五年级奥数 因数与倍数

合集下载

小学五年级奥数 因数与倍数(一)

小学五年级奥数 因数与倍数(一)

因数与倍数(一)【课前小练习】(★)1. 学习短除法和因数式.3. 公因数、公倍数的实际应用1.2.写出12的所有因数,并列举几个12的倍数.写出18的所有因数,并列举几个18的倍数.1. 公因数:就是几个数公共的约数,其中最大的一个称为最大公因数.2. 公倍数:就是几个数公共的倍数,其中最小的一个称为最小公倍数.3. 记法:两个数A、B的最大公因数记做(A、B)两个数A、B的最小公倍数记做[A、B]4. 方法:枚举法、短除法、分解质因数板块一:短除法和分解质因数法【例1】(★★☆)求下列每组的最大公因数和最小公倍数.板块二:借助最大公因数未知数⑴28, 35 ⑵108, 360 ⑶66, 165 ⑷588, 924 3. 记法:两个数A、B的最大公因数记做(A、B)两个数A、B的最小公倍数记做[A、B]4. 结论:A×B=最大公因数×最小公倍数【例】★★★求下列每组的最大公因数和最小公倍数.⑴, , ⑵, , ⑶, , 【例3】(★★)一个数和16的最大公因数是8,最小公倍数是80,这个数是多少?1【例4】(★★★☆) 【例5】(★★★☆)两个自然数的差为21,它们的最大公因数有几种可能?最大可能是多少?三个不同的自然数的和是3030,它们的最大公因数最大可能是多少?【拓展】(★★★★)由1、3、5这三个数码可以组成6个不同的三位数,求这6个数的最大公因数. 美国的17年蝉是目前已知的生命期最长的昆虫,它的生活习性很特别,在它生命的前十七年,都是埋在地底的幼虫型态,十七年一到,就钻出土壤,羽化成成虫然后交配、产卵,接下来就死亡了。

你知道为什么是17年吗?板块三:公因数、公倍数的应用【例6】(★★★)1 1 1学校组织一次数学考试,其中三班的学生有得优,得良,得中,2 3 7其余的得差,已知三班的学生不满50人,那么得差的学生有_____人.知识大总结. 、.2. 枚举法,短除法,分解质因数法A=ax、B=bx,其中a、b互质4. 应用:【例7】(★★★)将92个苹果和138个梨平均分给一班的小朋友,要求每人分到的水果相同,且无剩余. 那么一班最多有多少个小朋友?每个小朋友分到几个苹果几个梨?公因数---除数;公倍数---被除数【今日讲题】例2,例4,例5,例6【讲题心得】__________________________________________________________________. 【家长评价】________________________________________________________________. 2。

