镁合金表面处理技术及其耐蚀性能研究

合集下载

镁合金表面处理技术与性能分析

镁合金表面处理技术与性能分析

镁合金表面处理技术与性能分析第一章:引言镁合金因其轻质、高强度、良好的耐腐蚀性和良好的可塑性而被广泛应用于汽车、航空航天、电子设备等领域。

然而,镁合金在表面处理方面仍存在一些挑战,例如热稳定性和耐氧化性较差,易发生腐蚀等问题。

因此,寻找更有效的镁合金表面处理技术变得至关重要。

第二章:镁合金表面处理技术2.1 电化学处理在电解液中,通过电解方法对金属进行阳极处理,并在其表面上形成一层氧化膜,该方法可以在多种材料上迅速形成具有良好抗腐蚀性的涂层,并且可以通过调整电流密度和时间来改变氧化膜的厚度和颜色。

2.2 化学处理化学处理可通过浸泡或刷涂等方法使镁合金表面发生离子交换或化学反应来形成一种保护性膜。

例如,使用含有多种有机和无机酸的溶液对镁进行浸泡,可以形成一层质地坚硬的氧化铝膜。

2.3 物理处理物理方法包括喷砂、喷丸和激光熔射等。

通常,这些方法会在表面形成一层粗糙的纹理,以增加镁与空气或其他介质之间的接触面积和摩擦力。

第三章:表面处理后的镁合金性能分析3.1 腐蚀性能镁在空气中易形成氧化层,在湿润环境下还容易形成水合层导致易腐蚀。

针对这一问题,通过表面处理后形成的化学膜可以防止氧化层和水合层的形成,提高了镁合金的抗腐蚀能力。

3.2 力学性能表面处理对镁合金的力学性能影响较小,但是通过物理处理方法,可以显著降低镁合金表面的粗糙度,提高其表面质量和结构强度,从而改善其力学性能。

3.3 热稳定性要使镁合金在高温下稳定,需要通过表面处理形成一层高温氧化层。

常用的高温氧化方法包括热氧化和熔盐氧化。

这些方法可以在镁合金表面形成一层密封的氧化层,有效防止氧化和腐蚀。

第四章:未来展望镁合金作为一种重要的轻金属材料,其应用前景非常广阔。

未来,在表面处理技术方面,我们可以进一步开发和完善表面处理材料和新技术,并将其与其他表面处理方法相结合,使其性能得到进一步提高,并满足更广泛的工业和消费领域对高性能镁合金的需求。

第五章:结论镁合金表面处理技术不断创新和完善,可以提高其腐蚀性能、力学性能和热稳定性,有利于其在工业和消费领域的广泛应用。

镁合金表面处理方法的优化和改进

镁合金表面处理方法的优化和改进

镁合金表面处理方法的优化和改进镁合金是一种具有轻质、高强度、高比刚度和较高的热导率等优点的金属材料。

它广泛应用于航空、汽车、电子、医疗和军工等领域。

然而,镁合金在实际应用中,由于其表面容易氧化、腐蚀和磨损等问题,其应用范围受到一定的限制。

因此,为了提高镁合金的表面性能,人们研究并发展了各种表面处理方法。

本文将对镁合金表面处理方法的优化和改进进行探讨。

一、化学处理方法化学处理是目前使用最广泛的一种表面处理方法。

其中,单位面积处理成本低、处理厚度易控制、成型成本低、处理速度快等特点使其在实际生产中得到广泛应用。

1.1 酸蚀处理酸蚀处理是指将镁合金表面暴露在稀酸性溶液中,以形成一层具有一定厚度、均匀、致密并表面平整的氧化膜。

氧化膜的厚度和性质取决于酸性溶液的成分、浸泡时间和处理温度等因素。

酸蚀处理可以提高镁合金表面的耐腐蚀性和耐磨性,并可以提高其表面美观度。

然而,酸蚀处理也存在一些缺点。

首先,如果酸性溶液中的浓度、处理温度、时间等因素不恰当,会导致镁合金表面粗糙、不规则、氧化膜薄和不致密等缺陷。

其次,氧化膜虽然可以保护镁合金表面免于腐蚀和磨损,但其本身也具有一定的脆性,易于剥离和破裂。

为了克服这些缺点,人们进行了一系列的研究。

例如,可以通过改变酸性溶液的成分、添加复合添加剂、控制温度等因素来改善氧化膜的性质。

此外,还可以将酸蚀处理与其他表面处理方法结合起来使用,以提高表面成品质量。

1.2 电解沉积处理电解沉积处理是利用电化学原理,在特定条件下,将金属离子沉积在镁合金表面上的一种表面处理方法。

该方法可以形成高质量的金属涂层,具有厚度均匀、致密、耐腐蚀和较高的硬度等优点。

电解沉积处理可以用于制备镀铬、镀镍、镀锌、镀铜等多种涂层。

尽管电解沉积处理具有许多优点,但其存在一些缺点。

首先,处理过程的费用较高,因为需要使用大量的电能和金属离子等。

其次,在实际生产中,如果沉积条件不当,容易造成涂层的不均匀、太薄或太厚等缺陷。

镁合金高耐蚀表面处理技术的研究进展

镁合金高耐蚀表面处理技术的研究进展

镁合金高耐蚀表面处理技术的研究进展
赖心翘;刘宁华;易爱华;黄创
【期刊名称】《电镀与涂饰》
【年(卷),期】2024(43)1
【摘要】[目的]随着加工技术水平的不断提高,镁合金应用范围迅速扩展,市场需求
不断增长。

然而镁合金化学活性高,在环境中极易发生腐蚀而造成金属部件失效。

因此镁合金的防腐处理至关重要。

[方法]综述了改善镁合金耐蚀性的几种常用表面处理技术的研究进展,包括化学转化、微弧氧化、电镀、电泳沉积、溶胶-凝胶处理、水热处理和喷涂。

[结果]对镁合金进行适当的表面处理能够显著提高其耐蚀性。

[结论]目前镁合金表面防腐处理已取得一定的进展,但还有许多待改进之处。

【总页数】11页(P87-97)
【作者】赖心翘;刘宁华;易爱华;黄创
【作者单位】广州三孚新材料科技股份有限公司;东莞理工学院材料科学与工程学院;华南农业大学材料与能源学院
【正文语种】中文
【中图分类】TG178
【相关文献】
1.环保型表面处理镁合金耐蚀性及疲劳性能研究进展
2.镁合金微弧氧化表面处理技术研究进展及展望
3.镁合金耐蚀表面处理的研究进展
4.镁合金表面耐蚀导电防护
技术研究进展5.镁合金在大气环境中腐蚀行为及表面处理技术的研究进展
因版权原因,仅展示原文概要,查看原文内容请购买。

镁合金表面处理的研究现状

镁合金表面处理的研究现状

镁合金表面处理的研究现状一.概述镁合金是以镁为基加入其他元素组成的合金。

其特点是:密度小、比强度高、刚性好、弹性模量大、消震性好、刚性好、承受冲击载荷能力比铝合金大、刚性好、耐有机物和碱的腐蚀性能好。

主要合金元素有铝、锌、锰、铈、钍以及少量锆或镉等。

目前使用最广的是镁铝合金,其次是镁锰合金和镁锌锆合金。

主要用于航空、航天、运输、化工、火箭等工业部门。

在实用金属中是最轻的金属,镁的比重大约是铝的2/3,是铁的1/4。

但是,镁的应用和研究相对其它金属严重滞后,原因在于其韧性低、高温性能和耐腐蚀性能差,而且加工成形比较困难。

与铝、钛能生成自愈钝化膜不同,镁表面生成的氧化膜疏松多孔,不能对基体起有效保护作用,因此,在潮湿的空气、含硫气氛和海洋大气中,镁均会遭受严重的化学腐蚀,这极大地阻碍了其广泛应用。

通过合金化的方法来改善其性能,特别是期望发现“不锈镁”的努力至今还没有取得进展。

所以,镁合金零件在使用前须经过一定的表面改性或涂层处理。

目前,电化学镀层、转化膜等工艺技术已经应用于镁合金的防护,气相沉积涂层、涂覆、表面热处理等方法也受到密切关注,高能束熔覆等新技术也被尝试应用于镁合金表面性能的提高。

