Matlab数组及其运算
MATLAB-3数组运算
26
23
(3) 若参与逻辑运算的是两个同维矩阵,那么运算 将对矩阵相同位置上的元素按标量规则逐个进行。 最终运算结果是一个与原矩阵同维的矩阵,其元 素由1或0组成。
(4) 若参与逻辑运算的一个是标量,一个是矩阵, 那么运算将在标量与矩阵中的每个元素之间按标 量规则逐个进行。最终运算结果是一个与矩阵同 维的矩阵,其元素由1或0组成。
>> F./E ans = 1.0000 2.0000 2.3333 0.5000 1.0000 1.3333 0.4286 0.7500 1.0000 >> E*F ans = 14 32 50 32 77 122 50 122 194 >> E.*F ans = 1 8 21 8 25 48 21 48 81
5
多维数组的建立
4. 利用函数repmat生成多维数组
C=ones(2,3) repmat(C,[1 1 3]) % repmat写出类似reshape的 repmat(C,1,1,3)将显示出错 提示:repmat是通过数组复制创建多维数组的,上面的代码即 是将数组C在行维和列维分别复制一次,然后再页维复制三次得 到2×3×3的三维数组。
多维数组及其运算
1
多维数组的定义
在MATLAB 的数据类型中,向量可视为一维数组,
矩阵可视为二维数组,对于维数超过2的数组均可
视为「多维数组」简称N-D Arrays。
2
将两个二维数组叠在一起,就构成三维数组,第三维称 为「页」(Page),其中每一页包含一个由行和列构成的 二维数组,如下图所示:
6
多维数组的建立
5. 利用函数cat生成多维数组
a=zeros(2); b=ones(2); c=repmat(2,2,2); D=cat(3,a,b,c) D=cat(4,a,b,c) %创建三维数组 %创建4维数组。
matlab中的数组
matlab中的数组Matlab中的数组Matlab是一种强大的数学计算软件,广泛用于科学计算、数据分析、图像处理等领域。
在Matlab中,数组是一种重要的数据类型,它可以存储多个数值或字符串,并且可以进行各种数学运算和统计分析。
本文将介绍Matlab中的数组及其常见操作。
一、数组的定义和初始化在Matlab中,可以使用以下方式定义和初始化数组:1. 直接输入数组元素,用空格或逗号分隔,用方括号括起来:a = [1 2 3 4 5];b = [1, 2, 3, 4, 5];2. 使用冒号运算符和步长来生成等差数列:c = 1:5; % 生成[1 2 3 4 5]d = 1:2:9; % 生成[1 3 5 7 9]3. 使用linspace函数生成指定范围和元素个数的等差数列:e = linspace(0, 1, 5); % 生成[0 0.25 0.5 0.75 1]4. 使用rand函数生成指定大小的随机数矩阵:f = rand(3, 2); % 生成一个3行2列的随机数矩阵二、数组的索引和切片Matlab中可以使用下标操作符(方括号)来访问数组元素。
下标从1开始,可以使用单个下标或多个下标来访问单个元素或多个元素。
例如:a = [1 2 3 4 5];b = a(2); % b等于2c = a(1:3); % c等于[1 2 3]Matlab还支持使用逗号来进行多维数组的索引和切片。
例如:A = [1 2 3; 4 5 6; 7 8 9];B = A(2,:); % B等于[4 5 6]C = A(:,1:2); % C等于[1 2; 4 5; 7 8]三、数组的运算和函数Matlab中的数组支持各种数学运算和函数,包括加、减、乘、除、幂次方、三角函数、指数函数、对数函数等。
例如:a = [1 2 3];b = [4 5 6];c = a + b; % c等于[5 7 9]d = a .* b; % d等于[4 10 18]e = a .^ 2; % e等于[1 4 9]f = sin(a); % f等于[0.8415 0.9093 0.1411]g = exp(a); % g等于[2.7183 7.3891 20.0855]h = log(a); % h等于[0 0.6931 1.0986]Matlab还提供了许多常用的数组函数,例如mean、sum、max、min、std、sort等,用于计算数组的平均值、总和、最大值、最小值、标准差、排序等统计信息。
MATLAB之(一)数组、矩阵和函数及运算
说明 4位小数
3.14159265358979 15位小数
3.14
2位小数
355/113
最接近的有理数
format short e,t =pi 3.1416e+000
科学计数
format long e ,t =pi 四、函数
3.141592653589793e+000
MATLAB提供了大量的函数,按照起用法分为标量函数、 向量函数和矩阵函数。
14
b= 1 3 5 7
c=6:-3:-6(从6到-6公差为-3的等差数组)
c=
6 3 0 -3 -6 e=[0:2:8,ones(1,3)](等差数组和行向量的拼接)
e=
0 2468111
2数组的运算
数组除作为1×n矩阵(行向量)遵循矩阵运算外,
MATLAB还为数组提供了一些特殊运算。两个数组间的
的最重要特征是按元素进行运算。
2021/4/14
13
1 数组的输入 ⑴可以像1×n矩阵(即行向量)一样输入,如: a=[2,3,4,5] a=
