matlab数组运算
matlab数组比较运算
matlab数组比较运算Matlab是一种强大的数学计算软件,它提供了丰富的数组比较运算功能。
本文将介绍一些常用的数组比较运算符,并给出一些实际应用的示例。
在Matlab中,数组比较运算符主要包括等于(==)、不等于(~=)、大于(>)、小于(<)、大于等于(>=)和小于等于(<=)等。
这些运算符可以用于比较两个数组的元素,并返回一个逻辑数组作为结果。
逻辑数组中的每个元素代表了对应位置的元素是否满足比较关系。
我们来看一些简单的数组比较运算示例。
假设有两个数组a和b,它们分别如下所示:a = [1, 2, 3, 4, 5];b = [2, 2, 3, 3, 4];我们可以使用等于运算符(==)来比较这两个数组的元素是否相等:result = a == b;运行上述代码后,将得到一个逻辑数组result,其中的元素分别表示对应位置的元素是否相等。
在本例中,result的值为[0, 1, 1, 0, 0],表示a和b的第2个和第3个元素相等,其他位置的元素不相等。
除了等于运算符,我们还可以使用其他的数组比较运算符。
例如,不等于运算符(~=)可以用来比较两个数组的元素是否不相等:result = a ~= b;运行上述代码后,将得到一个逻辑数组result,其中的元素分别表示对应位置的元素是否不相等。
在本例中,result的值为[1, 0, 0, 1, 1],表示a和b的第1个、第4个和第5个元素不相等,其他位置的元素相等。
类似地,大于运算符(>)、小于运算符(<)、大于等于运算符(>=)和小于等于运算符(<=)可以用于比较两个数组的元素大小关系。
例如,我们可以使用大于运算符(>)来比较两个数组的对应位置的元素是否满足a中的元素大于b中的元素:result = a > b;运行上述代码后,将得到一个逻辑数组result,其中的元素分别表示对应位置的元素是否满足a中的元素大于b中的元素。
MATLAB-3数组运算
26
23
(3) 若参与逻辑运算的是两个同维矩阵,那么运算 将对矩阵相同位置上的元素按标量规则逐个进行。 最终运算结果是一个与原矩阵同维的矩阵,其元 素由1或0组成。
(4) 若参与逻辑运算的一个是标量,一个是矩阵, 那么运算将在标量与矩阵中的每个元素之间按标 量规则逐个进行。最终运算结果是一个与矩阵同 维的矩阵,其元素由1或0组成。
>> F./E ans = 1.0000 2.0000 2.3333 0.5000 1.0000 1.3333 0.4286 0.7500 1.0000 >> E*F ans = 14 32 50 32 77 122 50 122 194 >> E.*F ans = 1 8 21 8 25 48 21 48 81
5
多维数组的建立
4. 利用函数repmat生成多维数组
C=ones(2,3) repmat(C,[1 1 3]) % repmat写出类似reshape的 repmat(C,1,1,3)将显示出错 提示:repmat是通过数组复制创建多维数组的,上面的代码即 是将数组C在行维和列维分别复制一次,然后再页维复制三次得 到2×3×3的三维数组。
多维数组及其运算
1
多维数组的定义
在MATLAB 的数据类型中,向量可视为一维数组,
矩阵可视为二维数组,对于维数超过2的数组均可
视为「多维数组」简称N-D Arrays。
2
将两个二维数组叠在一起,就构成三维数组,第三维称 为「页」(Page),其中每一页包含一个由行和列构成的 二维数组,如下图所示:
6
多维数组的建立
5. 利用函数cat生成多维数组
a=zeros(2); b=ones(2); c=repmat(2,2,2); D=cat(3,a,b,c) D=cat(4,a,b,c) %创建三维数组 %创建4维数组。
matlab中的数组
matlab中的数组Matlab中的数组Matlab是一种强大的数学计算软件,广泛用于科学计算、数据分析、图像处理等领域。
在Matlab中,数组是一种重要的数据类型,它可以存储多个数值或字符串,并且可以进行各种数学运算和统计分析。
本文将介绍Matlab中的数组及其常见操作。
一、数组的定义和初始化在Matlab中,可以使用以下方式定义和初始化数组:1. 直接输入数组元素,用空格或逗号分隔,用方括号括起来:a = [1 2 3 4 5];b = [1, 2, 3, 4, 5];2. 使用冒号运算符和步长来生成等差数列:c = 1:5; % 生成[1 2 3 4 5]d = 1:2:9; % 生成[1 3 5 7 9]3. 使用linspace函数生成指定范围和元素个数的等差数列:e = linspace(0, 1, 5); % 生成[0 0.25 0.5 0.75 1]4. 使用rand函数生成指定大小的随机数矩阵:f = rand(3, 2); % 生成一个3行2列的随机数矩阵二、数组的索引和切片Matlab中可以使用下标操作符(方括号)来访问数组元素。
下标从1开始,可以使用单个下标或多个下标来访问单个元素或多个元素。
例如:a = [1 2 3 4 5];b = a(2); % b等于2c = a(1:3); % c等于[1 2 3]Matlab还支持使用逗号来进行多维数组的索引和切片。
例如:A = [1 2 3; 4 5 6; 7 8 9];B = A(2,:); % B等于[4 5 6]C = A(:,1:2); % C等于[1 2; 4 5; 7 8]三、数组的运算和函数Matlab中的数组支持各种数学运算和函数,包括加、减、乘、除、幂次方、三角函数、指数函数、对数函数等。