二.表面处理方法1.电镀和化学镀技术镁合金表面镀镍技术分为电镀和化学镀两种。

由于镁合金化学活性高,在酸性溶液中易被腐蚀,因此镁合金电沉积技术与铝合金电沉积技术有着显著的差异。

目前,镁合金电镀工艺技术有两种工艺:浸锌-电镀工艺和直接化学镀镍工艺。

为了防止镁合金基体在酸性溶液中被过度腐蚀,需要在处理前溶液中添加F-(F-与电离生成的Mg2+形成MgF2沉淀,吸附在镁合金基体表面可以防止基体过度腐蚀。

镁合金表面化学镀Ni-P合金是一种很成熟的工艺。

通常化学镀方法制备的Ni-P合金层是非晶态的,这层致密的非晶态Ni-P合金层可以有效地防止镁合金基体被腐蚀。

结合使用化学镀镍技术和滚镀技术可以在镁合金基体上形成一层晶态的Ni-P合金层。

镁合金表面处理工艺及有机防护涂层耐腐蚀性能_移易

镁合金表面处理工艺及有机防护涂层耐腐蚀性能_移易

1 镁合金表面处理技术-化学氧化(转化)膜 处理
通过化学转化可以在镁合金基体表面形成由氧化物 或金属盐构成的无机膜层,这层膜与基体具有良好的结合 力,能阻止腐蚀介质对基体的侵蚀。这样的转化膜本身一 般不太致密,耐腐蚀能力并不太强,仅可用于短期大气腐 蚀的防护。但重要的是它可以为后续涂层打底,以增强镁 合金基底与后续涂层间的结合力。镁合金的化学转化膜按
1 2 1 1 1 1
(1.中海油常州涂料化工研究院,江苏常州 213016;2.中国人民解放军驻 370 厂军事代表室,
镁合金和高温耐蚀镁合金;从表面改性的角度,应在镁合
摘 要:为提高镁合金的耐腐蚀性能,研究了镁合
金的表面生成具有保护性能的膜或涂层,来提高和改善耐 蚀性能。通过冶金的方法降低杂质的含量,或者加入其他 合金元素限制杂质的存在状态,提高镁合金的耐蚀性能, 将会使镁合金的应用范围进一步扩大,但这种方法却仅限 于添加稀土元素等少数几种元素,还未得到广泛的应用, 不能满足工业要求。 表面改性主要分为电化学法、 化学法、 热加工法、高真空法和其他物理方法。一些新型的表面处 理方法[3]如锡转化膜、激光表面处理、PVD(物理气相沉淀 法)、氮化铬涂层、镁合金表面沉积铝等方法也应运而生。
表面涂饰
Surface Finishing
镁合金表面处理工艺及有机防护 涂层耐腐蚀性能
Surface Treatment for Al-Mg Alloy and Anticorrosive Property of Organic Protective Coatings
移易 ,邵旭东 ,王李军 ,王留方 ,倪维良 ,朱亚君 江苏常州 213022)
1.1 铬酸盐化学转化膜
铬酸盐处理即将工件浸入含铬酸或铬酸盐的溶液中, 通过金属表层的自身转化生成某些氧化物或盐类,使表面 得以钝化。膜中的六价铬可溶,有缓蚀性能,腐蚀时它还 被还原为不溶性的三价铬离子而阻止腐蚀的进一步进行, 铬酸盐处理得到的表面膜有一定的自愈能力。 虽然铬化工艺比较成熟,但该工艺过程产生有害的六 价铬离子,废液不易处理,对环境造成污染。铬化工艺逐 渐被无铬转化工艺所替代已是必然的趋势。一个比较典型 的铬化处理工艺为:甲苯/二甲苯除油→碱洗(70~80 ℃, 10 min)→铬化、酸洗(70~80 ℃,10 min)→重铬酸洗 (70~80 ℃,10 min)→纯净水洗→干燥老化。

