN=MK得:或,解得:m=或.【点评】本题是一次函数综合题,考查了待定系数法求函数解析式,二次函数图象和性质,菱形性质,图象平移等知识点,,其中(2)解题的关键是通过确定平行四边形PP′GF,得到最大值,这是一道关于一次函数综合题和压轴题,综合性强,难度较大.26.【分析】(1)在AC上截取DK=AD,连接BK,设BD=x,根据正弦、余弦的定义得到AD =DK=x,AB=BK=KC=2x,再利用等腰三角形的性质,得到AC=AD+DK+KC,由AC =2+2即可求解;(2)在EC上截取EK=EG,连接GK,取AB得中点Q,连接DQ、EQ,根据题意先证明△DEF≌△CHF(SAS),得到△EGK是等边三形,再证明△DEF≌△GKH(AAS),由点E为AC的中点,点Q是AB的中点,得到QE∥BC,进而得到QD=DE,即可得出结论;(3)点H的轨迹是一条垂直AB的直线,当H在AB上时,此时AH最小,AH=,利用S△DGH=S△CDG﹣S△CGH﹣S△CDH求解即可.【解答】(1)解:在AC上截取DK=AD,连接BK,∵∠BAC=2∠ACB,∠ACB=15°,∴∠BAC=30°,∵BD⊥AC,∴∠BDA=∠BDC=90°,∵DK=AD,∴AB=BK,∴∠BAC=∠BKD=30°,∵∠ACB=15°,∴∠KBC=∠BCA=15°,∴BK=KC,在Rt△ABD中,,,设BD=x,则,AB=BK=KC=2x,∵,∴x=1,∴AB=3;(2)证明:在EC上截取EK=EG,连接GK,连接DQ,如图,∵三角形ECF是等边三角形,∴EF=EC=FC,∠FEC=∠FCE=∠EFC=60°,∴∠FED=∠FCH=120°,在△DEF和△CHF中,,∴△DEF≌△CHF(SAS),∴DF=FH,∠1=∠CFH,∵GH=DF,∴GH=FH,∴∠FGH=∠GFH,∴∠FGH﹣∠FEC=∠GFH﹣∠EFC,∴∠EHG=∠CFH,∴∠1=∠EHG,∵EG=EK,∴△EGK是等边三角形,∴EG=GK=EK,∠FEC=∠8=∠EGK=60°,∴∠FED=∠CKG=120°,在△DEF和△GKH中,,∴△DEF≌△GKH(AAS),∴DE=GK,∴DE=EG,∵点Q是AB的中点,BD⊥AC,∴AB=2AQ=4QB=2QD,∴∠BAC=∠4,∵点E为AC的中点,点Q是AB的中点,∴QE∥BC,∴∠BCA=∠2,∵∠BAC=2∠ACB,∠4=∠DQE+∠6,∴∠DQE=∠3,∴QD=DE,∴AB=2DQ=2DE=2EG;(3)解:如图,点H的轨迹是一条垂直AB的直线,此时AH最小,,&nbsp;S△DGH=S△CDG﹣S△CGH﹣S△CDH==.∴S△DGH=.【点评】本题是三角形综合题,考查了全等三角形的判定与性质、等腰三角形的性质、等腰直角三角形的性质、三角形内角和定理、三角形的外角性质、解直角三角形等知识,本题综合性强,熟练掌握等腰三角形的性质,证明三角形全等是解题的关键,属于中考常考题型.。

人教版九年级上册数学月考试卷及完整答案

人教版九年级上册数学月考试卷及完整答案

人教版九年级上册数学月考试卷及完整答案班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.比较2 )A .2<B .2<<C 2<<D 2<2.下列说法中正确的是 ( )A .若0a <0<B .x 是实数,且2x a =,则0a >C 0x ≤D .0.1的平方根是0.01± 3.下列说法正确的是( )A .一个数的绝对值一定比0大B .一个数的相反数一定比它本身小C .绝对值等于它本身的数一定是正数D .最小的正整数是14.一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是( )A .平均数B .中位数C .众数D .方差 5.在数轴上,点A ,B 在原点O 的两侧,分别表示数a ,2,将点A 向右平移1个单位长度,得到点C .若CO=BO ,则a 的值为( )A .-3B .-2C .-1D .16.把函数2(1)2y x =-+的图象向右平移1个单位长度,平移后图象的函数解析式为( )A .22y x =+B .2(1)1y x =-+C .2(2)2y x =-+D .2(1)3y x =--7.如图,点D ,E 分别在线段AB ,AC 上,CD 与BE 相交于O 点,已知AB=AC ,现添加以下的哪个条件仍不能判定△ABE ≌△ACD ( )A .∠B=∠CB .AD=AEC .BD=CED .BE=CD 8.如图,平行于x 轴的直线与函数11k y (k 0x 0)x =>>,,22k y (k 0x 0)x=>>,的图象分别相交于A ,B 两点,点A 在点B 的右侧,C 为x 轴上的一个动点,若ABC 的面积为4,则12k k -的值为( )A .8B .8-C .4D .4-9.将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是( ).A .45°B .60°C .75°D .85°10.如图,矩形ABCD 中,AB=8,BC=4.点E 在边AB 上,点F 在边CD 上,点G 、H 在对角线AC 上.若四边形EGFH 是菱形,则AE 的长是( )A .5B .5C .5D .6二、填空题(本大题共6小题,每小题3分,共18分)1.计算(31)(31)+-的结果等于___________.2.分解因式:2x 3﹣6x 2+4x =__________.3.已知抛物线21y x x =--与x 轴的一个交点为(0)m ,,则代数式m ²-m+2019的值为__________.4.如图,直线AB ,CD 相交于点O ,EO ⊥AB 于点O ,∠EOD=50°,则∠BOC 的度数为__________.5.把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为__________. 6.如图抛物线y=x 2+2x ﹣3与x 轴交于A ,B 两点,与y 轴交于点C ,点P 是抛物线对称轴上任意一点,若点D 、E 、F 分别是BC 、BP 、PC 的中点,连接DE ,DF ,则DE+DF 的最小值为__________.三、解答题(本大题共6小题,共72分)1.解方程(1)2250x x --= (2)1421x x =-+2.已知关于x 的一元二次方程(a+c )x 2+2bx+(a ﹣c )=0,其中a 、b 、c 分别为△ABC 三边的长.(1)如果x=﹣1是方程的根,试判断△ABC 的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC 的形状,并说明理由;(3)如果△ABC 是等边三角形,试求这个一元二次方程的根.3.如图,已知抛物线2(0)y ax bx c a =++≠的对称轴为直线1x =-,且抛物线与x 轴交于A 、B 两点,与y 轴交于C 点,其中(1,0)A ,(0,3)C .(1)若直线y mx n =+经过B 、C 两点,求直线BC 和抛物线的解析式;(2)在抛物线的对称轴1x =-上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求出点M 的坐标;(3)设点P 为抛物线的对称轴1x =-上的一个动点,求使BPC ∆为直角三角形的点P 的坐标.4.如图,四边形ABCD 内接于⊙O ,∠BAD=90°,点E 在BC 的延长线上,且∠DEC=∠BAC .(1)求证:DE 是⊙O 的切线;(2)若AC ∥DE ,当AB=8,CE=2时,求AC 的长.5.元旦期间,某超市开展有奖促销活动,凡在超市购物的顾客均有转动圆盘的机会(如图),如果规定当圆盘停下来时指针指向8就中一等奖,指向2或6就中二等奖,指向1或3或5就中纪念奖,指向其余数字不中奖.(1)转动转盘中奖的概率是多少?(2)元旦期间有1000人参与这项活动,估计获得一等奖的人数是多少?6.东营市某学校2015年在商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍,且购买一个乙种足球比购买一个甲种足球多花20元.(1)求购买一个甲种足球、一个乙种足球各需多少元;(2)2016年为响应习总书记“足球进校园”的号召,这所学校决定再次购买甲、乙两种足球共50个,恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%,如果此次购买甲、乙两种足球的总费用不超过2900元,那么这所学校最多可购买多少个乙种足球?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、D4、D5、A6、C7、D8、A9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、22、2x (x ﹣1)(x ﹣2).3、20204、140°5、12.6、三、解答题(本大题共6小题,共72分)1、(1)1211x x ==(2)3x =是方程的解.2、(1) △ABC 是等腰三角形;(2)△ABC 是直角三角形;(3) x 1=0,x 2=﹣1.3、(1)抛物线的解析式为223y x x =--+,直线的解析式为3y x .(2)2()1,M -;(3)P 的坐标为(1,2)--或(1,4)-或(-或(-.4、(1)略;(2)AC .5、(1)34;(2)1256、(1)购买一个甲种足球需50元,购买一个乙种足球需70元;(2)这所学校最多可购买18个乙种足球.。

湖北荆州2024-2025学年九年级上学期10月月考数学试题(解析版)

湖北荆州2024-2025学年九年级上学期10月月考数学试题(解析版)

2024年10月学情监测试卷九年级数学(本试卷共4页,满分120分,考试时间120分钟)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内,写在试卷、草稿纸和答题卡上的非答题区域均无效,作图一律用2B 铅笔或黑色签字笔.一、选择题(共10题,每题3分,共30分,在每题给出的四个选项中,只有一项符合题目要求)1. 方程224135x x x +−=+化为一般形式后,二次项系数和一次项系数分别为( )A. 2和1B. 2和7C. 1和6−D. 1和4 【答案】A【解析】 【分析】本题考查了一元二次方程的一般式,根据()200ax bx c a ++=≠进行判定即可求解. 【详解】解:根据题意,2243150x x +−−−=,整理得,2260x x +−=,∴二次项系数和一次项系数分别为21,,故选:A .2. 若方程220x kx −+=的一个根是2−,则k 的值是( )A. 1−B. 1C. 3−D. 3 【答案】C【解析】【分析】本题考查了一元二次方程的解,根据题意,把2x =−代入计算即可求解.【详解】解:根据题意,把2x =−代入得,()()22220k −−−+=,解得,3k =−,故选:C .3. 一元二次方程2530x x −+=的根的情况是( )A. 有两个相等的实数根B. 有两个不相等的实数根C. 没有实数根D. 只有一个实数根【答案】B【解析】 【分析】本题考查了根的判别式,根据方程的系数结合根的判别式即可得出0∆>,从而得出方程有两个不相等的两个实数根,掌握“当0∆>时,方程有两个不相等的两个实数根”是解题的关键.【详解】解:∵方程2530x x −+=,∴()2Δ5413130=−−××=>,∴方程有两个不相等的两个实数根.故选:B .4. 对于二次函数()22y x =−−,下列说法错误的是( )A. 它的图象的开口向下B. 它的图象的对称轴是直线2x =C. 当2x =时,y 取最大值D. 当2x >时,y 随x 的增大而增大【答案】D【解析】【分析】本题考查了二次函数顶点式的性质,根据二次函数顶点式的解析式()2y a x h k =−+进行分析即可求解.【详解】解:已知二次函数顶点式()22y x =−−,10−<,图象开口向下,顶点坐标为()2,0,对称轴为xx =2, ∴A 、B 选项正确,不符合题意;当xx =2时,函数有最大值,最大值为0,故C 选项正确,不符合题意;当xx >2时,y 随x 的增大而减小,故D 选项错误,符合题意;故选:D .5. 若抛物线()22110ya x a −−+经过原点,则a 的值是( ) A. 1±B. 1C. 1−D. 0【答案】C【解析】【分析】本题考查二次函数的性质,将()0,0代入解析式求出a 的值,再根据二次项系数不能为0对a 的值进行取舍,即可得出答案.【详解】解: 抛物线()22110y a x a −−+经过原点()0,0,∴210a −+=,解得1a =±,当1a =时,二次项系数10a −=,不合题意,∴1a =−,故选C .6. 用配方法解方程2640x x −+=时,变形结果正确的是( )A. ()2314x −=B. ()235x −=C. ()2640x −=D. ()2632x −= 【答案】B【解析】【分析】本题考查了解一元二次方程﹣配方法,熟练掌握配方法解一元二次方程的基本步骤是解本题的关键.先移项化为264x x −=−,可得2695x x −+=,再进一步求解即可.【详解】解:∵2640x x −+=,∴264x x −=−,∴2695x x −+=,∴()235x −=,故选:B .7. 有一种“微信点名”活动,需要回答一系列问题,并将问题和自己答案在朋友圈中发布,同时还规定“@”一定数量的其他人,邀请他们也参与活动,小智被邀请参加一次“微信点名”活动,他决定参与并按规定“@”其他人,如果收到小智邀请的人也同样参与了活动并按规定“@”其他人,且从小智开始算起,转发两轮后共有111人被邀请参与该活动.设参与该活动后规定“@”x 人,则可列出的方程为( )A. 2111x =B. 21111x +=C. 21111x x ++=D. ()21111x += 【答案】C的【解析】【分析】本题考查了由实际问题抽象出一元二次方程,理解题意,根据从小智开始算起,转发两轮后共有111人被邀请参与该活动列出一元二次方程即可.【详解】解:设参与该活动后规定“@”x 人,则可列出的方程为:21111x x ++=,故选:C .8. 某抛物线的图象向右平移2个单位长度,再向下平移3个单位长度,所得图象的解析式为()232y x =−−,则原抛物线的解析式为( )A. ()211y x =−+B. ()251y x =−+C. yy =(xx −1)2−5D. ()255y x =−− 【答案】A【解析】【分析】本题考查了二次函数图象的平移,根据平移规律“左键右键,上加下减”即可求解.【详解】解:A 、()()22121332y x x =−−+−=−−,符合题意; B 、()()22521372y x x =−−+−=−−,不符合题意;C 、()()22125338y x x =−−−−=−−,不符合题意; D 、()(22525378y x x −−−−−−,不符合题意; 故选:A .9. 若a 是关于x 的方程22310x x −+=的一个根,则2202446a a −+的值是( )A. 2025B. 2026C. 2022D. 2023【答案】B【解析】【分析】本题考查了一元二次方程的解,以及已知式子的值,求代数式的值等知识内容,难度较小,正确掌握相关性质内容是解题的关键.依题意,把x a =代入22310x x −+=,得2231a a −=−,再把2231a a −=−代入()222024462024223a a a a −+=−−中计算,即可作答. 【详解】解:∵a 是关于x 的方程22310x x −+=的一个根,∴把x a =代入22310x x −+=,得2231a a −=−,∴()()2220244620242232024212026a a a a −+=−−=−×−=, 故选:B .10. 二次函数()20y ax bx c a ++≠的图象与x 轴交于点()1,0A ,与y 轴的交点B 在()0,2与()0,3之间(不包括这两点),对称轴为直线2x =−.下列结论:①0abc >;②0a b c −+>;③若点11,2M y − 、点25,2N y −是函数图象上的两点,则12y y >;④3255a −<<−;其中正确的结论是( )A. ②③④B. ②③C. ①④D. ①②④【答案】D【解析】【分析】本题考查了二次含图象的性质,根据图象与x 轴交于点()1,0A ,对称轴为直线2x =−,可得另一个交点为()5,0−,4b a =,根据二次函数与y 轴的交点B 在()0,2与()0,3之间(不包括这两点),可得23c <<,由此可得5c a =−,分别代入计算,再根据二次函数图象的增减性即可求解.【详解】解:二次函数()20y ax bx c a ++≠的图象与x 轴交于点()1,0A ,对称轴为直线2x =−, ∴另一个交点为()5,0−,22b x a=−=−, ∴4b a =,∴a b ,同号,即0ab >, ∵二次函数与y 轴的交点B 在()0,2与()0,3之间(不包括这两点), ∴23c <<,∴0abc >,故①正确;当xx =1时,0y a b c =++=,且4b a =,∴50a c +=,则5c a =−,∵23c <<,∴253a <−<,则3255a −<<−,即0a <, ∵4580abc a a a a −+=−−=−>,∴0a b c −+>,故②,④正确;∵对称轴为2x =−,0a <,∴当2x <−时,y 随x 的增大而增大;当2x >−时,y 随x 的增大而减小;即离对称轴越远,值越小,∵()5113222222 −−−=−−−= ,, ∴12y y <,故③错误;综上所述,正确的有①②④,故选:D .二、填空题(共5题,每题3分,共15分)11. 抛物线2(2)1y x =+−的顶点坐标为________.【答案】(2,1)−−【解析】【分析】根据二次函数的解析式的顶点式即可得.【详解】抛物线2(2)1y x =+−的顶点坐标为(2,1)−−,故答案为:(2,1)−−.【点睛】本题考查了求二次函数的顶点坐标,熟练掌握二次函数的图象与性质是解题关键.12. 已知方程2320x x −−=的两根分别为1x ,2x ,则1212x x x x ++的值为_________.【答案】1【解析】【分析】本题主要考查了根与系数的关系,对于()200ax bx c a ++=≠的两个根分别为12,x x ,则1212b c a x x x x a+=−=,. 利用根与系数的关系得到12x x +,21x x 的值,然后代入计算即可.【详解】解:∵方程2320x x −−=的两个根分别为1x ,2x ,∴123x x +=,122x x =− ∴1212231x x x x =−++=+. 故答案为:1.13. 加工爆米花时,爆开且不糊颗粒的百分比称为“可食用率”.在特定条件下,可食用率y 与加工时间x (单位:min )满足函数表达式20.2 1.52y x x =−+−,则最佳加工时间为________min .【答案】3.75的【解析】 【分析】根据二次函数的对称轴公式2b x a=−直接计算即可. 【详解】解:∵20.2 1.52y x x =−+−的对称轴为()1.5 3.75220.2b x a =−=−=×−(min ), 故:最佳加工时间为3.75min ,故答案为:3.75. 【点睛】此题主要考查了二次函数性质的应用,涉及求顶点坐标、对称轴方程等,记住抛物线顶点公式是解题关键. 14. 如图,某涵洞的截面是抛物线形状,抛物线在如图所示的平面直角坐标系中,对应的函数解析式为2516y x =-,当涵洞水面宽为12m 时,涵洞顶点O 至水面的距离为_________m .【答案】454【解析】 【分析】本题考查了二次函数的运用,根据题意,()()6,06,0A B −,,代入计算即可求解.【详解】解:根据题意,12AB =,∴()()6,06,0A B −,,把xx =6代入得,25456164y =−×=−, ∴顶点O 至水面的距离为45m 4, 故答案为:454 . 15. 已知关于x 的一元二次方程()()2530x x n −−−=的两个实数根为1x ,2x ,且213x x =,则n 的值为__________.【答案】【解析】【分析】本题考查了一元二次方程根与系数的关系,先化为一般形式,根据一元二次方程根与系数的关系可得128x x +=,21215x x n =−,结合已知条件得出122,6x x ==,进而根据21526n −=×,即可求解. 【详解】解:()()2530x x n −−−= ∴228150x x n −+−=∴128x x +=,21215x x n =− 又∵213x x =∴148x =,∴122,6x x == ∴21526n −=×解得:n =故答案为:.三、解答题(共9题,共75分,解答应写出文字说明、证明过程或演算步骤)16. 解下列方程:(1)2310x x −+=;(2)22150x x +−=.【答案】(1)1x =,2x =(2)15x =−,23x =【解析】【分析】本题考查了解一元二次方程,熟练掌握直接开平方法,因式分解法,公式法和配方法是解题的关键. (1)运用公式法求解;(2)运用因式分解法求解.【小问1详解】解:∵1,3,1a b c ==−= ∴()2341150∆=−−××=>,∴x ,∴1x =2x = 【小问2详解】解:()()530x x +−=∴50x +=,30x −=, ∴15x =−,23x =.17. 已知关于x 的方程260x kx −+=有两个实数根α,β,其中3α=−,求另一个根β和k 的值.【答案】2β=−,5k =−【解析】【分析】本题主要考查一元二次方程根与系数的关系,根据一元二次方程的两根12x x ,,1212b c x x x x a a+=−=,即可求解. 详解】解:∵6αβ=,3α=−,∴2β=−,∵k αβ+=, ∴325k =−−=−.18. 已知函数231y x x =−−+.(1)该函数图象的开口方向是________;(2)求出函数图象的对称轴和顶点坐标;(3)当x 取何值时,y 随x 的增大而减小?【答案】(1)向下 (2)对称轴是32x =−,顶点坐标是313,24 − (3)32x >−【解析】【分析】本题主要考查了二次函数的图象和性质,熟练掌握二次函数开口方向,增减性,顶点坐标和对称轴是解题的关键.【(1)根据10a =−<,即可判定抛物线的开口方向; (2)根据1a =−,3b =−,1c =,结合顶点坐标公式进行求解即可; (3)根据0a <时,二次函数的增减性进行求解即可.【小问1详解】解:∵10a =−<,∴函数图象的开口方向是向下;小问2详解】解:∵1a =−,3b =−,1c =, ∴33222b a −−=−=−−, 244913444ac b a −−−==−, ∴函数图象的对称轴是32x =−,顶点坐标是313,24 − ; 【小问3详解】解:∵开口向下, ∴当32x >−时,y 随x 的增大而减小. 19. 已知关于x 的一元二次方程()222120x k x k k −−+−=有两个实数根1x ,2x . (1)求实数k 的取值范围;(2)是否存在实数k ,使得2212129x x x x +−=成立?若存在,请求出k 的值;若不存在,请说明理由. 【答案】(1)14k ≥−(2)存在,2k =【解析】【分析】本题主要考查一元二次方程根与系数的关系, (1)根据一元二次方程有两个实数根可得240b ac ∆=−≥,由此即可求解; (2)运用一元二次方程根与系数的关系12b x x a +=−,12c x x a =,乘法公式的变形,代入求值即可. 【小问1详解】【解:根据题意得()()2221420k k k ∆=−−−−≥ , 解得,14k ≥−; 【小问2详解】解:根据题意得1221x x k +=−,2122x x k k =−, ∵2212129x x x x +−=, ∴()212121229x x x x x x +−−=,即()2121239x x x x +−=, ∴()()2221329k k k −−−=,整理得2280k k +−=, ∴()()240k k −+=,且14k ≥− 解得,12k =,24k =−(不符合题意,舍去), ∴2k =.20. 阅读下列材料:为解方程4260x x −−=,可将方程变形为()22260x x −−=,然后设2x t =,则()222x t =,原方程化为260t t −−=①,解①得12t =−,23t =.当12t =−时,22x =−无意义,舍去;当23t =时,23x =,解得x =1x =2x =;这种方法称为“换元法”,则能使复杂的问题转化成简单的问题.利用换元法解方程()()2227180x xx x −+−−=. 【答案】12x =,21x =−【解析】【分析】本题考查的是利用换元法解一元二次方程,设2x x t −=,于是原方程化为27180t t +−=,求解t ,再进一步求解即可.【详解】解:设2x x t −=,于是原方程化为27180t t +−=,∴()()290t t −+=, 解得12t =,29t =−;当2t =时,22x x −=,∴220x x −−=,∴()()210x x −+=, 解得12x =,21x =−;当9t =−时,29x x −=−,∴290x x −+=,此时2(1)4190=−−××<△,方程无解,故原方程的解为12x =,21x =−.21. 如图,抛物线2y x bx c =++与直线1y x =−交于点()1,A m −和(),2B n .(1)求抛物线的解析式;(2)根据图象直接写出不等式21x bx c x ++>−的解集.【答案】(1)24y x x =−−(2)1x <−或3x >【解析】【分析】本题考查了待定系数法求二次函数解析式,函数与不等式的关系等知识.(1)先求出点A 、B 的坐标为()1,2−−,()3,2,再代入2y x bx c =++即可求解;(2)根据函数与不等式的关系结合图象即可求解.【小问1详解】解:把()1,A m −和(),2B n 代入1y x =−,得112m =−−=−,21n =−,∴3n =,∴()1,2A −−,()3,2B ,把()1,2A −−,()3,2B 代入2y x bx c =++,得12932b c b c −+=− ++=, 解得14b c =− =−, ∴抛物线的解析式为24y x x =−−;【小问2详解】解:求不等式21x bx c x ++>−的解集可以看作当抛物线24y x x =−−的图象位于直线1y x =−的上方时求自变量x 的取值范围,∴由图象得不等式21x bx c x ++>−的解集为1x <−或3x >.22. 羽毛球作为国际球类竞技比赛的一种,发球后羽毛球的飞行路线可以看作是抛物线的一部分.建立如图所示的平面直角坐标系,羽毛球从发出到落地的过程中竖直高度y (单位:m )与水平距离x (单位:m )近似满足函数关系()()20y a x h k a =−+≠.某次发球时,羽毛球的水平距离x 与竖直高度y 的几组数据如下:请根据上述数据,解决问题:(1)直接写出羽毛球飞行过程中竖直高度的最大值,并求出满足的函数关系()()20y a x h k a =−+≠; (2)已知羽毛球场的球网高度为1.55m ,当发球点距离球网5m 时,羽毛球能否越过球网?请说明理由. 【答案】(1)()225042727y x =−−+,50 m 27(2)能,理由见解析【解析】【分析】本题考查的是二次函数的实际应用,理解题意是解本题的关键;(1)先求解抛物线的对称轴与顶点坐标,再设设抛物线的关系式为()250427y a x =−+,再代入0x =,23y =即可得到答案; (2)把5x =代入()225042727y x =−−+可得169y =,再比较即可. 【小问1详解】解:根据表格中的数据可知,当2x =时,149y =,当6x =时,149y =, ∴点142,9 与146,9关于抛物线的对称轴对称, ∴抛物线的对称轴为直线2642x +=,根据表格中的数据可知,当4x =时,5027y =, ∴抛物线的顶点坐标为504,27, 即羽毛球飞行过程中竖直高度的最大值为50m 27;设抛物线的关系式为()250427y a x =−+,把0x =,23y =代入得:()225004327a =−+, 解得:227a =−, ∴抛物线的关系式为()225042727y x =−−+.【小问2详解】解:把5x =代入()225042727y x =−−+得:225016(54)27279y =−−+=, ∵161.559>,∴羽毛球能越过球网.23. 一人一盔安全守规,一人一带平安常在!某摩托车配件店经市场调查,发现进价为80元的新款头盔每月的销售量y (件)与售价x (元)的相关信息如下: 售价x (元)100 110 120 130 …销售量y(件)180160 140 120 … (1)试用你学过函数来描述y 与x 的关系,这个函数可以是_______(填“一次函数”或“二次函数”),直接写出这个函数解析式为______;(2)若物价局规定,该头盔最高售价不得超过140元,当售价为多少元时,月销售利润达到5600元? (3)若获利不得高于进价的60%,那么售价定为多少元时,月销售利润达到最大? 【答案】(1)一次函数,2380y x =−+ (2)120元 (3)128元【解析】【分析】本题主要考查一次函数,二次函数,一元二次方程的运用,(1)根据表格信息可得当售价x 增大时,销售量y 逐渐减小,可得这个函数是一次函数,运用待定系数即可求解;(2)根据题意得()()8023805600x x −−+=,解一元二次方程,结合题意取值即可; (3)设利润为w 元,则2(80)(2380)254030400w x x x x =−−+=−+−,根据获利不得高于进价的60%,即获利不得高于808060%128+×=(元),可得80128x ≤≤,结合二次函数图象的性质即可求解. 【小问1详解】解:根据表格信息,当售价x 增大10时,销售量y 减小20,∴这个函数是一次函数,设该一次函数解析式为()0y kx b k =+≠,把100180x y =,,110160x y =,代入得, 100180110160k b k b += +=, 解得,2380k b =− =, ∴一次函数解析式为2380y x =−+, 的当120x =时,2120380120y =−×+=,符合题意, ∴该函数是一次函数,解析式为2380y x =−+; 【小问2详解】解:根据题意得()()8023805600x x −−+=, 解得1120x =,2150x =,∵物价局规定,该头盔最高售价不得超过140元,∴150x =不合题意舍去,答:当售价为120元时,月销售利润达到5600元;【小问3详解】解:设利润为w 元,则2(80)(2380)254030400w x x x x =−−+=−+−, ∴当54013524b x a =−=−=−时,w 取最大值, ∵获利不得高于进价的60%,即获利不得高于808060%128+×=(元), ∴80128x ≤≤,∵20−<,∴当135x ≤时,w 随x∴当128x =时,w 最大,答:售价定为128元时,月销售利润达到最大.24. 如图1,抛物线22y ax x c =−+与x 轴交于点()30A −,和B ,与y 轴交于点()0,3C .(1)求该抛物线的解析式及顶点的坐标;(2)如图2,若P 是线段OA 上一动点,过P 作y 轴的平行线交抛物线于点H ,交AC 于点N ,设点P 的横坐标为t ,ACH 的面积为S .求S 关于t 的函数关系式;当t 取何值时,S 有最大值,求出S 的最大值;(3)若P 是x 轴上一个动点,过P 作直线PQ BC ∥交抛物线于点Q ,随着P 点的运动,在x 轴上是否存在这样的点P ,使以B P Q C ,,,为顶点的四边形为平行四边形?若存在,请直接写出P 点的坐标;若不存在,请说明理由.【答案】(1)223y x x =−−+,()1,4−; (2)23922S t t =−−,32t =−时,S 有最大值,最大值是278;(3)存在,P 点坐标为()1,0−或()2−−或()2−+.【解析】【分析】(1)利用待定系数法求出抛物线的解析式,再把解析式转化为顶点式可得到顶点的坐标; (2)求出直线AC 的函数解析式,用含t 的式子表示出点N H 、的坐标,得出NH ,再根据12AHN CHN S S S HN OA =+=×× 求出S 关于t 的函数关系式,最后根据二次函数的性质解答即可求解; (3)求出B 点坐标,得到OB 的长,再分CQ BP ∥、点P 在点A 的左侧,CP BQ ∥和当点P 点A 的右侧,CP BQ ∥三种情况,画出图形解答即可求解.【小问1详解】解:把()3,0A −,()0,3C 代入22y ax x c =−+得,9603a c c ++= =, 解得13a c =− = , ∴该抛物线的解析式为223y x x =−−+, ∵()222314y x x x =−−+=−++,∴该抛物线的顶点坐标为()1,4−;【小问2详解】 解:设直线AC 的函数解析式为y kx b =+,把()3,0A −,()0,3C 代入得, 033k b b=−+ = ,解得13k b = =, ∴直线AC 的函数解析式为3y x ,把x t =代入3y x 得,3y t =+,∴(),3N t t +,∵点P 的横坐标为t ,∴PH y ∥轴,∴点H 的横坐标为t ,∴()2,23H t t t −−+, ∴()222333HN t t t t t =−−+−+=−−, ∴()22211393327332222228AHN CHNS S S HN OA t t t t t =+=××=×−−×=−−=−++ , ∵302−<, ∴当32t =−时,S 有最大值,最大值为278; 【小问3详解】解:存在,理由如下:把0y =代入223y x x =−−+得,2023x x =−−+,解得13x =−,21x =,∴()1,0B ,∴1OB =,如图,当CQ BP ∥时,四边形BCQP 为平行四边形,∴CQ PB =,把3y =代入223y x x =−−+得,2233x x −−+=,解得10x =,22x =−,∴()2,3Q −,∴2CQ =,∴2BP =,∴211OP =−=,∴()1,0P −;如图,当点P 在点A 的左侧,CP BQ ∥时,四边形BCPQ 是平行四边形,过点Q 作QM x ⊥轴于M ,则90∠=∠=°QMP COB , ∵四边形BCPQ 是平行四边形,∴PQ BC =,PQ BC ∥,∴QPM CBO ∠=∠, ∴()AAS QPM CBO ≌,∴1MP OB ==,3MQOC ==, ∴点Q 的纵坐标为3−,把=3y −代入223y x x =−−+得,2323x x −=−−+,解得11x =−21x =−(不符合,舍去),∴点P 的横坐标为2−−∴()2P −;如图,当点P 在点A 的右侧,CP BQ ∥时,四边形BCPQ 是平行四边形,过点Q 作QN x ⊥轴于N ,则90QNP COB ∠=∠=°,同理可得()2P −+;综上,点P 的坐标为()1,0−或()2−或()2−.【点睛】本题考查了用待定系数法求二次函数解析式,求二次函数图象的顶点坐标,二次函数与几何图形,二次函数的性质,平行四边形的性质,全等三角形的判定和性质,坐标与图形,正确画出图形并运用分类讨论思想解答是解题的关键.。