例如:a = [1 2 3];b = [4 5 6];c = a + b; % c等于[5 7 9]d = a .* b; % d等于[4 10 18]e = a .^ 2; % e等于[1 4 9]f = sin(a); % f等于[0.8415 0.9093 0.1411]g = exp(a); % g等于[2.7183 7.3891 20.0855]h = log(a); % h等于[0 0.6931 1.0986]Matlab还提供了许多常用的数组函数,例如mean、sum、max、min、std、sort等,用于计算数组的平均值、总和、最大值、最小值、标准差、排序等统计信息。
第5章 matlab数组和数组运算(2)
1. 标准数组:全1数组,全0数组,单位矩阵,随机矩阵,对角矩阵以及元素为指定常数的数组。
2.全1数组用ones函数,全0数组用zeros函数。
对于ones和zeros函数,当只有一个输入参数时,即ones(n)或zeros(n),Matlab就分别生成一个n×n的全1或者全0数组。
当有两个输入参数时,即ones(r,c)或者zeros(r,c),Matlab就分别生成r 行c列的全1或者全0数组。
要想生成一个与其他数组相同维数的全1或者全0数组,用户只要在ones或者zeros的参数中调用size函数就可以了。
测试数组:ones(4),m = ones(4,8)zeros(4),zeros(3,5),size(m),zeros(size(m))。
3.单位矩阵用eye函数。
该函数用与ones和zeros函数相同的语法格式来生成单位矩阵。
单位矩阵或数组是具有如下取值的矩阵或数组:除A(i,i)之外,所有其他元素都为0,其中i=min(r,c),min(r,c)是矩阵A中的行数和列数的最小数。
4.随机矩阵用rand函数。
函数rand生成均匀分布的随机数组,其元素取值介于0-1之间。
直接调用rand产生一个随机数,随机数组用rand(n)。
另外randn函数将生成均值为0,方差为1的正态分布矩阵。
rand和randn用法和ones相同。
5.对角矩阵用diag函数。
在该数组中,一个向量可以被放在与数组的主对角线平行的任何位置。
验证:a = 1:5 diag(a) diag(a,1)diag(a,-2)6.几种生成所有元素都相同的数组的方法,先令d=pi(1)d*one(3,4) slowest method(2)d+zeros(3,4) slower method(3)d(ones(3,4)) fast method(4)repmat(d,3,4) fastest method数组的数据量较小时,4种方法都可以。
2、MATLAB(数组、向量运算)
数组函数
• 数组元素的求和:
• sum() • cumsum()
• 数组元素的求积:
• prod() • cumprod()
• 数组元素的平均值:
• Mean()
• 数组元素的最大(小)值:
• max() • std() min()
• 数组元素的标准偏差:
二维数组操作函数
cat flipud 把“大小”相同的若干数组,沿“指定维”方向,串接成高 维数组 以数组“水平中线”为对称轴,交换上下对称位置上的数组 元素
一维数组的创建
(4) 对数等分 y=logspace(x1,x2,n) 其中:表示在10x1和10x2之间插入n-2个数 n代表的是点的数目,即分成n-1分, 步长应当是10(x2-x1)/(n-1);若n<2,则返回10x2。 例:>>y=logspace(2,5,5) >>y=logspace(0,5,6) >>y=logspace(2,5,1)
二维数组的创建
(1)逐个元素输入法 例: 创建一个2行3列的数组 >>a= [1 2 3;4 5 6] (2)由一维数组构成 >>a=1:2:9,b=2:2:10 >>c=[a,b],d=[a;b] (3)由函数生成
常见的二维数组生成函数
zeros(m,n) 生成一个 m 行 n 列的零矩阵,m=n 时可简写为 zeros(n)
一维数组中子数组的寻访和赋值
• 【例】子数组的寻访(Address)。 x([1 2 5]) x(1:3) x(3:end) x(3:-1:1) x(find(x>0.5)) • 【例】子数组的赋值(Assign)。 x([1,4])=[2,7] x([1,4])=10
matlab数组用法
matlab数组用法一、概述Matlab是一种基于矩阵运算的高级技术计算语言,其数组是Matlab 的重要组成部分。
Matlab数组可以存储多个数值或字符等数据类型,并且可以进行各种数学运算和数据处理。
二、创建数组1. 直接赋值法可以使用中括号[]来创建数组,用逗号分隔不同元素,如:a = [1,2,3,4,5]2. linspace函数linspace函数可以在指定的区间内生成指定数量的等差数列,如:b = linspace(0,1,11)3. logspace函数logspace函数可以在指定的区间内生成指定数量的对数数列,如:c = logspace(0,1,11)4. zeros和ones函数zeros和ones函数可以创建全为0或全为1的矩阵或向量,如:d = zeros(3,4)e = ones(2,3)三、访问数组元素1. 使用下标访问Matlab中使用下标来访问数组元素,下标从1开始计数。