2345
⑵数组常用“:”来方便地生成一些特殊的数组。如:
a=1:5(从1到5公差为1的等差数组)
a=
12345
b=1:2:7(从1到7公差为2的等差数组)
2021/4/14
(5) randn(生成正态分布随机矩阵); U=ones(3)
W=zeros(2,3) V=eye(2,4)
U=
W=
V=
111
000
2021/4/14
000
1000 0100
111
9
111
X=rand(2,3)
X=
MATLAB基础教程 第2章 数组、矩阵及其运算
写出MATLAB表达式。 解:根据MATLAB的书写规则,以上MATLAB表达式为: (1)y=1/(a*log(1-x-1)+C1) (2)f=2*log(t)*exp(t)*sqrt(pi) (3)z=sin(abs(x)+abs(y))/sqrt(cos(abs(x+y))) (4)F=z/(z-exp(T*log(8)))
命令:X(3:-1:1)
命令:X(find(X>0.5)) 命令:X([1 2 3 4 4 3 2 1])
第二章 数组、矩阵及其运算
2.1 数组(矩阵)的创建和寻访
2. 二维数组的创建和寻访
例2-3 综合练习。将教材P.31~P.44的实例按顺序在MATLAB的 command窗口中练习一遍,观察并体会其输出结果。 (注意变量的大小写要和教材上的严格一致。)
A./B
B.\A
A的元素被B的对应元素相除
(与上相同)
第二章 数组、矩阵及其运算
2.3 数组、矩阵的其他运算
1. 乘方开方运算
数组的乘方运算与power函数 格式:c=a.^k或c=power(a,k) 例如: >> g=[1 2 3;4 5 6] >>g.^2 矩阵的乘方运算与mpower函数 格式:C=A^P或C=mpower(A,P) 注意:A必须为方阵
第二章 数组、矩阵及其运算
2.2 数组、矩阵的运算
3. 矩阵的加法、减法
运算规则是:若A和B矩阵的维数相同,则可以执行矩阵的加减运算, A和B矩阵的相应元素相加减。如果维数不相同,则MATLAB将给出
出错信息。
第二章 数组、矩阵及其运算
2.2 数组、矩阵的运算
3. 矩阵的乘法
Matlab数组运算及线型方程组的求解
数组运算及线型方程组的求解1.“:”号的用法。
用“:”号生成行向量a=[1 2 3 4 5 6 7 89 10]、b=[5 3 1 -1 -3 -5];用线性等分命令linspace重新生成上述的a和b向量。
另,在100和10000之间用对数等分命令logspace生成10维的向量c。
linspace(1,10,10) linspace(5,-5,6) ak=logspace(2,4,10)2. 已知多项式a(x)=x2+2x+3,b(x)=4x2+5x+6,求a,b积的微分。
a=[1 2 3];b=[4 5 6];c=polyder(a,b)c=poly2str(c,'x')3.用生成下列矩阵,取出方框内的数组元素a=[1:5;10:-1:6;11:15;16:20;21:25]q=a(2,2:3)m=a(2:4,4)n=a(4:5,1:3)4. 生成一个9×9维的魔方矩阵,提取其中心的3×3维子矩阵M,利用sum函数检验其各行和各列的和是否相等。
并且实现上述中心矩阵左旋90°或右旋90°,左右翻转,上下翻转a=magic(9)a =47 58 69 80 1 12 23 34 45 57 68 79 9 11 22 33 44 46 67 78 8 10 21 32 43 54 56 77 7 18 20 31 42 53 55 66 6 17 19 30 41 52 63 65 76 16 27 29 40 51 62 64 75 5 26 28 39 50 61 72 74 4 1536 38 49 60 71 73 3 14 2537 48 59 70 81 2 13 24 35>> m=a(4:6,4:6)m =20 31 42 30 41 52 40 51 62 >> c=rot90(m)c =42 52 62 31 41 51 20 30 40 >> c=rot90(m,-1)c =40 30 20 51 41 31 62 52 42 >> s=fliplr(m)s =42 31 20 52 41 30 62 51 40 >> w=flipud(m)w =40 51 62 30 41 52 20 31 425.已知a=[1 2 3:4 5 6;7 8 0],求其特征多项式并求其根、特征值和特征多项式6. 计算二重不定积分7.求解微分方程。
第5章 matlab数组和数组运算(2)
1. 标准数组:全1数组,全0数组,单位矩阵,随机矩阵,对角矩阵以及元素为指定常数的数组。
2.全1数组用ones函数,全0数组用zeros函数。
对于ones和zeros函数,当只有一个输入参数时,即ones(n)或zeros(n),Matlab就分别生成一个n×n的全1或者全0数组。
当有两个输入参数时,即ones(r,c)或者zeros(r,c),Matlab就分别生成r 行c列的全1或者全0数组。
要想生成一个与其他数组相同维数的全1或者全0数组,用户只要在ones或者zeros的参数中调用size函数就可以了。
测试数组:ones(4),m = ones(4,8)zeros(4),zeros(3,5),size(m),zeros(size(m))。