镁合金表面微弧氧化陶瓷涂层的制备及耐蚀性能

镁合金表面微弧氧化陶瓷涂层的制备及耐蚀性能

文章编号:1001-9731(2021)01-01022-04镁合金表面微弧氧化陶瓷涂层的制备及耐蚀性能*余灏勋,马廷霞(西南石油大学机电工程学院,成都610500)摘要:利用微弧氧化法,在微弧氧化反应电解质中加入氟钛酸钾和G R/T i O2粉末,在镁合金表面制备了MA O-G R/T i O2涂层㊂采用S E M和F T-I R分别对G R/T i O2粉末的表面形貌和结构进行了研究,用S E M㊁X R D 和元素线扫描对MA O-G R/T i O2涂层的表面形貌㊁相结构和元素分布进行了研究,用三电极技术对MA O-G R/T i O2涂层的耐腐蚀性能进行了研究㊂结果表明,通过溶胶-凝胶法可将纳米T i O2接枝到G O表面,生成G R/T i O2粉末;MA O-G R/T i O2涂层主要由M g2T i O4相㊁M g3(P O4)2相㊁M g和M g O相组成;以界面为分界线,涂层一侧T i㊁P和O元素高于基体一侧,基体一侧M g元素高于涂层一侧;MA O-G R/T i O2涂层的腐蚀电位为-0.723V,腐蚀电流密度为8.96ˑ10-8A/c m2,相比镁合金基体和MA O涂层,腐蚀电位提高了48.3%和36.7%,表明MA O-G R/T i O2涂层可以显著提高镁合金基体的耐蚀性能㊂关键词:镁合金;微弧氧化法;复合涂层;耐腐蚀性能中图分类号: T B332文献标识码:A D O I:10.3969/j.i s s n.1001-9731.2021.01.0040引言镁合金耐蚀性差严重限制了其在许多领域的应用[1-2]㊂目前为止,研究者广泛研究的耐腐蚀方法是在合金表面形成防腐涂层㊂微弧氧化技术(MA O)是在常规阳极氧化技术基础上发展起来的一种新型的镁合金表面处理技术,该技术可以制造高质量的涂层,具有高硬度值,强附着力,并可以大幅提高镁合金基体的耐腐蚀性[3]㊂因此,MA O已经成为提高镁合金耐蚀性研究最热门的技术之一[4-6]㊂MA O涂层的耐蚀性主要取决于涂层的厚度㊁成分和组织结构[7]㊂根据已有的研究,电解液的组成会影响涂层的微观结构㊁成分和性能,因为这些元素可以在氧化过程中掺杂入涂层中[8-9]㊂几种类型的电解质,如硅酸盐[10]㊁铬酸盐[11]和磷酸盐[12],已被用于制备MA O涂层㊂一般来说,在这些电解质中形成的MA O涂层主要由M g O相和其它一些与电解质有关的化合物组成[如M g O㊁M g3-(P O4)2㊁M g A l2O4或M g F2][13]㊂由于M g O在中性或酸性环境中不稳定,这些涂层不能提供足够的长期腐蚀保护㊂解决该问题最有效的办法是通过改变电解质的组成,在MA O涂层中加入稳定氧化物或其它稳定化合物,如N b2O5㊁Z r O2㊁T i O2㊁M g2Z r5O12㊁C e O2㊁M g F2或Z r F4㊂这些氧化物和化合物可以在氧化处理过程中嵌入到涂层中,以提高涂层的耐蚀性[14]㊂然而,在这些电解液中,有许多化合物不能长期使用(相对不稳定),因为在微弧氧化过程中,试样表面预先形成了小的火花,不能得到均匀的MA O涂层[15]㊂石墨烯(G R)和氧化石墨烯(G O)具有优异的力学和耐腐蚀性能,不仅力学强度高,而且耐磨性优异[16-17]㊂T i O2颗粒具有优异的耐腐蚀性能[18-20]㊂本文以氟钛酸钾(K2T i F6)㊁六偏磷酸钠[(N a P O3)6]㊁氢氧化钠(N a O H)和三乙胺(T E A)组成的合适电解质,制备了含有M g2T i O4和G R/T i O2的MA O-G R/T i O2涂层㊂采用X R D㊁S E M和元素线扫描等手段研究了涂层的相结构㊁表面形貌和元素组成,并采用电化学阻抗法评价了涂层的耐蚀性㊂1实验1.1 G R/T i O2粉末的制备采用加压氧化法合成G O,采用溶胶-凝胶法制备G R/T i O2粉末㊂由于G O的亲水性和静电斥力,在水中形成了稳定的溶胶㊂具体制备方法:取5m L钛酸丁酯,与10m L冰乙酸均匀混合,然后加入30m L无水酒精进行稀释,分散搅拌均匀30m i n后得到溶液A;将G O超声分散在15m L蒸馏水中,超声浴2h,随后加入15m L无水酒精,并用稀硝酸调节p H值至2,得到溶液B㊂将溶液B缓慢加入到溶液A中,并在室温下搅拌3h,并陈化得到凝胶,随后将凝胶转入水热反应釜中,210ħ下恒温反应10h后自然冷却至室温,用去离子水将所得产物洗涤至中性,并烘干,即得到G R/T i O2粉末㊂220102021年第1期(52)卷*基金项目:四川省科技计划资助项目(18F Z J C00734)收到初稿日期:2020-06-03收到修改稿日期:2020-09-23通讯作者:马廷霞,E-m a i l:1499893831@q q.c o m 作者简介:余灏勋(1994 )男,成都人,硕士,主要从事新型复合材料制备研究㊂1.2复合涂层的制备将A Z31合金(M g-3%(质量分数)A l-0.8%(质量分数)Z n)试样切割成10mmˑ10mmˑ5mm,用100~1000#的S i C砂纸打磨㊂然后分别在乙醇和去离子水中超声清洗20m i n,最后在空气中干燥㊂采用功率为2k W的恒流电源,通过MA O法制备涂料㊂分别以镁合金基体和不锈钢板作为工作电极和对电极㊂为了制备含有G R/T i O2的MA O涂层,采用以下磷酸盐电解质进行一次处理:即由15g/L氟钛酸钾(K2T i F6),20g/L六偏磷酸钠[(N a P O3)6], 10g/L氢氧化钠(N a O H),3g/L G R/T i O2粉末和0.3g/L三乙胺(T E A)组成的电解质,使G R/T i O2粉末带负电荷,然后将电解质超声处理1h,随后连接电极,并将电极放入电解质中㊂两个电极之间的距离为2c m,在400V的固定外加电压下进行10m i n的一次微弧氧化反应㊂得到的复合涂层标记为MA O-G R/ T i O2涂层㊂采用相同的MA O工艺(磷酸盐电解质中没有G R/T i O2)制备的M g合金作为对照组,标记为MA O涂层㊂1.3样品的表征采用T T R I I IX射线衍射仪对制备的涂层相组成进行了X射线衍射分析,2θ值在10~85ʎ之间,步长增量为0.01ʎ,扫描速度为4ʎ/m i n;采用N I C O L E T F T-I R5700光谱仪对G O㊁G R/T i O2粉末及复合涂层进行F T-I R光谱测试;采用德国蔡司(型号:S U P R A-55)扫描电子显微镜对G R/T i O2粉末和复合涂层的表面形貌及元素组成进行研究㊂1.4电化学测量采用三电极技术在电化学工作站(C H I660E)上进行动电位极化实验㊂以复合涂层样品为工作电极,铂板为对电极,饱和甘汞电极(S E C)为参比㊂所有测试都在(37ʃ1)ħ的3.5%(质量分数)氯化钠溶液中进行㊂用1c m2的硅胶覆盖所有样品暴露的表面㊂在溶液中稳定1h后进行动电位极化试验,以确保开路电位是静态的㊂电位扫描速度为5m V/s,记录极化曲线㊂E I S的信号幅度为5m V,频率为0.01~ 10000H z㊂采用T a f e l外推和线性极化法,从动电位极化图中获取腐蚀电位(E c o r r)和腐蚀电流密度(i c o r r)㊂本文选择性地展示了极化曲线,所展示的极化曲线数据最接近每组样本的平均值㊂2结果与讨论2.1 G O和G R/T i O2粉末的表征2.1.1 F T-I R分析图1为G O和G R/T i O2粉末的F T-I R光谱图㊂由图1可知,G O曲线中3395c m-1处的宽吸收峰为-O H伸缩振动峰,2358c m-1处的伸缩振动对应C-O 键,1733c m-1处的伸缩振动对应C=O键, 1621c m-1位置的伸缩振动对应C=C键,1222c m-1位置的伸缩振动对应C-O-C键,1057c m-1位置的伸缩振动对应C-O H键;G R/T i O2曲线中,535c m-1处的吸收峰对应T i-O-T i键,而1733,1222和1057c m-1处峰强的减弱,说明G O在反应过程中被还原成了G R ㊂图1 G O和G R/T i O2粉末的F T-I R光谱图F i g1F T-I Rs p e c t r a o fG Oa n dG R/T i O2p o w d e r2.1.2S E M分析图2为G O和G R/T i O2粉末的S E M图㊂从图2 (a)可以看出,G O为片状多层结构,具有许多类似于波动丝绸的褶状㊂从图2(b)可以看出,T i O2颗粒分散在G R的片状表面,大部分G R表面可以被T i O2颗粒包裹住,颗粒大小为纳米级,表明T i O2纳米粒子可以成功地接枝到G R表面㊂图2 G O和G R/T i O2粉末的S E M图F i g2S E Mi m a g e s o fG Oa n dG R/T i O2p o w d e r s2.2 MA O-G R/T i O2涂层的表征2.2.1 X R D和元素线扫描分析图3为MA O-G R/T i O2涂层的X R D图谱㊂由图3可知,涂层X R D图谱中可以明显观察到18.6ʎ和29.5ʎ处的M g2T i O4对应峰;此外,还可以观察到明显的M g3(P O4)2㊁M g和M g O的对应峰,但是并未发现典型的T i O2峰,可能是因为T i O2峰和M g2T i O4峰有一定重叠而被掩盖,也有可能是T i O2含量太少㊂图4为MA O-G R/T i O2涂层截面元素的线扫描分析㊂从图4可以看出,以界面为分界线,涂层一侧T i㊁P和O元素高于基体一侧,基体一侧M g元素高于涂层一侧,而基体一侧A l元素只稍微高于涂层一侧,区别并不明显㊂这一元素分布和图3中MA O-G R/ T i O2涂层X R D图谱测试结果正好吻合㊂32010余灏勋等:镁合金表面微弧氧化陶瓷涂层的制备及耐蚀性能图3 MA O -G R /T i O 2涂层的XR D 图谱F i g 3X R D p a t t e r no fMA O -G R /T i O 2co a t i ng 图4 MA O -G R /T i O 2涂层截面元素的线扫描分析F i g 4L i n e s c a n n i n g a n a l ys i s o f s e c t i o n a l e l e m e n t s o f MA O -G R /T i O 2co a t i n g 2.2.2 S E M 分析图5展示了镁合金基体上MA O 和MA O -G R/T i O 2涂层的SE M 形貌㊂从图5可以看出,由于涂层生长不均匀,MA O 生长过程中会捕获熔融氧化物和气泡,MA O 涂层和MA O -G R /T i O 2涂层的表面均存在圆形孔隙通道,这是电解质与M g 合金基体接触的通道㊂由于在相对冷的电解质中,熔融氧化物是从数千度的温度下快速冷却的,所以在MA O 涂层和MA O -G R /T i O 2涂层上表面粗糙,并可以观察到微小裂纹㊂MA O -G R /T i O 2涂层表面并未观察到明显的G R /T i O 2材料,只是相比MA O ,表面更加粗糙㊂图5 MA O 和MA O -G R /T i O 2涂层的S E M 图F i g 5S E Mi m a g e s o fMA Oa n dMA O -G R /T i O 2co a t -i n gs 2.3 腐蚀行为评价图6为镁合金基体㊁M A O 涂层和M A O -G R /T i O 2涂层在N a C l 溶液中的典型动电位极化曲线㊂根据T a f e l 外推和线性极化法提取了电化学参数的平均值,结果如表1所示㊂由图6和表1可知,与镁合金基体相比,M A O 涂层和M A O -G R /T i O 2涂层都提高了腐蚀电位,说明涂层的稳定性和有效性优于镁合金基体㊂M A O -G R /T i O 2涂层的腐蚀电位相比镁合金基体和M A O 涂层,提高了48.3%和36.7%㊂这些结果表明,M A O -G R /T i O 2涂层可以显著提高M g 合金基体的耐蚀性能㊂图6 镁合金基体㊁MA O 涂层和MA O -G R /T i O 2涂层在Na C l 溶液中的动电位极化曲线F i g 6P o t e n t i o d yn a m i c p o l a r i z a t i o nc u r v e s o f m a g n e s i u m a l l o y ma t r i x ,MA O c o a t i n g a n d MA O -G R /T i O 2co a t i n g i nN a C l s o l u t i o n表1 镁合金基体㊁MA O 涂层和MA O -G R /T i O 2涂层材料的腐蚀特性分析结果T a b l e1A n a l ys i sr e s u l t so fc o r r o s i o nc h a r a c t e r i s t i c s o f m a g n e s i u m a l l o y m a t r i x ,MA O c o a t i n ga n dMA O -G R /T i O 2co a t i n g i nN a C l s o l u t i o n 试样腐蚀电位/V 腐蚀电流密度/A ㊃c m -2镁合金基体-1.3981.59ˑ10-5MA O 涂层-1.1423.12ˑ10-7MA O -G O /T i O 2涂层-0.7238.96ˑ10-83 结 论(1)通过溶胶-凝胶法可将纳米T i O 2接枝到GO 表面,但是接枝过程中,G O 被还原成了G R ,生成了G R /T i O 2粉末材料㊂(2)MA O -G R /T i O 2涂层主要由M g 2T i O 4相㊁M g 3(P O 4)2相㊁M g 和M g O 相组成㊂以界面为分界线,涂层一侧T i ㊁P 和O 元素高于基体一侧,基体一侧M g 元素高于涂层一侧,而基体一侧A l 元素只稍微高于涂层一侧㊂(3)MA O -G R /T i O 2涂层的腐蚀电位为-0.723V ,腐蚀电流密度为8.96ˑ10-8A /c m 2,相比镁合金基体和MA O 涂层,腐蚀电位提高了48.3%和36.7%,表明MA O -G R /T i O 2涂层可以显著提高镁合金基体的耐蚀性能㊂参考文献:[1] G u oK W.Ar e v i e wo fm a g n e s i u m /m a g n e s i u ma l l o ys c o r -420102021年第1期(52)卷r o s i o n [J ].R e c e n tP a t e n t so n C o r r o s i o nS c i e n c e ,2011,1(1):72-90.[2] Y a n g K H ,G e rM D ,H w uW H ,e t a l .S t u d y of v a n a d i u m -b a s e d c h e m i c a l c o n v e r s i o n c o a t i ng on t h e c o r r o s i o n r e s i s t -a n c e o fm a g n e s i u ma l l o y [J ].M a t e r i a l sC h e m i s t r y &P h ys -i c s ,2015,101(2-3):480-485.[3] H u a n g YS ,L i uH W.T E Ma n a l y s i s o nm i c r o -a r c o x i d e c o a t i n go n t h e s u r f a c e o fm a g n e s i u ma l l o y[J ].J o u r n a l o fM a t e r i a l sE n -g i n e e r i n g &Pe rf o r m a n c e ,2011,20(3):463-467.[4] J i a ng BL ,G eYF .M i c r o -a r c o x i d a t i o n (M A O )t o i m pr o v e t h e c o r r o s i o n r e s i s t a n c eo fm a g n e s i u m (M g )a l l o ys [J ].C o r r o s i o n P r e v e n t i o n o fM a g n e s i u m A l l o ys ,2013:163-196.[5] W a n g S ,L i uP .T h e t e c h n o l o g y o f p r e p a r i n gg r e e nc o a t i n gb yc o nd u c t i n g m i c r o -a r co x i d a t i o no n A Z 91D m a gn e s i u m a l l o y [J ].P o l i s hJ o u r n a l o fC h e m i c a lT e c h n o l o g y ,2016,18(4):36-40.