北京市中国人民大学附属中学2020-2021学年九年级上学期数学10月月考试卷

北京市中国人民大学附属中学2020-2021学年九年级上学期数学10月月考试卷

北京市中国人民大学附属中学2020-2021学年九年级上学期数学10月月考试卷一、单选题(共8题;共16分)1.如图,点P是反比例函数图像上的一个点,过作轴,轴,则矩形的面积是()A. 2B.C. 4D.2.如图,在中,为边上一点,交于点,若,,则的长为()A. 6B. 9C. 15D. 183.已知⊙O的半径OA长为1,OB=,则可以得到的正确图形可能是()A. B. C. D.4.如图,为的切线,切点为,交于点为上一点,若则的度数为()A. B. C. D.5.已知点在反比例函数的的图像上,当时,的取值范围是()A. B. 或 C. D. 或6.在平面直角坐标系中,对于点,若,则称点P为“同号点”.下列函数的图象中不存..在.“同号点”的是()A. y=-x+1B.C.D.7.如图所示,小正方形的边长均为1,则下列选项中阴影部分的三角形与△ABC相似的是()A. B. C. D.8.如图,点A,B,C,D在⊙O上,弦AD的延长线与弦BC的延长线相交于点E.用①AB是⊙O的直径,②CB=CE,③AB=AE中的两个作为题设,余下的一个作为结论组成一个命题,则组成真命题的个数为()A. 0B. 1C. 2D. 3二、填空题(共8题;共9分)9.若反比例函数的图象经过点(3,-1),则该反比例函数的表达式为________.10.在半径为12cm的圆中,长为4πcm的弧所对的圆心角的度数为________.11.函数图象上两点,则的大小关系为:________ .12.若,则=________13.如图,是的直径,点是延长线上一点,切于点,若,则等于________.14.如图,在平面直角坐标系中,点的坐标分别是是的外接圆,则圆心的坐标为________,的半径为________.15.如图,在平面直角坐标系中,函数与的图像交于、两点,过点作轴的垂线,交函数的图像于点,连接,则的面积为________.16.小明使用电脑软件探究函数的图象,他输入了一组的值,得到了下面的函数图象,由学习函数的经验,可以推断出小明输入的的值满足________ ,________ ,________ .(请填写“ ”或“ ”或“ ”)三、解答题(共8题;共72分)17.解方程:18.如图,在△ABC中,边BC与⊙A相切于点D,∠BAD=∠CAD.求证:AB=AC.19.在中,求证:.20.如图,一次函数与反比例函数,(其中)图象交于,两点.(1)求一次函数和反比例函数的表达式;(2)求的面积.21.如图,为的直径,是上的点,是外一点,于点平分.(1)求证:是的切线;(2)若,求的半径.22.在平面直角坐标系xOy中,抛物线y=a-4ax与x轴交于A,B两点(A在B的左侧).(1)求点A,B的坐标;(2)已知点C(2,1),P(1,- a),点Q在直线PC上,且Q点的横坐标为4.①求Q点的纵坐标(用含a的式子表示);②若抛物线与线段PQ恰有一个公共点,结合函数图象,求a的取值范围.23.如图,是等腰直角三角形,是直角三角形,,点为边中点将绕点顺时针旋转,旋转角记为,点为边的中点.(1)如图,求初始状态时的大小;(2)如图,在旋转过程中,若点构成平行四边形,请直接写出此时的值;(3)在旋转过程中,若点和点重合,请在图中画出并连接,判断此时是否有?如果成立,请证明;如果不成立,请说明理由.24.在平面直角坐标系中,动点为函数图像上的任意一点,点和点的坐标分别为.现给出如下定义:以线段为直径的圆称为点的“反比例伴随圆”,(1)在图中,点坐标为,请画出点的“反比例伴随圆” ,并写出与轴的交点坐标;(2)在点运动过程中,直接写出其“反比例伴随圆”半径的取值范围;(3)点由运动到的过程中,直接写出其对应的“反比例伴随圆”扫过的面积.答案解析部分一、单选题1.【答案】C2.【答案】B3.【答案】D4.【答案】B5.【答案】D6.【答案】C7.【答案】A8.【答案】D二、填空题9.【答案】10.【答案】60°11.【答案】<12.【答案】13.【答案】14.【答案】(3,3);15.【答案】316.【答案】;;三、解答题17.【答案】解:方程可化为:因式分解得:所以或解得:,.18.【答案】解:∵BC与⊙A相切于点D,∴AD⊥BC,∴∠ADB=∠ADC=90°,∵∠BAD=∠CAD,AD=AD,∴△ABD≌△ACD(ASA),∴AB=AC.19.【答案】证明:∵DE∥BC,∴∠ADE=∠B.又∵DF∥AC,∴∠A=∠BDF.∴△ADE∽△DBF.20.【答案】(1)解:∵一次函数与反比例函数图象交于两点,根据反比例函数图象的对称性可知,,∴,解得,故一次函数的解析式为,又知点在反比例函数的图象上,故,故反比例函数的解析式为;(2)解:设直线与轴交于点,令,则,∴,∴.21.【答案】(1)证明:∵AD平分∠BAC,∴∠OAD=∠DAE.∵OA=OD,∴∠ODA=∠OAD.∴∠ODA=∠DAE.∴OD∥AE.∵AC⊥PD,∴∠AEP=90°.∴∠ODP=∠AEP=90°.∴OD⊥PE.∵OD是⊙O的半径,∴PD是⊙O的切线.(2)解:如图,连接BD,∵AD平分∠BAC,∠BAC=60°,∴∠BAD=∠DAE=30°.∵AC⊥PE,DE=,∴AD=2DE=.∵AB为⊙O的直径,∴∠ADB=90°.∴AB=2BD.设BD=x,则AB=2x,∵AD2+BD2=AB2,∴x2+()2=(2x)2,解得x=即BD=,AB=,∴AO=,∴⊙O的半径为.22.【答案】(1)解:令y=0,则a -4ax=0. 解得∴ A(0,0),B(4,0)(2)解:①设直线PC的解析式为将点P(1,- a),C(2,1)代入上式,解得∴y=(1+ a)x-1-3a.∵点Q在直线PC上,且Q点的横坐标为4,∴Q点的纵坐标为3+3a②当a>0时,如图1,不合题意;图1当a<0时,由图2,图3可知,3+3a≥0.图2 图3∴a≥-1.∴正确的a的取值范围是-1≤a<0.23.【答案】(1)解:∵∠BED=30°,△BDE是直角三角形,∴∠EBD=90°-∠BED=60°.又∵D是BC的中点,∴DE是BC的垂直平分线.∵BE=CE ,∠BEC=60°,∴△BCE是等边三角形.∴BC=BE.∵△ABC是等腰三角形,∠ABC=90°,∴AB=BC.∴BE=AB.∵AB⊥BC,DE⊥BC,∴AB∥DE,∴∠ABE=∠BED=30°.∴∠BAE=∠BEA=(180°-∠ABE)=75°.∴∠AEC=∠BAE+∠BEC=135°.(2)解:∵四边形BDFB'是平行四边形,∠FB'D=60°∴B'F ∥BD,∴∠B D B'=∠FB'D=60°即=60°.(3)解:△B'DE如图所示,AE⊥DE不成立,理由如下:DE与AB相交于点G,假设AE⊥DE,则△AEG∽△DBG,设BG=a,∠BDG=30°,∴DG=2a,BD=a,AB=2 BD=a.∴AG=AB-BG=(-1)a,B'D=BD=a.∴DE==3a .∴GE=DE-DG=3a-2a=a.∴,.∴与假设矛盾.∴AE⊥DE不成立.24.【答案】(1)解:如图所示:与x轴交于点D,E∵A(2,)即a=2,b=∴B(0,),C(0,-2)∴直径BC= -(-2)=∴r=∴= ,= -2=∴OD= =3∴D(3,0)E(-3,0)∴与x轴交于点的坐标为(3,0)(-3,0)(2)解:直径=BC= =∴r=∵A(a,b)在上∴即∵=6∴r min=∴r≥3(3)解:∵,∴,∴= ∴S=S圆+ =18π+72。