五年级因数和倍数知识点

五年级因数和倍数知识点

五年级因数和倍数知识点一、因数和倍数的基本概念。

1. 因数。

- 定义:如果a× b = c(a、b、c都是非0自然数),那么a和b就是c的因数。

例如3×4 = 12,3和4就是12的因数。

- 找一个数因数的方法:- 列乘法算式找,从1开始,一对一对地找。

如找18的因数,1×18 = 18,2×9=18,3×6 = 18,所以18的因数有1、2、3、6、9、18。

- 列除法算式找,想这个数除以哪些数能整除,这些除数和商就是这个数的因数。

2. 倍数。

- 定义:如果a× b = c(a、b、c都是非0自然数),那么c就是a和b的倍数。

例如3×4 = 12,12就是3和4的倍数。

- 找一个数倍数的方法:用这个数分别乘1、2、3、4……所得的积就是这个数的倍数。

如3的倍数有3、6、9、12……3. 因数和倍数的关系。

- 因数和倍数是相互依存的,不能单独说某个数是因数或倍数,必须说谁是谁的因数,谁是谁的倍数。

例如,不能说3是因数,应该说3是6的因数;不能说12是倍数,应该说12是3的倍数。

二、2、5、3的倍数的特征。

1. 2的倍数的特征。

- 个位上是0、2、4、6、8的数都是2的倍数。

例如10、12、14等都是2的倍数。

2的倍数也叫偶数(0也是偶数),不是2的倍数的数叫奇数。

2. 5的倍数的特征。

- 个位上是0或5的数都是5的倍数。

如5、10、15等都是5的倍数。

3. 3的倍数的特征。

- 一个数各位上的数字之和是3的倍数,这个数就是3的倍数。

例如123,各位数字之和1 + 2+3=6,6是3的倍数,所以123是3的倍数。

三、质数与合数。

1. 质数。

- 定义:一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)。

例如2、3、5、7等都是质数,2只有1和2两个因数,3只有1和3两个因数。

2. 合数。

- 定义:一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。

五年级奥数春季实验班第7讲 数论综合之高难度因数与倍数问题

五年级奥数春季实验班第7讲 数论综合之高难度因数与倍数问题

第七讲数论综合之高难度因数与倍数问题模块一、因数与倍数的综合问题例1.对于正整数a 、b ,[a ,b ]表示最小公倍数,(a ,b )表示最大公约数,求解下列关于未知数m ,n 的方程:[,]55 (,)[,](,)70 m n m n m n m n m n m n ⎧++=⎪⎪⎪-=⎨⎪>⎪⎪⎩①②③。

解:设m =ap ,n =bp ,a ,b 互质,则[m ,n ]=abp ,(a ,b )=p ,则5570ab ap bp abp p ++=⎧⎨-=⎩,由p ×(ab −1)=70,所以p |70,70=2×5×7,若p =2,则ab =36,a ≠b ,得a =12,b =3,代入①式矛盾,舍去;若p =7,则ab =11,a ≠b ,得a =11,b =1,代入①式矛盾,舍去;若p =5,则ab =15,a ≠b ,得a =5,b =3,于是m =25,n =15,[m ,n ]=75,(m ,n )=5,所以原方程的解是2515m n =⎧⎨=⎩。

例2.n 为非零自然数,a =8n +7,b =5n +6,且最大公约数(a ,b )=d >1,求d 的值。

解:用辗转相除的方法,(8n +7,5n +6)=(3n +1,5n +6)=(3n +1,2n +5)=(n −4,2n +5)=(n −4,n +9)=(13,n +9), 所以(a ,b )=13.例3.M n 为1、2、3、……、n 的最小公倍数,对于样的正整数n ,M n −1=M n 。

解:如果n 是一个合数,且n 不是某一整数的k 次方,则M n −1=M n 。

因为n 是一个合数,所以n =a ×b ,a ,b 都小于n ,且a 、b 互质,于是a <n −1,b <n −1,所以a |M n −1,b |M n −1,于是(a ×b )|M n −1,所以M n −1=M n 。

数学讲义(五年级奥数)

数学讲义(五年级奥数)

2 因数和倍数(2) 【题型概述】 今天, 我们学习因数的运用, 解决这种问题主要是根据问题的要求, 寻找因数的个数。 【典型例题】 29÷( )=( )· · · · · ·5,在括号内填上适当的数,使等式成立,共有多少种 不同的填法? 思路点拨 根据有余数除法各部分之间的关系,可以知道除数与商的积是 29-5=24. 两个自然数相乘的积是 24 的有四种情况:1×24,2×12,3×8,4×6,再根据“除 数比余数大”可以知道除数只能是 24,12,8,6. 所以,共有 4 种不同的填法。 【举一反三】 1.37÷( )=( ) · · · · · ·5,在括号内填上适当的数,使等式成立,共有多少 种不同的填法?
6. 有 50 张卡片,分别写着 1~50 这 50 个数,正反两面写的数字相同,卡片一面是 红,一面是蓝,某班有 50 名学生,老师把 50 张卡片中蓝色的一面都朝上摆在桌 子上,对同学说: “请你们按学号顺序逐个到前面来翻卡片,规则是:凡是卡片上 的数是自己学号的倍数,就把它翻过来,蓝翻成红,红翻成蓝。 ”那么当每个学生 都翻完以后,红色朝上的卡片有几张?
4. 五个连续奇数的和是 35,这 5 个奇数中最大的一个是多少?
5. 有三个不同的自然数组成一个等式: ■+△+○=■×△-○ 这三个数中最多有多少个奇数?
4,奇数和偶数(2) 【题型概述】 奇数和偶数有一些有趣而常用的性质: 1. 奇数≠偶数,连续自然数中的奇数和偶数时相间排列的。 2. 偶数个奇数相加的和是偶数,奇数个奇数相加的和是奇数,任意个偶数相加的 和是偶数。 3. 奇数±奇数=偶数,奇数±偶数=奇数,偶数±偶数=偶数 偶数±奇数=奇数 4. 奇数×偶数=偶数,奇数×奇数=奇数,偶数×偶数=偶数 运用这些性质可以解决很多问题。 【典型例题】