[6] L iY ,L uF ,L iH L ,e t a l .C o r r o s i o n m e c h a n i s mo fm i c r o -a r co x i d a t i o nt r e a t e db i o c o m p a t i b l eA Z 31m a gn e s i u m a l -l o y i ns i m u l a t e db o d y f l u i d [J ].P r o gr e s s i n N a t u r a lS c i -e n c e :M a t e r i a l s I n t e r n a t i o n a l ,2014,24(5):516-522.[7] N i eR R ,Z h uF ,S h e nL R ,e t a l .E f f e c t so f f i l mt h i c k n e s so n t h e p h a s e c o m p o s i t i o n a n dm i c r o s t r u c t u r e p r o pe r t i e s of m i c r o -a r c o x i d a t i o n c o a t i ng [J ].J o u r n a l o fB i o m e d i c a lE n -g i n e e r i n g,2010,27(2):354-357.[8] Y a n g W ,X uD P ,G u oQ Q ,e t a l .I n f l u e n c eo f e l e c t r o l yt e c o m p o s i t i o no n m i c r o s t r u c t u r ea n d p r o p e r t i e so f c o a t i n gs f o r m e do n p u r eT i s u b s t r a t eb y mi c r oa r co x i d a t i o n [J ].S u r f a c e&C o a t i n g sT e c h n o l o g y,2018,349:522-528.[9] P a kSN ,Y a oZP ,J uKS ,e t a l .E f f e c t o f o r ga n i c a d d i t i v e s o n s t r u c t u r e a n d c o r r o s i o n r e s i s t a n c e o fMA Oc o a t i n g[J ].V a c u u m ,2018,151:8-14.[10] Z h a n g R F ,X i o n g G Y ,H uC Y.C o m p a r i s o no f c o a t i n gp r o p e r t i e so b t a i n e db y MA Oo nm a g n e s i u ma l l o y s i n s i l -i c a t ea n d p h y t i ca c i de l e c t r o l y t e s [J ].C u r r e n t A p pl i e d P h ys i c s ,2010,10(1):255-259.[11] M aY ,L i uN ,W a n g Y ,e t a l .Ef f e c t o f c h r o m a t ea d d i t i v e o nc o r r o s i o nr e s i s t a n c eo fMA Oc o a t i ng so n m a gn e s i u m a l l o ys [J ].J o u r n a l o f t h eC h i n e s eC e r a m i cS o c i e t y ,2011,39(9):1493-1497.[12] S o l d a t o v a E ,B o l b a s o vE ,K o z e l s k a y aA I ,e t a l .T h e e l a s t i c i t yo f c a l c i u m p h o s p h a t eM A Oc o a t i n g s c o n t a i n i n g di f f e r e n t c o n c e n -t r a t i o n s o f c h i t o s a n [J ].I O PC o n f e r e n c eS e r i e s M a t e r i a l sS c i -e n c e a n dE n g i n e e r i n g,2009,544:63-70.[13] G u oP Y ,W a n g N ,Q i nZS ,e ta l .E f f e c to fe l e c t r o l yt e c o m p o s i t i o no n g r o w t h m e c h a n i s m a n ds t r u c t u r eo fc e -r a m i cc o a t i n g so n p u r eT i b yp l a s m ae l e c t r o l yt i co x i d a -t i o n [J ].T r a n s a c t i o n sof M a t e r i a l s &H e a tT r e a t m e n t ,2013,34(7):181-186.[14] S a n k a r aN a r a y a n a nTSN ,P a r k I S ,L e eM H.S t r a t e gi e s t o i m p r o v e t h e c o r r o s i o n r e s i s t a n c e o fm i c r o a r c o x i d a t i o n (MA O )c o a t e d m a g n e s i u m a l l o y sf o rd e gr a d a b l ei m -p l a n t s :P r o s p e c t s a n d c h a l l e n g e s [J ].P r o gr e s s i n M a t e r i -a l sS c i e n c e ,2014,60:1-71.[15] W a n g C ,C h e nJ ,H e JH ,e t a l .E f f e c t o f e l e c t r o l yt e c o n -c e n t r a t i o no n t h e t r i b o l o g i c a l pe rf o r m a n c e o fMA Oc o a t -i ng s o na l u m i n u ma l l o y s [J ].F r o n t i e r so fCh e mi c a lS c i -e n c e a n dE n g i n e e r i n g,2020,12:1-7.[16] L i uS ,G uL ,Z h a oHC ,e t a l .C o r r o s i o n r e s i s t a n c e o f g r a ph e n e -r e i n f o r c e dw a t e r b o r n e e p o x y c o a t i n gs [J ].J o u r n a l o fM a t e r i a l s S c i e n c e&T e c h n o l o g y ,2016,32(05):425-431.[17] Z h a n g XR ,MaR N ,D u A ,e t a l .C o r r o s i o n r e s i s t a n c e o f o r g a n i c c o a t i n g b a s e do n p o l y h e d r a l o l i g o m e r i c s i l s e s qu i -o x a n e -f u n c t i o n a l i z e d g r a p h e n eo x i d e [J ].A p pl i e dS u r f a c e S c i e n c e ,2019,484:814-824.[18] D e ya b M A ,K e e r a ST.E f f e c t o f n a n o -T i O 2p a r t i c l e s s i z e o n t h e c o r r o s i o n r e s i s t a n c e o f a l k y d c o a t i n g[J ].M a t e r i a l s C h e m i s t r y &P h ys i c s ,2014,146(3):406-411.[19] A oN ,L i uD X ,W a n g SX ,e t a l .M i c r o s t r u c t u r ea n dt r i -b o l o g i c a lb e h a v i o ro fa T i O 2/h B N c o m p o s i t ec e r a m i c c o a t i n g fo r m e dv i am i c r o -a r co x i d a t i o no fT i -6A l -4Va l -l o y [J ].J o u r n a lo f M a t e r i a l s S c i e n c e &T e c h n o l o g y,2016,32(10):1071-1076.[20] M o m e n z a d e h M ,S a n j a b i S .T h e e f f e c t o fT i O 2n a n o pa r t i -c l e c o d e po s i t i o no n m i c r o s t r u c t u r ea n dc o r r o s i o nr e s i s t -a n c e o fe l e c t r o l e s s N i Pc o a t i n g [J ].M a t e r i a l s &C o r r o -s i o n ,2012,63(7):614-619.P r e pa r a t i o na n d c o r r o s i o n r e s i s t a n c e o fm i c r o -a r c o x i d e c e r a m i c c o a t i n g o nm a g n e s i u ma l l o y su r f a c e Y U H a o x u n ,MA T i n gx i a (S c h o o l o fM e c h a n i c a l E n g i n e e r i n g ,S o u t h w e s tP e t r o l e u m U n i v e r s i t y ,C h e n g d u610500,C h i n a )A b s t r a c t :MA O -G R /T i O 2co a t i n g w a s p r e p a r e d o n t h e s u r f a c e o fm a g n e s i u ma l l o y b y a d d i n g p o t a s s i u mf l u o r i d e t i t a n a t e a n dG R /T i O 2po w d e r i n t o t h e e l e c t r o l y t e o fm i c r o -a r c o x i d a t i o n r e a c t i o nb y m i c r o -a r c o x i d a t i o nm e t h o d .T h e s u r f a c em o r p h o l o g y a n d s t r u c t u r eo fG R /T i O 2po w d e rw e r e s t u d i e db y S E M a n dF T -I R.S E M ,X R Da n d e l e m e n t a l l i n e s c a n n i n g w e r eu s e d t o s t u d y t h e s u r f a c em o r p h o l o g y ,ph a s e s t r u c t u r e a n d e l e m e n t d i s t r i b u t i o no f MA O -G R /T i O 2c o a t i n g ,a n d t h e c o r r o s i o n r e s i s t a n c e o fMA O -G R /T i O 2co a t i n g w a s s t u d i e db y t h r e e -e l e c t r o d e t e c h n o l o g y .T h e r e s u l t s s h o w e d t h a tn a n oT i O 2co u l db e g r a f t e do n t o t h es u r f a c eo fG O b y s o l -g e lm e t h o dt o g e n e r a t eG R /T i O 2p o w d e r .MA O -G R /T i O 2c o a t i n g w a s m a i n l y c o m p o s e do f M g 2T i O 4p h a s e ,M g 3(P O 4)2p h a s e ,M g a n d M g O p h a s e .T a k i n g t h e i n t e r f a c ea s t h eb o u n d a r y ,T i ,Pa n d Oe l e m e n t so nt h ec o a t i n g si d e w e r eh i g h e r t h a n t h o s e o n t h e s u b s t r a t e s i d e ,a n dM g e l e m e n t s o n t h e s u b s t r a t e s i d ew e r e h i gh e r t h a n t h o s e o n t h e c o a t i n g s i d e .T h e c o r r o s i o n p o t e n t i a l o fMA O -G R /T i O 2co a t i n g w a s -0.723Va n d t h e c o r r o s i o n c u r r e n t d e n -s i t y w a s 8.96ˑ10-8A /c m 2.C o m p a r e dw i t hm a g n e s i u ma l l o y s u b s t r a t e a n dMA Oc o a t i n g ,t h e c o r r o s i o n p o t e n -t i a l o fMA O -G R /T i O 2c o a t i n g w a s i n c r e a s e db y 48.3%a n d 36.7%,w h i c h i n d i c a t e d t h a tMA O -G R /T i O 2co a t -i n g c o u l d s i g n i f i c a n t l y i m p r o v e t h e c o r r o s i o n r e s i s t a n c e o fm a g n e s i u ma l l o y su b s t r a t e .K e y w o r d s :m a g n e s i u ma l l o y ;m i c r o -a r c o x i d a t i o n ;c o m p o s i t e c o a t i n g;c o r r o s i o n r e s i s t a n c e 52010余灏勋等:镁合金表面微弧氧化陶瓷涂层的制备及耐蚀性能。