武汉XX中学九年级上月考数学试卷(10月)含答案解析

武汉XX中学九年级上月考数学试卷(10月)含答案解析

2022-2023湖北省武汉九年级(上)月考数学试卷(10月份)一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个是正确的,请在答题卡上将正确答案的代号涂黑.1.将一元二次方程3x2﹣1=x化成一般形式后,二次项系数和一次项系数分别为()A.3,0 B.3,1 C.3,﹣1 D.3x2,﹣x2.对于抛物线y=﹣2(x+5)2+3,下列说法正确的是()A.开口向下,顶点坐标(5,3)B.开口向上,顶点坐标(5,3)C.开口向下,顶点坐标(﹣5,3) D.开口向上,顶点坐标(﹣5,3)3.如果2是方程x2+c=0的一个根,那么c的值是()A.4 B.﹣4 C.2 D.﹣24.对称轴是x=﹣2的抛物线的是()A.y=﹣2x2﹣2 B.y=2x2﹣2 C.y=(x+2)2D.y=2(x﹣2)25.方程x2+3=2x的根的情况为()A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不等的实数根6.把抛物线y=x2+bx+c向右平移3个单位,再向下平移2个单位,得到抛物线y=x2﹣3x+5,则有()A.b=3,c=7 B.b=﹣9,c=﹣15 C.b=3,c=3 D.b=﹣9,c=217.二次函数y=﹣x2+bx+c的图象如图所示:若点A(x1,y1),B(x2,y2)在此函数图象上,x1<x2<1,y1与y2的大小关系是()A.y1≤y2B.y1<y2C.y1≥y2D.y1>y28.在某次投篮中,球从出手到投中篮圈中心的运动路径是抛物线y=﹣x2+3.5的一部分(如图),则他与篮底的水平距离l(如图)是()A.3.5m B.4m C.4.5m D.4.6m9.设抛物线y=ax2(a>0)与直线y=kx+b相交于两点,它们的横坐标为x1,x2,而x3是直线与x轴交点的横坐标,那么x1、x2、x3的关系是()A.x3=x1+x2B.x3=+C.x1x2=x2x3+x3x1D.x1x3=x2x3+x1x210.如图,已知抛物线y1=x2﹣2x,直线y2=﹣2x+b相交于A、B两点,其中点A的横坐标为2,当x任取一值时,x对应的函数值分别为y1、y2,取m=(|y1﹣y2|+y1+y2)则()A.点B的坐标随b的值的变化而变化B.m随x的增大而减小C.当m=2时,x=0D.m≥﹣2二、填空题(共6小题,每小题3分,共18分)11.方程2x2﹣8=0的解是.12.某校准备组织一次排球比赛,参赛的每两个队之间都要比赛一场,赛程计划安排7天,每天安排4场比赛,共有多少个队参加?设有x个队参赛,则所列方程为.13.一个直角三角形的两条直角边相差5cm,面积是7cm2,则斜边的长是cm.14.已知抛物线y=(m2﹣2)x2﹣4mx+n的对称轴是x=2,且它的最高点在直线上,则它的顶点为,n=.15.如图,三孔桥横截面的三个孔都呈抛物线形,左右两个抛物线形是全等的.正常水位时,大孔水面宽度为20m,顶点距水面6m,小孔顶点距水面4.5m.当水位上涨刚好淹没小孔时,大孔的水面宽度为m.16.如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为(2,0),若抛物线y=x2+k与扇形OAB的边界总有两个公共点,则实数k的取值范围是.三、解答题(共8小题,共72分)17.解方程:4x2﹣x﹣9=0.18.已知二次函数y=x2﹣4x+3(1)直接写出函数图象的顶点坐标、与x轴交点的坐标;(2)在网格中建立坐标系,画函数的图象;(3)将图象先向左平移2个单位,再向下平移2个单位,得到新的函数图象,直接写出平移后的图象与y轴交点的坐标.19.用一条长40cm的绳子能否围成一个面积为101cm2的矩形?请说明理由.20.如图,某旅游景点要在长、宽分别为40m、24m的矩形水池的正建立一个与矩形的各边互相平行的正方形观赏亭,观赏亭的四边连接四条与矩形的边互相平行且宽度相等的道路,已知道路的宽为正方形边长的,若道路与观赏亭的面积之和是矩形水池面积的,求道路的宽.21.二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:(1)写出方程ax2+bx+c=0的两个根;(2)写出y随x的增大而减小的自变量x的取值范围;(3)若方程ax2+bx+c=k有两个不相等的实数根,求k的取值范围.22.某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?23.如图,E,F,G,H分别为矩形ABCD的四条边上的动点,AE=DH=CG=FB,连接EF,FG,GH,HE得到四边形EFGH.(1)求证:四边形EFGH为平行四边形;(2)如图2,若AB=m,AD=n(m>n),HM⊥FG,M为垂足,则GM的长是否为定值?若是,求其值;若不是,求其范围;(3)若AB=25,AD=15,设AE=x,四边形EFGH的面积为y,当x为何值时,y最大?24.已知抛物线y=ax2+2(a+1)x+(a≠0)与x轴交于A(x1,0)、B(x2,0)(x1<x2)两点,与y轴交于C点.经过第三象限中的定点D.(1)直接写出C、D两点的坐标.(2)当x=x0时,二次函数的值记住为y0,若存在点(x0,y0),使y0=x0成立,则称点(x0,y0)为抛物线上的不动点,求证:抛物线y=ax2+2(a+1)x+存在两个不动点.(3)当△ABD的面积等于△CBD时,求a的值.2022-2023湖北省武汉九年级(上)月考数学试卷(10月份)参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个是正确的,请在答题卡上将正确答案的代号涂黑.1.将一元二次方程3x2﹣1=x化成一般形式后,二次项系数和一次项系数分别为()A.3,0 B.3,1 C.3,﹣1 D.3x2,﹣x【考点】一元二次方程的一般形式.【分析】首先移项进而利用二次项系数和一次项系数的定义得出答案.【解答】解:整理得:3x2﹣x﹣1=0,故二次项系数为:3,一次项系数为:﹣1.故选:C.2.对于抛物线y=﹣2(x+5)2+3,下列说法正确的是()A.开口向下,顶点坐标(5,3)B.开口向上,顶点坐标(5,3)C.开口向下,顶点坐标(﹣5,3) D.开口向上,顶点坐标(﹣5,3)【考点】二次函数的性质.【分析】根据二次函数的图象与系数的关系及其顶点坐标进行解答即可.【解答】解:∵抛物线y=﹣2(x+5)2+3中k=﹣2<0,∴此抛物线开口向下,顶点坐标为:(﹣5,3),故选C.3.如果2是方程x2+c=0的一个根,那么c的值是()A.4 B.﹣4 C.2 D.﹣2【考点】一元二次方程的解.【分析】把x=2代入方程即可求解.【解答】解:∵x=2是方程的根,由一元二次方程的根的定义代入可得,4+c=0,∴c=﹣4.故选:B.4.对称轴是x=﹣2的抛物线的是()A.y=﹣2x2﹣2 B.y=2x2﹣2 C.y=(x+2)2D.y=2(x﹣2)2【考点】二次函数的性质.【分析】根据二次函数y=ax2+bx+c(a≠0)的图象为抛物线,对称轴为直线x=﹣可对A、B进行判断;利用抛物线的顶点式y=a(x+)2+,其对称轴为直线x=﹣可对C、D进行判断.【解答】解:A、抛物线y=﹣2x2﹣2的对称轴为直线x=0,所以A选项错误;B、抛物线y=2x2﹣2的对称轴为直线x=0,所以B选项错误;C、抛物线y=(x+2)2的对称轴为直线x=﹣2,所以C选项正确;D、抛物线y=2(x﹣2)2的对称轴为直线x=2,所以D选项错误.故选C.5.方程x2+3=2x的根的情况为()A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不等的实数根【考点】根的判别式.【分析】判断方程的根的情况,只要看根的判别式△=b2﹣4ac的值的符号就可以了.【解答】解:∵x2+3=2x,∴x2﹣2x+3=0,∵△=(﹣2)2﹣4×1×3=﹣8<0,∴方程没有实数根.故选:A.6.把抛物线y=x2+bx+c向右平移3个单位,再向下平移2个单位,得到抛物线y=x2﹣3x+5,则有()A.b=3,c=7 B.b=﹣9,c=﹣15 C.b=3,c=3 D.b=﹣9,c=21【考点】二次函数图象与几何变换.【分析】先求出y=x2﹣3x+5的顶点坐标,再根据“左加右减”求出平移前的抛物线的顶点坐标,然后利用顶点式解析式写出,整理成二次函数的一般形式,再根据对应项系数相等解答.【解答】解:∵y=x2﹣3x+5=(x﹣)2+,∴y=x2﹣3x+5的顶点坐标为(,),∵向右平移3个单位,向下平移2个单位,∴平移前的抛物线的顶点的横坐标为﹣3=﹣,纵坐标为+2=,∴平移前的抛物线的顶点坐标为(﹣,),∴平移前的抛物线为y=(x+)2+=x2+3x+7,∴b=3,c=7.故选:A.7.二次函数y=﹣x2+bx+c的图象如图所示:若点A(x1,y1),B(x2,y2)在此函数图象上,x1<x2<1,y1与y2的大小关系是()A.y1≤y2B.y1<y2C.y1≥y2D.y1>y2【考点】二次函数图象上点的坐标特征.【分析】对于二次函数y=﹣x2+bx+c,根据a<0,抛物线开口向下,在x<1的分支上y随x的增大而增大,故y1<y2.【解答】解:∵a<0,x1<x2<1,∴y随x的增大而增大∴y1<y2.故选:B.8.在某次投篮中,球从出手到投中篮圈中心的运动路径是抛物线y=﹣x2+3.5的一部分(如图),则他与篮底的水平距离l(如图)是()A.3.5m B.4m C.4.5m D.4.6m【考点】二次函数的应用.【分析】当y=3.05时,求出对应的横坐标,与2.5m相加即可.【解答】解:把y=3.05代入y=﹣x2+3.5中得:x1=1.5,x2=﹣1.5(舍去),∴L=2.5+1.5=4米,故选:B.9.设抛物线y=ax2(a>0)与直线y=kx+b相交于两点,它们的横坐标为x1,x2,而x3是直线与x轴交点的横坐标,那么x1、x2、x3的关系是()A.x3=x1+x2B.x3=+C.x1x2=x2x3+x3x1D.x1x3=x2x3+x1x2【考点】二次函数的性质.【分析】先将直线y=kx+b与抛物线y=ax2联立,构成一元二次方程,求出两根积与两根和的表达式;然后将欲证等式的左边通分,转化为两根积与两根和的形式,将以上两表达式代入得到等式左边的值;再根据直线解析式求出与x轴的交点横坐标,即可得出答案.【解答】解:由题意得x1和x2为方程kx+b=ax2的两个根,即ax2﹣kx﹣b=0,∴x1+x2=,x1x2=﹣;∴+===﹣;∵直线与x轴交点的横坐标为:x3=﹣,∴=+.∴x1x2=x2x3+x3x1.故选C.10.如图,已知抛物线y1=x2﹣2x,直线y2=﹣2x+b相交于A、B两点,其中点A的横坐标为2,当x任取一值时,x对应的函数值分别为y1、y2,取m=(|y1﹣y2|+y1+y2)则()A.点B的坐标随b的值的变化而变化B.m随x的增大而减小C.当m=2时,x=0D.m≥﹣2【考点】二次函数的性质.【分析】将点A的横坐标代入y1=x2﹣2x求得y1=﹣2,将x=2,y=﹣2代入y2=﹣2x+b求得b=2,然后将y1=x2﹣2x与y2=﹣2x+2联立求得点B的坐标,然后根据函数图形化简绝对值,最后根据函数的性质可求得m的范围.【解答】解:∵将x=2代入y1=x2﹣2x得y1=﹣2,∴点A的坐标为(2,﹣2).∵将x=2,y=﹣2代入y2=﹣2x+b得b=2,∴y2=﹣2x+2.将y1=x2﹣2x与y2=﹣2x+2联立,解得:x1=2,y1=﹣2或x2=﹣2,y2=6.∴点B的坐标为(﹣2,6).故A错误;∵当x<﹣2时,y1>y2,∴m=y1=x2﹣2x.∴m>6,且m随x的增大而减小.∵当﹣2≤x<2时,y1<y2∴m=y2=﹣2x+2.∴﹣2<m≤6且m随x的增大而减小.令m=0,求得x=0.∵当x≥2时,y1>y2,∴m=y1=x2﹣2x.∴m≥﹣2,m随x的增大而增大.故B错误;令m=2,求得:x=2+2.故C错误.综上所述,m≥﹣2.故选:D.二、填空题(共6小题,每小题3分,共18分)11.方程2x2﹣8=0的解是x1=2,x2=﹣2.【考点】解一元二次方程-直接开平方法.【分析】将方程的常数项移到方程右边,两边同时除以2变形后,利用平方根的定义开方转化为两个一元一次方程,即可得到原方程的解.【解答】解:方程2x2﹣8=0,移项得:2x2=8,即x2=4,可得x1=2,x2=﹣2.故答案为:x1=2,x2=﹣2.12.某校准备组织一次排球比赛,参赛的每两个队之间都要比赛一场,赛程计划安排7天,每天安排4场比赛,共有多少个队参加?设有x个队参赛,则所列方程为=28.【考点】由实际问题抽象出一元二次方程.【分析】设比赛组织者应邀请x队参赛,则每个队参加(x﹣1)场比赛,则共有场比赛,可以列出一个一元二次方程.【解答】解:∵赛程计划安排7天,每天安排4场比赛,∴共7×4=28场比赛.设比赛组织者应邀请x队参赛,则由题意可列方程为:=28.故答案为:=28.13.一个直角三角形的两条直角边相差5cm,面积是7cm2,则斜边的长是cm.【考点】勾股定理.【分析】设较短的直角边长是xcm,较长的就是(x+5)cm,根据面积是7cm2,求出直角边长,根据勾股定理求出斜边长.【解答】解:设较短的直角边长是xcm,较长的就是(x+5)cm,则x•(x+5)=7,整理得:x2+5x﹣14=0,∴(x+7)(x﹣2)=0,∴x=2或x=﹣7(舍去).∴5+2=7(cm),∴由勾股定理,得=,即斜边的长是cm.故答案是:.14.已知抛物线y=(m2﹣2)x2﹣4mx+n的对称轴是x=2,且它的最高点在直线上,则它的顶点为(2,2),n=﹣2.【考点】二次函数的最值;二次函数的性质.【分析】由于抛物线y=(m2﹣2)x2﹣4mx+n的对称轴是x=2,且它的最高点在直线上,则m2﹣2<0,顶点坐标为(2,2),由=2,=2求得m、n值.【解答】解:抛物线y=(m2﹣2)x2﹣4mx+n的对称轴是x=2,且它的最高点在直线上,则最高点即为顶点,把x=2代入直线得:y=1+1=2,得顶点坐标为(2,2),又m2﹣2<0,由=2,=2,代入求得:m=﹣1,n=﹣2.15.如图,三孔桥横截面的三个孔都呈抛物线形,左右两个抛物线形是全等的.正常水位时,大孔水面宽度为20m,顶点距水面6m,小孔顶点距水面4.5m.当水位上涨刚好淹没小孔时,大孔的水面宽度为10m.【考点】二次函数的应用.【分析】根据题意,建立如图所示的平面直角坐标系,可以得到A、B、M的坐标,设出函数关系式,待定系数求解函数式.根据NC的长度,得出函数的y坐标,代入解析式,即可得出E、F的坐标,进而得出答案.【解答】解:如图,建立如图所示的平面直角坐标系,由题意得,M点坐标为(0,6),A 点坐标为(﹣10,0),B点坐标为(10,0),设中间大抛物线的函数式为y=﹣ax2+bx+c,代入三点的坐标得到,解得.∴函数式为y=﹣x2+6.∵NC=4.5米,∴令y=4.5米,代入解析式得x1=5,x2=﹣5,∴可得EF=5﹣(﹣5)=10米.故答案为:10.16.如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为(2,0),若抛物线y=x2+k与扇形OAB的边界总有两个公共点,则实数k的取值范围是﹣2<k<.【考点】二次函数的性质.【分析】根据∠AOB=45°求出直线OA的解析式,然后与抛物线解析式联立求出有一个公共点时的k值,即为一个交点时的最大值,再求出抛物线经过点B时的k的值,即为一个交点时的最小值,然后写出k的取值范围即可.【解答】解:由图可知,∠AOB=45°,∴直线OA的解析式为y=x,联立消掉y得,x2﹣2x+2k=0,△=b2﹣4ac=(﹣2)2﹣4×1×2k=0,即k=时,抛物线与OA有一个交点,此交点的横坐标为1,∵点B的坐标为(2,0),∴OA=2,∴点A的坐标为(,),∴交点在线段AO上;当抛物线经过点B(2,0)时,×4+k=0,解得k=﹣2,∴要使抛物线y=x2+k与扇形OAB的边界总有两个公共点,实数k的取值范围是﹣2<k <.故答案为:﹣2<k<.三、解答题(共8小题,共72分)17.解方程:4x2﹣x﹣9=0.【考点】解一元二次方程-公式法.【分析】先求出b2﹣4ac的值,最后代入公式求出即可.【解答】解:4x2﹣x﹣9=0,b2﹣4ac=(﹣1)2﹣4×4×(﹣9)=145,x=,x1=,x2=.18.已知二次函数y=x2﹣4x+3(1)直接写出函数图象的顶点坐标、与x轴交点的坐标;(2)在网格中建立坐标系,画函数的图象;(3)将图象先向左平移2个单位,再向下平移2个单位,得到新的函数图象,直接写出平移后的图象与y轴交点的坐标.【考点】二次函数的性质;二次函数的图象;二次函数图象与几何变换.【分析】(1)根据配方法,可得顶点式解析式,根据函数值为零,可得相应自变量的值;(2)根据描点法,可得函数图象;(3)根据图象向左平移加,向右平移减,向上平移加,向下平移减,可得平移后的解析式,根据自变量与函数值的关系,可得答案.【解答】解:(1)y=(x﹣2)2﹣1,顶点坐标为(2,﹣1),当y=0时,x2﹣4x+3=0,解得x=1或x=3,即图象与x轴的交点坐标为(1,0),(3,0);(2)如图:(3)图象先向左平移2个单位,再向下平移2个单位,得y=(x+2)2﹣4(x+2)+3﹣2,化简得y=x2﹣5,当x=0时,y=﹣5,即平移后的图象与y轴交点的坐标(0,﹣5).19.用一条长40cm的绳子能否围成一个面积为101cm2的矩形?请说明理由.【考点】一元二次方程的应用.【分析】首先设矩形的长为xcm,则宽为(20﹣x)cm,再利用当x(20﹣x)=101时,得出△的符号,进而得出答案.【解答】解:不能.理由如下:设矩形的长为xcm,则宽为(20﹣x)cm,当x(20﹣x)=101时,x2﹣20x+101=0,△=b2﹣4ac=202﹣4×101=﹣4<0,所以此一元二次方程无实数根.故用一条长40cm的绳子不能围成一个面积为101cm2的矩形.20.如图,某旅游景点要在长、宽分别为40m、24m的矩形水池的正建立一个与矩形的各边互相平行的正方形观赏亭,观赏亭的四边连接四条与矩形的边互相平行且宽度相等的道路,已知道路的宽为正方形边长的,若道路与观赏亭的面积之和是矩形水池面积的,求道路的宽.【考点】一元二次方程的应用.【分析】首先假设道路的宽为x米,根据道路的宽为正方形边长的,得出正方形的边长以及道路与正方形的面积进而得出答案.【解答】解:设道路的宽为x米,则可列方程:x(24﹣4x)+x(40﹣4x)+16x2=×40×24,即:x2+4x﹣5=0,解得:x1=l,x2=﹣5(舍去).答:道路的宽为1米.21.二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:(1)写出方程ax2+bx+c=0的两个根;(2)写出y随x的增大而减小的自变量x的取值范围;(3)若方程ax2+bx+c=k有两个不相等的实数根,求k的取值范围.【考点】抛物线与x轴的交点.【分析】(1)根据函数与方程的关系,当y=0时,函数图象与x轴的两个交点的横坐标即为方程ax2+bx+c=0的两个根;(2)根据函数的性质可知,在对称轴的右侧,y随x的增大而减小,找到函数的对称轴即可得到x的取值范围;(3)方程ax2+bx+c=k有两个不相等的实数根,即函数y=ax2+bx+c(a≠0)与y=k有两个交点,据此即可直接求出k的取值范围.【解答】解:(1)当y=0时,函数图象与x轴的两个交点的横坐标即为方程ax2+bx+c=0的两个根,由图可知,方程的两个根为x1=1,x2=3.(2)根据函数图象,在对称轴的右侧,y随x的增大而减小,此时,x>2.(3)如图:方程ax2+bx+c=k有两个不相等的实数根,即函数y=ax2+bx+c(a≠0)与y=k有两个交点,此时,k<2.22.某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?【考点】二次函数的应用.【分析】(1)根据题意可知y与x的函数关系式.(2)根据题意可知y=﹣10﹣(x﹣5.5)2+2402.5,当x=5.5时y有最大值.(3)设y=2200,解得x的值.然后分情况讨论解.【解答】解:(1)由题意得:y=(50+x﹣40)=﹣10x2+110x+2100(0<x≤15且x为整数);(2)由(1)中的y与x的解析式配方得:y=﹣10(x﹣5.5)2+2402.5.∵a=﹣10<0,∴当x=5.5时,y有最大值2402.5.∵0<x≤15,且x为整数,当x=5时,50+x=55,y=2400(元),当x=6时,50+x=56,y=2400(元)∴当售价定为每件55或56元,每个月的利润最大,最大的月利润是2400元.(3)当y=2200时,﹣10x2+110x+2100=2200,解得:x1=1,x2=10.∴当x=1时,50+x=51,当x=10时,50+x=60.∴当售价定为每件51或60元,每个月的利润为2200元.当售价不低于51或60元,每个月的利润为2200元.当售价不低于51元且不高于60元且为整数时,每个月的利润不低于2200元(或当售价分别为51,52,53,54,55,56,57,58,59,60元时,每个月的利润不低于2200元).23.如图,E,F,G,H分别为矩形ABCD的四条边上的动点,AE=DH=CG=FB,连接EF,FG,GH,HE得到四边形EFGH.(1)求证:四边形EFGH为平行四边形;(2)如图2,若AB=m,AD=n(m>n),HM⊥FG,M为垂足,则GM的长是否为定值?若是,求其值;若不是,求其范围;(3)若AB=25,AD=15,设AE=x,四边形EFGH的面积为y,当x为何值时,y最大?【考点】四边形综合题.【分析】(1)只要证明△DEH≌△BFG,得到EH=FG,同理可证EF=HG,由此即可证明.(2)GM的长不是定值.取特殊位置解决问题,如图1中,当E与D重合时,B与G重合,得GM的最大值;如图2中,当E与A重合时,得GM的最小值.(3)构建二次函数,利用二次函数的性质解决问题.【解答】(1)证明:∵四边形ABCD是矩形,∴∠D=∠B=90°,AB=CD,AD=BC,∵AE=DH=CG=FB,∴DH=BF,DE=BG,在△DEH和△BFG中,,∴△DEH≌△BFG,∴EH=FG,同理可证EF=HG,∴四边形EFGH是平行三角形.(2)解:GM的长不是定值.如图1中,当E与D重合时,B与G重合,则四边形HMBC是矩形,所以GM=HC=m﹣n,如图2中,当E与A重合时,四边形EFGH是矩形,M与G重合,MG=0,综上所述,0≤MG≤m﹣n.(3)解:如图3中,∵AE=DH=CG=BF=x,AD=BC=15,AB=CD=25,∴DE=BG=15﹣x,CH=AF=25﹣x,∴S=15×25﹣2××x×(15﹣x)+2××x(25﹣x)=2x2﹣40x+375=2(x﹣10)2=2(x﹣10)2+175.∵2>0,∴x=10时,S有最大值,最大值为175.24.已知抛物线y=ax2+2(a+1)x+(a≠0)与x轴交于A(x1,0)、B(x2,0)(x1<x2)两点,与y轴交于C点.经过第三象限中的定点D.(1)直接写出C、D两点的坐标.(2)当x=x0时,二次函数的值记住为y0,若存在点(x0,y0),使y0=x0成立,则称点(x0,y0)为抛物线上的不动点,求证:抛物线y=ax2+2(a+1)x+存在两个不动点.(3)当△ABD的面积等于△CBD时,求a的值.【考点】二次函数综合题.【分析】(1)令x=0即可求出C点坐标,由定点可知在解析式中含有字母a的单项式之和为0,即可求出对应的x的值;进而求出点D坐标;(2)令x=y=x0,运用一元二次方程的根的判别式即可进行证明;(3)表示三角形面积根据题意列方程求解即可.【解答】解:(1)y=ax2+2(a+1)x+,令x=0,解得y=,∴C(0,),y=ax2+2(a+1)x+=,由题意可得:ax2+2ax=0,解得:x=﹣2,或x=0(舍去)当x=﹣2时,y=﹣,∴D(﹣2,﹣);(2)由题意可得:x0=,,△==4>0,所以方程总有两个不相等的实数根,抛物线y=ax2+2(a+1)x+存在两个不动点;(3)如图1连接AC,由△ABD的面积等于△CBD可知AC∥BD,y=ax2+2(a+1)x+(a≠0),令y=0,得x=或x=,可知A(,0),B(,0),又OC=,D(﹣2,﹣),由AC∥BD可得,=,解得:a=﹣2.11月21日。