(完整)小学奥数因数与倍数

(完整)小学奥数因数与倍数

第一讲:因数与倍数知识点拨1、因数和倍数:如果a×b=c(a,b,c 都是不为零的整数),那么a,b 就是c 的因数,c 就是a,b 的倍数。

例如6×2=12,所以6和2是12的因数,12是6和2的倍数。

如果整数a 能被b 整除,那么a 就是b 的倍数,b 就是a 的因数。

例如10能被5整除,那么10就是5的倍数,5就是10的因数。

2、一个数的因数的求法:(1)列乘法算式找 (2)列除法算式找一个数的因数的个数是有限的,最小的是1,最大的是它本身,方法是成对地按顺序找。

例如: 15的因数有哪些?方法一:1×15=15,3×5=15(一般从自然数1开始,一对一对的找) 方法二:15÷1=15,15÷3=5(计算时从除数1开始找,直到重复为止)所以15的因数就是1, 3, 5, 15。

最大的因数就是15,也就是它本身!最小的是1。

3、一个数的倍数的求法:一个数的倍数的个数是无限的,最小的是它本身,没有最大的,方法是依次乘以自然数。

例如:3的倍数 3 6 9 12 15 ....... 3是3最小的倍数,也就是它本身 倍数特征:最小的倍数是本身,没有最大的倍数4、2、5、3的倍数的特征:①个位上是0、2、4、6、8的数,都是2的倍数。

②个位上是0或5的数,是5的倍数。

③一个数各个数位上的数字之和是3的倍数,这个数就是3的倍数。

5、在自然数中,是2的倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。

奇数与偶数的运算性质性质1:偶数±偶数=偶数,奇数±奇数=偶数 性质2:偶数±奇数=奇数性质3:偶数个奇数的和是偶数性质4:奇数个奇数的和是奇数性质5:偶数×奇数=偶数,奇数×奇数=奇数,偶数×偶数=偶数例题精讲一、倍数与因数的认识【例1】请问:图中有哪些数?(1)根据图中数据:①买5千克梨需要多少钱?可以说:20是4的倍数;20是5的倍数;4是20的因数;5是20的因数。

5年级奥数--因数与倍数

5年级奥数--因数与倍数

因数与倍数专题提高(3月5日)
专题精华
几个自然数a,b 的最大公因数记作(a,b),若(a,b)=1,则a和b互质。

自然数a,b的最小公倍数可以记作[a,b],当(a,b)=1时,[a,b]=axb。

两个数的最大公因数和最小公倍数有着下列关系:最大公因数x最小公倍数=两数的乘积。

掌握以上数量关系,根据题目中的已知条件,就可以解决因数与倍数的问题。

教材深化:
1.1 小张,小王,小李三人是朋友,他们每隔不同的天数到图书馆去一次,小张3天去一次,小王4天去一次,小李5天去一次。

有一天,他们三人恰好在图书馆相会。

问至再过多少天他们三人又在图书馆相会?
1.2 某市3路,5路,8路车都从东站出发,3路车每隔10分钟发一次车,5路车每隔15分钟发一次车,而8路车每隔20分钟发一次车。