镁合金表面电沉积镍层工艺及其耐蚀性的研究

镁合金表面电沉积镍层工艺及其耐蚀性的研究
挥发 , 也会 影 响浸锌 效 果 。实 验 得 知 , 在 8 2℃ 下 可 以获 得较 好 的浸锌 层 。 ( 2 )AZ 9 1 D镁 合 金 经氟 化 处 理 、 化学浸锌后 ,
采用 瓦特 镀液 进行 快 速 电镀 镍 , 可 以在 镁 合 金 基 体
( d)电 沉 积 锞 层
AZ 9 1 D ma g n e s i u m a l l o y s f r o m a s u l f a t e s o l u t i o n [ J ] . J o u r n a l
p r o t e c t i o n o f ma g n e s i u m a l l o y AZ 3 1 D b y a n e w c o n v e r s i o n
处理 , 可 以在 合金 表 面形 成完 整 的金属 镍层 , 达到 良 好 的抗腐 蚀 性能 。
防护 , 2 0 0 0 , 2 1 ( 2 ) : 5 5 — 5 6 .
的 自腐蚀 电位 逐 渐 正 移 , 耐蚀 性 更 好 。当镁 合 金 表
面形 成完 整 的金 属 镍 层 时 , 合 金 材 料 的 自腐 蚀 电 位
正移 较大 , 体 现 出很 好 的 耐 蚀 性 , 自腐 蚀 电 位 达 到
上 获得结 晶均 匀细 致 、 结 合力 好 的镍 层 , 较大 地提 高 了其 抗腐 蚀性 能 , 自腐蚀 电位 正移 到 一O . 8 8 V。
参考文献 :
[1] 朱立 群 . 功 能 膜 层 的电 沉 积 理 论 与 技 术 [ M] . 北京 : 北 京 航 空
航 天 大 学 出 版社 , 2 0 0 5 : 2 4 8 — 2 5 8 .
[2] G RAY J E, L UAN B . P r o t e c t i v e c o a t i n g s o n ma g n e s i u m a n d i t s a l l 0 y — A c r i t i c a l r e v i e w[ J ] .J o u r n a l o f Al l o y s a n d