3.单位矩阵用eye函数。
该函数用与ones和zeros函数相同的语法格式来生成单位矩阵。
单位矩阵或数组是具有如下取值的矩阵或数组:除A(i,i)之外,所有其他元素都为0,其中i=min(r,c),min(r,c)是矩阵A中的行数和列数的最小数。
4.随机矩阵用rand函数。
函数rand生成均匀分布的随机数组,其元素取值介于0-1之间。
直接调用rand产生一个随机数,随机数组用rand(n)。
另外randn函数将生成均值为0,方差为1的正态分布矩阵。
rand和randn用法和ones相同。
5.对角矩阵用diag函数。
在该数组中,一个向量可以被放在与数组的主对角线平行的任何位置。
验证:a = 1:5 diag(a) diag(a,1)diag(a,-2)6.几种生成所有元素都相同的数组的方法,先令d=pi(1)d*one(3,4) slowest method(2)d+zeros(3,4) slower method(3)d(ones(3,4)) fast method(4)repmat(d,3,4) fastest method数组的数据量较小时,4种方法都可以。
2、MATLAB(数组、向量运算)
数组函数
• 数组元素的求和:
• sum() • cumsum()
• 数组元素的求积:
• prod() • cumprod()
• 数组元素的平均值:
• Mean()
• 数组元素的最大(小)值:
• max() • std() min()
• 数组元素的标准偏差:
二维数组操作函数
cat flipud 把“大小”相同的若干数组,沿“指定维”方向,串接成高 维数组 以数组“水平中线”为对称轴,交换上下对称位置上的数组 元素
一维数组的创建
(4) 对数等分 y=logspace(x1,x2,n) 其中:表示在10x1和10x2之间插入n-2个数 n代表的是点的数目,即分成n-1分, 步长应当是10(x2-x1)/(n-1);若n<2,则返回10x2。 例:>>y=logspace(2,5,5) >>y=logspace(0,5,6) >>y=logspace(2,5,1)
二维数组的创建
(1)逐个元素输入法 例: 创建一个2行3列的数组 >>a= [1 2 3;4 5 6] (2)由一维数组构成 >>a=1:2:9,b=2:2:10 >>c=[a,b],d=[a;b] (3)由函数生成
常见的二维数组生成函数
zeros(m,n) 生成一个 m 行 n 列的零矩阵,m=n 时可简写为 zeros(n)
一维数组中子数组的寻访和赋值
• 【例】子数组的寻访(Address)。 x([1 2 5]) x(1:3) x(3:end) x(3:-1:1) x(find(x>0.5)) • 【例】子数组的赋值(Assign)。 x([1,4])=[2,7] x([1,4])=10
matlab数组用法
matlab数组用法一、概述Matlab是一种基于矩阵运算的高级技术计算语言,其数组是Matlab 的重要组成部分。
Matlab数组可以存储多个数值或字符等数据类型,并且可以进行各种数学运算和数据处理。
二、创建数组1. 直接赋值法可以使用中括号[]来创建数组,用逗号分隔不同元素,如:a = [1,2,3,4,5]2. linspace函数linspace函数可以在指定的区间内生成指定数量的等差数列,如:b = linspace(0,1,11)3. logspace函数logspace函数可以在指定的区间内生成指定数量的对数数列,如:c = logspace(0,1,11)4. zeros和ones函数zeros和ones函数可以创建全为0或全为1的矩阵或向量,如:d = zeros(3,4)e = ones(2,3)三、访问数组元素1. 使用下标访问Matlab中使用下标来访问数组元素,下标从1开始计数。
如:a(2)表示访问a数组中第二个元素。
2. 使用冒号操作符访问多个元素冒号操作符(:)用于表示连续的整数序列。
如:a(2:4)表示访问a数组中第二到第四个元素。
四、修改数组元素使用下标可以修改数组元素的值。
如:a(2) = 6五、数组运算1. 数组加减乘除Matlab中可以对数组进行加减乘除等运算,如:a = [1,2,3]b = [4,5,6]c = a + b2. 数组点乘和点除使用.*和./可以对两个数组进行对应元素的乘法和除法,如:a = [1,2,3]b = [4,5,6]c = a .* b六、数组函数Matlab中提供了众多的数组函数,可以方便地进行各种数学运算和数据处理。
以下是一些常用的数组函数:1. sum函数:计算数组元素之和。
2. mean函数:计算数组元素的平均值。
3. max函数:返回数组中最大元素。
4. min函数:返回数组中最小元素。
5. sort函数:对数组进行排序。
MATLAB数组运算及向量化运算
例:>> A=[1 2 3;4 5 6]
>> B=fliplr(A) 6 5 4 >> C=flipud(A) >> D=rot90(A), E=rot90(A,-1)
A=1 2 3 4 5 6 B=3 2 1 C=4 5 6 1 2 3 D=3 6 E=4 1 2 5 5 2 1 4 6 3
8
矩阵操作
参与运算的对象必须具有相同的形状! 参与运算的对象必须具有相同的形状!