当这三种路线的车同时发车后,至多少分钟后这三种路线又同时发车?
1.3 大雪后的一天,小轩与爸爸共同步测一个圆形花园的周长。

他们走的起点,路线,方向完全相同。

小轩的步长为54厘米,爸爸的步长为72厘米。

由于两人的脚印有重合,所以雪地只留下60个脚印。

这个花坛的周长是多少?
1.4 四个连续的自然数,它们从小到大一次是3的倍数,5的倍数,7的倍数,9的倍数。

这四个连续自然数的和最小是多少?
2.1两个数的最大公因数是10,最小公倍数为140。

已知其中一个数为70,则另一个数是
多少?
2.2 现有4个自然数,他们的和是1111,如果要使4个数的公因数尽可能大,那么四个数的公因数最大可能是多少?
生活数学:
感受奥赛:。

五年级奥数题因数与倍数

五年级奥数题因数与倍数

五年级奥数题因数与倍数因数与倍数相关习题(1)一、填空题1 ? 28的所有因数之和是 ______ .2. 用105个大小相同的正方形拼成一个长方形,有_______ 中不同的拼法?3. 一个两位数,十位数字减个位数字的差是28的因数,十位数字与个位数字的积是24.这个两位数是______ .4. 李老师带领一班学生去种树,学生恰好被平均分成四个小组,总共种树667棵,如果师生每人种的棵数一样多,那么这个班共有学生_____ 人.5. 两个自然数的和是50,它们的最大公因数是5,则这两个数的差是_________ .6. 现有梨36个,桔108个,分给若干个小朋友,要求每人所得的梨数,桔数相等,最多可分给_____ 小朋友,每个小朋友得梨______ 个,桔______ 个.7. 一块长48厘米、宽42厘米的布,不浪费边角料,能剪出最大的正方形布片____ 块.8. 长180厘米,宽45厘米,高18厘米的木料,能锯成尽可能大的正方体木块(不余料)__ 块.9. 张师傅以1元钱3个苹果的价格买苹果若干个,又以2元钱5个苹果的价格将这些苹果卖出,如果他要赚得10元钱利润,那么他必须卖出苹果_____ 个.10. 含有6个因数的两位数有_____ 个.11?写出小于20的三个自然数,使它们的最大公因数是1,但两两均不互质,请问有多少组这种解?12?和为1111的四个自然数,它们的最大公因数最大能够是多少?13. 狐狸和黄鼠狼进行跳跃比赛,狐狸每次跳4丄米,黄鼠狼每次跳2-米,2 43它们每秒钟都只跳一次.比赛途中,从起点开始每隔12-米设有一个陷井,当它们8之中有一个掉进陷井时,另一个跳了多少米?14. 已知a与b的最大公因数是12, a与c的最小公倍数是300,b 与c的最小公倍数也是300,那么满足上述条件的自然数a, b, c共有多少组?(例如:a=12、b=300、c=300,与a=300、b=12、c=300是不同的两个自然数组)---------------------------- 答案-----------------------------------------------答案:1. 5628的因数有1,2,4,7,14,28,它们的和为1+2+4+7+14+28=56.2. 4因为105的因数有1,3,5,7,15,21,35,105 能拼成的长方形的长与宽分别是105和1,35和3,21与5,15与7.所以能拼成4种不同的长方形.3. 64因为28=2 2 7,所以28的因数有6个:1,2,4,7,14,28. 在数字0,1,2,…,9中,只有6与4之积,或者8与3之积是24,又6-4=2,8-3=5.故符合题目要求的两位数仅有64.4. 28因为667=23 29, 所以这班师生每人种的棵数只能是667 的因数:1,23,29,667. 显然, 每人种667 棵是不可能的.当每人种29棵树时,全班人数应是23-1=22,但22不能被4整除,不可能.当每人种23棵树时,全班人数应是29-1=28,且28恰好是4的倍数,符合题目要求.当每人种1棵树时, 全班人数应是667-1=666, 但666不能被 4 整除, 不可能.