如:a(2)表示访问a数组中第二个元素。
2. 使用冒号操作符访问多个元素冒号操作符(:)用于表示连续的整数序列。
如:a(2:4)表示访问a数组中第二到第四个元素。
四、修改数组元素使用下标可以修改数组元素的值。
如:a(2) = 6五、数组运算1. 数组加减乘除Matlab中可以对数组进行加减乘除等运算,如:a = [1,2,3]b = [4,5,6]c = a + b2. 数组点乘和点除使用.*和./可以对两个数组进行对应元素的乘法和除法,如:a = [1,2,3]b = [4,5,6]c = a .* b六、数组函数Matlab中提供了众多的数组函数,可以方便地进行各种数学运算和数据处理。
以下是一些常用的数组函数:1. sum函数:计算数组元素之和。
2. mean函数:计算数组元素的平均值。
3. max函数:返回数组中最大元素。
4. min函数:返回数组中最小元素。
5. sort函数:对数组进行排序。
第一章 Matlab中的数组操作讲解
b=[2,3,-1,5,6], A=diag(b,1)
0 2 0 0 0 0
0 0 3 0 0 0 0 0 0 -1 0 0 0 0 0 0 5 0 0 0 0 0 0 6
B=diag(b,-2)
a=linspace(1,20,6)
a= 1.00 4.80 8.601,3,5个元素构成数组b: b=a(1:2:5) 提取a的第2到5个元素,并反转次序构成数组b1: b1=a(5:-1:2) 按条件提取子数组: 提取a的元素值大于10的元素构成数组b2 b2=a(find(a>10))
a= 'matlab' [2x3 double] [4x5 double] [ 20]
[1x10 double] [4x4 double]
a=
'matlab' [2x3 double] [4x5 double] [ 20] b=a(3,2)
[1x10 double] [4x4 double]
b=
[4x4 double]
0 0 -1 0 0 0 0
0 0 0 5 0 0 0 0 0 0 0 6 0 0
0 0 0 0 0 0
例1.1 输入n阶矩阵
4 2 1 A 0 2 4 2 1 1 2 4 2 1 2 4 1 0 1 2 4
n=input('输入方阵阶数n=')
D=10
N=
M=
3
3
2
1
wxy
wxz
3
2
7
1
wyz
matlab数组做统一加减乘除变换
标题: MATLAB中数组的统一加减乘除变换简介:在MATLAB中,对数组进行统一的加减乘除变换是非常常见的操作。
这些变换能够高效地处理大量数据,为数据分析和数值计算提供了强大的支持。
本文将详细介绍如何在MATLAB中对数组进行统一的加减乘除变换,包括基本的算术运算、向量化操作以及广播机制等。
正文:在MATLAB中,数组是一种重要的数据结构,它可以存储多个相同类型的元素。
对数组进行统一的加减乘除变换,意味着对数组中的每个元素执行相同的运算操作。
1. 基本算术运算MATLAB支持基本的算术运算符,如加号+、减号-、乘号*和除号/。
这些运算符可以直接应用于数组,实现对数组中每个元素的统一变换。
例如,假设有两个数组A和B,我们对它们进行加法运算:matlabA = [1, 2, 3];B = [4, 5, 6];C = A + B; % 结果 C = [5, 7, 9]同样地,减法、乘法和除法运算也可以这样进行:matlabD = A - B; % 结果 D = [-3, -3, -3]E = A * B; % 结果 E = [4, 10, 18] (对应元素相乘)F = A ./ B; % 结果 F = [0.25, 0.4, 0.5] (对应元素相除)2. 向量化操作在MATLAB中,向量化操作是一种高效的数据处理方式。
它允许你使用简单的算术运算符对整个数组进行操作,而不需要使用循环或迭代。
例如,如果你想给数组A中的每个元素都加上一个常数k,可以直接这样做:matlabA = [1, 2, 3];k = 10;A = A + k; % 结果 A = [11, 12, 13]同样地,你可以对整个数组进行乘法、除法等操作:matlabA = [1, 2, 3];k = 2;A = A * k; % 结果 A = [2, 4, 6]A = A / k; % 结果 A = [0.5, 1, 1.5]3. 广播机制在MATLAB中,广播机制允许你对不同大小的数组进行算术运算。
Matlab数组、数组运算和矩阵运算
Matlab数组、数组运算和矩阵运算1、数值数组matlab中数组不需要声明。
(1)对一维数值数组赋初值逐个元素输入:x=[1 2 pi/2]冒号生成:x=1:0.1:4定数线性采样法:x=linspace (a,b,n)%相当于第一个数为a,最后一个数为b,以n为采样点数等间距采样。
x=logspace(a,b,n)%相当于第一个数为10a,最后一个数为10b,以n为采样点数等间距采样。
(2)对一维数值数组的寻访x(3) %寻访第三个元素x([1 2 3]) %寻访第1,2,3个元素x(1:3) %寻访第1到3个元素x(3:-1:1) %由前三个元素倒排成子数组x(find(x>0.5)) %由大于0.5的元素构成的子数组(3)对二维数值数组赋初值逐个赋值:x=[1,2,3; 3,4,6; 7,8,9]%“;”为二维数组“行”的分隔符号,而“,”和空格为同一行元素的分隔符。