14
关系运算
MATLAB提供了6种关系运算符: MATLAB提供了6种关系运算符: 提供了 小于) < (小于)、 小于或等于) <= (小于或等于)、 大于) > (大于)、 大于或等于) >= (大于或等于)、 == (等于)、 等于) 不等于) ~= (不等于)。 不难理解, 它们的 含义 不难理解,但要注意其 书写方法 与 不尽相同。 数学中的 不等式符号 不尽相同。
要求参与加减运算的矩阵具有 相同的维数
例:>> A=[1 2 3; 4 5 6]; B=[3 2 1; 6 5 4]
>> C=A+B; D=A-B;
矩阵的普通乘法
要求参与运算的矩阵满足线性代数中矩阵相乘的原则 要求参与运算的矩阵满足线性代数中矩阵相乘的
例:>> A=[1 2 3; 4 5 6]; B=[2 1; 3 4];
17
建立5阶方阵 阶方阵A,判断A的元素是否能被 整除. 的元素是否能被3整除 例 建立 阶方阵 ,判断 的元素是否能被 整除 A =[24,35,13,22,63;23,39,47,80,80; ... 90,41,80,29,10;45,57,85,62,21;37,19,31,88,76] P = rem(A,3)==0 其中,rem(A,3)是矩阵 的每个元素除以3 是矩阵A 其中,rem(A,3)是矩阵A的每个元素除以3的余 数矩阵。此时, 被扩展为与A同维数的零矩阵, 数矩阵。此时,0被扩展为与A同维数的零矩阵,P 是进行等于(==)比较的结果矩阵。 (==)比较的结果矩阵 是进行等于(==)比较的结果矩阵。
第一章 Matlab中的数组操作讲解
b=[2,3,-1,5,6], A=diag(b,1)
0 2 0 0 0 0
0 0 3 0 0 0 0 0 0 -1 0 0 0 0 0 0 5 0 0 0 0 0 0 6
B=diag(b,-2)
a=linspace(1,20,6)
a= 1.00 4.80 8.601,3,5个元素构成数组b: b=a(1:2:5) 提取a的第2到5个元素,并反转次序构成数组b1: b1=a(5:-1:2) 按条件提取子数组: 提取a的元素值大于10的元素构成数组b2 b2=a(find(a>10))
a= 'matlab' [2x3 double] [4x5 double] [ 20]
[1x10 double] [4x4 double]
a=
'matlab' [2x3 double] [4x5 double] [ 20] b=a(3,2)
[1x10 double] [4x4 double]
b=
[4x4 double]
0 0 -1 0 0 0 0
0 0 0 5 0 0 0 0 0 0 0 6 0 0
0 0 0 0 0 0
例1.1 输入n阶矩阵
4 2 1 A 0 2 4 2 1 1 2 4 2 1 2 4 1 0 1 2 4
n=input('输入方阵阶数n=')
D=10
N=
M=
3
3
2
1
wxy
wxz
3
2
7
1
wyz
matlab数组做统一加减乘除变换
标题: MATLAB中数组的统一加减乘除变换简介:在MATLAB中,对数组进行统一的加减乘除变换是非常常见的操作。
这些变换能够高效地处理大量数据,为数据分析和数值计算提供了强大的支持。
本文将详细介绍如何在MATLAB中对数组进行统一的加减乘除变换,包括基本的算术运算、向量化操作以及广播机制等。
正文:在MATLAB中,数组是一种重要的数据结构,它可以存储多个相同类型的元素。
对数组进行统一的加减乘除变换,意味着对数组中的每个元素执行相同的运算操作。
1. 基本算术运算MATLAB支持基本的算术运算符,如加号+、减号-、乘号*和除号/。
这些运算符可以直接应用于数组,实现对数组中每个元素的统一变换。
例如,假设有两个数组A和B,我们对它们进行加法运算:matlabA = [1, 2, 3];B = [4, 5, 6];C = A + B; % 结果 C = [5, 7, 9]同样地,减法、乘法和除法运算也可以这样进行:matlabD = A - B; % 结果 D = [-3, -3, -3]E = A * B; % 结果 E = [4, 10, 18] (对应元素相乘)F = A ./ B; % 结果 F = [0.25, 0.4, 0.5] (对应元素相除)2. 向量化操作在MATLAB中,向量化操作是一种高效的数据处理方式。
它允许你使用简单的算术运算符对整个数组进行操作,而不需要使用循环或迭代。
例如,如果你想给数组A中的每个元素都加上一个常数k,可以直接这样做:matlabA = [1, 2, 3];k = 10;A = A + k; % 结果 A = [11, 12, 13]同样地,你可以对整个数组进行乘法、除法等操作:matlabA = [1, 2, 3];k = 2;A = A * k; % 结果 A = [2, 4, 6]A = A / k; % 结果 A = [0.5, 1, 1.5]3. 广播机制在MATLAB中,广播机制允许你对不同大小的数组进行算术运算。
二.数值数组及其运算(matlab)
例2.2 基本数据类型
clear v=2000; v_s=size(v); n='green'; n_s=size(n); house={v;n} %1*1数值数组 %数值数组的大小 %字符串数组 %字符串数组的大小 %元胞数组
演示
2.1.1 一维数组的创建
逐个元素生成法 冒号生成法
通用格式为:x=a : inc : b 冒号不能省,且必须在英文状态下输入; 步长inc可取正数或负数,缺省时默认值为1。
2.2 二维数组的创建和寻访
二维数组结构和矩阵相同,当带线 性变换的含义时,数组就是矩阵。
例2.5 二维数组的基本操作