所以, 一班共有28名学生.5. 40 或20两个自然数的和是50,最大公因数是5,这两个自然数可能是5和45,15 和35,它们的差分别为(45-5=)40,(35-15=)20, 所以应填40或20.[注]这里的关键是依最大公因数是5的条件,将50分拆为两数之和:50=5+45=15+35.6. 36,1,3.要把梨36 个、桔子108个分给若干个小朋友,要求每人所得的梨数、桔子相等,小朋友的人数一定是36的因数,又要是108的因数,即一定是36和108 的公因数.因为要求最多可分给多少个小朋友,可知小朋友的人数是36和108的最大公因数.36 和108的最大公因数是36,也就是可分给36个小朋友.每个小朋友可分得梨: 36 36=1( 只)每个小朋友可分得桔子: 108 36=3(只)所以,最多可分得36个小朋友,每个小朋友可分得梨1只,桔子3只.7. 56剪出的正方形布片的边长能分别整除长方形的长48 厘米及宽42 厘米, 所以它是48与42的公因数,题目又要求剪出的正方形最大,故正方形的边长是48与42 的最大公因数.因为48=2 2 2 2 3,42=2 3 7,所以48与42的最大公因数是 6.这样,最大正方形的边长是 6 厘米.由此可按如下方法来剪:长边每排剪8 块,宽边可剪7 块,共可剪(48 6) (42 6)=8 7=56(块)正方形布片.8. 200根据没有余料的条件可知长、宽和高分别能被正方体的棱长整除, 即正方体的棱长是180,45 和18的公因数. 为了使正方体木块尽可能大,正方体的棱长应是180、45和18的最大公因数.180,45 和18的最大公因数是9,所以正方体的棱长是9 厘米. 这样, 长180 厘米可公成20 段, 宽45 厘米可分成5 段, 高18 厘米可分成 2 段. 这根木料共分割成(180 9) (45 9) (18 9)=200 块棱长是9 厘米的正方体.9. 150根据3与5的最小公倍数是15,张老师傅以5元钱买进15个苹果,又以6元钱卖出15个苹果, 这样, 他15个苹果进与出获利1元. 所以他获利10元必须卖出150 个苹果.10. 16含有6个因数的数,它的质因数有以下两种情况:一是有5个相同的质因数连乘;二是有两个不同的质因数其中一个需连乘两次,如果用M 表示含有 6 个因数的数,用a和b表示M的质因数,那么M a5或M a2 b因为M 是两位数,所以M= a 5只有一种可能M=25,而M= a 2 b 就有以下15种情况: M 223,M 22 5,M 22 7, M 22 11,M 22 13,M 22 17,M 22 19, M 22 23, M 32 2,M 32 5,M 32 7,M32 11 M 52 2,M 52 3,M72 2. 所以,含有6个因数的两位数共有15+1=16(个)11. 三个数都不是质数,至少是两个质数的乘积,两两之间的最大公因数只能分别是2,3和5,这种自然数有6,10,15和12,10,15及18,10,15三组.12. 四个数的最大公因数必须能整除这四个数的和,也就是说它们的最大公因数应该是1111的因数.将1111作质因数分解,得1111=11 101最大公因数不可能是1111,其次最大可能数是101.若为101,则将这四个数分别除以101,所得商的和应为11.现有1+2+3+5=11,即存在着下面四个数101,101 2,101 3,101 5,它们的和恰好是101 (1+2+3+5)=101 11=1111,它们的最大公因数为101. 所以101为所求.13. 黄鼠狼掉进陷井时已跳的行程应该是2-与123的“最小公倍数” 99, 4 8 4qq 11 1 3即跳了99耳=9次掉进陷井,狐狸掉进陷井时已跳的行程应该是4丄和123的4 4 2 8 “最小公倍数” 99,即跳了 99 9 -=11次掉进陷井. 2 经过比较可知,黄鼠狼先掉进陷井,这时狐狸已跳的行程是14. 先将12、300分别进行质因数分解:212=2 3300=2 2 3 52(1)确定a 的值.