江苏省镇江市扬中市第一中学2024-2025学年上学期九年级数学10月月考试卷[含答案]

江苏省镇江市扬中市第一中学2024-2025学年上学期九年级数学10月月考试卷[含答案]

九年级数学阶段性学习评价2024.10时间:120分钟满分:120分一、选择题(本题共10小题,每小题只有1个选项符合题意.每小题3分,共30分)1.下列方程是一元二次方程的是( )A .20y x -=B .25630x y -=-C .20x -+=D .220y -=2.一元二次方程2230x x +-=的根的情况为( )A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .没有实数根3.关于x 的一元二次方程()22110a x x a -++-=的一个根是0,则a 的值为( )A .1B .1-C .1或1-D .24.已知点P 在半径为r 的O e 内,且3OP =,则r 的值可能为( )A .1B .2C .3D .45.已知等腰三角形的两边长分别是一元二次方程27100x x -+=的两根,则该等腰三角形的周长为( )A .9B .12C .2或5D .9或126.如图所示的网格由边长相同的小正方形组成,点A 、B 、C .D 、E 、F 在小正方形的顶点上,则△ABC 的外心是( )A .点DB .点EC .点FD .点G7.唐代李皋发明了“桨轮船”,这种船是原始形态的轮船,是近代明轮航行模式之先导,如图,某桨轮船的轮子被水面截得的弦AB 长8m ,轮子的吃水深度CD 为2m ,则该浆轮船的轮子半径为( )A .2mB .3mC .4mD .5m8.如图,半径为5的A e 中,弦BC ,ED 所对的圆心角分别是BAC Ð,EAD Ð,若8BC =,180BAC EAD Ð+Ð=°,则弦DE 的长等于( )A .6B .4C .5D .89.某中学教师党小组开展民主生活会,为了更好地改进工作,要求小组每位组员给同组的其他教师各提一条建议,该党小组一共收到72条建议,则这组的党员人数为( )A .7B .8C .9D .1010.对于一元二次方程,我国古代数学家还研究过其几何解法.以方程()672x x +=为例加以说明.数学家赵爽在其所著的《勾股圆方注》中记载的方法是:如图,将四个长为6x +,宽为x 的长方形纸片拼成一个大正方形,则大正方形的边长是6x x ++,面积是四个矩形的面积与中间小正方形的面积之和,即24726´+,据此易得18662x -==.小明用此方法解关于x 的方程()324x x n -=,其中3x n x ->构造出同样的图形,已知小正方形的面积为4,则n 的值为( )A .2B .4C .6D .8二、填空题(本题共6小题,每空3分,共18分)11.已知关于x 的一元二次方程260x kx +-=(k 是常数)的一个根是2,则k 是 .12.在平面直角坐标系内,点()3,0A ,点B 的坐标为()0,a ,A e 的半径为5.若点B 在A e 内,则a 的范围是.13.如图,O e 的直径AB 与弦CD 的延长线交于点E ,若72DE OB AOC =Ð=°,,则E Ð=.14.如图,ABC V 内接于O e ,45A Ð=°,6BC =,则O e 的直径为 .15.若22222()3()40a b a b +-+-=,则代数式22a b +的值为 16.若x 、y 均为实数,则代数式224614x y x y ++-+的最小值是.三、解答题(本大题共9小题,共72分)17.解下列方程(1)()219x -=;(2)2410x x --=(配方法);(3)()()124x x +-=;(4)()3224x x x -=-.18.某商场经销种高档水果 ,原价每千克50元,连续两次降价后每千克32元,若每次下降的百分率相同求每次下降的百分率19.已知关于x 的一元二次方程()2(23)0kk x k x m ++-+=有两个不相等的实数根.(1)k 的值为__________;(2)求实数m 的取值范围;(3)请你给出m 的一个值,使得这个方程的两个根都是有理数,并求出这两个根.20.如图所示,以ABCD Y 的顶点A 为圆心,AB 为半径作圆,分别交AD ,BC 于点E ,F ,延长BA 交A e 于G .(1)求证: GEEF =;(2)若劣弧 BF所对圆心角的度数为70°,求C Ð的度数.21.小亮改编了苏轼的诗词《念奴娇・赤壁怀古》;“大江东去浪淘尽,千古风流人物,而立之年督东吴,早逝英才两位数,十位恰小个位三,个位平方与寿符.哪位学子算得快,多少年华属周瑜?”大意为:“周瑜去世时年䍅为两位数,该数的十位数字比个位数字小3,个位的平方恰好等于该数.”若设周瑜去世时年龄的个位数字为x ,求周瑜去世时年龄.注:“而立之年”指的是三十岁,两位数表示为10´(十位数字)+(个位数字).22.如图,OA OB =,AB 交O e 于点C ,D ,OE 是半径,且OE AB ^于点F .(1)求证:AC BD =;(2)若6CD =,1EF =,求O e 的半径.23.对于代数式2ax bx c ++,若存在实数n ,当x n =时,代数式的值也等于n ,则称n 为这个代数式的不变值.在代数式存在不变值时,该代数式的最大不变值与最小不变值的差记作A .特别,当代数式只有一个不变值时,则0A =.(1)代数式22x -的不变值是________,A =________;(2)说明代数式231x +没有不变值;(3)已知代数式21x bx -+,若0A =,求b 的值.24.如图1,在Rt △ABC 中,∠B =90°,AB =BC =12cm ,点D 从点A 出发沿边AB 以2cm /s 的速度向点B 移动,移动过程中始终保持DE ∥BC ,DF ∥AC (点E 、F 分别在AC 、BC 上).设点D 移动的时间为t 秒.(1)试判断四边形DFCE 的形状,并说明理由;(2)当t 为何值时,四边形DFCE 的面积等于20cm 2?(3)如图2,以点F 为圆心,FC 的长为半径作⊙F ,在运动过程中,当⊙F 与四边形DFCE 只有1个公共点时,请直接写出t 的取值范围.25.根据以下素材,完成探索任务.探索果园土地规划和销售利润问题素材1其农户承包了一块长方形果园ABCD ,图1是果园的平面图,其中200AB =米,300BC =米.准备在它的四周铺设道路,上下两条横向道路的宽度都为2x 米,左右两条纵向道路的宽度都为x 米,中间部分种植水果.出于货车通行等因素的考虑,道路宽度x 不超过12米,且不小于5米.素材2该农户发现某一种草莓销售前景比较不错,经市场调查,草莓培育一年可产果.若每平方米的草莓销售平均利润为100元,每月可销售5000平方米的草莓;受天气原因,农户为了快速将草莓出手,决定降价,若每平方米草莓平均利润下调4元,每月可多销售500平方米草莓,果园每月的承包费为2万元.问题解决任务1解决果园中路面宽度的设计对种植面积的影响.(1)请直接写出纵向道路宽度x 的取值范围.(2)若中间种植的面积是244800m ,则路面设置的宽度是否符合要求.任务2解决果园种植的预期利润问题.(总利润=销售利润-承包费)(3)若农户预期一个月的总利润为55.2万元,则从购买草莓客户的角度考虑,每平方米草莓平均利润应该降价多少元?1.D【分析】本题主要考查了一元二次方程的定义,判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”,“一个未知数”,“未知数的最高次数是2”,“二次项的系数不等于0”,“整式方程”.【详解】解:A .20y x -=,含有两个未知数,不是一元二次方程,故该选项不符合题意;B .25630x y -=-,含有两个未知数,不是一元二次方程,故该选项不符合题意;C .20x -+=,未知数的最高次数是1,不是一元二次方程,故该选项不符合题意;D .220y -=是一元二次方程,故该选项符合题意;故选:D .2.B【分析】本题主要考查了根的判别式,一元二次方程()200ax bx c a ++=¹,当240b ac ->时,方程有两个不相等的实数根;当240b ac -<时,方程没有实数根;当240b ac -=时,方程有两个相等的实数根.先求出一元二次方程根的判别式的值,然后判断即可.【详解】解:∵一元二次方程2230x x +-=,∴()2243160D =-´-=>,∴方程有两个不相等的实数根.故选:B .3.B【分析】本题主要考查了一元二次方程的定义和一元二次方程的根,方程的根即方程的解,就是能使方程两边相等的未知数的值,利用方程解的定义就可以得到关于a 的方程,从而求得a 的值.【详解】解:把0x =代入方程得到:210a -=,解得:1a =±,10a -¹Q ,1a \=-,故选:B .4.D【分析】此题考查了点与圆的位置关系,熟练掌握点与圆的位置关系定理是解决问题的关键.根据点与圆的位置关系求解即可.【详解】解:∵点P 在半径为r 的O e 内,且3OP =,∴3r >.故选D .5.B【分析】因式分解法求得方程的根,根据等腰三角形的性质,确定三边,在三角形存在的前提下,计算周长.【详解】∵27100x x -+=,∴122,5x x ==,∴等腰三角形的三边长为2,2,5,不满足三边关系定理,舍去;或2,5,5,满足三边关系定理,∴等腰三角形的周长为2+5+5=12,故选B .【点睛】本题考查了一元二次方程的解法,三角形的三边关系定理,等腰三角形的性质,熟练掌握一元二次方程的解法,三角形三边关系定理是解题的关键.6.A【分析】本题主要考查了三角形的外心的定义,根据三角形三边中垂线相交于一点,这一点叫做它的外心,据此解答即可.【详解】解:根据图形可知,直线DG 是ABC V 的BC 边上的中垂线,点D 在ABC V 的AB 边上的中垂线DH 上,∴点D 是ABC V 外心.故选:A .7.D【分析】设半径为r ,再根据圆的性质及勾股定理,可求出答案【详解】解:设半径为r ,则OA OC r ==2OD r \=-8AB =Q4AD \=在Rt ODA V 中,有222OA OD AD =+ ,即()22224r r =-+解得=5r 故选:D【点睛】本题考查垂径定理,勾股定理,关键在于知道OC 垂直平分AB 这个隐藏的条件.8.A【分析】本题考查了圆周角定理、勾股定理.作直径CF ,连接BF ,先利用勾股定理求得BF 的长,再利用等角的补角相等得到DAE BAF Ð=Ð,然后再根据同圆中,相等的圆心角所对的弦相等求得答案.【详解】解:作直径CF ,连接BF ,如图,则90FBC Ð=°,210CF AC ==,∴6BF ==,∵180BAC EAD Ð+Ð=°,而180BAC BAF Ð+Ð=°,∴DAE BAF Ð=Ð,∴ DEBF =,∴6DE BF ==,故选:A .9.C【分析】本题考查了一元二次方程的应用.设该小组共有x 人,则每人需提(1)x -条建议,根据该党小组一共收到72条建议,即可得出关于x 的一元二次方程,再解方程即可.【详解】解:设该小组共有x 人,则每人需提(1)x -条建议,根据题意得:1(72)x x -=,18x =-(不符合题意),29x =.答:该小组共有9人.故选:C .10.C【分析】本题考查了一元二次方程的应用,仿照题干,正确理解一元二次方程的几何解法是解题关键.参照已知方法,将四个长为3x n -,宽为x 的长方形纸片拼成一个大正方形,求出大正方形的边长为10,得到410n x =-,再根据小正方形的边长为102x -,小正方形的边长的面积是4,求出4x =,即可得到n 的值.【详解】解:由题意可知,将四个长为3x n -,宽为x 的长方形纸片拼成一个大正方形,则大正方形的边长是3x n x -+,面积是四个矩形的面积与中间小正方形的面积之和,∵()324x x n -=,小正方形的面积为4,∴大正方形的面积为4244100´+=,∴大正方形的边长为10,∴3410x n x x n -+=-=,∴410n x =-,∵小正方形的边长为3x n x --,即102x -,∵3x n x ->,即1020x ->,故()21024x -=,∴1022x -=±,∵1020x ->,∴4x =,∴44106n =´-=,故选:C .11.1【分析】本题考查了一元二次方程的根.熟练掌握一元二次方程的根是解题的关键.将2x =代入260x kx +-=得,4260k +-=,计算求解即可.【详解】解:将2x =代入260x kx +-=得,4260k +-=,解得,1k =,故答案为:1.12.44a -<<【分析】本题考查了垂径定理,勾股定理,点和圆的位置关系.设A e 交y 轴于点C D 、,连接AC ,利用勾股定理求得4OD OC ==,根据点和圆的位置关系即可求解.【详解】解:如图,设A e 交y 轴于点C D 、,连接AC ,∵点()3,0A ,A e 的半径为5,∴5AC =,3OA =,∴4OD OC ===,若点()0,B a 在A e 内,∴44a -<<,故答案为:44a -<<.13.24°【分析】本题考查了圆,等腰三角形的判定与性质,三角形外角的性质等知识.熟练掌握圆,等腰三角形的判定与性质,三角形外角的性质是解题的关键.如图,连接OD ,则OD OB OC ==,由DE OB =,可得DE OD =,则DOE E Ð=Ð,2CDO DOE E E Ð=Ð+Ð=Ð,由OD OC =,可得2C CDO E Ð=Ð=Ð,由372AOC C E E Ð=Ð+Ð=Ð=°,计算求解即可.【详解】解:如图,连接OD ,则OD OB OC ==,∵DE OB =,∴DE OD =,∴DOE E Ð=Ð,∴2CDO DOE E E Ð=Ð+Ð=Ð,∵OD OC =,∴2C CDO E Ð=Ð=Ð,∵2372AOC C E E E E Ð=Ð+Ð=Ð+Ð=Ð=°,∴24E Ð=°,故答案为:24°.14.【分析】此题考查了圆周角定理,勾股定理.连接OB ,OC ,利用“同一条弧所对的圆周角等于它所对圆心角的一半”得出90BOC Ð=°,再用勾股定理即可求解.【详解】解:如图,连接OB ,OC ,∴1452A BOC Ð=Ð=°,∴90BOC Ð=°,在Rt BOC V 中,由勾股定理得:22226OC OB BC +==,∵OB OC =,∴OB =故答案为:15.4【分析】设22t a b =+,将原方程变为2340t t --=求解即可.【详解】解:设22t a b =+,则原方程为2340t t --=,解得124,1t t ==-,∵22a b +≥0,∴t =4,∴22a b +=4,故答案为:4.【点睛】此题考查利用换元法解一元二次方程,注意要根据方程的特点灵活选用合适的方法,解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法.16.1【分析】此题考查了配方法,将224614x y x y ++-+转化为()()22231x y ++-+,即可得到原式的最小值,熟练掌握配方法是解本题的关键.【详解】解:224614x y x y ++-+可转换为()()22231x y ++-+,当2,3x y =-=时,原式取到最小值,为1,故答案为:1.17.(1)14x =,22x =-(2)12x =+22x =(3)13x =,22x =-(4)12x =,223x =,【分析】本题主要考查了解一元二次方程.(1)直接利用开平方法解方程即可.(2)把1移到方程的右边,方程两边同时加上4,方程左边得出完全平方式即可求解.(3)先根据D 判断根的情况,再代入公式法直接求解即可.(4)方程右边先提公因式2,然后再提公因式()2x -,即可利用因式分解法解方程.【详解】(1)解:()219x -=13x -=±∴14x =,22x =-(2)2410x x --=241x x -=24441x x -+=+()225x -=2x -=12x =22x =(3)()()124x x +-=整理得:260x x --=()2414625b ac D =-=-´-=,∴152x ±==,∴13x =,22x =-(4)()3224x x x -=-()()3222x x x -=-()()2320x x --=∴12x =,223x =18.每次下降的百分率为20%【分析】设每次下降的百分率为a ,然后根据题意列出一元二次方程,解方程即可.【详解】解:设每次下降的百分率为a ,根据题意得:50(1-a )2=32解得:a =1.8(舍去)或a =0.2=20%,答:每次下降的百分率为20%,【点睛】本题主要考查一元二次方程的应用,读懂题意,列出方程是解题的关键.19.(1)2(2)116m <;(3)取0m =,10x =,214x =-.【分析】本题考查了因式分解法解一元二次方程,根的判别式以及一元二次方程20(a 0)++=¹ax bx c 的根与24b ac D =-有如下关系:当0D >时,方程有两个不相等的实数根;当0D =时,方程有两个相等的实数根;当0D <时,方程无实数根.(1)根据一元二次方程的定义得到20k +¹且||2k =,解得2k =;(2)原方程化为240x x m ++=,然后根据根的判别式的意义得到1160m D =->,再解不等式即可;(3)取0m =,方程变形为240x x +=,然后利用因式分解法解方程.【详解】(1)解:根据题意得20k +¹且||2k =,解得2k =;故答案为:2;(2)解:由(1)知,原方程化为240x x m ++=,Q 方程有两个不相等的实数根,\Δ=b 2−4ac =1−16m >0,解得116m <,即实数m 的取值范围为116m <;(3)解:取0m =,则方程变形为240x x +=,\()410x x +=,\0x =,410x +=,解得10x =,214x =-.20.(1)证明见解析(2)125°【分析】本题考查了平行四边形性质,平行线性质,弧与圆心角的关系等知识点的应用,关键是求出DAF GAD Ð=Ð.(1)要证明 EFGE =,则要证明DAF GAD Ð=Ð,由等边对等角以及平行四边形性质即可证明;(2)根据劣弧 BF所对圆心角的度数为70°,得到70BAF Ð=°,于是得到()1180552B AFB BAF Ð=Ð=°-Ð=°,根据平行四边形的性质即可得到结论.【详解】(1)解:如图,连接AF ,A Q 为圆心,AB AF \=,ABF AFB \Ð=Ð,Q 四边形ABCD 为平行四边形,AD BC \∥,AFB DAF \Ð=Ð,GAD ABF Ð=Ð,DAF GAD \Ð=Ð,EFGE \=;(2)∵劣弧 BF所对圆心角的度数为70°,70BAF \Ð=°,()1180552B AFB BAF \Ð=Ð=°-Ð=°,Q 四边形ABCD 为平行四边形,AB CD \∥,180125C B \Ð=°-Ð=°.21.周瑜去世时年龄为36岁【分析】本题考查了从实际问题中抽象出一元二次方程,正确理解题意找到等量关系是解题的关键.设周瑜去世时年龄的个位数字为x ,则设周瑜去世时年龄的十位数字为()3x -,然后根据个位的平方恰好等于该数列出方程求解即可.【详解】解:设周瑜去世时年龄的个位数字为x ,则设周瑜去世时年龄的十位数字为()3x -,由题意得()2103x x x -+=,解得15x =,26x =∴十位数字为2或3∵而立之年督东吴,“而立之年”指的是三十岁,∴15x =应舍去,∴周瑜去世时年龄为36岁.22.(1)证明见解析(2)O e 的半径是5.【分析】本题考查垂径定理、勾股定理等知识;(1)由垂径定理得CF DF =,根据等腰三角形的性质可得AF BF =,再根据线段的和差关系可得结论;(2)连接OC ,结合垂径定理和勾股定理列方程求解即可.【详解】(1)证明:OE AB ^Q ,CD 为O e 的弦,CF DF \=,OA OB =Q ,OE AB ^,AF BF \=,AF CF BF DF \-=-,AC BD \=;(2)解:如图,连接OC ,OE AB ^Q ,CD 为O e 的弦,\132CF CD ==,90OFC Ð=°,∴222CO CF OF =+设O e 的半径是r ,∴()22231r r =+-,解得=5r ,O \e 的半径是5.23.(1)1-和2;3;(2)见解析(3)b 的值为3-或1.【分析】本题考查了一元二次方程的应用以及根的判别式,根据不变值的定义,求出一元二次方程的解是解题的关键.(1)根据不变值的定义可得出关于x 的一元二次方程,解之即可求出x 的值,再做差后可求出A 的值;(2)由方程的系数结合根的判别式可得出方程2310x x -+=没有实数根,进而可得出代数式231x +没有不变值;(3)由0A =可得出方程()2110x b x -++=有两个相等的实数根,进而可得出0D =,解之即可得出结论.【详解】(1)解:依题意,得:22x x -=,即220x x --=,解得:11x =-,22x =,∴()213A =--=.故答案为:1-和2;3;(2)解:依题意,得:231x x +=,∴2310x x -+=,∵()21431110D =--´´=-<,∴该方程无解,即代数式231x +没有不变值;(3)解:依题意,得:方程21x bx x -+=即()2110x b x -++=有两个相等的实数根,∴()214110b éùëûD =-+-´´=,∴13b =-,21b =.答:b 的值为3-或1.24.(1)平行四边形,理由见解析;(2)1秒或5秒;(3)12﹣<t <6【分析】(1)由两组对边平行的四边形是平行四边形可证四边形DFCE 是平行四边形;(2)设点D 出t 秒后四边形DFCE 的面积为20cm 2,利用BD ×CF =四边形DFCE 的面积,列方程解答即可;(3)如图2中,当点D 在⊙F 上时,⊙F 与四边形DECF 有两个公共点,求出此时t 的值,根据图象即可解决问题.【详解】解:(1)∵DE ∥BC ,DF ∥AC ,∴四边形DFCE 是平行四边形;(2)如图1中,设点D 出发t 秒后四边形DFCE 的面积为20cm 2,根据题意得,DE =AD =2t ,BD =12﹣2t ,CF =DE =2t ,又∵BD ×CF =四边形DFCE 的面积,∴2t (12﹣2t )=20,t 2﹣6t +5=0,(t ﹣1)(t ﹣5)=0,解得t 1=1,t 2=5;答:点D 出发1秒或5秒后四边形DFCE 的面积为20cm 2;(3)如图2中,当点D 在⊙F 上时,⊙F 与四边形DECF 有两个公共点,在Rt △DFB 中,∵∠B =90°,AD =DF =CF =2t ,BD =BF =12﹣2t ,∴2t (12﹣2t ),∴t =12﹣由图象可知,当12﹣t <6时,⊙F 与四边形DFCE 有1个公共点.【点睛】本题考查圆综合题,考查了圆的有关知识,平行四边形的判定,勾股定理,等腰直角三角形的性质等知识,解题的关键是灵活应用所学知识解决问题,属于中考常考题型.25.(1)512x ££(2)符合要求(3)48元【分析】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.(1)根据“道路宽度x 不超过12米,且不小于5米”,即可得出纵向道路宽度x 的取值范围;(2)由果园的长、宽及四周道路的宽度,可得出中间种植部分是长为(3002)x -米、宽为(20022)x -´米的长方形,根据中间种植的面积是244800m ,可列出关于x 的一元二次方程,解之可得出x 的值,取其符合题意的值,再对照(1)中x 的取值范围,即可得出结论;(3)设每平方米草莓平均利润下调y 元,则每平方米草莓平均利润为(100)y -元,每月可售出50005004y æö+´ç÷èø平方米草莓,利用总利润=销售利润-承包费,可列出关于y 的一元二次方程,解之可得出y 的值,再结合要让利于顾客,即可确定结论.【详解】解:(1)根据题意得:512x ££(2)根据题意得:()()30022002244800x x --´=,整理得:220019000x x -+=,解得:110x =,2190x =(不符合题意,舍去),512x ££Q ,\路面设置的宽度符合要求;(3)设每平方米草莓平均利润下调y 元,()1005000500200005520004y y æö-+´-=ç÷èø整理得:2605760y y -+=.解得:112y =,248=y ,又Q 要让利于顾客,48y \=.答:每平方米草莓平均利润下调48元.。