A = [ 1 2 3 ; 4 , 5 , 6 ]; %输入二维数组A B = [ 1 2 4 ; 8 16 32 ]; %输入二维数组B %C = A + B %二维数组C的元素等于A、B对应元素的和 %D = log2 ( B ) %对B的每个元素求以 2 为底的对数构成数 %组D
A = [ 1 4 7 ; 2 5 8 ; 3 6 9 ];
a5=A([1 3;2 6]) %取单下标为1、3、2、6的元素构成子数组 %a5(2×2) %a6=A([1 3 2 6]) %取单下标为1、3、2、6的元素构成子数组 %a6 (1×4) %L1=logical([1 0 1])
演示
2.2.3 二维数组子数组的寻访和赋值(续)
2.1一维数组的创建和寻访
●
数学计算是MATLAB强大计算功能的体现。MATLAB的数学 计算分为数值计算和符号计算,其中符号计算是指使用 未定义的符号变量进行运算,而数值计算不允许使用未 定义的变量。 数值数组(Numeric Array)和数组运算(Array Operations)始终是MATLAB的核心内容。
matlab多维数组的创建和运算
matlab多维数组的创建和运算
在MATLAB中,多维数组可以通过多种方式进行创建和运算。
首先,我们可以使用内置的函数来创建多维数组,比如使用zeros、ones、rand等函数来创建特定大小的多维数组。
例如,可以使用zeros函数创建一个全零的多维数组,使用ones函数创建一个全一的多维数组,使用rand函数创建一个随机数填充的多维数组。
另外,我们还可以通过直接赋值的方式来创建多维数组,比如可以通过将一个矩阵赋值给一个变量来创建一个多维数组。
例如,可以通过将一个矩阵赋值给一个变量A来创建一个二维数组,或者将一个三维矩阵赋值给一个变量B来创建一个三维数组。
在进行多维数组的运算时,可以使用MATLAB提供的各种运算符和函数来实现。
比如,可以使用加减乘除运算符进行基本的数学运算,也可以使用内置的函数来进行更复杂的运算,比如矩阵乘法、转置、求逆等运算。
此外,MATLAB还提供了丰富的线性代数和信号处理函数,可以方便地对多维数组进行各种运算和处理。
除了基本的运算外,MATLAB还提供了强大的绘图功能,可以直观地展示多维数组的数据分布和变化趋势。
通过绘图,可以更直观
地理解多维数组的特性和运算结果。
总之,MATLAB提供了丰富的工具和函数来创建和运算多维数组,可以满足各种复杂的科学计算和工程应用需求。
通过灵活运用这些
工具和函数,可以高效地处理和分析多维数组数据。
Matlab数组、数组运算和矩阵运算
Matlab数组、数组运算和矩阵运算1、数值数组matlab中数组不需要声明。
(1)对一维数值数组赋初值逐个元素输入:x=[1 2 pi/2]冒号生成:x=1:0.1:4定数线性采样法:x=linspace (a,b,n)%相当于第一个数为a,最后一个数为b,以n为采样点数等间距采样。
x=logspace(a,b,n)%相当于第一个数为10a,最后一个数为10b,以n为采样点数等间距采样。
(2)对一维数值数组的寻访x(3) %寻访第三个元素x([1 2 3]) %寻访第1,2,3个元素x(1:3) %寻访第1到3个元素x(3:-1:1) %由前三个元素倒排成子数组x(find(x>0.5)) %由大于0.5的元素构成的子数组(3)对二维数值数组赋初值逐个赋值:x=[1,2,3; 3,4,6; 7,8,9]%“;”为二维数组“行”的分隔符号,而“,”和空格为同一行元素的分隔符。
整列赋值:x(:,[4,5])=4 %第4、5列赋值为4元素重排:A=reshape(1:9,3,3)%将1到9重新排列成一个(3*3)矩阵,注意matlab是列“优先”,即先排第一列再排第二列,而不是按行来排。
(4)二维数组元素的标识和寻访“全下标”标识:A(3,5) %第3行第5列元素“单下标”标识:对于一个(m*n)维数组A中第r行第c列元素,其“单下标”表示为:A(l) %这里l=(c-1)*m+r2、数组运算和矩阵运算(1)数组运算指令含义A.'相当于conj(A'),conj的作用help一下吧……A=s把标量s赋给A的每个元素s+B标量s分别与B元素之和s-B,B-s标量s分别与B元素之差s.*A标量s分别与A元素之积s./B,B.\ss分别被B的元素除A.^nA的每个元素自乘n次A.^p对A的各个元素分别求非整数幂p.^A以p为底,分别以A的元素为指数求幂A+B对应元素相加A-B对应元素相减A.*B对应元素相乘A./BA的元素被B的对应元素除B.\A同上exp(A)以e为底,分别以A的元素为指数求幂log(A)对A的各个元素求对数sqrt(A)对A的各个元素求平方根f(A)求A各个元素的函数值A#B对应元素的关系运算,#代表关系运算符A@B对应元素的逻辑运算,@代表逻辑运算符(2)矩阵运算含义A'共轭转置s*A标量s分别与A元素之积S*inv(B)B阵的逆乘sA^nA阵为方阵时,自乘n次A^p方阵A的非整数乘方p^AA阵为方阵时,标量的矩阵乘方A+B矩阵相加A-B矩阵相减A*B矩阵相乘A/BA右除BB\AA左除Bexpm(A)A的矩阵指数函数logm(A)A的矩阵对数函数sqrtm(A)A的矩阵平方根函数funm(A,'FN')一般矩阵函数3、逻辑数组看例子就明白了:A=zeros(2,5); %预生成一个(2*5)全零数组A(:)=-4:5; %运用“全元素”方法向A赋值L=abs(A)>3 %产生一个与A同维的“0 -1”逻辑值数组islogical(L) %判断L是否逻辑值数组。
MATLAB第三章数值数组及其运算
行向量
如:array=[2, pi/2, sqrt(3), 3+5i]
x=[1,2,3,4,5都已知.如对 少量实验数据的处理可用此种方法.