依题意a 只能取12或12 5(=60)或12 25(=300).⑵确定b 的值.当a=12时,b 可取12,或12 5,或12 25;当a=60,300时,b 都只能取12.所以,满足条件的a 、b 共有5组:a=12 「a=12 「a=12j a=60 -a=300 1 4- 2 9=40.5(米).b=12, *L b=60,-b=300,L b=12,円-b=12.⑶确定a, b, c的组数.对于上面a、b的每种取值,依题意,c均有6个不同的值:22 2 2 2 2 225,5 2, 5 2 ,5 3, 5 2 3,5 2 3,即卩25, 50, 100, 75, 150, 300.所以满足条件的自然数a、b、c共有5 6=30 (组)因数与倍数相关习题(2)一、填空题1 .把20个梨和25个苹果平均分给小朋友,分完后梨剩下2个,而苹果还缺2个,一共有_________ 个小朋友.2. 幼儿园有糖115颗、饼干148块、桔子74个,平均分给大班小朋友;结果糖多出7颗,饼干多出4块,桔子多出2个.这个大班的小朋友最多有 __________ 人.3. 用长16厘米、宽14厘米的长方形木板来拼成一个正方形,最少需要用这样的木板_____ 块.4. 用长是9厘米、宽是6厘米、高是7厘米的长方体木块叠成一个正方体,至少需要这种长方体木块_____ 块.5. 一个公共汽车站,发出五路车,这五路车分别为每隔3、5、9、15、10分钟发一次,第一次同时发车以后,_____ 钟又同时发第二次车.6. 动物园的饲养员给三群猴子分花生,如只分给第一群,则每只猴子可得12粒;如只分给第二群,则每只猴子可得15粒;如只分给第三群,则每只猴子可得20粒.那么平均给三群猴子,每只可得________ 粒.7. 这样的自然数是有的:它加1是2的倍数,加2是3的倍数,加3是4的倍数,加4是5的倍数,加5是6的倍数,加6是7的倍数,在这种自然数中除了 1 以外最小的是_____ .8. _________________________________________________ 能被3、7、& 11四个数同时整除的最大六位数是 ____________________________ .9. 把26,33,34,35,63,85,91,143 分成若干组,要求每一组中任意两个数的最大公因数是1,那么至少要分成________ 组.10. 210与330的最小公倍数是最大公因数的_______ 倍.二、解答题11. 公共汽车总站有三条线路,第一条每8分钟发一辆车,第二条每10分钟发一辆车,第三条每16分钟发一辆车,早上6: 00三条路线同时发出第一辆车.该总站发出最后一辆车是20:00,求该总站最后一次三辆车同时发出的时刻.12. 甲乙两数的最小公倍数除以它们的最大公因数,商是12.如果甲乙两数的差是18,则甲数是多少?乙数是多少?5 15 113. 用一、一、1一分别去除某一个分数,所得的商都是整数.这个分数28 56 20最小是几?14. 有15位同学,每位同学都有编号,他们是1号到15号,1号同学写了一个自然数,2号说:“这个数能被2整除”,3号说:“这个数能被他的编号数整除.1号作了检验:只有编号连续的二位同学说得不对,其余同学都对,问:(1)说的不对的两位同学,他们的编号是哪两个连续自然数?(2)如果告诉你,1号写的数是五位数,请找出这个数.----------------------------- 答案---------------------------------------------- 答案:1. 9若梨减少2个,则有20-2=18(个);若将苹果增加2个,则有25+2=27(个),这样都被小朋友刚巧分完?由此可知小朋友人数是18与27的最大公因数.所以最多有9个小朋友.2. 36根据题意不难看出,这个大班小朋友的人数是115-7=108,148-4=144,74-2=72 的最大公因数.