镁合金的表面处理技术及其在材料工程中的应用

镁合金的表面处理技术及其在材料工程中的应用

镁合金的表面处理技术及其在材料工程中的应用引言镁合金是一种重要的结构材料,在各个领域都有着广泛的应用前景。

然而,由于其易氧化、易腐蚀等特点,镁合金的表面处理成为了解决其应用限制的重要环节。

本文将探讨一些常用的镁合金表面处理技术,并讨论其在材料工程中的应用。

表面处理技术一:阳极氧化阳极氧化是一种常见的表面处理技术,可以形成致密的氧化膜,提高镁合金的抗腐蚀性能和耐磨性能。

该技术主要是将镁合金作为阳极,在硫酸、硝酸等电解液中进行电解,使得表面形成一层氧化膜。

经过阳极氧化处理的镁合金表面具有较好的耐腐蚀性和附着力,可以延长其使用寿命。

表面处理技术二:化学镀化学镀是一种通过化学反应,在镀液中形成金属对镁合金表面进行覆盖的方法。

常见的化学镀方法有镀镍、镀铬等。

这种表面处理技术可以提高镁合金的耐腐蚀性和耐磨性,同时还可以改善其外观。

表面处理技术三:喷涂涂层喷涂涂层技术是一种将具有一定特性的材料涂覆在镁合金表面的方法。

这种技术可以改善镁合金的表面硬度、耐磨性、耐腐蚀性等性能。

常见的喷涂涂层材料有陶瓷涂层、金属涂层等。

通过选择合适的喷涂涂层材料,可以满足不同工程的需求。

表面处理技术四:溅射溅射是一种利用高能离子束轰击镁合金表面,使其表面溅射出材料形成涂层的技术。

溅射涂层具有优异的耐腐蚀性、耐磨性和抗疲劳性能,可以有效地提高镁合金的使用寿命。

此外,溅射还能够改变镁合金的表面电子结构,从而改善其光学性能。

应用一:航空航天领域镁合金在航空航天领域有着广泛的应用。

通过表面处理技术,可以提高镁合金的耐腐蚀性,增加其在腐蚀环境下的使用寿命。

此外,表面处理技术还可以改善镁合金的表面硬度和耐磨性,提高其在高速飞行中的应力承载能力。

应用二:汽车工业领域镁合金在汽车工业中也有着重要的应用前景。

通过表面处理技术,可以提高镁合金的整体性能,如抗腐蚀性、耐磨性等,在汽车零部件的制造中起到了至关重要的作用。

特别是在电动汽车领域,镁合金的轻质化特点使得其成为理想的材料选择。

镁合金抗腐蚀复合表面处理工艺技术

镁合金抗腐蚀复合表面处理工艺技术

镁合金抗腐蚀复合表面处理工艺技术镁合金是一种轻质高强度的材料,具有良好的机械性能和导热性能,因此被广泛应用于航空航天、汽车制造、电子设备等领域。

然而,镁合金的抗腐蚀性能较差,容易受到氧化、腐蚀等环境侵蚀。

为了提高镁合金的抗腐蚀性能,人们开发了各种复合表面处理工艺技术,其中包括化学处理、物理处理和电化学处理等方法。

化学处理是一种常用的镁合金表面处理方法,通过在镁合金表面形成一层抗腐蚀的化学物质,从而减缓镁合金的氧化和腐蚀过程。

常见的化学处理方法包括酸洗、碱洗、酸碱复合处理等。

酸洗主要通过浸泡在酸性溶液中,去除镁合金表面的氧化物和杂质,从而获得较好的抗腐蚀性能。

碱洗则是利用碱性溶液中的化学反应,去除镁合金表面的污垢和氧化物,进一步提高抗腐蚀性能。

酸碱复合处理则是将酸洗和碱洗结合起来,通过两者的协同作用,获得更好的抗腐蚀效果。

物理处理是利用物理手段改善镁合金表面的抗腐蚀性能。

常见的物理处理方法包括喷砂、磁化、激光处理等。

喷砂是通过高速喷射磨料颗粒,冲击和磨擦镁合金表面,去除氧化物和污垢,从而提高其表面光洁度和抗腐蚀性能。

磁化是利用磁场对镁合金表面进行处理,使其形成一层具有抗腐蚀性能的磁性保护膜,从而延缓镁合金的氧化和腐蚀过程。

激光处理则是利用高能激光束对镁合金表面进行加工,改变其表面结构和化学成分,从而提高其抗腐蚀性能。

电化学处理是利用电化学原理改善镁合金表面的抗腐蚀性能。

常见的电化学处理方法包括阳极氧化、阳极电泳、阳极溶出等。

阳极氧化是利用电解液中的氧化剂,在镁合金表面形成一层氧化膜,从而提高其抗腐蚀性能。

阳极电泳是将镁合金作为阳极,通过电解液中的带电粒子,在其表面形成一层抗腐蚀的膜层。

阳极溶出则是利用电解液中的溶解剂,将镁合金表面的部分金属离子溶解,形成一层抗腐蚀的膜层。

镁合金的抗腐蚀复合表面处理工艺技术包括化学处理、物理处理和电化学处理等方法。

这些方法可以有效地提高镁合金的抗腐蚀性能,延长其使用寿命,扩大其应用范围。

镁合金表面的腐蚀特性及其防护技术

镁合金表面的腐蚀特性及其防护技术
2 H2O + 2e - →2O H - + 2 H2 ↑, 也可能是吸氧腐蚀
O2 + 2 H2O + 4e - →4O H - . 但是研究表明 ,溶液中 O2 的浓度对镁合金的腐 蚀影响不大. 据此可以推断 ,在溶液中镁合金的腐 蚀应该以析氢腐蚀为主. 1. 3 镁合金腐蚀中的负差数效应
镁合金的腐蚀还表现出一个特殊的现象 ,即 在含 Cl - 腐蚀介质中会出现负差数效应 ( negative different effect , ND E) . 负差数效应是指镁合金在 外加的阳极电流或电位的条件下 ,随阳极极化电 流或电位的增加 ,镁合金的“自腐蚀电流密度”不 减反而增加[14~16 ] . 不仅镁合金存在着这一反常 现象 ,铝合金也有负差数效应.
摘 要 : 从镁合金表面自然氧化膜的微观结构与形成过程入手 ,论述了其表面多孔状的三层氧化膜造成镁 合金基体表面容易发生腐蚀的原因 ,并详述镁合金表面的电化学腐蚀特性与腐蚀机理 ;从三个不同角度分析 其独特的负差数效应 ,并用“部分膜保护机制”对此作出更合理的解释. 讨论了阳极氧化技术及其在此基础之 上发展而来的等离子微弧阳极氧化技术 ,该技术可显著提高镁合金表面氧化膜的耐蚀性与抗磨性. 介绍了包 括激光表面热处理和激光合金化的激光辅助处理技术 ,它能对镁合金表面进行快速 、局部的处理 ,提高材料 的耐腐蚀性能和硬度. 概述了物理气相沉积技术 ,它可为镁合金表面提供耐腐蚀性能 、高结晶度和高强度. 讨 论了目前国内外最新研究的用于取代有毒的铬酸盐转化膜的稀土转化膜工艺的化学法 ;该方法具有操作简 便 、无毒无污染等诸多特点 ,可以明显提高镁合金表面的耐腐蚀性能 ,但机理研究有待于进一步探讨. 关键词 : 镁合金 ;腐蚀 ;防护技术 中图分类号 : T G146 文献标识码 : A 文章编号 : 036726234 (2001) 0620753205

镁合金表面处理工艺的研究【详情】

镁合金表面处理工艺的研究【详情】

镁合金表面处理工艺的研究内容来源网络,由深圳机械展收集整理!镁及其合金是有色金属材料中最具有开发和应用发展前途的金属材料。

镁是一种轻质结构材料,质量为铝的2/3,钢铁的1/4。

与钢、铝、塑料等工程材料相比,镁合金具有比强度和比钢度高,电磁屏蔽性能好,无磁性;无毒、可回收;极好的切削加工性能,极高的压铸生产率,尺寸收缩小,并且具有优良脱模性能,且加工成本低,尺寸稳定性高;具有超导和储氢性能;耐印痕性;良好的低温性能和导热率高等优点;镁还具有良好的导热、导电性、尺寸稳定性、电磁屏蔽性、机加工性能以及再循环利用的性能;镁弹性模量低,约45 GPa,减震性能好,适合于做承受剧烈振动的零件;镁合金压铸件比重小,比刚度大,铸造性能,机械加工性能和阻尼性能好。

这些特性可使其成为汽车工业、航空工业及电子工业中首选的结构材料,因此具有良好的社会效益和经济效益。

虽然镁合金具有以上诸多优点,并在许多领域具有广泛的应用前景,但也存在一些限制其进一步应用的因素,主要包括以下三个方面:(1)镁及其合金晶体结构为密排六方结构,决定了镁及其合金的塑性低,物理性能和力学性能均有明显的方向性,在室温下变形只能沿晶格底面进行滑移,单一的滑移系导致其压力加工变形能力低。

(2) 常用的AZ, AM系列镁合金通常的使用温度为95°C ~120°C,超过这一温度范围,合金的蠕变强度随着温度的增加而大幅度下降,限制了它在耐热部件、如汽车发动机部件和传动机构等零部件方面的应用。

(3)限制镁合金广泛应用的最大障碍是镁合金的耐腐蚀性能较差。

镁的平衡电位为一2.37 V,很容易发生氧化反应。

镁在海水中的稳定电位为一1.6一一1.5 V。

镁在空气中与氧能够形成一层很薄的氧化膜,但氧化膜疏松、多孔,PB比为O.99<l[PB比即Pilling—Bed-worth原理:氧化膜具有保护性的必要条件是,氧化形成的金属氧化膜的体积(VMO)比生成这些氧化膜所消化的金属体积(VM)要大,即VMO:VM>1],不能形成有效稳定的保护膜,导致镁合金的腐蚀反应可以持续发展下去。

镁合金表面涂覆层对其耐蚀性能的影响分析

镁合金表面涂覆层对其耐蚀性能的影响分析

镁合金表面涂覆层对其耐蚀性能的影响分析镁合金由于其低密度、高比强度以及良好的抗冲击性能等优点,在航空航天、汽车制造、电子设备和手机等领域得到广泛应用。

然而,由于镁合金表面易受到环境氧化、腐蚀的影响,降低了其使用寿命和性能。

为了增强镁合金的耐蚀性能,常常采用表面涂覆层的方法进行保护。

本文将分析镁合金表面涂覆层对其耐蚀性能的影响。

首先,表面涂覆层可以提供一层物理屏障,阻止外界氧化物和水分进入镁合金内部。

镁合金与空气中的氧气反应会迅速生成一层镁氧化物(MgO),该氧化物较为致密,能够阻止氧气和水蒸气进一步侵蚀镁合金表面。

然而,当镁合金表面存在其他污染物时,如氯离子、硫离子等,容易形成镁氯化物或镁硫化物,导致镁合金腐蚀加剧。

涂覆层的存在可以阻隔这些污染物的侵入,从而减少腐蚀反应的发生,提高镁合金的耐蚀性能。

其次,涂覆层可以改变镁合金表面的化学活性。

一般来说,镁合金表面的化学活性较高,容易与外界环境中的氧、水反应,导致镁合金产生氢气和氧化产物。

涂覆层可以降低镁合金表面的化学活性,减少与外界环境的反应。

例如,通过涂覆一层氟碳聚合物薄膜,可以阻隔氧气和水分的进入,从而防止镁合金表面的氧化反应。

同样,涂覆层还可以改变镁合金表面的电极电位,减小电化学腐蚀的发生。

这些改变可以显著提高镁合金的耐蚀性能。

此外,涂覆层的物理性能也对镁合金的耐蚀性能起到重要的影响。

涂覆层具有较好的附着力和致密性,能够更好地保护镁合金表面免受外界环境的侵蚀。

涂覆层的硬度和耐磨性也是影响耐蚀性能的重要因素。

一般来说,硬度较高的涂覆层能够抵抗外界环境中颗粒物的磨损,延缓镁合金表面的腐蚀发生。

同时,涂覆层的耐磨性也能够提高镁合金的使用寿命和性能。

最后,涂覆层对镁合金的耐蚀性能还受到涂覆工艺的影响。

不同的涂覆工艺会影响涂覆层的成分和结构,从而影响其性能。

例如热喷涂工艺可以获得具有较好附着力和致密性的涂覆层;电化学沉积工艺可以制备精细的涂覆层,具有较好的化学稳定性和耐蚀性。

镁合金表面防腐蚀处理研究

镁合金表面防腐蚀处理研究

镁合金表面防腐蚀处理研究王芬,康志新,李元元(华南理工大学金属新材料制备与成型重点实验室,广东广州510640)摘要:综述了近年来镁合金表面防腐蚀处理的方法,主要有化学转化膜、阳极氧化、金属涂层、有机涂层、有机镀膜、气相沉积、快速凝固等,并对镁合金表面处理的发展方向进行了探讨。

关键词:镁合金;腐蚀;金属涂层;阳极氧化;有机镀膜1前言镁合金优异的物理和机械性能[1]使其近年来得到广泛关注。

镁合金具有较高的比强度和比刚度,较强的电磁屏蔽和抗辐射能力,以及良好的减震性、切削加工性能等特点,在汽车、摩托车等交通工具,3C产品、航空航天、兵器工业等领域的应用日趋广泛。

但是镁是一种电负性极强的金属,标准电极电位为-2.37V,在潮湿,CO2,SO2,Cl-的环境里极易发生腐蚀。

除此之外,镁合金由于杂质元素和合金元素的存在,还容易产生电偶腐蚀、应力腐蚀开裂以及腐蚀疲劳[2],大大限制了镁合金在工业、军工等领域的广泛应用。

目前国内外都加大了对镁合金腐蚀问题的研究,以期通过有效的表面处理方法来提高镁合金表面的抗腐蚀能力,使其能够在不同的领域得到更为广泛的应用。

本文综述了镁合金表面处理的方法,并对各种表面处理方法的优缺点及今后的发展方向进行了分析。

2镁合金表面处理的方法2.1化学转化膜处理镁合金化学转化膜[3]的防腐蚀效果优于自然氧化膜,并且化学转化膜可提供较好的涂装基底。

传统的化学转化法是铬化处理,其机理是金属表面的原子溶于溶液后,引起金属表面的pH值上升,在金属表面沉积铬酸盐与金属胶状物的混合物的过程,这种混合物在未失去结晶水时具有自修复功能,因而耐蚀性好。