2023-2024学年四川省绵阳市游仙区九年级(上)月考数学试卷(10月份)(含解析)

2023-2024学年四川省绵阳市游仙区九年级(上)月考数学试卷(10月份)(含解析)

2023-2024学年四川省绵阳市游仙区九年级(上)月考数学试卷一、选择题(本大题共12小题,共36.0分。

在每小题列出的选项中,选出符合题目的一项)1.方程x²=−2x+8化为一元二次方程的一般形式后,二次项系数、一次项系数、常数项分别是( )A. 1,−2,8B. −1,2,8C. 1,2,−8D. 1,2,82.二次函数y=x2−2x+1的图象与x轴的交点个数是( )A. 0个B. 1个C. 2个D. 不能确定3.用配方法解方程x2+8x+7=0,则配方正确的是( )A. (x+4)2=9B. (x−4)2=9C. (x−8)2=16D. (x+8)2=574.方程3x(x−1)=5(x+2)的一般式为ax2−8x−10=0时,a的值为( )A. −3B. 1C. 3D. 55.关于x的一元二次方程3x2−2x=x+1的根的情况是( )A. 没有实数根B. 有两个不相等的实数根C. 有两个相等的实数根D. 无法确定6.抛物线y=2(x+9)2−3的顶点坐标是( )A. (9,3)B. (9,−3)C. (−9,3)D. (−9,−3)7.飞机着陆后滑行的距离s(单位:m)与滑行的时间t(单位:s)的函数解析式是s=−1.5t2+60t,那么飞机着陆后滑行多长时间才能停下来( )A. 10sB. 20sC. 30sD. 40s8.将抛物线y=2x2−1的图象先向右平移3个单位,再向上平移4个单位,得到的抛物线的解析式是( )A. y=2(x+3)2+4B. y=2(x−3)2+4C. y=(x−3)2+3D. y=2(x−3)2+39.二次函数y=x2−2x−3.若y>−3,则自变量x的取值范围是( )A. x<0或x>2B. x<1或x>3C. 0<x<2D. 1<x<310.若函数y=(m−3)x2−4x+2的图象与x轴只有一个交点,则m的值是( )A. 3或5B. 3C. 4D. 511.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a<0)经过点(−1,0),对称轴为直线x=1.若y<0,则x的取值范围是( )A. x<1B. x<−1C. −1<x<1D. x<−1或x>312.云南省是我国花卉产业大省,一年四季都有大量鲜花销往全国各地,花卉产业已成为该省许多地区经济发展的重要项目.近年来某乡的花卉产值不断增加,2020年花卉产值是1000万元,2022年花卉产值达到1400万元.设2021和2022年花卉产值的年平均增长率均为x,则下列方程正确的是( )A. 1000(1+x)=1400B. 1000(1+2x)=1400C. 1000(1+x)2=1400D. 1000(1+x)+1000(1+x)2=1400二、填空题(本大题共6小题,共24.0分)13.方程(2x+1)(x−3)=x2+1的二次项系数、一次项系数、常数项的和为______ .14.关于x的一元二次方程(m−1)x2+x+m2−1=0有一根为0,则m=______.15.已知关于x的一元二次方程x2−2x+m=0无实数根,则一次函数y=mx+m的图形不经过第______ 象限.16.在一次足球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛28场,设共有x个队参赛,根据题意,可列方程为______ .17.已知函数y=(m+1)x|m|+1−2x+1是二次函数,则m=______ .18.如图,二次函数y=ax2+bx+c的图象与x轴相交于(−2,0)和(4,0)两点,当函数值y>0时,自变量x的取值范围是______ .三、解答题(本大题共9小题,共90.0分。

2023-2024学年江苏省南通市如皋初级中学九年级(上)月考数学试卷(10月份)(含解析)

2023-2024学年江苏省南通市如皋初级中学九年级(上)月考数学试卷(10月份)(含解析)

2023-2024学年江苏省南通市如皋初级中学九年级(上)月考数学试卷(10月份)一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.抛物线y=−x2+3x−2与y轴的交点坐标是( )A. (−2,0)B. (0,2)C. (1,2)D. (0,−2)2.抛物线y=2(x+2)2−14的顶点坐标为( )A. (2,14)B. (−2,14)C. (2,−14)D. (−2,−14)3.若将抛物线y=5x2先向右平移2个单位,再向上平移1个单位,得到的新抛物线的表达式为( )A. y=5(x−2)2+1B. y=5(x+2)2+1C. y=5(x−2)2−1D. y=5(x+2)2−14.已知抛物线y=x2+x−1经过点P(m,5),则代数式m2+m+2023的值为( )A. 2026B. 2027C. 2028D. 20295.已知二次函数y=−(x+ℎ)2,当x<−1时,y随着x的增大而增大,当x>−1时,y随x的增大而减小,当x=3时,y的值为( )A. −16B. −1C. −9D. 06.对于二次函数y=−2(x+3)2的图象,下列说法正确的是( )A. 开口向上B. 对称轴是直线x=−3C. 当x>−4时,y随x的增大而减小D. 顶点坐标为(−2,−3)7.如图,从某建筑物10m高的窗口A处用水管向外喷水,喷出的水成抛物线状(抛物线所在平面与墙面垂直).如果抛物线的最高点M距离墙1m,距离地面40m,则水流落地点B离墙的距离OB是( )3A. 2mB. 3mC. 4mD. 5m8.已知二次函数y=ax2+bx+c(a≠0)的图象如图,有下列5个结论:①abc>0;②b<a+c;③当x<0时,y随x的增大而增大;④2c<3b;⑤a+b>m(am+b)(其中m≠1)其中正确的个数是( )A. 1B. 2C. 3D. 49.已知实数a、b满足a−b2=2,则代数式a2−3b2+a−9的最小值是( )A. −2B. −3C. −4D. −910.如图,在平面直角坐标系中,抛物线y=3x2−23x的顶点为A点,且与x轴的正2半轴交于点B,P点是该抛物线对称轴上的一点,则OP+1AP的最小值为( )2A. 3B. 23C. 3+232D. 3+234二、填空题:本题共8小题,共30分。