所以,这个大班的小朋友最多有36人.3. 56所铺成正方形的木板它的边长必定是长方形木板长和宽的倍数,也就是长方形木板的长和宽的公倍数,又要求最少需要多少块,所以正方形木板的边长应是14与16的最小公倍数.先求14与16的最小公倍数.2 16 148 7故14与16的最小公倍数是2 8 7=112.因为正方形的边长最小为112厘米,所以最少需要用这样的木板112 112=7 8=56(块) 16 144. 5292与上题类似,依题意,正方体的棱长应是9, 6, 7的最小公倍数,9, 6, 7 的最小公倍数是126.所以,至少需要这种长方体木块126 126 126=14 21 18=5292(块)9 6 7[注]上述两题都是利用最小公倍数的概念进行“拼图”的问题,前一题是平面图形,后一题是立体图形,思考方式相同,后者可看作是前者的推广?将平面问题推广为空间问题是数学家喜欢的研究问题的方式之一. 希望引起小朋友们注意.5. 90依题意知,从第一次同时发车到第二次同时发车的时间是3,5,9,15 和10的最小公倍数.因为3,5,9,15 和10 的最小公倍数是90, 所以从第一次同时发车后90 分钟又同时发第二次车.6. 5依题意得花生总粒数=12 第一群猴子只数=15 第二群猴子只数=20 第三群猴子只数由此可知, 花生总粒数是12,15,20 的公倍数,其最小公倍数是60.花生总粒数是60,120,180,……,那么第一群猴子只数是5, 10, 15,……第二群猴子只数是4, 8, 12,……第三群猴子只数是3, 6, 9,……所以,三群猴子的总只数是12, 24, 36,…….因此,平均分给三群猴子,每只猴子所得花生粒数总是 5 粒.7. 421依题意知, 这个数比2、3、4、5、6、7的最小公倍数大1,2、3、4、5、6、7的最小公倍数是420,所以这个数是421.8. 999768由题意知,最大的六位数是3,7,8,11 的公倍数,而3,7,8,11 的最小公倍数是1848.因为999999 1848=541……231,由商数和余数可知符合条件的最大六位数是1848的541倍,或者是999999与231的差.所以,符合条件的六位数是999999-231=999768.9. 3根据题目要求, 有相同质因数的数不能分在一组,26=2 13,91=7 13,143=11 13,所以, 所分组数不会小于 3. 下面给出一种分组方案:(1)26 ,33,35;(2)34 ,91;(3)63 ,85,143.因此,至少要分成 3 组.[注]所求组数不一定等于出现次数最多的质因数的出现次数,如15=3 5,21=3 7,35=5 7,3,5,7 各出现两次,而这三个数必须分成三组,而不是两组.除了上述分法之外, 还有多种分组法, 下面再给出三种:(1)26,35 ;33,85,91;34,63,143.(2)85,143,63 ;26,33,35;34,91.(3) 26,85,63 ;91,34,33;143,35.10. 77根据“甲乙的最小公倍数甲乙的最大公因数=甲数乙数”,将210 330 分解质因数,再进行组合有210 330=2 3 5 7 2 3 5 11222=2 2 32 52 7 11= (2 3 5) (2 3 5 7 11)因此,它们的最小公倍数是最大公因数的7 11=77(倍) .11. 根据题意,先求出8,10,16 的最小公倍数是80,即从第一次三车同时发出后,每隔80分钟又同时发车.从早上6:00 至20:00 共14 小时, 求出其中包含多少个80 分钟.60 14 80=10…40 分钟由此可知,20:00 前40分钟,即19:20 为最后一次三车同时发车的时刻.12. 甲乙两数分别除以它们的最大公因数, 所得的两个商是互质数. 而这两个互质数的乘积, 恰好是甲乙两数的最小公倍数除以它们的最大公因数所得的商——1 2.这一结论的根据是:( 我们以“约”代表两数的最大公因数,以“倍”代表两数的最小公倍数)甲数乙数=倍约。