4
(2) 冒号生成法: array=a: inc: b
<向量>
a---数组的第一个元素
inc---采样点之间的间隔, 即步长. 最后一个元素不一定等于b, 其大小为b’=a +inc*[(b-a)/inc]; 步长可以省略, 默认为 1; inc可以取正数或负数, 但要注意当取正时,要保证b>a, 数 组最后一个元素不超过b, 取负时b<a, 最后一个元素不小于b.
(2) 数值计算解法
delt=0.01; x=0:delt:4;
y=exp(-sin(x));
sx=delt*cumtrapz(y);
plot(x,y, 'r', 'LineWidth', 6); hold on;
plot(x, sx, '.b', 'MarkerSize', 15);
plot(x, ones(size(x)), 'k');
a inc>0 b
b inc>0 a
特点: 等差数列
方便对数据之间的间隔(步长)进行控制.但要注意三个数值之 间的关系,可能得到空数组.另外要注意生成的数组的元素的 个数.如x=a: (b-a)/n :b (b>a)得到n+1个元素的数组.
5
x=1:5x=[1,2,3,4,5]
y=5:-1:1y=[5, 4, 3, 2, 1]
2. 在命令窗中输入MyMatrix
11
3.5 二维数组的标识 (mxn, m>1, n>1)
matlab 数组或运算
matlab 数组或运算Matlab是一种强大的数学软件,它提供了许多数组和运算功能,方便用户进行数据处理、分析和可视化。
本文将介绍一些常用的Matlab数组和运算,并探讨它们在不同领域的应用。
一、数组操作1. 创建数组在Matlab中,可以使用多种方式创建数组,如直接赋值、使用函数生成等。
例如,可以使用以下语句创建一个包含1到10的整数的数组:```matlabA = 1:10;```2. 访问数组元素可以使用索引访问数组中的元素。
Matlab中的索引从1开始,例如,可以使用以下语句访问数组A的第一个元素:```matlabA(1)```3. 修改数组元素可以通过赋值操作修改数组中的元素。
例如,可以使用以下语句将数组A的第一个元素修改为100:```matlabA(1) = 100;```4. 数组运算Matlab提供了一系列的数组运算,包括加法、减法、乘法、除法等。
例如,可以使用以下语句对数组A进行加法运算:```matlabB = A + 1;```二、常见的数组操作函数1. 数组求和可以使用sum函数对数组中的元素进行求和。
例如,可以使用以下语句计算数组A中所有元素的和:```matlabtotal = sum(A);```2. 数组平均值可以使用mean函数计算数组的平均值。
例如,可以使用以下语句计算数组A的平均值:```matlabavg = mean(A);```3. 数组最大值和最小值可以使用max和min函数分别计算数组的最大值和最小值。
例如,可以使用以下语句计算数组A的最大值和最小值:```matlabmaxValue = max(A);minValue = min(A);```4. 数组排序可以使用sort函数对数组进行排序。
例如,可以使用以下语句对数组A进行升序排序:```matlabsortedA = sort(A);```三、数组和运算的应用场景1. 数据分析在数据分析中,经常需要对大量数据进行处理和分析。
第五讲-MATLAB之数组运算
数组的算术运算运算运算符含义说明加 + 相应元素相加减 - 相应元素相减乘 * 矩阵乘法点乘 .* 相应元素相乘幂 ^ 矩阵幂运算点幂 .^ 相应元素进行幂运算左除或右除\或/ 矩阵左除或右除左点除或右点除 .\或./ A的元素被B的对应元素除【例】数组加减法 >>A = rand(3); >>B = rand(3); >>A+B, A-B, A*B >>A/B, A\B 【例】点幂“.^”>>a=1:6>>a=a.^2>>b=reshape(a,2,3) >>b=b.^2关系运算MATLAB提供了6种关系运算符:<、>、<=、>=、==、~ =(不等于)关系运算符的运算法则:1、当两个标量进行比较时,直接比较两数大小。
若关系成立,结果为1,否则为0。
2、当两个维数相等的矩阵进行比较时,其相应位置的元素按标量关系进行比较,并给出结果,形成一个维数与原来相同的0、1矩阵。
3、当一个标量与一个矩阵比较时,该标量与矩阵的各元素进行比较,结果形成一个与矩阵维数相等的0、1矩阵。
【例】建立5阶方阵A,判断其元素能否被3整除。
A = [24, 35, 13, 22, 63; 23, 39, 47, 80, 80; ...90, 41, 80, 29, 10; 45, 57, 85, 62, 21; 37, 19, 31, 88, 76] P = rem(A,3)==0 %被3除,求余逻辑运算Matlab提供了3种逻辑运算符:&(与)、|(或)、~(非)逻辑运算符的运算法则:1、在逻辑运算中,确认非零元素为真(1),零元素为假(0)。
2、当两个维数相等的矩阵进行比较时,其相应位置的元素按标量关系进行比较,并给出结果,形成一个维数与原来相同的0、1矩阵;3、当一个标量与一个矩阵比较时,该标量与矩阵的各元素进行比较,结果形成一个与矩阵维数相等的0、1矩阵;4、算术运算优先级最高,逻辑运算优先级最低。
matlab数值数组及向量化运算
第2章 数值数组及向量化运算数值数组(Numeric Array )和数组运算(Array Operations )始终是MATLAB 的核心内容。
本章教学内容:数组浮点算法的特点;一、二维数值数组的创建和寻访;常用标准数组生成函数和数组构作技法;数组运算和向量化编程;实现数组运算的基本函数;关系和逻辑操作。