整列赋值:x(:,[4,5])=4 %第4、5列赋值为4元素重排:A=reshape(1:9,3,3)%将1到9重新排列成一个(3*3)矩阵,注意matlab是列“优先”,即先排第一列再排第二列,而不是按行来排。
(4)二维数组元素的标识和寻访“全下标”标识:A(3,5) %第3行第5列元素“单下标”标识:对于一个(m*n)维数组A中第r行第c列元素,其“单下标”表示为:A(l) %这里l=(c-1)*m+r2、数组运算和矩阵运算(1)数组运算指令含义A.'相当于conj(A'),conj的作用help一下吧……A=s把标量s赋给A的每个元素s+B标量s分别与B元素之和s-B,B-s标量s分别与B元素之差s.*A标量s分别与A元素之积s./B,B.\ss分别被B的元素除A.^nA的每个元素自乘n次A.^p对A的各个元素分别求非整数幂p.^A以p为底,分别以A的元素为指数求幂A+B对应元素相加A-B对应元素相减A.*B对应元素相乘A./BA的元素被B的对应元素除B.\A同上exp(A)以e为底,分别以A的元素为指数求幂log(A)对A的各个元素求对数sqrt(A)对A的各个元素求平方根f(A)求A各个元素的函数值A#B对应元素的关系运算,#代表关系运算符A@B对应元素的逻辑运算,@代表逻辑运算符(2)矩阵运算含义A'共轭转置s*A标量s分别与A元素之积S*inv(B)B阵的逆乘sA^nA阵为方阵时,自乘n次A^p方阵A的非整数乘方p^AA阵为方阵时,标量的矩阵乘方A+B矩阵相加A-B矩阵相减A*B矩阵相乘A/BA右除BB\AA左除Bexpm(A)A的矩阵指数函数logm(A)A的矩阵对数函数sqrtm(A)A的矩阵平方根函数funm(A,'FN')一般矩阵函数3、逻辑数组看例子就明白了:A=zeros(2,5); %预生成一个(2*5)全零数组A(:)=-4:5; %运用“全元素”方法向A赋值L=abs(A)>3 %产生一个与A同维的“0 -1”逻辑值数组islogical(L) %判断L是否逻辑值数组。
Matlab编程---第一章---Matlab中的数组操作
精选2021版课件
5
4.元胞数组的创建 元胞数组是MATLAB的一种特殊数据类型,
可以将元胞数组看做一种无所不包的通用矩阵, 或者叫做广义矩阵。
组成元胞数组的元素可以是任何一种数据类型的 量,每一个元素也可以具有不同的尺寸,每一个元素 的内容也可以完全不同,元胞数组的元素叫做元胞。
b = -1 0 2 2 3 4 5 6 7 7 8 9 11 13
k = 2 12 3 11 1 6 4 7 5 13 14 10 8 9
精选2021版课件
14
(3)改变数组形状的命令
B=
x=[3,-1,2,5,7,4,6,11,13,9,2,8]
3
将一维数组x按条件转化为矩阵:
-1
B=reshape(x,3,4)
MATLAB基础应用
精选2021版课件
1
第一章 Matlab中的数组操作 matlab中的运算和操作是以数组为对象的, 数组又包括:数值数组、字符数组、元胞数组等。 数值数组:(1)n元数值向量(行向量与列向量)
(2)数值矩阵 (3)由数值矩阵构成的元胞数组 几个标点符号的作用: 逗号:用来将数组中的元素分开。(可用空格代替) 分号:用来将矩阵中的行分开。 (可用回车键代替) 冒号:相当于文字中的省略号。 中括号:界定数组的首与尾。
第n个元素,对于二元数组按列优先原则进行单下标编 址。
双下标编址:a(2,3)表示矩阵a的第2行第3列元素。 1. 数组元素与子数组的提取
提取数组a的第3个元素:y=a(3) 提取a的第3到7个元素:y=a(3:7),
精选2021版课件
7
a=linspace(1,20,6)
matlabmatlab 数组运算和矩阵运算的各个要求 -回复
matlabmatlab 数组运算和矩阵运算的各个要求-回复标题:Matlab中的数组运算和矩阵运算详解在Matlab中,数组和矩阵是两种基本的数据结构,它们在数值计算、科学计算、工程问题等领域有着广泛的应用。
理解和掌握Matlab中的数组运算和矩阵运算对于提升编程效率和解决实际问题具有重要意义。
以下将详细解析Matlab中数组运算和矩阵运算的各项要求和步骤。
一、Matlab中的数组运算1. 数组的定义与创建在Matlab中,可以通过直接赋值或者使用特定函数来创建数组。
例如,我们可以直接定义一个一维数组:matlaba = [1, 2, 3, 4, 5];或者使用`ones`, `zeros`, `linspace`, `rand`等函数创建特定类型的数组:matlabb = ones(1, 5); 创建全为1的一维数组c = linspace(0, 10, 5); 创建从0到10均匀分布的5个数的一维数组d = rand(1, 5); 创建包含5个0-1之间随机数的一维数组2. 数组的索引和切片在Matlab中,可以使用索引来访问和修改数组元素。
索引从1开始,例如:matlaba = [1, 2, 3, 4, 5];a(3) 返回数组a的第三个元素,即3a(3) = 6; 修改数组a的第三个元素为6同时,Matlab还支持数组的切片操作,通过冒号(:)可以获取数组的一部分:matlaba(2:4) 返回数组a的第二个到第四个元素,即[2, 3, 4]3. 数组运算Matlab支持多种数组运算,包括算术运算、逻辑运算、比较运算等。
- 算术运算:加(+)、减(-)、乘(*)、除(/)、乘方(^)等。
这些运算符既可以用于数组间的运算,也可以用于数组和标量间的运算。