北京中国人民大学附属中学朝阳学校2019-2020学年九年级(上)月考数学试卷(10月份) 解析版

北京中国人民大学附属中学朝阳学校2019-2020学年九年级(上)月考数学试卷(10月份)  解析版

2019-2020学年人大附中朝阳学校九年级(上)月考数学试卷一.选择题(共8小题)1.抛物线y=(x﹣1)2+2的对称轴是()A.直线x=﹣1B.直线x=1C.直线x=﹣2D.直线x=2 2.“垃圾分类,从我做起”,以下四幅图案分别代表四类垃圾,其中图案是中心对称图形的是()A.B.C.D.3.用配方法解方程x2+4x=3,下列配方正确的是()A.(x﹣2)2=1B.(x﹣2)2=7C.(x+2)2=7D.(x+2)2=1 4.抛物线y=x2向左平移3个单位,再向下平移2个单位后,所得的抛物线表达式是()A.y=(x+3)2﹣2B.y=(x﹣3)2+2C.y=(x﹣3)2﹣2D.y=(x+3)2+25.如图,A,B,C是⊙O上的三个点,若∠C=35°,则∠AOB的度数为()A.35°B.55°C.65°D.70°6.如图,将△ABC绕点C顺时针旋转,点B的对应点为点E,点A的对应点为点D,当点E恰好落在边AC上时,连接AD,若∠ACB=30°,则∠DAC的度数是()A.60°B.65°C.70°D.75°7.如图,抛物线y=ax2+bx+3(a≠0)的对称轴为直线x=1,如果关于x的方程ax2+bx﹣8=0(a≠0)的一个根为4,那么该方程的另一个根为()A.﹣4B.﹣2C.1D.38.两个少年在绿茵场上游戏.小红从点A出发沿线段AB运动到点B,小兰从点C出发,以相同的速度沿⊙O逆时针运动一周回到点C,两人的运动路线如图1所示,其中AC=DB.两人同时开始运动,直到都停止运动时游戏结束,其间他们与点C的距离y与时间x(单位:秒)的对应关系如图2所示.则下列说法正确的是()A.小红的运动路程比小兰的长B.两人分别在1.09秒和7.49秒的时刻相遇C.当小红运动到点D的时候,小兰已经经过了点DD.在4.84秒时,两人的距离正好等于⊙O的半径二.填空题(共8小题)9.方程x2﹣2x=0的根是.10.如图,⊙O的半径等于4,如果弦AB所对的圆心角等于120°,那么圆心O到弦AB 的距离等于.11.如图,抛物线y=ax2+bx与直线y=mx+n相交于点A(﹣3,﹣6),B(1,﹣2),则关于x的方程ax2+bx=mx+n的解为.12.一个斜边长是8的Rt△AEC,一个斜边长是6的Rt△AFB,一个正方形AEDF,拼成一个如图所示的Rt△BCD,则Rt△AEC和Rt△AFB的面积之和是.13.如图显示了小亚用计算机模拟随机投掷一枚某品牌啤酒瓶盖的实验的结果.那么可以推断出如果小亚实际投掷一枚品牌啤酒瓶盖时,“凸面向上”的可能性“凹面向上”的可能性.(填“大于”,“等于”或“小于”).14.若二次函数y=2x2﹣5的图象上有两个点A(2,a)、B(3,b),则a b(填“<”或“=”或“>”).15.如图,抛物线y=ax2+bx+c(a≠0)与y轴交于点C,与x轴交于A,B两点,其中点B 的坐标为B(4,0),抛物线的对称轴交x轴于点D,CE∥AB,并与抛物线的对称轴交于点E.现有下列结论:①a>0;②b>0;③4a+2b+c<0;④AD+CE=4.其中所有正确结论的序号是.16.如图,一段抛物线:y=x(x﹣2)(0≤x≤2),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…,如此进行下去,得到图形(1)请写出抛物线C2的解析式:.(2)若点P(4037.5,a)在图形G上,则a=.三.解答题(共12小题)17.解方程:x2﹣4x﹣5=0(用配方法)18.下面是小明主设计的“作一个含30°角的直角三角形”的尺规作图过程.已知:直线l.求作:△ABC,使得∠ACB=90°,∠ABC=30°.作法:如图,①在直线l上任取两点O,A;②以点O为圆心,OA长为半径画弧,交直线l于点B;③以点A为圆心,AO长为半径画弧,交于点C;④连接AC,BC.所以△ABC就是所求作的三角形.根据小明设计的尺规作图过程:(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:在⊙O中,AB为直径,∴∠ACB=90°(①),(填推理的依据)连接OC∵OA=OC=AC,∴∠CAB=60°,∴∠ABC=30°(②),(填推理的依据)19.已知一个二次函数图象上部分点的横坐标x与纵坐标y的对应值如表所示:x…﹣3﹣2﹣101…y…0﹣3﹣4﹣30…(1)求这个二次函数的表达式;(2)在给定的平面直角坐标系中画出这个二次函数的图象;(3)当﹣4<x<﹣2时,直接写出y的取值范围.20.党的十八大提出,倡导富强、民主、文明、和谐,倡导自由、平等、公正、法治,倡导爱国、敬业、诚信、友善,积极培育和践行社会主义核心价值观,这24个字是社会主义核心价值观的基本内容.其中:“富强、民主、文明、和谐”是国家层面的价值目标;“自由、平等、公正、法治”是社会层面的价值取向;“爱国、敬业、诚信、友善”是公民个人层面的价值准则.小光同学将其中的“文明”、“和谐”、“自由”、“平等”的文字分别贴在4张硬纸板上,制成如图所示的卡片.将这4张卡片背面朝上洗匀后放在桌子上,从中随机抽取一张卡片,不放回,再随机抽取一张卡片.(1)小光第一次抽取的卡片上的文字是国家层面价值目标的概率是;(2)请你用列表法或画树状图法,帮助小光求出两次抽取卡片上的文字一次是国家层面价值目标、一次是社会层面价值取向的概率(卡片名称可用字母表示).21.如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,、△ABC的顶点都在格点上,建立平面直角坐标系(1)点A的坐标为,点C的坐标为.(2)以原点O为中心,将△ABC逆时针旋转90°,得到△A1B1C1请在网格内画出△A1B1C1,并写出点A1和B1的坐标,.22.关于x的一元二次方程x2﹣(m+3)x+m+2=0.(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是正整数,求m的最小值.23.如图,在▱ABCD中,对角线AC,BD交于点O,过点B作BE⊥CD于点E,延长CD 到点F,使DF=CE,连接AF.(1)求证:四边形ABEF是矩形;(2)连接OF,若AB=6,DE=2,∠ADF=45°,求OF的长度.24.行驶中的汽车,在刹车后由于惯性的原因,还要继续向前滑行一段距离才能停住,这段距离称为“刹车距离”.为了测定某种型号汽车的刹车性能,对这种汽车的刹车距离进行测试,测得的数据如下表刹车时车速(千0510********米/时)刹车距离(米)00.10.30.61 1.6 2.1(1)在如图所示的平面直角坐标系中,以刹车时车速为横坐标,以刹车距离为纵坐标,描出这些数据所表示的点,并用平滑的曲线连接这些点,得到某函数的大致图象;(2)测量必然存在误差,通过观察图象估计函数的类型,求出一个大致满足这些数据的函数表达式;(3)一辆该型号汽车在高速公路上发生交通事故,现场测得刹车距离约为40米,已知这条高速公路限速100千米/时,请根据你确定的函数表达式,通过计算判断在事故发生时,汽车是否超速行驶.25.如图,在△ABC中,∠ABC=90°,∠C=40°,点D是线段BC上的动点,将线段AD绕点A顺时针旋转50°至AD',连接BD'.已知AB=2cm,设BD为x cm,BD'为y cm.小明根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究,下面是小明的探究过程,请补充完整.(说明:解答中所填数值均保留一位小数)(1)通过取点、画图、测量,得到了x与y的几组值,如下表:x/cm00.50.7 1.0 1.5 2.0 2.3y/cm 1.7 1.3 1.10.70.9 1.1(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.(3)结合画出的函数图象,解决问题:线段BD'的长度的最小值约为cm;若BD'≥BD,则BD的长度x的取值范围是.26.在平面直角坐标系xOy中,抛物线y=mx2﹣2mx+n(m≠0)与x轴交于点A,B,点A 的坐标为(﹣2,0).(1)写出抛物线的对称轴;(2)直线y=x﹣4m﹣n过点B,且与抛物线的另一个交点为C.①分别求直线和抛物线所对应的函数表达式;②点P为抛物线对称轴上的动点,过点P的两条直线l1:y=x+a和l2:y=﹣x+b组成图形G.当图形G与线段BC有公共点时,直接写出点P的纵坐标t的取值范围.27.在△ABC中,AB=AC,∠BAC=90°,点D在射线BC上(与B、C两点不重合),以AD为边作正方形ADEF,使点E与点B在直线AD的异侧,射线BA与射线CF相交于点G.(1)若点D在线段BC上,如图1.①依题意补全图1;②判断BC与CG的数量关系与位置关系,并加以证明;(2)若点D在线段BC的延长线上,且G为CF中点,连接GE,AB=,则GE的长为,并简述求GE长的思路.28.在平面直角坐标系xOy中,A(t,0),B(t+,0),对于线段AB和x轴上方的点P 给出如下定义:当∠APB=60°时,称点P为AB的“等角点”.(1)若t=﹣,在点C(0,),D(,1),E(﹣,)中,线段AB的“等角点”是;(2)直线MN分别交x轴、y轴于点M、N,点M的坐标是(6,0),∠OMN=30°.①线段AB的“等角点”P在直线MN上,且∠ABP=90°,求点P的坐标;②在①的条件下,过点B作BQ⊥P A,交MN于点Q,求∠AQB的度数;③若线段AB的所有“等角点”都在△MON内部,则t的取值范围是.参考答案与试题解析一.选择题(共8小题)1.抛物线y=(x﹣1)2+2的对称轴是()A.直线x=﹣1B.直线x=1C.直线x=﹣2D.直线x=2【分析】由抛物线的顶点式y=(x﹣h)2+k直接看出对称轴是x=h.【解答】解:∵抛物线的顶点式为y=(x﹣1)2+2,∴对称轴是x=1.故选:B.2.“垃圾分类,从我做起”,以下四幅图案分别代表四类垃圾,其中图案是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念判断.【解答】解:A、是中心对称图形,故此选项符合题意;B、不是中心对称图形,故此选项不合题意;C、不是中心对称图形,故此选项不合题意;D、不是中心对称图形,故此选项不合题意.故选:A.3.用配方法解方程x2+4x=3,下列配方正确的是()A.(x﹣2)2=1B.(x﹣2)2=7C.(x+2)2=7D.(x+2)2=1【分析】把方程两边都加上4,方程左边可写成完全平方式.【解答】解:x2+4x+4=7,(x+2)2=7.故选:C.4.抛物线y=x2向左平移3个单位,再向下平移2个单位后,所得的抛物线表达式是()A.y=(x+3)2﹣2B.y=(x﹣3)2+2C.y=(x﹣3)2﹣2D.y=(x+3)2+2【分析】变化规律:左加右减,上加下减.【解答】解:按照“左加右减,上加下减”的规律,y=x2向左平移3个单位,再向下平移2个单位得y=(x+3)2﹣2.故选:A.5.如图,A,B,C是⊙O上的三个点,若∠C=35°,则∠AOB的度数为()A.35°B.55°C.65°D.70°【分析】由A,B,C是⊙O上的三个点,若∠C=35°,直接利用圆周角定理求解即可求得答案.【解答】解:∵A,B,C是⊙O上的三个点,∠C=35°,∴∠AOB=2∠C=70°.故选:D.6.如图,将△ABC绕点C顺时针旋转,点B的对应点为点E,点A的对应点为点D,当点E恰好落在边AC上时,连接AD,若∠ACB=30°,则∠DAC的度数是()A.60°B.65°C.70°D.75°【分析】由旋转性质知△ABC≌△DEC,据此得∠ACB=∠DCE=30°、AC=DC,继而可得答案.【解答】解:由题意知△ABC≌△DEC,则∠ACB=∠DCE=30°,AC=DC,∴∠DAC===75°,故选:D.7.如图,抛物线y=ax2+bx+3(a≠0)的对称轴为直线x=1,如果关于x的方程ax2+bx﹣8=0(a≠0)的一个根为4,那么该方程的另一个根为()A.﹣4B.﹣2C.1D.3【分析】根据抛物线的对称性得到抛物线与x轴的另一个交点可得答案.【解答】解∵关于x的方程ax2+bx﹣8=0,有一个根为4,∴抛物线与x轴的一个交点为(4,0),∵抛物线的对称轴为x=1,∴抛物线与x轴的另一个交点为(﹣2,0),∴方程的另一个根为x=﹣2.故选:B.8.两个少年在绿茵场上游戏.小红从点A出发沿线段AB运动到点B,小兰从点C出发,以相同的速度沿⊙O逆时针运动一周回到点C,两人的运动路线如图1所示,其中AC=DB.两人同时开始运动,直到都停止运动时游戏结束,其间他们与点C的距离y与时间x(单位:秒)的对应关系如图2所示.则下列说法正确的是()A.小红的运动路程比小兰的长B.两人分别在1.09秒和7.49秒的时刻相遇C.当小红运动到点D的时候,小兰已经经过了点DD.在4.84秒时,两人的距离正好等于⊙O的半径【分析】利用图象信息一一判断即可解决问题.【解答】解:A、小红的运动路程比小兰的短,故本选项不符合题意;B、两人分别在1.09秒和7.49秒的时刻与点C距离相等,故本选项不符合题意;C、当小红运动到点D的时候,小兰还没有经过了点D,故本选项不符合题意;D、当小红运动到点O的时候,两人的距离正好等于⊙O的半径,此时t==4.84,故本选项正确;故选:D.二.填空题(共8小题)9.方程x2﹣2x=0的根是x1=0,x2=2.【分析】因为x2﹣2x可提取公因式,故用因式分解法解较简便.【解答】解:因式分解得x(x﹣2)=0,解得x1=0,x2=2.故答案为x1=0,x2=2.10.如图,⊙O的半径等于4,如果弦AB所对的圆心角等于120°,那么圆心O到弦AB的距离等于2.【分析】由圆心角∠AOB=120°,可得△AOB是等腰三角形,又由OC⊥AB,再利用含30°角的直角三角形的性质,可求得OC的长.【解答】解:如图,∵圆心角∠AOB=120°,OA=OB,∴△OAB是等腰三角形,∵OC⊥AB,∴∠ACO=90°,∠A=30°,∴OC=.故答案为:211.如图,抛物线y=ax2+bx与直线y=mx+n相交于点A(﹣3,﹣6),B(1,﹣2),则关于x的方程ax2+bx=mx+n的解为x1=﹣3,x2=1.【分析】关于x的方程ax2+bx=mx+n的解为抛物线y=ax2+bx与直线y=mx+n交点的横坐标.【解答】解:∵抛物线y=ax2+bx与直线y=mx+n相交于点A(﹣3,﹣6),B(1,﹣2),∴关于x的方程ax2+bx=mx+n的解为x1=﹣3,x2=1.故答案为x1=﹣3,x2=1.12.一个斜边长是8的Rt△AEC,一个斜边长是6的Rt△AFB,一个正方形AEDF,拼成一个如图所示的Rt△BCD,则Rt△AEC和Rt△AFB的面积之和是24.【分析】设正方形AEDF的边长为x,则AE=AF=x,证明△AEC∽△BF A,利用相似比得到BF=x,CE=x,在Rt△ACE中利用勾股定理得到x2+(x)2=82,则x2=,然后根据三角形面积公式计算Rt△AEC和Rt△AFB的面积之和.【解答】解:设正方形AEDF的边长为x,则AE=AF=x,∵AE∥BD,∴∠CAE=∠B,而∠AEC=∠AFB=90°,∴△AEC∽△BF A,∴==,即==,∴BF=x,CE=x,在Rt△ACE中,x2+(x)2=82,∴x2=,∴Rt△AEC和Rt△AFB的面积之和=•x•x+•x•x=x2=×=24.故答案为24.13.如图显示了小亚用计算机模拟随机投掷一枚某品牌啤酒瓶盖的实验的结果.那么可以推断出如果小亚实际投掷一枚品牌啤酒瓶盖时,“凸面向上”的可能性小于“凹面向上”的可能性.(填“大于”,“等于”或“小于”).【分析】根据图形中的数据即可解答本题.【解答】解:根据表中数据可得,“凸面向上”的频率在0.443与0.440之间,∴凸面向上”的可能性小于“凹面向上”的可能性.,故答案为:小于.14.若二次函数y=2x2﹣5的图象上有两个点A(2,a)、B(3,b),则a<b(填“<”或“=”或“>”).【分析】根据二次函数图象的增减性即可解答.【解答】解:y=2x2﹣5的对称轴为x=0,开口方向向上,顶点为(0,﹣5).对于开口向上的函数,x距离对称轴越近,y值越小,2比3距离近,所以a<b.故答案为<.15.如图,抛物线y=ax2+bx+c(a≠0)与y轴交于点C,与x轴交于A,B两点,其中点B 的坐标为B(4,0),抛物线的对称轴交x轴于点D,CE∥AB,并与抛物线的对称轴交于点E.现有下列结论:①a>0;②b>0;③4a+2b+c<0;④AD+CE=4.其中所有正确结论的序号是②④.【分析】根据图象的开口方向、与x和y轴的交点、对称轴所在的位置,判断即可.【解答】解:①该函数图象的开口向下,a<0,错误;②∵a<0,﹣>0,∴b>0,正确;③把x=2代入解析式可得4a+2b+c>0,错误;④∵AD=DB,CE=OD,∴AD+OD=DB+OD=OB=4,可得:AD+CE=4,正确.故答案为:②④16.如图,一段抛物线:y=x(x﹣2)(0≤x≤2),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…,如此进行下去,得到图形(1)请写出抛物线C2的解析式:y=﹣(x﹣2)(x﹣4).(2)若点P(4037.5,a)在图形G上,则a=0.75.【分析】(1)利用交点式得到A1(2,0),利用旋转的性质得A2(4,0),然后利用交点式写出抛物线C2的解析式;(2)利用4037.5=2018×2+1.5可判断点P在抛物线C2019上,而它的解析式为y=(x ﹣4036)(x﹣4038),然后计算把x=4037.5对应的函数值即可.【解答】解:(1)抛物线C1的解析式为y=x(x﹣2),则A1(2,0),根据旋转的性质得A1A2=OA1=2,则A2(4,0),抛物线C2的解析式为y=﹣(x﹣2)(x﹣4);(2)∵4037.5=2018×2+1.5,∴点P(4037.5,a)在抛物线C2019上,而抛物线C2019的解析式为y=(x﹣4036)(x﹣4038)把x=4037.5代入得a=(4037.5﹣4036)(4037.5﹣4038)=0.75.故答案为y=﹣(x﹣2)(x﹣4);0.75.三.解答题(共12小题)17.解方程:x2﹣4x﹣5=0(用配方法)【分析】方程变形后,利用配方法求出解即可.【解答】解:方程变形得:x2﹣4x=5,即x2﹣4x+4=9,变形得:(x﹣2)2=9,开方得:x﹣2=3或x﹣2=﹣3,解得:x1=5,x2=﹣1.18.下面是小明主设计的“作一个含30°角的直角三角形”的尺规作图过程.已知:直线l.求作:△ABC,使得∠ACB=90°,∠ABC=30°.作法:如图,①在直线l上任取两点O,A;②以点O为圆心,OA长为半径画弧,交直线l于点B;③以点A为圆心,AO长为半径画弧,交于点C;④连接AC,BC.所以△ABC就是所求作的三角形.根据小明设计的尺规作图过程:(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:在⊙O中,AB为直径,∴∠ACB=90°(①直径所对的圆周角是直角),(填推理的依据)连接OC∵OA=OC=AC,∴∠CAB=60°,∴∠ABC=30°(②直角三角形两锐角互余),(填推理的依据)【分析】(1)根据要求作出图形即可.(2)根据圆周角定理,等边三角形的判定和性质即可解决问题.【解答】解:(1)△ABC即为所求.(2)在⊙O中,AB为直径,∴∠ACB=90°(①直径所对的圆周角是直角),连接OC∵OA=OC=AC,∴∠CAB=60°,∴∠ABC=30°(②直角三角形两锐角互余).故答案为:直径所对的圆周角是直角,直角三角形两锐角互余.19.已知一个二次函数图象上部分点的横坐标x与纵坐标y的对应值如表所示:x…﹣3﹣2﹣101…y…0﹣3﹣4﹣30…(1)求这个二次函数的表达式;(2)在给定的平面直角坐标系中画出这个二次函数的图象;(3)当﹣4<x<﹣2时,直接写出y的取值范围.【分析】(1)利用表中数据和抛物线的对称性可得到二次函数的顶点坐标为(﹣1,﹣4),则可设顶点式y=a(x+1)2﹣4,然后把点(0,﹣3)代入求出a即可;(2)利用描点法画二次函数图象;(3)根据x=﹣4、﹣2时的函数值即可写出y的取值范围.【解答】解:(1)由题意可得二次函数的顶点坐标为(﹣1,﹣4),设二次函数的解析式为:y=a(x+1)2﹣4,把点(0,﹣3)代入y=a(x+1)2﹣4,得a=1,故抛物线解析式为y=(x+1)2﹣4,即y=x2+2x﹣3;(2)如图所示:(3)∵y=(x+1)2﹣4,∴当x=﹣4时,y=(﹣4+1)2﹣4=5,当x=﹣2时,y=﹣3,又对称轴为x=﹣1,∴当﹣4<x<﹣2时,y的取值范围是﹣3<y<5.20.党的十八大提出,倡导富强、民主、文明、和谐,倡导自由、平等、公正、法治,倡导爱国、敬业、诚信、友善,积极培育和践行社会主义核心价值观,这24个字是社会主义核心价值观的基本内容.其中:“富强、民主、文明、和谐”是国家层面的价值目标;“自由、平等、公正、法治”是社会层面的价值取向;“爱国、敬业、诚信、友善”是公民个人层面的价值准则.小光同学将其中的“文明”、“和谐”、“自由”、“平等”的文字分别贴在4张硬纸板上,制成如图所示的卡片.将这4张卡片背面朝上洗匀后放在桌子上,从中随机抽取一张卡片,不放回,再随机抽取一张卡片.(1)小光第一次抽取的卡片上的文字是国家层面价值目标的概率是;(2)请你用列表法或画树状图法,帮助小光求出两次抽取卡片上的文字一次是国家层面价值目标、一次是社会层面价值取向的概率(卡片名称可用字母表示).【分析】(1)直接根据概率公式求解;(2)先画树状图展示所有12种等可能的结果数,再找出两次抽取卡片上的文字一次是国家层面价值目标、一次是社会层面价值取向的结果数,然后根据概率公式求解.【解答】解:(1)小光第一次抽取的卡片上的文字是国家层面价值目标的概率==;故答案为;(2)画树状图为:共有12种等可能的结果数,其中两次抽取卡片上的文字一次是国家层面价值目标、一次是社会层面价值取向的结果数为8,所以两次抽取卡片上的文字一次是国家层面价值目标、一次是社会层面价值取向的概率==.21.如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,、△ABC的顶点都在格点上,建立平面直角坐标系(1)点A的坐标为(2,8),点C的坐标为(6,6).(2)以原点O为中心,将△ABC逆时针旋转90°,得到△A1B1C1请在网格内画出△A1B1C1,并写出点A1和B1的坐标(﹣8,2),(﹣6,0).【分析】(1)直接根据图形即可写出点A和C的坐标;(2)直接依据旋转中心,旋转方向以及旋转角度,即可得到△A1B1C1.【解答】解:(1)如图所示,A点坐标为:(2,8),C点坐标为:(6,6);故答案为:(2,8),(6,6);(2)如图所示,△A1B1C1即为所求,A1和B1的坐标分别为(﹣8,2),(﹣6,0).故答案为:(﹣8,2),(﹣6,0).22.关于x的一元二次方程x2﹣(m+3)x+m+2=0.(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是正整数,求m的最小值.【分析】(1)先根据方程有两个相等的实数根列出关于m的一元二次方程,求出m的值即可;(2)根据题意得到x=1和x=m+2是原方程的根,根据方程两个根均为正整数,可求m 的最小值.【解答】(1)证明:依题意,得△=[﹣(m+3)]2﹣4(m+2)=m2+6m+9﹣4m﹣8=m+1)2.∵(m+1)2≥0,∴△≥0.∴方程总有两个实数根.(2)解:解方程,得x1=1,x2=m+2,∵方程的两个实数根都是正整数,∴m+2≥1.∴m≥﹣1.∴m的最小值为﹣1.23.如图,在▱ABCD中,对角线AC,BD交于点O,过点B作BE⊥CD于点E,延长CD 到点F,使DF=CE,连接AF.(1)求证:四边形ABEF是矩形;(2)连接OF,若AB=6,DE=2,∠ADF=45°,求OF的长度.【分析】(1)根据平行四边形的性质得到AD∥BC且AD=BC,等量代换得到BC=EF,推出四边形AEFD是平行四边形,根据矩形的判定定理即可得到结论;(2)根据直角三角形斜边中线可得:OF=AC,利用勾股定理计算AC的长,可得结论.【解答】(1)证明:∵在▱ABCD中,∴AD∥BC且AD=BC,∴∠ADF=∠BCE,在△ADF和△BCE中,∵∴△ADF≌△BCE(SAS),∴AF=BE,∠AFD=∠BEC=90°,∴AF∥BE,∴四边形ABEF是矩形;(2)解:由(1)知:四边形ABEF是矩形,∴EF=AB=6,∵DE=2,∴DF=CE=4,∴CF=4+4+2=10,Rt△ADF中,∠ADF=45°,∴AF=DF=4,由勾股定理得:AC===2,∵四边形ABCD是平行四边形,∴OA=OC,∴OF =AC =.24.行驶中的汽车,在刹车后由于惯性的原因,还要继续向前滑行一段距离才能停住,这段距离称为“刹车距离”.为了测定某种型号汽车的刹车性能,对这种汽车的刹车距离进行测试,测得的数据如下表0510********刹车时车速(千米/时)刹车距离(米)00.10.30.61 1.6 2.1(1)在如图所示的平面直角坐标系中,以刹车时车速为横坐标,以刹车距离为纵坐标,描出这些数据所表示的点,并用平滑的曲线连接这些点,得到某函数的大致图象;(2)测量必然存在误差,通过观察图象估计函数的类型,求出一个大致满足这些数据的函数表达式;(3)一辆该型号汽车在高速公路上发生交通事故,现场测得刹车距离约为40米,已知这条高速公路限速100千米/时,请根据你确定的函数表达式,通过计算判断在事故发生时,汽车是否超速行驶.【分析】(1)通过描点、连线就可以得出函数的大致图象;(2)由函数图象,设抛物线的解析式为y=ax2+bx,由待定系数法求出其解即可;(3)将x=100代入(2)的解析式求出其值,再与130作比较即可.【解答】解:(1)如图所示:(2)该图象可能为抛物线,猜想该函数为二次函数,∵图象经过原点,∴设二次函数的表达式为:y=ax2+bx(x≥0),选取(20,1)和(10,0.3)代入表达式,得:,解得:,∴二次函数的表达式为:y=x2+x(x≥0),(3)∵当x=100时,y=21<40,∴汽车已超速行驶.25.如图,在△ABC中,∠ABC=90°,∠C=40°,点D是线段BC上的动点,将线段AD绕点A顺时针旋转50°至AD',连接BD'.已知AB=2cm,设BD为x cm,BD'为y cm.小明根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究,下面是小明的探究过程,请补充完整.(说明:解答中所填数值均保留一位小数)(1)通过取点、画图、测量,得到了x与y的几组值,如下表:x/cm00.50.7 1.0 1.5 2.0 2.3 y/cm 1.7 1.3 1.10.90.70.9 1.1(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.(3)结合画出的函数图象,解决问题:线段BD'的长度的最小值约为0.7cm;若BD'≥BD,则BD的长度x的取值范围是0≤x≤0.9.【分析】(1)先构造出全等三角形,判断出DE=BD'=y,再利用三角函数求出BC,AC,进而得出CE,进而利用三角函数求出EF,CF,进而得出DF,最后用勾股定理即可得出结论;(2)利用画函数图象的方法即可得出结论;(3)方法1、利用图象和表格即可得出结论;方法2、利用(1)的方法得出的y=,即可得出y的最小值,再令y=x求出x的值,即可得出结论.【解答】解:(1)如图1,在AC上取一点E使AE=AB=2,由旋转知,AD=AD',∠DAD'=50°=∠BAC,∴∠DAE=∠D'AB,在△DAE和△D'AB中,,∴△DAE≌△D'AB(SAS),∴DE=BD'=y,在Rt△ABC中,AB=2,∠C=40°,∴∠BAC=50°,AC==≈=3.13,BC==≈≈2.40∴CE=AC﹣AE=3.13﹣2=1.13,过点E作EF⊥BC于F,在Rt△CEF中,EF=CE•sin C=1.13×sin40°≈0.72,CF=CE•cos C=1.13×cos40°≈1.13×0.78≈0.88,当x=1时,BD=1,∴DF=BC﹣BD﹣CF=2.40﹣1﹣0.88=0.52,在Rt△DEF中,根据勾股定理得,y=DE=≈0.9,故答案为:0.9.(2)函数图象如图2所示.(3)方法1、由图象和表格知,线段BD'的长度的最小值约为0.7cm,∵BD'≥BD,∴y≥x,由图象知,0≤x≤0.9,故答案为:0.7,0≤x≤0.9.(3)方法2、由(1)知,BC=2.4,CF=0.88,EF=0.72,DF=BC﹣BD﹣CF=2.40﹣x﹣0.88=1.52﹣x,根据勾股定理得,y==,∵0≤x≤2.40,∴x=1.52时,y最小=0.72≈0.7,当BD'=BD时,DE=y=x在Rt△DEF中,根据勾股定理得,DE2=DF2+EF2,∴x2=(1.52﹣x)2+(0,72)2,∴x≈0.9∴BD'≥BD,则BD的长度x的取值范围是0≤x≤0.9.故答案为:0.7,0≤x≤0.9.26.在平面直角坐标系xOy中,抛物线y=mx2﹣2mx+n(m≠0)与x轴交于点A,B,点A 的坐标为(﹣2,0).(1)写出抛物线的对称轴;(2)直线y=x﹣4m﹣n过点B,且与抛物线的另一个交点为C.①分别求直线和抛物线所对应的函数表达式;②点P为抛物线对称轴上的动点,过点P的两条直线l1:y=x+a和l2:y=﹣x+b组成图形G.当图形G与线段BC有公共点时,直接写出点P的纵坐标t的取值范围.【分析】(1)由给定的抛物线的表达式,利用二次函数的性质即可找出抛物线的对称轴;(2)①根据抛物线的对称性可得出点B的坐标,再利用二次函数图象上点的坐标特征及一次函数图象上点的坐标特征,即可求出m、n的值,此问得解;②联立直线及抛物线的函数关系式成方程组,通过解方程组可求出点C的坐标,利用一次函数图象上点的坐标特征求出直线l2过点B、C时b的值,进而可得出点P的坐标,再结合函数图象即可找出当图形G与线段BC有公共点时,点P的纵坐标t的取值范围.【解答】解:(1)∵抛物线所对应的函数表达式为y=mx2﹣2mx+n,∴抛物线的对称轴为直线x=﹣=1.(2)①∵抛物线是轴对称图形,∴点A、B关于直线x=1对称.∵点A的坐标为(﹣2,0),∴点B的坐标为(4,0).∵抛物线y=mx2﹣2mx+n过点B,直线y=x﹣4m﹣n过点B,∴,解得:,∴直线所对应的函数表达式为y=x﹣2,抛物线所对应的函数表达式为y=﹣x2+x+4.②联立两函数表达式成方程组,,解得:,.∵点B的坐标为(4,0),∴点C的坐标为(﹣3,﹣).当直线l2:y=﹣x+b1过点B时,0=﹣4+b1,解得:b1=4,∴此时直线l2所对应的函数表达式为y=﹣x+4,当x=1时,y=﹣x+4=3,∴点P1的坐标为(1,3);当直线l2:y=﹣x+b2过点C时,﹣=3+b2,解得:b2=﹣,∴此时直线l2所对应的函数表达式为y=﹣x﹣,当x=1时,y=﹣x﹣=﹣,∴点P2的坐标为(1,﹣).∴当图形G与线段BC有公共点时,点P的纵坐标t的取值范围为﹣≤t≤3.27.在△ABC中,AB=AC,∠BAC=90°,点D在射线BC上(与B、C两点不重合),以AD为边作正方形ADEF,使点E与点B在直线AD的异侧,射线BA与射线CF相交于点G.(1)若点D在线段BC上,如图1.①依题意补全图1;②判断BC与CG的数量关系与位置关系,并加以证明;(2)若点D在线段BC的延长线上,且G为CF中点,连接GE,AB=,则GE的长为,并简述求GE长的思路.【分析】(1)①依题意补全图形,如图1所示,②判断出△BAD≌△CAF即可;(2)先判断出△BAD≌△CAF,得到BD=CF,BG⊥CF,得到直角三角形,利用勾股定理计算即可.【解答】(1)证明:①依题意补全图形,如图1所示,。