2.1 数值计算的特点和地位【例2.1-1】已知t t t f cos )(2=,求dt t f x s x⎰= 0 )()(。
(1)符号计算解法syms t x %定义符号变量ft=t^2*cos(t)sx=int(ft,t,0,x)ft =t^2*cos(t)sx =x^2*sin(x)-2*sin(x)+2*x*cos(x)(2)数值计算解法dt=0.05;t=0:dt:5; %取一些离散点Ft=t.^2.*cos(t);Sx=dt*cumtrapz(Ft); %梯形法求定积分t(end-4:end) %end 表示最后一个元素Sx(end-4:end) %Sx 的最后5个元素plot(t,Sx,'.k','MarkerSize',12)xlabel('x'),ylabel('Sx'),grid onans =4.8000 4.8500 4.9000 4.95005.0000ans =-20.1144 -19.9833 -19.7907 -19.5345 -19.2131图 2.1-1 在区间[0, 5]采样点上算得的定积分值【例2.1-2】已知)sin()(t e t f -=,求⎰=40 )()(dt t f x s 。
本例演示:被积函数没有“封闭解析表达式”,符号计算无法解题!(1)符号计算解法syms t xft=exp(-sin(t))sx=int(ft,t,0,4)ft =exp(-sin(t))Warning: Explicit integral could not be found.> In sym.int at 58sx =int(exp(-sin(t)),t = 0 .. 4)(2)数值计算解法dt=0.05;t=0:dt:4;Ft=exp(-sin(t));Sx=dt*cumtrapz(Ft);Sx(end)plot(t,Ft,'*r','MarkerSize',4)hold onplot(t,Sx,'.k','MarkerSize',15)hold offxlabel('x')legend('Ft','Sx')ans =3.0632图 2.1-2 在区间[0, 4]中间的被积函数及其原函数的离散计算结果小结:(1)符号计算长处——可以对包含变量字符、参数字符和数字的表达式进行推理、运算,并给出符号结果,与高等数学中的解析式比较接近;符号计算的短处——很多问题无解或求解时间过长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计算机仿真
20
2.5 数组的关系运算和逻辑运算
关系运算
例题2-12
<、<=、>、>=、==、~ = 标量可以与数组比较,比较在此标量和数组 的每个元素之间进行,比较结果与被比较数 组同维 数组与数组比较必须维数相同,对相同位置 数进行对比
30
2.7 元胞数组
2.元胞数组的创建和显示
【例2-18】演示: (2 × 2) 元胞数组的创建。 C_str=char('这是','元胞数组创建算例 1'); R=reshape(1:9,3,3);Cn=[1+2i]; S_sym=sym('sin(-3*t)*exp(-t)'); (1)直接创建法之一 A=cell(2,2); A(1,1)={C_str};A(1,2)={R};A(2,1)={Cn};A(2,2)={S_sy m}; A 例2-18 A = [2x10 char] [3x3 double] [1.0000+ 2.0000i] [1x1 sym ]
计算机仿真 第二章
MatLab 数组及其运算 李益兵 ahlyb@
计算机仿真
1
数值数组(Numeral Array)和数组运算(Array Operations)是MatLab的核心内容。 MatLab是以复数矩阵作为基本的运算单元,向量和 标量都作为特殊的矩阵来处理:向量当作只有一行或一列 矩阵,标量则为只有一个元素的矩阵。
计算机仿真
10
2.2.1 常用数组生成
diag([3,3,3]) diag 产生对角线数组(二维以下) eye(3);eye(3,4);eye(4,3);eye(3,3) eye 产生单位数组(二维以下)
magic 产生魔方数组(二维以下) 每行每列之和相等 ones 产生全1数组 rand 产生0、1间均匀分布的随机数组 ones(2);ones(3,4) rand(3);rand(3,4)
计算机仿真
36
2.8 构架数组
Structure Array
构架数组的创建和显示
例2-20 %2.21 student_rec.number=1; student_='王新宇'; student_rec.height=180; student_rec.test=[100,80,75;77,60,92;67,28,90;100,89,78]; student_rec
计算机仿真
37
常用的基本数学函数
计算机仿真
38
向量运算的常用函数
计算机仿真
39
计算机仿真
35
2.8 构架数组
s = struct('field1',{},'field2',{},...) %建立一个空的结构体,field1,field2是域名称 s = struct('field1',values1, 'field2',values2,...) %建立结构体的时候就赋值,values1,values2就 是针对field1,field2所赋的值。 例如: s = struct('type',{'big','little'},'color',{'red'},'x',{3 4}) 这个结构体有三个域'type', 'color', 'x'