matlaba = [1, 2, 3];b = [4, 5, 6];c = a + b; c = [5, 7, 9]d = a * 2; d = [2, 4, 6]- 逻辑运算:与(&)、或()、非(~)等。
matlab数组逻辑运算
matlab数组逻辑运算Matlab是一种功能强大的数值计算和科学工程软件,其数组逻辑运算功能可以帮助用户快速进行数据处理和分析。
本文将介绍Matlab 中数组逻辑运算的基本概念和常用操作,以及在实际应用中的一些案例。
数组逻辑运算是指对数组元素进行逻辑判断和运算的操作。
在Matlab中,可以使用逻辑运算符(例如等于、不等于、大于、小于等)对数组进行逻辑判断,得到一个逻辑数组。
逻辑数组中的元素为逻辑值(true或false),表示对应位置的元素是否满足逻辑条件。
我们来看一些简单的例子。
假设有两个数组A和B,分别为[1, 2, 3, 4, 5]和[4, 5, 6, 7, 8]。
我们可以使用等于运算符"=="对两个数组进行逻辑比较,得到一个逻辑数组C:C = A == B运行以上代码,得到的逻辑数组C为[false, false, false, true, false]。
这意味着数组A和B中对应位置的元素是否相等的判断结果。
在这个例子中,只有第四个位置的元素相等,所以C的第四个元素为true,其余为false。
除了等于运算符,Matlab还提供了其他常用的逻辑运算符,如不等于"~="、大于">"、小于"<"、大于等于">="、小于等于"<="等。
这些运算符可以用于对数组进行逻辑判断,并得到逻辑数组。
除了逻辑运算符,Matlab还提供了一些逻辑函数,如any、all等。
这些函数可以用于对逻辑数组进行操作,得到最终的逻辑结果。
例如,我们可以使用any函数判断逻辑数组中是否存在至少一个true 元素:result = any(C)运行以上代码,得到的结果为true。
这意味着逻辑数组C中至少存在一个true元素。
在实际应用中,数组逻辑运算经常用于数据筛选、条件判断和数据统计等场景。
MATLAB第三章数值数组及其运算
行向量
如:array=[2, pi/2, sqrt(3), 3+5i]
x=[1,2,3,4,5都已知.如对 少量实验数据的处理可用此种方法.
4
(2) 冒号生成法: array=a: inc: b
<向量>
a---数组的第一个元素
inc---采样点之间的间隔, 即步长. 最后一个元素不一定等于b, 其大小为b’=a +inc*[(b-a)/inc]; 步长可以省略, 默认为 1; inc可以取正数或负数, 但要注意当取正时,要保证b>a, 数 组最后一个元素不超过b, 取负时b<a, 最后一个元素不小于b.
(2) 数值计算解法
delt=0.01; x=0:delt:4;
y=exp(-sin(x));
sx=delt*cumtrapz(y);
plot(x,y, 'r', 'LineWidth', 6); hold on;
plot(x, sx, '.b', 'MarkerSize', 15);
plot(x, ones(size(x)), 'k');
a inc>0 b
b inc>0 a
特点: 等差数列
方便对数据之间的间隔(步长)进行控制.但要注意三个数值之 间的关系,可能得到空数组.另外要注意生成的数组的元素的 个数.如x=a: (b-a)/n :b (b>a)得到n+1个元素的数组.
5
x=1:5x=[1,2,3,4,5]
y=5:-1:1y=[5, 4, 3, 2, 1]
2. 在命令窗中输入MyMatrix
11
3.5 二维数组的标识 (mxn, m>1, n>1)
matlab 数组或运算
matlab 数组或运算Matlab是一种强大的数学软件,它提供了许多数组和运算功能,方便用户进行数据处理、分析和可视化。
本文将介绍一些常用的Matlab数组和运算,并探讨它们在不同领域的应用。
一、数组操作1. 创建数组在Matlab中,可以使用多种方式创建数组,如直接赋值、使用函数生成等。
例如,可以使用以下语句创建一个包含1到10的整数的数组:```matlabA = 1:10;```2. 访问数组元素可以使用索引访问数组中的元素。
Matlab中的索引从1开始,例如,可以使用以下语句访问数组A的第一个元素:```matlabA(1)```3. 修改数组元素可以通过赋值操作修改数组中的元素。
例如,可以使用以下语句将数组A的第一个元素修改为100:```matlabA(1) = 100;```4. 数组运算Matlab提供了一系列的数组运算,包括加法、减法、乘法、除法等。
例如,可以使用以下语句对数组A进行加法运算:```matlabB = A + 1;```二、常见的数组操作函数1. 数组求和可以使用sum函数对数组中的元素进行求和。
例如,可以使用以下语句计算数组A中所有元素的和:```matlabtotal = sum(A);```2. 数组平均值可以使用mean函数计算数组的平均值。
例如,可以使用以下语句计算数组A的平均值:```matlabavg = mean(A);```3. 数组最大值和最小值可以使用max和min函数分别计算数组的最大值和最小值。
例如,可以使用以下语句计算数组A的最大值和最小值:```matlabmaxValue = max(A);minValue = min(A);```4. 数组排序可以使用sort函数对数组进行排序。
例如,可以使用以下语句对数组A进行升序排序:```matlabsortedA = sort(A);```三、数组和运算的应用场景1. 数据分析在数据分析中,经常需要对大量数据进行处理和分析。