但由于铬酸盐处理工艺中含Cr6+离子,对环境造成污染且废液的处理成本高,现已被其它的化学转化膜法所取代,如磷酸-高锰酸钾转化膜、稀土转化膜等。

磷酸-高锰酸钾转化膜处理方法主要是在镁合金表面形成以Mg3(PO4)2为主的组成物,同时含有铝、锰等化合物的磷化膜。

镁合金抗腐蚀复合表面处理工艺技术

镁合金抗腐蚀复合表面处理工艺技术

镁合金抗腐蚀复合表面处理工艺技术【摘要】镁合金由于具有良好的性能而被广泛的运用于航空、兵器、电子等领域的结构零部件之中。

但是,它有一个很严重的缺点,就是抗腐蚀能力比较差,这使镁合金的应用受到了极大的限制。

很多专业人员根据镁合金的腐蚀类型及原理,对镁合金抗腐蚀复合表面的处理工艺技术进行了深入法入的探究。

尽管镁合金的抗腐蚀性能得到了一定的提高,但是仍然不能满足一些军用电子装置的要求。

因此,本文将介绍一些镁合金抗腐蚀复合表面处理的工艺技术。

【关键词】镁合金;抗腐蚀;复合表面;技术镁合金的密度仅仅是铝密度的三分之二,具有比较高的比刚度和比强度。

其次,镁合金具有良好的导热性,屏蔽电磁的性能也极强。

因此,镁合金被广泛的应用于航天航空等各行各业。

镁合金重量比较轻,而且属于绿色可回收的环保材料。

然而,镁合金有一个不容忽视的缺点,那便是抗腐蚀能力比较差。

近年来,尽管镁合金的抗腐蚀性能得到了一定的提高,但仍然无法达到实际应用的标准。

本文将简要谈论镁合金抗腐蚀表面处理的相关技术。

一、镁合金的主要腐蚀种类镁是一种银白色的轻金属,镁合金的密度较小,但是其强度和弹性性能较好,能够承载比较大的冲击。

以镁金属元素为基础加入其他元素组合而成的合金被称为镁合金。

镁合金在实际的应用过程中抗腐蚀能力比较差,具体的腐蚀种类如下:1.1化学反应腐蚀众所周知,镁的化学性质非常的活泼。

正常的温度下,镁合金如若与空气发生接触,极其容易与空气中的氧气发生化学反应。

发生反应之后,镁合金的表面会形成一种物质,我们称之为氧化膜。

然而,镁合金并不是全由镁形成的,其中必然会掺杂一些其他的金属物质。

这些少许的金属物质会对氧化膜的结构和性质产生一定的影响。

如若镁合金所处环境温度在不断的上升,这些金属掺杂物的化学性质也会越开越活泼,镁合金腐蚀的速度也会越来越快,腐蚀的程度随之加深。

另外,镁合金在低温的环境中会慢慢地与二氧化碳发生化学反应,生成碳化镁和一氧化碳。

在加热的情况下,镁能够在二氧化碳中强烈燃烧,又有两种新的物质出现:氧化镁和碳单质。

镁合金表面硬化处理及其耐腐蚀性能研究

镁合金表面硬化处理及其耐腐蚀性能研究

镁合金表面硬化处理及其耐腐蚀性能研究引言:镁合金是一种具有优良性能的轻金属材料,具有比铝合金更低的密度,更高的强度和更好的刚性特点。

然而,镁合金也有其缺点,如低的耐腐蚀性能。

因此,镁合金表面硬化处理是一种有效的方式来提高其耐腐蚀性能。

本文将探讨镁合金表面硬化处理技术以及其对耐腐蚀性能的提升效果。

一、镁合金表面硬化处理技术镁合金表面硬化处理技术包括化学处理、物理处理和电化学处理等。

其中化学处理是比较常见的一种方式,它包括酸洗、电镀和磷化等方法。

1. 酸洗酸洗是一种常用的表面处理方法,它通过将镁合金表面浸泡在酸液中,去除表面的氧化皮和腐蚀产物,使其表面更加干净、平整。

酸洗前要对镁合金表面进行打磨和去油处理,以保证酸洗效果的均匀性和稳定性。

2. 电镀电镀是一种通过电解沉积金属或金属化合物的方法来形成一层保护层的表面处理技术。

常用的电镀方法包括电镀铬、锌、镍、铜等。

其中电镀镍是一种常用的方法,可以提高镁合金表面的硬度和耐蚀性。

3. 磷化磷化是一种将镁合金表面转化为磷酸盐的方法,可以形成一层致密的磷酸盐层,提高其耐蚀性能。

该方法具有成本低、环保等优点,是一种广泛应用的表面处理技术。

二、表面硬化处理对镁合金耐腐蚀性能的影响表面硬化处理可以有效提高镁合金的耐腐蚀性能,具体表现为:1. 提高表面硬度镁合金表面硬化处理可以形成一层坚硬的保护膜,提高其硬度和强度。

这可以有效防止镁合金表面被擦伤、刮花或刮擦,从而保持表面光洁度和整体美观度,同时提高其抗腐蚀性。

2. 提高复合耐腐蚀性表面硬化处理还可以提高镁合金的复合耐腐蚀性,即其在多种腐蚀环境下的抗腐蚀性能。

因为不同的腐蚀环境对镁合金表面的影响是不同的,有些环境下镁合金的耐腐蚀性能较好,而有些环境下则较差。

表面硬化处理可以使镁合金表面的复合耐腐蚀性提高,从而使其更加适合广泛的应用领域。

3. 提高耐针孔腐蚀性针孔腐蚀是一种在金属表面产生一个小孔,然后沿小孔向内腐蚀的一种特殊腐蚀现象。

镁合金表面处理技术的研究进展

镁合金表面处理技术的研究进展

镁合金表面处理技术的研究进展发布时间:2021-12-03T06:49:04.810Z 来源:《科学与技术》2021年第29卷19期作者:王涛1 刘海军2[导读] 镁合金是一种密度小、强度高的优质合金材料,王涛1 刘海军2陕西黄河集团有限公司陕西省西安市 710043摘要:镁合金是一种密度小、强度高的优质合金材料,在工业中应用广泛,随着科学技术和工业经济的快速发展,人们越来越重视镁合金的生产以及其表面处理方式,而其耐磨、耐蚀性差制约其发展,本文综述了近年来表面处理技术,总结了镁合金表面处理技术的研究进展,为铸造镁合金表面处理技术提供借鉴与参考。

关键词:镁合金;表面出来;耐腐蚀性1前言Mg及其合金是重要的金属材料之一,是目前已经得到应用的密度最小(约1.7g/cm3)的金属材料。

镁合金具有高比强度、高导热性、高导电性等优良性能,被广泛应用在交通工具、化学化工、航空航天等领域。

由于镁合金是轻合金材料能代替其他的金属材料来显著地提高宇宙飞船和车辆的速度,使其轻量化。

随着我国轨道交通产业的飞速发展,轨道交通车辆减重要求迫切。

如今,轻量化设计己是车体设计的发展趋势。

但是,镁合金的耐腐蚀性能差并且化学性质活泼,限制其在一些领域中的应用。

近些年来,国内外的研究者从不同的角度来提高镁合金抗腐蚀性能,主要包括:开发新合金及提高纯度、采用快速凝固技术限制有害杂质的危害及表面处理等。

一般来说,表面处理是比较容易实现的,同时对提高镁合金的表面性能也是效率最高的。

2镁合金表面处理工艺2.1化学转化法化学转化是利用化学转化膜完成镁合金表面处理的一种处理工艺。

根据溶液组成,目前使用的化学转化膜可分为稀土元素、有机酸、磷酸盐、锡酸盐、铬酸盐、高锰酸钾等。

在传统生产中,铬酸盐膜具有良好的致密结构,含铬组织结构水具有较强的自愈能力和超耐腐蚀性。

然而,利用铬生产化学膜时,其附件含有毒性,废水处理难度大,成本高,因此开发无铬转化技术迫在眉睫。

镁合金表面改性及其耐腐蚀性能研究

镁合金表面改性及其耐腐蚀性能研究

镁合金表面改性及其耐腐蚀性能研究镁合金是一种重要的轻质结构材料,具有低密度、高比强度、高比刚度等优异特性,在航空航天、汽车、电子电器等领域得到广泛应用。

但是,镁合金的耐腐蚀性较差,容易受到大气、水分、盐等环境因素的侵蚀。

因此,镁合金的表面改性是提高其耐腐蚀性能的重要途径。

一、镁合金表面改性的方法目前,镁合金表面改性的主要方法包括化学处理、涂层处理、阳极氧化处理、等离子体处理等。

下面针对这些方法进行简单介绍。

1. 化学处理化学处理是一种常用的镁合金表面改性方法,其主要作用是清除表面膜、消除微观腐蚀、构建保护膜等。

常见的化学处理方法有酸洗、碱洗、表面成分改性等。

其中,酸洗可以清除表面氧化膜、氢化膜等,提供清洁的表面,便于进一步处理;碱洗可以消除表面杂质、微观腐蚀等,提高表面质量;表面成分改性可以在表面形成一层薄膜,起到保护作用。