九年级上学期数学10月月考试卷新版

九年级上学期数学10月月考试卷新版

九年级上学期数学10月月考试卷新版一、单选题 (共10题;共20分)1. (2分)如图是由10个同样大小的小正方体摆成的几何体.将小正方体①移走后,则关于新几何体的三视图描述正确的是()A . 俯视图不变,左视图不变B . 主视图改变,左视图改变C . 俯视图不变,主视图不变D . 主视图改变,俯视图改变2. (2分)下列四个命题中,真命题的是()A . 相等的圆心角所对的弧相等B . 同旁内角互补C . 平行四边形是轴对称图形D . 全等三角形对应边上的高相等3. (2分)如图,AB∥CD,点E在线段BC上,若∠1=40°,∠2=30°,则∠3的度数是()B . 60°C . 55°D . 50°4. (2分)中国“一带一路”战略给沿线国家和地区带来很大的经济效益,沿线某地区居民2017年年收入400美元,预计2019年年收入将达到1200美元,设2017年到2019年该地区居民年人均收入平均增长率为x,可列方程为()A . 400(1+2x)=12000B . 400(1+x)2=12000C . 400(1+x2)=1200D . 400+2x=120005. (2分)已知a为整数,且,则a等于()A . 1B . 2C . 3D . 46. (2分)把一个小球以20米/秒的速度竖起向上弹出,它在空中的高度h(米)与时间t(秒),满足关系h=20t-5t ,当小球达到最高点时,小球的运动时间为()A . 1秒B . 2秒C . 4秒7. (2分)利用如图1的二维码可以进行身份识别.某校建立了一个身份识别系统,图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0.将第一行数字从左到右依次记为,,,,那么可以转换为该生所在班级序号,其序号为.如图2第一行数字从左到右依次为0,1,0,1,序号为,表示该生为5班学生.表示6班学生的识别图案是()A .B .C .D .8. (2分)已知抛物线:y=ax2+bx+c(a<0)经过A(2,4)、B(﹣1,1)两点,顶点坐标为(h,k),则下列正确结论的序号是()①b>1;②c>2;③h>;④k≤1.A . ①②③④B . ①②③C . ①②④D . ②③④9. (2分)关于方程(a+1)x=1,下列结论正确的是()A . 方程无解B . x=C . a≠-1时方程解为任意实数D . 以上结论都不对10. (2分)如图,在△ABC中,∠A=36°,AB=AC,BD、CE分别为△ABC的角平分线,BD、CE相交于O,则图中等腰三角形有()A . 5个B . 6个C . 7个D . 12个二、填空题 (共7题;共8分)11. (2分)如图,在圆心角为90°的扇形OAB中,半径OA=2cm,C为弧AB的中点,D是OA的中点,则图中阴影部分的面积为________cm2.12. (1分)方程3x(x-1)=2(x-1)的根是________13. (1分)将抛物线y=(x+2)2-3的图像向上平移5个单位,得到函数解析式为________ .14. (1分)关于x的一元二次方程x2+2x﹣2m+1=0的两实数根之积为负,则实数m的取值范围是________.15. (1分)如图,设矩形ABCD的边BC=x,DC=y,连接BD且CE⊥BD,CE=2,BD=4,则(x+y)2﹣3xy+2的值为________ .16. (1分)如图,等边三角形OAB的一边OA在x轴上,双曲线y= 在第一象限内的图象经过OB边的中点C,则点B的坐标是________.17. (1分)三元一次方程组的解是________三、解答题 (共8题;共75分)18. (10分)化简(1+ )÷ .19. (10分)如图,A是半径为6cm的⊙O上的定点,动点P从A出发,以πcm/s的速度沿圆周按顺时针方向运动,当点P回到A时立即停止运动.设点P运动时间为t(s)(1)当t=6s时,∠POA的度数是________;(2)当t为多少时,∠POA=120°;(3)如果点B是OA延长线上的一点,且AB=AO,问t为多少时,△POB为直角三角形?请说明理由.20. (8分)甲、乙两名队员参加射击训练,成绩分别绘制成下列两个统计图:根据以上信息,整理分析数据如下:平均成绩(环)中位数(环)众数(环)方差甲a77 1.2乙7b8c (1)写出表格中a,b,c的值;赛,你认为应选哪名队员?(2)分别运用表中的四个统计量,简要分析这两名队员的射击成绩,若选派其中一名参赛,你认为应选哪名队员?21. (10分)根据所学知识填空:(1)(﹣2)+________=﹣4.(2)(﹣2)﹣________=4.22. (7分)已知二次函数y=﹣x2+2x+3图象的对称轴为直线.(1)请求出该函数图象的对称轴;(2)在坐标系内作出该函数的图象;(3)有一条直线过点P(1,5),若该直线与二次函数y=﹣x2+2x+3只有一个交点,请求出所有满足条件的直线的关系式.23. (10分)某商店购进一种商品,每件商品进价30元.试销中发现这种商品每天的销售量y(件)与每件销售价x(元)的关系数据如下:x30323436y40363228(1)已知y与x满足一次函数关系,根据上表,求出y与x之间的关系式(不写出自变量x的取值范围);(2)如果商店销售这种商品,每天要获得150元利润,那么每件商品的销售价应定为多少元?(3)设该商店每天销售这种商品所获利润为w(元),求出w与x之间的关系式,并求出每件商品销售价定为多少元时利润最大?24. (10分)已知,如图所示,在矩形ABCD中,点E在BC边上,∠AEF=90°(1)如图①,已知点F在CD边上,AD=AE=5,AB=4,求DF的长;(2)如图②,已知AE=EF,G为AF的中点,试探究线段AB,BE,BG的数量关系;(3)如图③,点E在矩形ABCD的BC边的延长线上,AE与BG相交于O点,其他条件与(2)保持不变,AD=5,AB=4,CE=1,求△AOG的面积.25. (10分)如图,在平面直角坐标系中,菱形ABCD的边AB在x轴上,点B坐标(﹣3,0),点C在y轴正半轴上,且sin∠CBO= ,点P从原点O出发,以每秒一个单位长度的速度沿x轴正方向移动,移动时间为t(0≤t≤5)秒,过点P作平行于y轴的直线l,直线l扫过四边形OCDA的面积为S.(1)求点D坐标.(2)求S关于t的函数关系式.(3)在直线l移动过程中,l上是否存在一点Q,使以B、C、Q为顶点的三角形是等腰直角三角形?若存在,直接写出Q点的坐标;若不存在,请说明理由.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共7题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、三、解答题 (共8题;共75分)18-1、19-1、19-2、19-3、20-1、20-2、21-1、21-2、22-1、22-2、22-3、23-1、23-2、23-3、24-1、24-2、25-1、25-2、25-3、。