matlabmatlab 数组运算和矩阵运算的各个要求 -回复
matlabmatlab 数组运算和矩阵运算的各个要求-回复数组运算和矩阵运算是Matlab 中非常重要的概念。
本文将分别介绍数组运算和矩阵运算,并详细介绍它们的各个要求。
一、数组运算要求1. 数组维度相等:在进行数组运算时,要求参与运算的数组维度必须相等。
如果参与运算的数组维度不相等,那么Matlab 将无法进行运算并将抛出错误信息。
例如,假设有两个数组A 和B,如果想要对它们进行相加操作,那么A 和B 的维度必须完全相同。
2. 数组大小一致:在进行数组运算时,要求参与运算的数组大小必须一致。
数组大小指的是数组中每个维度的元素个数。
例如,假设有两个数组C 和D,如果想要对它们进行相乘操作,那么C 和D 的大小必须一致。
3. 数组类型兼容:在进行数组运算时,要求参与运算的数组类型必须兼容。
数组的类型包括数值型、字符型、逻辑型等。
例如,假设有一个数值型数组E 和一个字符型数组F,如果想要对它们进行相加操作,那么E 和F 的类型不兼容,将无法进行相加。
4. 数组运算符合运算规则:在进行数组运算时,要求所使用的运算符符合运算规则。
例如,加法运算要求两个数组进行对应元素相加,而乘法运算要求两个数组进行对应元素相乘。
例如,对于数组G 和H,如果想要对它们进行相加操作,那么G 和H 的大小和维度必须相同,并且元素相加后的结果将分别填充到相应位置上。
二、矩阵运算要求1. 矩阵维度兼容:在进行矩阵运算时,要求参与运算的矩阵维度必须兼容。
矩阵维度兼容指的是两个矩阵的列数和行数必须满足一定的条件。
例如,假设有两个矩阵M 和N,如果想要对它们进行矩阵乘法操作,那么M 的列数必须等于N 的行数。
2. 矩阵大小一致:在进行矩阵运算时,要求参与运算的矩阵大小必须一致。
矩阵大小指的是矩阵中每个维度的元素个数。
例如,假设有两个矩阵P 和Q,如果想要对它们进行矩阵加法操作,那么P 和Q 的大小必须完全一致。
3. 矩阵类型兼容:在进行矩阵运算时,要求参与运算的矩阵类型必须兼容。
matlabmatlab 数组运算和矩阵运算的各个要求 -回复
matlabmatlab 数组运算和矩阵运算的各个要求-回复MATLAB是一种强大的数值计算和科学编程环境,其数组运算和矩阵运算功能极为丰富。
在本文中,我们将详细介绍MATLAB中数组运算和矩阵运算的各个要求。
数组运算是指对MATLAB中的数组进行元素级别的操作,可以分为基本的数学运算、逻辑运算、关系运算和元素级别的函数运算等。
而矩阵运算则是基于线性代数的运算,包括矩阵的乘法、转置、求逆等。
在进行数组运算和矩阵运算时,我们需要满足一些要求和约束。
下面我们将详细介绍这些要求。
1. 数组和矩阵的尺寸匹配在进行数组和矩阵运算时,必须确保参与运算的数组和矩阵的尺寸匹配。
对于相同维度的数组,尺寸必须完全相同。
而对于矩阵,需要满足矩阵乘法的要求,即左边矩阵的列数必须等于右边矩阵的行数。
2. 数组和矩阵的类型相同在进行数组和矩阵运算时,需要确保参与运算的数组和矩阵类型相同。
不同类型的数据在进行运算时可能会导致类型转换或错误的结果。
3. 运算的复杂度在进行数组和矩阵运算时,需要考虑运算的复杂度。
对于大规模的数组和矩阵运算,应选择合适的算法和方法,以减少计算时间和存储空间的消耗。
4. 数组和矩阵的索引和切片在进行数组和矩阵运算时,可以使用索引和切片对数组和矩阵的特定元素进行访问和操作。
索引从1开始,可以使用冒号运算符(:)进行切片操作。
5. 避免循环运算在MATLAB中,循环运算的效率相对较低,特别是在大规模数据处理时循环的时间开销会很大。
可以通过向量化运算来替代循环运算,以提高计算效率。
6. 逐元素运算和矩阵运算的区别在进行数组和矩阵运算时,需要明确运算类型。
逐元素运算是指对数组中的每个元素进行独立的运算。
而矩阵运算是基于线性代数的运算,包括矩阵的乘法、转置、求逆等。
在选择运算方式时,需要根据需求和数据类型进行选择。
总结起来,MATLAB中的数组运算和矩阵运算有一些要求和约束,包括数组和矩阵的尺寸匹配,类型相同,运算的复杂度,索引和切片的使用,避免循环运算,以及逐元素运算和矩阵运算的区别等。
第五讲-MATLAB之数组运算
数组的算术运算运算运算符含义说明加 + 相应元素相加减 - 相应元素相减乘 * 矩阵乘法点乘 .* 相应元素相乘幂 ^ 矩阵幂运算点幂 .^ 相应元素进行幂运算左除或右除\或/ 矩阵左除或右除左点除或右点除 .\或./ A的元素被B的对应元素除【例】数组加减法 >>A = rand(3); >>B = rand(3); >>A+B, A-B, A*B >>A/B, A\B 【例】点幂“.^”>>a=1:6>>a=a.^2>>b=reshape(a,2,3) >>b=b.^2关系运算MATLAB提供了6种关系运算符:<、>、<=、>=、==、~ =(不等于)关系运算符的运算法则:1、当两个标量进行比较时,直接比较两数大小。
若关系成立,结果为1,否则为0。
2、当两个维数相等的矩阵进行比较时,其相应位置的元素按标量关系进行比较,并给出结果,形成一个维数与原来相同的0、1矩阵。
3、当一个标量与一个矩阵比较时,该标量与矩阵的各元素进行比较,结果形成一个与矩阵维数相等的0、1矩阵。
【例】建立5阶方阵A,判断其元素能否被3整除。