2. 涂层处理涂层处理是一种将防腐材料涂覆在镁合金表面的方法,常见的涂层材料有涂料、油漆、树脂等。

涂层可以覆盖镁合金表面,防止镁合金与大气、盐等腐蚀环境接触,从而保护镁合金。

但是,涂层处理的耐腐蚀性受到涂层材料本身性能的限制,较难达到理想的防腐效果。

3. 阳极氧化处理阳极氧化处理是一种利用氧化膜形成的表面改性方法。

在阳极处理中,镁合金表面形成了一层致密、均匀的氧化膜,可以起到保护作用。

此外,阳极氧化处理可以改善镁合金表面的耐磨性、耐热性等性能。

4. 等离子体处理等离子体处理是一种将气体放电离子化后,使离子流在加速电场作用下施加在阳极表面的表面改性方法。

等离子体处理可以改善镁合金表面的耐腐蚀性、表面硬度、摩擦性等性能。

二、镁合金表面改性对耐腐蚀性的影响表面改性对镁合金的耐腐蚀性有着显著影响。

经过表面改性处理的镁合金,在腐蚀环境下能够形成更加致密、均匀的保护膜,从而提高耐腐蚀性。

下面以阳极氧化处理为例,简要分析了阳极氧化处理对镁合金耐腐蚀性的影响。

阳极氧化处理是一种通过在电解液中将阳极处的金属表面氧化制备一层致密、均匀的氧化膜的处理方法。

镁合金复合镀层结构和耐腐蚀性能研究

镁合金复合镀层结构和耐腐蚀性能研究

镁合金复合镀层结构和耐腐蚀性能研究镁合金是一种重要的轻质金属材料,具有优良的机械性能和耐热性能,因此在航空航天、汽车制造、电子设备等领域有着广泛的应用。

由于其本身的化学活性较高,易受到腐蚀的影响,限制了其在一些特定环境中的使用。

为了提高镁合金的耐腐蚀性能,一种常见的方法是在其表面进行镀层处理。

而镀层的耐腐蚀性能则受到复合镀层结构的影响。

对镁合金复合镀层结构和耐腐蚀性能进行研究具有重要的意义。

镁合金表面通常采用镀层的方式来改善其耐腐蚀性能。

常见的镀层材料包括镀锌、电镀镍、阳极氧化膜等。

单一的镀层材料往往难以满足镁合金在复杂环境中的使用要求。

通过构建复合镀层结构来提高镁合金的耐腐蚀性能成为了研究的热点之一。

复合镀层结构通常由多层材料组成,每一层材料都有着特定的功能。

底层可以用于增强与基材的结合力,中间层用于提供镀层的机械性能,而表层则用于提供耐腐蚀性能。

通过合理设计和选择合适的材料,可以有效地提高镁合金的耐腐蚀性能。

近年来,研究人员对镁合金复合镀层结构和耐腐蚀性能进行了大量的研究。

一些学者利用电镀、喷涂、溶胶-凝胶等方法制备了不同类型的复合镀层结构,并对其耐腐蚀性能进行了测试。

研究结果表明,合理设计的复合镀层结构可以显著提高镁合金的耐腐蚀性能。

采用碳纳米管(CNTs)作为中间层材料,可以有效地提高镁合金镀层的结合力和硬度,从而改善其耐腐蚀性能。

采用含有纳米颗粒的阳极氧化膜作为表层材料,也可以有效地抵抗腐蚀介质的侵蚀。

除了复合镀层结构的设计外,研究人员还对镁合金复合镀层的制备工艺进行了深入的探讨。

喷涂方法可以实现大面积、高效率的镀层制备,但由于喷涂液的成分和工艺参数的变化,容易造成镀层质量的不稳定。

优化喷涂工艺以获得稳定的复合镀层结构也是当前的研究热点之一。

复合镀层的耐腐蚀性能还受到环境因素的影响,因此在模拟实际使用条件下的腐蚀性能测试也是必不可少的。

一些研究人员通过模拟海洋气候、酸雨腐蚀等环境条件对镁合金复合镀层进行了测试,从而更加真实地评价了复合镀层的耐腐蚀性能。

镁合金抗腐蚀性研究进展

镁合金抗腐蚀性研究进展

临床中使用的骨植入材料应有优良的力学性能,而且需要与骨组织愈合相匹配的降解速度。

骨植入材料在临床应用中不断发展,新型镁合金材料的研制受到国内外学者的广泛关注。

但其过快的降解速率难以得到有效控制,有效控制镁合金的降解速率,关键在于提升镁合金的抗腐蚀性,既可以使其力学性能得到保障,同时也避免了毒性反应。

因此,国内外专家学者采用多种方式提升镁合金的抗腐蚀性能。

1提高镁的纯度镁合金的提纯是指在选取高纯度原料的基础上,通过控制熔炼工艺使合金中杂质的含量降低。

当通过提纯后得到的金属镁达到99.99%以上时,其降解速率可达到作为骨植入材料的标准,并且在降解的过程中不会产生其他对机体有害的元素。

谭小伟等[1]对高纯度的镁进行热处理后,增强了其耐腐蚀性,对处理后的样品进行失重法检测,7天内样品的质量未见明显减轻。

骨折断端产生的应力会影响内固定材料的降解,为促进骨折的良好愈合,内固定材料应当具有优良的机械性能和一定的可控降解速率。

Han等[2]在新西兰兔中使用了其研制的高纯镁螺钉后发现,骨折产生的应力并没有对骨折间隙附近溶解较快螺钉的机械性产生影响,高纯镁螺钉逐渐被新生骨组织所取代。

可见骨植入材料中对高纯镁螺钉的使用日趋广泛。

Yu等[3]在青壮年股骨颈骨折后带血管髂骨移植术中使用高纯镁螺钉,对发生骨不连与股骨头缺血性坏死的概率进行对比研究发现,使用高纯镁螺钉后发生以上两种情况的概率较低,故认为高纯镁螺钉的降解过程存在能够加快骨折愈合的因素。

2镁合金进行合金化合金技术是改善金属镁耐腐蚀性和机械性能的一个重要手段[4,5],分别有两种类型的合金构成了现阶段镁合金的主要类型:第一种是由含2~10wt%(质量分数为2%~10%)的铝(Al)及部分锌(Zn)、锰(Mn)构成的合金;第二种在主要添加了稀土元素的同时,还加入了如Zn、钇(Y)、银(Ag)或少量锆(Zr)等金属的合金。

两类合金都具有各自的优点,第一类合金在拥有中度耐腐蚀性的同时机械性也得到了提升,第二类合金不仅有优良的机械性而且同样拥有良好的组织性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

镁合金表面处理技术及其耐蚀性能研究
镁合金是一种重量轻、高强度的金属材料,因此在各个领域中得到了广泛应用。

然而,由于其在大气环境中容易受到腐蚀,使得其耐用性和可靠性受到一定的影响。

为了提高镁合金的耐蚀性能,各种表面处理技术被广泛研究和应用。

下面将从
常见的几种表面处理技术入手,介绍它们对镁合金耐蚀性能的影响。

一、阳极氧化
阳极氧化是一种常见的表面处理技术,通过在金属表面形成一层氧化膜以提高
其表面性能。

在镁合金表面上,氧化膜可以增加金属表面的硬度和耐磨性,同时也可以提高其防腐蚀性能。

然而,由于氧化膜是一种多孔材料,且氧化膜的密度和厚度也会影响其性能。

因此,氧化膜的质量和厚度需要得到控制,才能够发挥出其最佳的防腐蚀性能。

二、化学转化处理
化学转化处理是利用化学反应在镁合金表面产生一种保护膜的技术。

常见的方
法包括磷化、钝化和转化膜等。

这些保护膜具有良好的耐蚀性能,可以更好地保护镁合金表面不受到腐蚀的影响。

三、喷涂处理
喷涂处理是将一种防腐涂料喷涂在镁合金表面上,以形成一种保护膜的技术。

这种方法具有一些优点,如简单和易于实现,同时也可以在较短的时间内形成保护层,有效提高镁合金表面的耐蚀性。

然而,由于镁合金表面的特殊性质,这些表面处理技术仍需要加以改进和优化。

例如,喷涂处理中的涂料选择需要注意其与镁合金表面的相容性,使得涂层可以牢固地附着在表面并保持长时间的防腐蚀性能。

同时,氧化膜的质量和厚度也需要加以监控和控制,才能够在镁合金的使用过程中发挥最好的防腐蚀性能。

总而言之,表面处理技术是提高镁合金表面耐蚀性能的主要手段之一。

通过选择适当的表面处理技术,可以有效减少镁合金的腐蚀损失,延长材料使用寿命,并且在各个领域中得到更加广泛的应用。

随着技术的不断发展和优化,相信未来会有更多更好的表面处理技术出现,推动镁合金材料的更进一步发展。

相关文档
最新文档