山东省青岛三十八中九年级数学10月月考试题(含解析) 新人教版-新人教版初中九年级全册数学试题

山东省青岛三十八中九年级数学10月月考试题(含解析) 新人教版-新人教版初中九年级全册数学试题

某某省某某三十八中2016届九年级数学10月月考试题一、精心选一选,相信你一定能选对!(每题3分,共27分)1.下列方程中,是一元二次方程的是()A.2x2﹣7=3y+1 B.5x2﹣6y﹣2=0C.x﹣=+x D.ax2+(b﹣3)x+c+5=02.三角形的两边长分别为2和6,第三边是方程x2﹣10x+21=0的解,则第三边的长为()A.7 B.3 C.7或3 D.无法确定3.下列命题正确的是()A.一组对边相等,另一组对边平行的四边形一定是平行四边形B.对角线相等的四边形一定是矩形C.两条对角线互相垂直的四边形一定是菱形D.两条对角线相等且互相垂直平分的四边形一定是正方形4.正方形具有而菱形不具有的性质是()A.对角线平分一组对角B.对角线相等C.对角线互相垂直平分D.四条边相等5.若菱形两条对角线的长分别为6和8,则这个菱形的周长为()A.20 B.16 C.12 D.106.关于x的方程3x2﹣2x+1=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.不能确定7.如果关于x的一元二次方程x2+px+q=0的两根分别为x1=3,x2=1,那么这个一元二次方程是()A.x2+3x+4=0 B.x2﹣4x+3=0 C.x2+4x﹣3=0 D.x2+3x﹣4=08.两个正四面体骰子的各面上分别标明数字1,2,3,4,如同时投掷这两个正四面体骰子,则着地的面所得的点数之和等于5的概率为()A.B.C.D.9.2012年某某市政府投资2亿元人民币建设了廉租房8万平方米,预计2014年投资9.5亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.设每年市政府投资的增长率为x,根据题意,列出方程为()A.2(1+x)2=9.5 B.2(1+x)+2(1+x)2C.2+2(1+x)+2(1+x)2二、填空题(每题3分,共27分)10.一元二次方程2x2+4x=1的二次项系数、一次项系数及常数之和为.11.▱ABCD中,对角线AC、BD交于点O,若AC=8,BD=6,则边AB长的取值X围为.12.顺次连接一个对角线互相垂直的四边形各边中点,所得的四边形是形.13.从1,2,﹣3三个数中,随机抽取两个数相乘,积是正数的概率是.14.在△ABC中,已知∠A、∠B、∠C的度数之比为1:2:3,AB边上的中线长为4cm,则△ABC面积等于cm2.15.若关于x的方程3x2+mx+m﹣6=0有一根是0,则m=.16.如图,矩形ABCD中,AC、BD相交于点O,AE平分∠BAD,交BC于E,若∠EAO=15°,则∠BOE 的度数为度.17.如图所示,将边长为8cm的正方形纸片ABCD折叠,使点D落在BC中点E处,点A落在E处,折痕为MN,则线段的长是.18.如图,在▱ABCD中,AE平分∠BAD,交BC于点E,BF平分∠ABC,交AD于点F,AE与BF交于点P,连接EF,PD,若AB=4,AD=6,∠ABC=60°,PD的长,四边形ABEF的面积.三、解答题19.解方程(1)2x2+4x﹣3=0(配方法解)(2)5x2﹣8x+2=0(公式法解)(3)3(x﹣5)2=2(5﹣x)(4)(3x+2)(x+3)=x+14.20.小明和小芳做配紫色游戏,如图是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形,并涂上图中所示的颜色.同时转动两个转盘,如果转盘A转出了红色,转盘B转出了蓝色,或者转盘A转出了蓝色,转盘B转出了红色,则红色和蓝色在一起配成紫色,(1)利用列表或树状图的方法表示此游戏所有可能出现的结果;(2)若出现紫色,则小明胜.此游戏的规则对小明、小芳公平吗?试说明理由.21.已知:如图,菱形ABCD中,E、F分别是CB、CD上的点,且BE=DF.求证:(1)△ABE≌△ADF;(2)∠AEF=∠AFE.22.某汽车4S店销售某种型号的汽车,每辆进货价为15万元,该店经过一段时间的市场调研发现:当销售价为25万元时,平均每周能售出8辆,而当销售价每降低0.5万元时,平均每周能多售出1辆.该4S店要想平均每周的销售利润为90万元,并且使成本尽可能的低,则每辆汽车的定价应为多少万元?23.如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?24.D、E分别是不等边三角形ABC(即AB≠BC≠AC)的边AB、AC的中点,O是△ABC所在平面上的动点,连接OB、OC,点G、F分别是OB、OC的中点,顺次连接点D、G、F、E.(1)如图,当点O在△ABC的内部时,求证:四边形DGFE是平行四边形;(2)若四边形DGFE是菱形,则OA与BC应满足怎样的数量关系?为什么?(3)当OA与BC满足时,四边形DGEF是一个矩形(直接填答案,不需证明.)25.已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC与点E、F,垂足为O.(1)如图1,连接AF、CE.求证四边形AFCE为菱形,并求AF的长;(2)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周,即点P 自A→F→B→A停止,点Q自C→D→E→C停止,在运动过程中,已知点P的速度为每秒5cm,点Q 的速度为每秒4cm,运动时间为t秒,当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值.某某省某某三十八中2016届九年级上学期月考数学试卷(10月份)参考答案与试题解析一、精心选一选,相信你一定能选对!(每题3分,共27分)1.下列方程中,是一元二次方程的是()A.2x2﹣7=3y+1 B.5x2﹣6y﹣2=0C.x﹣=+x D.ax2+(b﹣3)x+c+5=0【考点】一元二次方程的定义.【分析】本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【解答】解:A、是二元二次方程,故A错误;B、是二元二次方程,故B错误;C、是一元二次方程,故C正确;D、a=0时,是一元一次方程,故D错误;故选:C.【点评】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.2.三角形的两边长分别为2和6,第三边是方程x2﹣10x+21=0的解,则第三边的长为()A.7 B.3 C.7或3 D.无法确定【考点】解一元二次方程-因式分解法;三角形三边关系.【专题】计算题.【分析】将已知的方程x2﹣10x+21=0左边分解因式,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程,求出一次方程的解得到原方程的解为3或7,利用三角形的两边之和大于第三边进行判断,得到满足题意的第三边的长.【解答】解:x2﹣10x+21=0,因式分解得:(x﹣3)(x﹣7)=0,解得:x1=3,x2=7,∵三角形的第三边是x2﹣10x+21=0的解,∴三角形的第三边为3或7,当三角形第三边为3时,2+3<6,不能构成三角形,舍去;当三角形第三边为7时,三角形三边分别为2,6,7,能构成三角形,则第三边的长为7.故选A【点评】此题考查了利用因式分解法求一元二次方程的解,以及三角形的边角关系,利用因式分解法解方程时,首先将方程右边化为0,左边分解因式,然后利用两数相乘积为0,两因式中至少有一个为0转化两个一次方程来求解.3.下列命题正确的是()A.一组对边相等,另一组对边平行的四边形一定是平行四边形B.对角线相等的四边形一定是矩形C.两条对角线互相垂直的四边形一定是菱形D.两条对角线相等且互相垂直平分的四边形一定是正方形【考点】正方形的判定;平行四边形的判定;菱形的判定;矩形的判定;命题与定理.【专题】计算题.【分析】A、一组对边相等,另一组对边平行的四边形不一定为平行四边形,例如等腰梯形满足一组对边相等,另一组对边平行,但不是平行四边形;B、对角线相等的四边形不一定为矩形,例题等腰梯形的对角线相等,但不是矩形,应改为对角线相等的平行四边形为矩形;C、对角线互相垂直的四边形不一定为菱形,例如:画出图形,如图所示,AC与BD垂直,但是显然ABCD不是菱形,应改为对角线互相垂直的平行四边形是菱形;D、两条对角线相等且互相垂直平分的四边形是正方形,根据题意画出相应的图形,如图所示,根据对角线互相平分,得到四边形为平行四边形,再由平行四边形的对角线相等,得到平行四边形为矩形,最后根据矩形的对角线互相垂直得到矩形为正方形.【解答】解:A、一组对边相等,另一组对边平行的四边形不一定是平行四边形,例如等腰梯形,一组对边平行,另一组对边相等,不是平行四边形,故本选项为假命题;B、对角线相等的四边形不一定是矩形,例如等腰梯形对角线相等,但不是矩形,故本选项为假命题;C、两条对角线互相垂直的四边形不一定是菱形,如图所示:AC⊥BD,但四边形ABCD不是菱形,本选项为假命题;D、两条对角线相等且互相垂直平分的四边形是正方形,已知:四边形ABCD,AC=BD,AC⊥BD,OA=OC,OB=OD,求证:四边形ABCD为正方形,证明:∵OA=OC,OB=OD,∴四边形为平行四边形,又AC=BD,∴四边形ABCD为矩形,∵AC⊥BD,∴四边形ABCD为正方形,则本选项为真命题,故选D【点评】此题考查了正方形的判定,平行四边形的判定,矩形的判定,以及菱形的判定,判断一个命题为假命题,只需举一个反例即可;判断一个命题为真命题,必须经过严格的证明.熟练掌握平行四边形、矩形、菱形及正方形的判定是解本题的关键.4.正方形具有而菱形不具有的性质是()A.对角线平分一组对角B.对角线相等C.对角线互相垂直平分D.四条边相等【考点】正方形的性质;菱形的性质.【分析】根据正方形的性质以及菱形的性质,即可判断.【解答】解:正方形的边:四边都相等,菱形的边四边都相等;正方形的角:四角都相等,都是直角,菱形的角:对角相等;正方形的对角线:相等,互相平分,且互相垂直,菱形的对角线:互相平分,互相垂直.则:正方形具有而菱形不具有的性质是:对角线相等.故应选B.【点评】本题考查了正方形与菱形的性质,关键是对性质的正确记忆.5.若菱形两条对角线的长分别为6和8,则这个菱形的周长为()A.20 B.16 C.12 D.10【考点】菱形的性质.【专题】计算题.【分析】根据菱形的对角线性质求边长后计算周长.【解答】解:如图,在菱形ABCD中,AC=8,BD=6.∵ABCD为菱形,∴AC⊥BD,BO=3,AO=4.∴AB=5.∴周长=4×5=20.故选A.【点评】此题考查了菱形的性质:对角线互相垂直且平分;四边相等.属基础题.6.关于x的方程3x2﹣2x+1=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.不能确定【考点】根的判别式.【分析】先求一元二次方程的判别式,由△与0的大小关系来判断方程根的情况.【解答】解:∵a=3,b=﹣2,c=1,∴△=b2﹣4ac=4﹣12=﹣8<0,∴关于x的方程3x2﹣2x+1=0没有实数根.故选:C.【点评】此题考查一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.7.如果关于x的一元二次方程x2+px+q=0的两根分别为x1=3,x2=1,那么这个一元二次方程是()A.x2+3x+4=0 B.x2﹣4x+3=0 C.x2+4x﹣3=0 D.x2+3x﹣4=0【考点】根与系数的关系.【分析】根据根与系数的关系,直接代入计算即可.【解答】解:∵关于x的一元二次方程x2+px+q=0的两根分别为x1=3,x2=1,∴3+1=﹣p,3×1=q,∴p=﹣4,q=3,故选:B.【点评】本题考查了根与系数的关系,解题的关键是熟练掌握根与系数的字母表达式,并会代入计算.8.两个正四面体骰子的各面上分别标明数字1,2,3,4,如同时投掷这两个正四面体骰子,则着地的面所得的点数之和等于5的概率为()A.B.C.D.【考点】列表法与树状图法.【分析】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.【解答】解:列表得:1 2 3 41 1+1=2 2+1=3 3+1=4 4+1=52 1+2=3 2+2=4 3+2=5 4+2=63 1+3=4 2+3=5 3+3=6 4+3=74 1+4=5 2+4=6 3+4=7 4+4=8画树状图得:∴一共有16种情况,着地的面所得的点数之和等于5的有4种,∴着地的面所得的点数之和等于5的概率为=.故选A.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.9.2012年某某市政府投资2亿元人民币建设了廉租房8万平方米,预计2014年投资9.5亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.设每年市政府投资的增长率为x,根据题意,列出方程为()A.2(1+x)2=9.5 B.2(1+x)+2(1+x)2C.2+2(1+x)+2(1+x)2【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】如果设每年市政府投资的增长率为x,则可以根据“2012年某某市政府投资2亿元人民币建设了廉租房8万平方米,预计2014年投资9.5亿元人民币建设廉租房”作为相等关系得到方程2(1+x)2=9.5.【解答】解:设每年的增长率为x,根据题意得2(1+x)2=9.5,故选A.【点评】本题考查数量平均变化率问题.原来的数量(价格)为a,平均每次增长或降低的百分率为x的话,经过第一次调整,就调整到a(1±x),再经过第二次调整就是a(1±x)(1±x)=a(1±x)2.增长用“+”,下降用“﹣”.二、填空题(每题3分,共27分)10.一元二次方程2x2+4x=1的二次项系数、一次项系数及常数之和为 5 .【考点】一元二次方程的一般形式.【分析】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,其中a,b,c 分别叫二次项系数,一次项系数,常数项.确定二次项系数,一次项系数,常数项以后即可求解.【解答】解:一元二次方程2x2+4x=1的二次项系数为2、一次项系数为4,常数项为﹣1,故二次项系数、一次项系数及常数之和为:2+4﹣1=5.故答案为:5.【点评】此题主要考查了一元二次方程的一般形式,正确得出各项系数是解题关键.11.▱ABCD中,对角线AC、BD交于点O,若AC=8,BD=6,则边AB长的取值X围为1<AB<7 .【考点】平行四边形的性质;三角形三边关系.【分析】根据平行四边形对角线互相平分可得AO=4,BO=3,再根据三角形的三边关系可得4﹣3<AB <4+3,再解即可.【解答】解:∵四边形ABCD是平行四边形,∴AO=AC,BO=BD,∵AC=8,BD=6,∴AO=4,BO=3,∴4﹣3<AB<4+3,解得:1<AB<7.故答案为:1<AB<7.【点评】此题主要考查了三角形的三边关系以及平行四边形的性质,关键是掌握平行四边形的对角线互相平分.12.顺次连接一个对角线互相垂直的四边形各边中点,所得的四边形是矩形.【考点】中点四边形.【分析】根据三角形中位线的性质,可得到这个四边形是平行四边形,再由对角线垂直,能证出有一个角等于90°,则这个四边形为矩形.【解答】解:矩形.理由如下:∵E、F、G、H分别为各边的中点,∴EF∥AC,GH∥AC,EH∥BD,FG∥BD,(三角形的中位线平行于第三边)∴四边形EFGH是平行四边形,(两组对边分别平行的四边形是平行四边形)∵AC⊥BD,EF∥AC,EH∥BD,∴∠EMO=∠ENO=90°,∴四边形EMON是矩形(有三个角是直角的四边形是矩形),∴∠MEN=90°,∴四边形EFGH是矩形(有一个角是直角的平行四边形是矩形).【点评】本题考查的是矩形的判定方法,常用的方法有三种:①一个角是直角的平行四边形是矩形.②三个角是直角的四边形是矩形.③对角线相等的平行四边形是矩形.13.从1,2,﹣3三个数中,随机抽取两个数相乘,积是正数的概率是.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与随机抽取两个数相乘,积是正数的情况,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有6种等可能的结果,随机抽取两个数相乘,积是正数的有2种情况,∴随机抽取两个数相乘,积是正数的概率是:=.故答案为:.【点评】此题考查的是用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.14.在△ABC中,已知∠A、∠B、∠C的度数之比为1:2:3,AB边上的中线长为4cm,则△ABC面积等于8cm2.【考点】解直角三角形;直角三角形斜边上的中线.【分析】根据比例设∠A、∠B、∠C的度数分别为k、2k、3k,然后利用三角形的内角和定理列式求出三个角的度数,再根据直角三角形斜边上的中线等于斜边的一半求出AB的长,根据直角三角形30°角所对的直角边等于斜边的一半求出BC的长,利用勾股定理列式求出AC的长,然后利用三角形的面积公式列式计算即可得解.【解答】解:设∠A、∠B、∠C的度数分别为k、2k、3k,根据题意得,k+2k+3k=180°,解得k=30°,所以,∠A、∠B、∠C的度数分别为30°、60°、90°,∵AB边上的中线长为4cm,∴AB=2×4=8cm,BC=AB=×8=4cm,在Rt△ABC中,AC===4cm,△ABC面积=AC•BC=×4×4=8cm2.故答案为:8.【点评】本题考查了解直角三角形,直角三角形斜边上的中线等于斜边的一半和直角三角形30°角所对的直角边等于斜边的一半的性质,利用“设k法”求出△ABC三个内角的度数是解题的关键,作出图形更形象直观.15.若关于x的方程3x2+mx+m﹣6=0有一根是0,则m= 6 .【考点】一元二次方程的解.【分析】本题根据一元二次方程的根的定义求解.把x=0代入方程求出m的值.【解答】解:∵x=0是方程的根,由一元二次方程的根的定义,可得m﹣6=0,解此方程得到m=6.【点评】本题逆用一元二次方程解的定义易得出m的值.16.如图,矩形ABCD中,AC、BD相交于点O,AE平分∠BAD,交BC于E,若∠EAO=15°,则∠BOE 的度数为75 度.【考点】矩形的性质;等边三角形的判定与性质.【专题】计算题.【分析】根据矩形的性质可得△BOA为等边三角形,得出BA=BO,又因为△BAE为等腰直角三角形,BA=BE,由此关系可求出∠BOE的度数.【解答】解:在矩形ABCD中,∵AE平分∠BAD,∴∠BAE=∠EAD=45°,又知∠EAO=15°,∴∠OAB=60°,∵OA=OB,∴△BOA为等边三角形,∴BA=BO,∵∠BAE=45°,∠ABC=90°,∴△BAE为等腰直角三角形,∴BA=BE.∴BE=BO,∠EBO=30°,∠BOE=∠BEO,此时∠BOE=75°.故答案为75°.【点评】此题综合考查了等边三角形的判定、等腰三角形的性质、矩形的性质等知识点.17.如图所示,将边长为8cm的正方形纸片ABCD折叠,使点D落在BC中点E处,点A落在E处,折痕为MN,则线段的长是3cm .【考点】翻折变换(折叠问题).【分析】设=x,则EN=DN=8﹣x,在RT△ENC中利用勾股定理列出方程解方程即可.【解答】解:设=x,∵四边形ABCD是正方形,∴AB=BC=CD=AD=8,∵BE=EC=4,在RT△ENC中,∵=x,EN=DN=8﹣x,EC=4,∴(8﹣x)2=x2+42,∴x=3,∴=3cm.故答案为3cm.【点评】本题考查正方形的性质、勾股定理.翻折不变性等知识.解题关键是用方程的思想去思考,利用勾股定理列出方程解决问题,属于2016届中考常考题型.18.如图,在▱ABCD中,AE平分∠BAD,交BC于点E,BF平分∠ABC,交AD于点F,AE与BF交于点P,连接EF,PD,若AB=4,AD=6,∠ABC=60°,PD的长2,四边形ABEF的面积8.【考点】平行四边形的性质.【分析】由四边形ABCD是平行四边形,得到AD∥BC,从而得到∠AFB=∠FBE,再由∠ABF=∠FBE,推出∠ABF=∠AFB,于是得到AB=AF,同理得出AB=BE,四边形ABEF是菱形,由菱形的性质得出AE⊥BF,得到∠ABF=30°,∠BAP=∠FAP=60°从而得出AB=AE=4,AP=2,过点P作PM⊥AD于M,得到PM=,AM=1,从而得到DM=5,由勾股定理求出PD、PB的长,即可得出结果.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AFB=∠FBE,∵∠ABF=∠FBE,∴∠ABF=∠AFB,∴AB=AF,同理AB=BE,∴四边形ABEF是菱形,∴AE⊥BF,∵∠ABC=60°,∴∠ABF=30°,∠BAP=∠FAP=60°,△ABE为等边三角形,∴AB=AE=4,∵AB=4,∴AP=2,过点P作PM⊥AD于M,如图所示:∴PM=,AM=1,∵AD=6,∴DM=5,∴PD===2;BP===2,∴菱形ABEF的面积=2×BP•AE=2××2×4=8;故答案为:2,8.【点评】本题主要考查了平行四边形的性质、平行线的性质、菱形的判定与性质、含30°角的直角三角形性质、勾股定理,等边三角形的判定与性质、菱形面积的计算等知识;熟练掌握菱形的判定与性质是解决问题的关键.三、解答题19.解方程(1)2x2+4x﹣3=0(配方法解)(2)5x2﹣8x+2=0(公式法解)(3)3(x﹣5)2=2(5﹣x)(4)(3x+2)(x+3)=x+14.【考点】解一元二次方程-因式分解法;解一元二次方程-配方法;解一元二次方程-公式法.【分析】(1)先把二次项系数化为1,再进行配方,进而开方求出方程的解;(2)首先找出方程中a,b和c的值,求出△=b2﹣4ac的值,进而代入求根公式即可;(3)先提取公因式(x﹣5)得到(x﹣5)(3x﹣13)=0,再解两个一元一次方程即可;(4)先去括号,把方程化为一般形式,再利用因式分解法解方程即可.【解答】解:(1)∵2x2+4x﹣3=0,∴x2+2x﹣=0,∴x2+2x+1﹣1﹣=0,∴(x+1)2=,∴x+1=±,∴x1=﹣1+,x2=﹣1﹣;(2)∵5x2﹣8x+2=0,∴a=5,b=﹣8,c=2,∴△=b2﹣4ac=64﹣40=24,∴x==,∴x1=,x2=;(3)∵3(x﹣5)2=2(5﹣x),∴(x﹣5)(3x﹣13)=0,∴x﹣5=0或3x﹣13=0,∴x1=5,x2=;(4)∵(3x+2)(x+3)=x+14,∴3x2+11x+6=x+14,∴3x2+10x﹣8=0,∴(3x﹣2)(x+4)=0,∴3x﹣2=0或x+4=0,∴x1=,x2=﹣4.【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.20.小明和小芳做配紫色游戏,如图是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形,并涂上图中所示的颜色.同时转动两个转盘,如果转盘A转出了红色,转盘B转出了蓝色,或者转盘A转出了蓝色,转盘B转出了红色,则红色和蓝色在一起配成紫色,(1)利用列表或树状图的方法表示此游戏所有可能出现的结果;(2)若出现紫色,则小明胜.此游戏的规则对小明、小芳公平吗?试说明理由.【考点】游戏公平性;列表法与树状图法.【分析】(1)根据题意,用列表法将所有可能出现的结果,即可得答案;(2)由(1)的表格,分析可能得到紫色的概率,得到结论.【解答】解:(1)用列表法将所有可能出现的结果表示如下:所有可能出现的结果共有12种.红(红,红)(蓝,红)(黄,红)蓝(红,蓝)(蓝,蓝)(黄,蓝)红(红,红)(蓝,红)(黄,红)黄(红,黄)(蓝,黄)(黄,黄)红蓝黄(2)上面等可能出现的12种结果中,有3种情况可能得到紫色,故配成紫色的概率是=,即小明获胜的概率是;故小芳获胜的概率是.而<,故小芳获胜的可能性大,这个“配色”游戏对双方是不公平的.【点评】本题考查的是游戏公平性的判断.实际考查概率的计算与游戏公平性的理解,要求学生根据题意,结合实际情况,计算并比较游戏者的胜利的概率,进而得到结论.用到的知识点为:概率=所求情况数与总情况数之比.21.已知:如图,菱形ABCD中,E、F分别是CB、CD上的点,且BE=DF.求证:(1)△ABE≌△ADF;(2)∠AEF=∠AFE.【考点】菱形的性质;全等三角形的判定与性质.【专题】证明题.【分析】在菱形中,由SAS求得△ABF≌△ADF,再由等边对等角得到∠AEF=∠AFE.【解答】证明:(1)∵ABCD是菱形,∴AB=AD∠B=∠D.又∵BE=DF,∴△ABE≌△ADF.(2)∵△ABE≌△ADF,∴AE=AF,∴∠AEF=∠AFE.【点评】本题利用了菱形的性质和全等三角形的判定和性质,等边对等角求解.22.某汽车4S店销售某种型号的汽车,每辆进货价为15万元,该店经过一段时间的市场调研发现:当销售价为25万元时,平均每周能售出8辆,而当销售价每降低0.5万元时,平均每周能多售出1辆.该4S店要想平均每周的销售利润为90万元,并且使成本尽可能的低,则每辆汽车的定价应为多少万元?【考点】一元二次方程的应用.【专题】销售问题.【分析】销售利润=一辆汽车的利润×销售汽车数量,一辆汽车的利润=售价﹣进价,降低售价的同时,销售量就会提高,“一减一加”,根据每辆的盈利×销售的件数=90万元,即可列方程求解.【解答】解:设每辆汽车的降价为x万元,根据题意得:(25﹣x﹣15)(8+)=90,解得x1=1,x2=5,当x=1时,总成本为15×(8+2×1)=150(万元);当x=5时,总成本为15×(8+2×5)=270(万元),为使成本尽可能的低,则x=1,即25﹣x=25﹣1=24(万元),答:每辆汽车的定价应为24万元.【点评】此题主要考查了一元二次方程的应用,本题关键是会表示一辆汽车的利润,销售量增加的部分.找到关键描述语,找到等量关系:每辆的盈利×销售的件数=90万元是解决问题的关键.23.如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?【考点】一元二次方程的应用.【专题】几何图形问题.【分析】设矩形猪舍垂直于住房墙一边长为xm可以得出平行于墙的一边的长为(25﹣2x+1)m.根据矩形的面积公式建立方程求出其解就可以了.【解答】解:设矩形猪舍垂直于住房墙一边长为xm可以得出平行于墙的一边的长为(25﹣2x+1)m,由题意得x(25﹣2x+1)=80,化简,得x2﹣13x+40=0,解得:x1=5,x2=8,当x=5时,26﹣2x=16>12(舍去),当x=8时,26﹣2x=10<12,答:所围矩形猪舍的长为10m、宽为8m.【点评】本题考查了列一元二次方程解实际问题的运用,矩形的面积公式的运用及一元二次方程的解法的运用,解答时寻找题目的等量关系是关键.24.D、E分别是不等边三角形ABC(即AB≠BC≠AC)的边AB、AC的中点,O是△ABC所在平面上的动点,连接OB、OC,点G、F分别是OB、OC的中点,顺次连接点D、G、F、E.(1)如图,当点O在△ABC的内部时,求证:四边形DGFE是平行四边形;(2)若四边形DGFE是菱形,则OA与BC应满足怎样的数量关系?为什么?(3)当OA与BC满足OA⊥BC时,四边形DGEF是一个矩形(直接填答案,不需证明.)【考点】中点四边形.【分析】(1)首先利用三角形中位线的性质得出DE∥BC,DE=BC,同理,GF∥BC,GF=BC,即可得出DE∥GF,DE=GF即可得出四边形DGFE是平行四边形;(2)利用(1)中所求,只要邻边再相等即可得出答案.(3)利用(1)中所求,只要邻边相互垂直的平行四边形即为矩形.【解答】(1)证明:∵D、E分别是边AB、AC的中点.∴DE∥BC,DE=BC.同理,GF∥BC,GF=BC.∴DE∥GF,DE=GF.∴四边形DEFG是平行四边形.(2)解:解法一:点O的位置满足两个要求:AO=BC,且点O不在射线CD、射线BE上.。

人教版九年级上册数学月考考试卷附答案

人教版九年级上册数学月考考试卷附答案

人教版九年级上册数学月考考试卷附答案班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣2020的倒数是( )A .﹣2020B .﹣12020C .2020D .12020 2.用配方法将二次函数y=x 2﹣8x ﹣9化为y=a (x ﹣h )2+k 的形式为( )A .y=(x ﹣4)2+7B .y=(x+4)2+7C .y=(x ﹣4)2﹣25D .y=(x+4)2﹣253.下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是( )A B . C .6,7,8D .2,3,4 4.若x 取整数,则使分式6321x x +-的值为整数的x 值有( ) A .3个 B .4个 C .6个 D .8个5.若点1(),6A x -,2(),2B x -,32(),C x 在反比例函数12y x =的图像上,则1x ,2x ,3x 的大小关系是( )A .123x x x <<B .213x x x <<C .231x x x <<D .321x x x <<6.若221m m +=,则2483m m +-的值是( )A .4B .3C .2D .17.如图,某小区计划在一块长为32m ,宽为20m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m 2.若设道路的宽为xm ,则下面所列方程正确的是( )A.(32﹣2x)(20﹣x)=570 B.32x+2×20x=32×20﹣570 C.(32﹣x)(20﹣x)=32×20﹣570 D.32x+2×20x﹣2x2=5708.正比例函数y=kx(k≠0)的函数值y随着x增大而减小,则一次函数y=x+k 的图象大致是()A. B.C. D.9.若关于x的一元二次方程2210x x kb-++=有两个不相等的实数根,则一次函数y kx b=+的图象可能是:()A. B.C. D.10.直线y=23x+4与x轴、y轴分别交于点A和点B,点C,D分别为线段AB,OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为()A.(-3,0) B.(-6,0) C.(-52,0) D.(-32,0)二、填空题(本大题共6小题,每小题3分,共18分)1.64的算术平方根是__________.2.分解因式:x3﹣16x=_____________.3.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是______.41.如图,圆锥侧面展开得到扇形,此扇形半径 CA=6,圆心角∠ACB=120°,则此圆锥高 OC 的长度是__________.5.如图,△ABC内接于☉O,∠CAB=30°,∠CBA=45°,CD⊥AB于点D,若☉O 的半径为2,则CD的长为__________.6.如图,圆柱形玻璃杯高为12cm、底面周长为18cm,在杯内离杯底4cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为___________cm.三、解答题(本大题共6小题,共72分)1.解方程:21 133x xx x=+ ++2.已知关于x的一元二次方程x2﹣(2k﹣1)x+k2+k﹣1=0有实数根.(1)求k的取值范围;(2)若此方程的两实数根x1,x2满足x12+x22=11,求k的值.3.已知A(﹣4,2)、B(n,﹣4)两点是一次函数y=kx+b和反比例函数y=mx图象的两个交点.(1)求一次函数和反比例函数的解析式;(2)求△AOB的面积;(3)观察图象,直接写出不等式kx+b﹣mx>0的解集.4.如图,ABC中,点E在BC边上,AE AB=,将线段AC绕点A旋转到AF 的位置,使得CAF BAE∠=∠,连接EF,EF与AC交于点G(1)求证:EF BC=;(2)若65ABC∠=︒,28ACB∠=︒,求FGC∠的度数.5.某校为了解初中学生每天在校体育活动的时间(单位:h),随机调查了该校的部分初中学生.根据调查结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)本次接受调查的初中学生人数为___________,图①中m的值为_____________;(2)求统计的这组每天在校体育活动时间数据的平均数、众数和中位数;(3)根据统计的这组每天在校体育活动时间的样本数据,若该校共有800名初中学生,估计该校每天在校体育活动时间大于1h的学生人数.6.为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的32倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.(1)甲、乙两工程队每天能改造道路的长度分别是多少米?(2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、B4、B5、B6、D7、A8、A9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、2、x(x+4)(x–4).3、84、56、15.三、解答题(本大题共6小题,共72分)1、32 x=-2、(1)k≤58;(2)k=﹣1.3、(1)反比例函数解析式为y=﹣8x,一次函数的解析式为y=﹣x﹣2;(2)6;(3)x<﹣4或0<x<2.4、(1)略;(2)78°.5、(1)40,25;(2)平均数是1.5,众数为1.5,中位数为1.5;(3)每天在校体育活动时间大于1h的学生人数约为720.6、(1)乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米.(2)10天.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版数学九年级上册10月月考试卷附答案
一、选择题(共10小题;共30分)
1. 下列函数中,不是二次函数的是
A. B.
C. D.
2. 下列二次函数中,图象以直线为对称轴且经过点的是
A. B.
C. D.
3. 从拼音“”中随机抽取一个字母,抽中的概率为
4. 在某次国际乒乓球单打比赛中,甲、乙两名中国选手进入最后决赛,那么下列事件
为必然事件的是
A. 冠军属于中国选手
B. 冠军属于外国选手
C. 冠军属于中国选手甲
D. 冠军属于中国选手乙
5. 我省 2013 年的快递业务量为亿件,受益于电子商务发展和法治环境改善等多
重因素,快递业务迅猛发展,2014 年增速位居全国第一.若 2015 年的快递业务量达到亿件,设 2014 年与 2013 年这两年的平均增长率为,则下列方程正确的是
A. B.
C. D.
6. 在一个不透明的盒子里有个分别标有数字,,的小球,它们除数字外其他
均相同.充分摇匀后,先摸出个球不放回,再摸出个球,那么这两个球上的数字之和为奇数的概率为
C.
7. 二次函数的图象的顶点在轴上,则的值是
A. D.
8. 如图,把一个长为,宽为的长方形两次对折后展开,再用剪刀沿
图中折痕剪开,把它分成四块完全相同的小长方形,最后按图那样拼成一个正方形,则中间空白部分的面积是
A. B. C. D.
9. 已知二次函数()的图象如图,则下列说法:
① ;
②该抛物线的对称轴是直线;
③当时,;
④ ,().
其中正确的个数是
A. B. C. D.
10. 如图,二次函数的图象经过点,与轴交点
的横坐标分别为,,其中,,下列结论:
;;;,其中结论正确
的有个.
A. B. C. D.。

相关文档
最新文档