A = [24, 35, 13, 22, 63; 23, 39, 47, 80, 80; ...90, 41, 80, 29, 10; 45, 57, 85, 62, 21; 37, 19, 31, 88, 76] P = rem(A,3)==0 %被3除,求余逻辑运算Matlab提供了3种逻辑运算符:&(与)、|(或)、~(非)逻辑运算符的运算法则:1、在逻辑运算中,确认非零元素为真(1),零元素为假(0)。
2、当两个维数相等的矩阵进行比较时,其相应位置的元素按标量关系进行比较,并给出结果,形成一个维数与原来相同的0、1矩阵;3、当一个标量与一个矩阵比较时,该标量与矩阵的各元素进行比较,结果形成一个与矩阵维数相等的0、1矩阵;4、算术运算优先级最高,逻辑运算优先级最低。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Matlab中数组元素引用有三种方法:1.下标法(subscripts)2.索引法(index)3.布尔法(Boolean)在使用这三种方法之前,大家头脑一定要清晰的记住,Matlab中数组元素是按列存储(与Fortran一样),比如说下面的二维数组A=8 1 63 5 74 9 2Matlab的存储顺序是8,3,4,1,5,9,6,7,2,也就是说先行后列,对于3维数组呢,就是先行后列再页对应个元素的索引和下标分别为Element Index Subscripts8 1 (1,1)3 2 (2,1)4 3 (3,1)1 4 (1,2)5 5 (2,2)9 6 (3,2)6 7 (1,3)7 8 (2,3)2 9 (3,3)从上面的例子中已经很清晰的说明了下标和索引的区别了,也就是说Matlab为没有个元素分配了一个唯一识别的ID(即index)1.下标法引用A(ii,jj):其中ii和jj可以是一维向量、标量、“:”号或者“end”大家对下标估计比较熟悉,由于在C语言中接触过,但是我这里需要强调的是,Matlab的下标是可以多行多列同时引用的,而像C语言等一次只能引用一个,比如A(2:3,3:-1:1)表示引用数组中的2~3行,3~1列对应的元素A(:,end)表示引用最后一列元素,“:”表示所有列或行,“end”表示最后一列或列,“end-n”表示倒数第n行或列A(1,end-1)表示引用第1行倒数第2个元素A([2 1 3 3],[1 1 2 2 1])表示引用按两个向量引用指定的元素,即A中的第2,1,3,3行和第1,1,2,2,1列对应的元素>>A=magic(3)A =8 1 63 5 74 9 2>>A(2:3,3:-1:1)ans =7 5 32 9 4>>A(:,end)ans =672>>A(1,end-1)ans =1>>A([2 1 3 3],[1 1 2 2 1])ans =3 3 5 5 38 8 1 1 84 4 9 9 44 4 9 9 42.索引法引用(说白了索引就是存储顺序)A(index):index可以是任意的数组,index的元素必须是正整数,且不大于numel(A),返回的是一个尺寸与index一样的数组下标和索引之间可以通过ind2sub和sub2ind函数相互转换,具体可以看帮助,很简单[I,J] = ind2sub(siz,IND)IND = sub2ind(siz,I,J)还有使用A(:)就可以将数组A转换为列向量A(8):表示引用A的第8个元素B=A([1 10 5 2 2 1 3]):表示依次引用A的第1,10,5,2,2,1,3个元素,返回与index尺寸相同的数组,也就是说size(B)=size(index)A([2 5 9;1 1 1;8 5 6]):返回的时侯是一个3*3的矩阵>>A=magic(5)%括号中为索引值A =17 (1) 24 (6) 1 (11) 8 (16) 15 (21)23 (2) 5 (7) 7 (12) 14 (17) 16 (22)4 (3) 6 (8) 13 (13) 20 (18) 22 (23)10 (4) 12 (9) 19 (14) 21 (19) 3 (24)11 (5) 18 (10) 25 (15) 2 (20) 9 (25)>>A(8)ans =6>>A([1 10 5 2 2 1 3])ans =17 18 11 23 23 17 4>>A([2 5 9;1 1 1;8 5 6])ans =23 11 1217 17 176 11 243.布尔法引用A(X):X是一个有0和1组成布尔型数据,且size(A)=size(X),对应位置为1则留下该数据,0则去掉,最后按A中的存储顺序,返回一个列向量假如说A是3*3的数组A(logical([1 0 0;0 1 0;0 0 1])):表示引用了数组A的对角线元素,注意必须使用logical将0/1数组转换为布尔型>>A=magic(3)%生成一个3*3的数组A=8 1 63 5 74 9 2>>x=logical([1 1 0;0 1 1;1 0 1])%将double转化为boolean型数据x =1 1 00 1 11 0 1>>A(x)%引用对应位置为1的数据,返回列向量ans =841572>>x=A>5%是有了比较语句,返回布尔型数据,对应位置数据大于5的为1,否则为0x =1 0 10 0 10 1 0>>A(x)%返回大于A中大于5的元素,其实该命令可以一次性执行A(A>5)或者find(A>5),前者返回具体元素,后者返回大于5的数据的索引值ans =8967>>A(A>5)%一次性执行上面的命令ans =8967>>indx=find(A>5)%查找A中对于5的元素,返回它们的索引(index)值,此时我们可以通过A(index)返回具体的元素index =1678增加内容1、向量的创建1)直接输入:行向量:a=[1,2,3,4,5]列向量:a=[1;2;3;4;5]2)用“:”生成向量a=J:K 生成的行向量是a=[J,J+1,…,K]a=J:D:K 生成行向量a=[J,J+D,…,J+m*D],m=fix((K-J)/D)3)函数linspace 用来生成数据按等差形式排列的行向量x=linspace(X1,X2):在X1和X2间生成100个线性分布的数据,相邻的两个数据的差保持不变。