计算机仿真
18
2.4 非数和空数组 空数组 元素均为0的数组、[ ] 例题2-11
计算机仿真
19
2.5 数组的关系运算和逻辑运算
(1)Matlab没有定义专门的逻辑变量,在所有关系、 逻辑表达式中,作为输入的任何非0数都被看成是 “逻辑真”,只有0被认为是“逻辑假” (2)所以关系和逻辑表达式的计算结果,是一个由0 和1组成的“逻辑数组”
胞外标识——表示元胞数组中某个元胞的位置,用圆括号()。 如a(2,3)表示a元胞数组中第二行第三列元胞元素
元胞内寻访——表示元胞数组中某个元胞的内容,用大括 号{}。如a{2,3}表示a元胞数组中第二行第三类元胞中的内 容
计算机仿真
29
2.7 元胞数组
字符矩阵 数值 矩阵
复数 矩阵
元胞 数组
计算机仿真
– [2x10 char ] [3x3 double] – [1.0000+ 2.0000i] [1x1 sym ] – [2x11 char ] [] – [1x10 double] []
例2-18
计算机仿真
32
2.7 元胞数组
2.元胞数组的创建和显示
【例2-18】cellplot 能用图形形象化地表示元胞数 组的内容。(A_C 取自上例) cellplot(A_C,'legend')
计算机仿真
7
2.2 数值数组的生成和寻访
数组的生成 ⑶定数线性采样法 例2-2
x=linspace(first,last,n)
在设定总点数的情况下,均匀采样生成一维行数组。 创建从first开始,到last结束,有n个元素的行向量x。 n省略默认为100。
计算机仿真
8
2.2 数值数组的生成和寻访
str2num
把串转换为数值
•Abs——将串翻译成ASCII码 •Bin2dec——二进制串转变成十进制整数 •Char——ascii码及其他非数值类数据转换成字符串 •Double——将任何类数据转换成双精度数值 •Intstr——将整数转换为串 •Setstr——将AScii吗翻译成串
计算机仿真
数组的生成 ⑷利用M文件 例2-3
对于经常需要调用的且比较大的数组,可专门为该数组 创建一个M文件。
计算机仿真
9
简单数组创建
命 令 x=[2+i squrt(2) 2*pi] x=first:last x=first:increment:last x=linspace(first,last,n) (线性分隔) x=logspace(first,last,n) (对数分隔) 功 能 创建包含指定元素的行向量x 创建从first开始,加1计数,到 last结束的行向量x 创建从first开始,加增量计数, 到last结束的行向量x 创建从first开始,到last结束,有 n个元素的行向量x 创建从 10 first 开始,到 10 last 结束, 有n个元素的行向量x
magic(3)
randn 产生-1、1间正态分布随机数组 randn(3);randn(2,3) zeros 产生全0数组 zeros(3,2);zeros(3) 例2-4
计算机仿真
11
2.2.2 数值数组的寻访
一维数组的寻访 格式:X(index) 例2-5
Index可以是单个正整数或正整数数组
矩阵只是数组的一种特例,它是二维的数值型数组, 表示了一种线性变换关系。
计算机仿真
2
矩阵—数值数组的特例
矩阵的概念 从外观和数据结构上看,二维数组和数学中的矩阵没 有区别。但是,矩阵作为一种变换或影射算子的体现,矩 阵运算有着明确而严格的数学规则。 矩阵运算 数组运算 按照线性代数的运算规则进行 对数组中的每个元素进行同样的运算
计算机仿真
4
2.1 MATLAB的数据类型
数据类型
Data Types
数值
字符串
元胞
结构体
函数句柄
Java类
numeric
char
单精度
cell
整数类
structure
function handle
Java class
双精度
double
稀疏
single
int 数据运算 数据结构
sparse
MATLAB的数据都是以“数组”的形式出现的
MATLAB精心设计数组和数组运算的目的 ①使计算程序简单、易读,使程序命令更接近于教科书上 的数学计算公式; ②提高程序的向量化程度,提高计算效率,节省计算机资 源。
计算机仿真
3
第二章 MATLAB数组及其运算 2.1 MATLAB的数据类型 2.2 数值数组的生成和寻访 2.3 数组运算和矩阵运算 2.4 非数和空数组 2.5 数组的关系运算和逻辑运算 2.6 字符串数组 2.7 元胞数组 2.8 构架数组
计算机仿真
21
2.5 数组的关系运算和逻辑运算 逻辑运算 例题2-13
& 与、 | 或、 ~ 非
计算机仿真
22
2.6 字符串数组
字符变量的创建
A=‘机械工程及自动化’ 例题2-14 字符变量
计算机仿真
23
字符串数组操作函数
例题2-15
计算机仿真
24
字符串转换函数
num2str 把数值转换为串
计算机仿真
5
2.2 数值数组的生成和寻访
数组的生成 ⑴逐个元素输入法 对于较小的简单的数组,从键盘上直接输入,需要遵循以 下几个原则: • 数组(矩阵)中每一行的元素必须用空格或逗号分开 • 在数组(矩阵)中,用分号或回车行表明每一行的结束 • 整个输入数组(矩阵)必须包含在方括号中
ቤተ መጻሕፍቲ ባይዱ
计算机仿真
6
2.2 数值数组的生成和寻访
二维数组的寻访 A(:, j)
例2-6
格式:A(:, j) 表示a矩阵第j列所有元素 A(i, :) 表示a矩阵第i行所有元素 A(1:3, 2:4)表示a矩阵第1-3行,2-4列元素 构成的子矩阵 指令: size(A)
计算机仿真
查看矩阵的维数
12