构成等差数列。
x=linspace(X1,X2,n): 在X1和X2间生成n个线性分布的数据,相邻的两个数据的差保持不变。
构成等差数列。
4)函数logspace用来生成等比形式排列的行向量X=logspace(x1,x2) 在x1和x2之间生成50个对数等分数据的行向量。
构成等比数列,数列的第一项x(1)=10x1,x(50)=10x2X=logspace(x1,x2,n) 在x1和x2之间生成n个对数等分数据的行向量。
构成等比数列,数列的第一项x(1)=10x1,x(n)=10x2注:向量的的转置:x=(0,5)’2、矩阵的创建1)直接输入:将数据括在[]中,同一行的元素用空格或逗号隔开,每一行可以用回车或是分号结束如:a=[1,2,3;3,4,5],运行后:a =1 2 33 4 52)函数eye,生成单位矩阵eye(n) :生成n*n阶单位Eeye(m,n):生成m*n的矩阵E,对角线元素为1,其他为0eye(size(A)):生成一个矩阵A大小相同的单位矩阵eye(m,n,classname):对角线上生成的元素是1,数据类型用classname指定。
其数据类型可以是:duoble、single、int8、uint8、int16、uint16、int32、uint32 。
3)函数ones 用ones生成全1的矩阵ones(n) : 生成n*n的全1矩阵ones(m,n) : 生成m*n的全1矩阵ones(size(A)) : 生成与矩阵A大小相同的全1矩阵ones(m,n,p,…)生成m*n*p*….的全1的多维矩阵ones(m,n,…,classname)制定数据类型为classname4)函数zeros 函数zeros生成全0矩阵zeros(n):生成n*n的全0矩阵zeros(m,n:)生成m*n的全0矩阵zeros(size(A)): 生成与矩阵A大小相同的全0矩阵zeros (m,n,p,…)生成m*n*p*….的全0的多维矩阵zeros (m,n,…,classname)指定数据类型为classname5)函数rand 函数rand用来生成[0,1]之间均匀分布的随机函数,其调用格式是:Y=rand:生成一个随机数Y=rand(n):生成n*n的随机矩阵Y=rand(m,n):生成m*n的随机矩阵Y=rand(size(A)):生成与矩阵A大小相同的随机矩阵Y=rand(m,n,p,…):生成m*n*p*…的随机数多维数组6)函数randn 函数rand用来生成服从正态分布的随机函数,其调用格式是:Y=randn:生成一个服从标准正态分布的随机数Y=randn(n):生成n*n的服从标准正态分布的随机矩阵Y=randn(m,n):生成m*n的服从标准正态分布的随机矩阵Y=randn(size(A)):生成与矩阵A大小相同的服从标准正态分布的随机矩阵Y=randn(m,n,p,…):生成m*n*p*…的服从标准正态分布的随机数多维数组3、矩阵元素的提取与替换1)单个元素的提取如:a=[1,2,3;3,4,5],运行后:a =1 2 33 4 5输入b=a(1,2)b =22)提取矩阵中某一行的元素,如:a=[1,2,3;3,4,5],运行后:a =1 2 33 4 5输入b=a(1,:)b =1 2 33)提取矩阵中某一列:如:a=[1,2,3;3,4,5],运行后:a =1 2 33 4 5输入b=a(:,1)b =134)提取矩阵中的多行元素如:a=[1,2,3;3,4,5],运行后:a =1 2 33 4 5输入b=a([1,2],:)b =1 2 33 4 55)提取矩阵中的多列元素如:a=[1,2,3;3,4,5],运行后:a =1 2 33 4 5输入b=a(:,[1,3])b =1 33 56)提取矩阵中多行多列交叉点上的元素如:a=[1,2,3;3,4,5],运行后:a =1 2 33 4 5输入b=a([1,2],[1,3])b =1 33 57)单个元素的替换:如:a=[1,2,3;3,4,5],运行后:a =1 2 33 4 5输入:a(2,3)=-1a =1 2 33 4 -14、矩阵元素的重排和复制排列1)矩阵元素的重排B=reshape(A,m,n):返回的是一个m*n矩阵B,矩阵B的元素就是矩阵A的元素,若矩阵A 的元素不是m*n个则提示错误。
B=reshape(A,m,n,p):返回的是一个多维的数组B,数组B中的元素个数和矩阵A中的元素个数相等B=reshape(A,…,[],…):可以默认其中的一个维数B=reshape(A,siz) : 由向量siz指定数组B的维数,要求siz的各元素之积等于矩阵A的元素个数2)矩阵的复制排列函数是repmatB=repmat(A,n):返回B是一个n*n块大小的矩阵,每一块矩阵都是AB=repmat(A,m,n):返回值是由m*n个块组成的大矩阵,每一个块都是矩阵A。