完整五年级奥数第一讲因数与倍数

完整五年级奥数第一讲因数与倍数

五年级奥数 第一讲:因数与倍数知识点拨1、 因数和倍数 :如果a >b=c(a,b,c 都是不为零的整数),那么a,b 就是c 的因数,c 就是a,b 的倍数。

例如6 >2=12,所以6和2是12的因数,12是6和2的倍数。

如果整数a 能被b 整除,那么a 就是b 的倍数,b 就是a 的因数。

例如 10能被 5整除,那么 10 就是 5的倍数, 5就是 10的因数。

2、 一个数的因数的求法: ( 1 )列乘法算式找(2)列除法算式找一个数的因数的个数是有限的,最小的是 1,最大的是它本身,方法是成对地按顺序找。

例如: 15 的因数有哪些? 方法一: 1215=15, 325=15(一般从自然数 1开始,一对一对的找) 方法二:15+1=15,15七=5 (计算时从除数1开始找,直到重复为止) 所以 15的因数就是 1, 3, 5, 15。

最大的因数就是 15,也就是它本身!最小的是 1。

3、 一个数的倍数的求法:一个数的倍数的个数是无限的,最小的是它本身,没有最大的,方法是依次乘以自然数。

例如: 3的倍数 36 9 1215 .... 3是3最小的倍数,也就是它本身倍数特征: 最小的倍数是本身,没有最大的倍数如果两个数都是一个数的倍数,那么这两个数的和、差、积也是这个数的倍数。

4、 2、5、3的倍数的特征 :① 个位上是 0、2、4、6、8 的数,都是 2的倍数。

② 个位上是 0或5的数,是 5的倍数。

③ 一个数各个数位上的数字之和是 3的倍数,这个数就是 3的倍数。

5、 常见数字的整除判定方法: ( 1) 2:个位是偶数的自然数(2) 5:个位是 0或5的自然数 注:若一个数同时是 2 和 5 的倍数,则此数的个位一定为 0 ( 3) 4、 25:末两位能被 4、25 整除 (4) 8、125:末三位能被 8、125整除 (5)3、9:各个数位上的数之和能被 3、9 整除(6) 7、11、13通用性质:① 一个数如果是 1001 的倍数,即能被 7、11、13整除.如201201=20121001,则其必能被 7、 ② 从末三位开始三位一段,奇数段之和与偶数段之和的差如果是 7、11、13的倍数,则其为 ③ 末三位一段,前后均为一段,用较大的减去较小的,如果差为 7、11、13的倍数,则其为(7) 11:奇数位数字之和与偶数位数字之和的差能被 11 整除 (8) 99:两位一段(从右往左) ,各段的和能被 99 整除 (9) 999:三位一段(从右往左) ,各段的和能被 999 整除6、 在自然数中,是 2 的倍数的数叫做偶数( 0也是偶数),不是 2的倍数的数叫做奇数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十四节因数与倍数,质数与合数
【知识回顾】
1、倍数与因数的关系是相互依存的。

2、运用这个找因数个数的方法,可以帮助我们解决一些看似无从下手的问
题,关键是先将所要找因数的这个数,进行正确的分解质因数,然后利用指数之间的关系解决问题。

3、在解决质数、合数问题时,我们必须注意一下几点。

质数:(1)最小的质数是2;(2)在质数中只有2是偶数,其余的质数都是奇数;(3)每个质数只有2个因数,即1和它本身。

合数:(1)最小的合数是4;(2)每个合数至少有3个因数,1和它本身以及他某些因数。

【典型例题】(因数与倍数)
例1、216的全部因数有多少个?全部因数的和是多少?
例2、有8个不同因数的自然数中,最小的一个是多少?
例3、在100至200中共有几个数既不是7的倍数,又不是9的倍数?它们的和是多少?
【学以致用】
1、24有多少个因数?这些因数的和是多少?
2、3600共有多少个因数?
3、一个数是3个2,1个3,2个5,1个7的连乘积,则这个数的最大的两位的因数是几?
4、将400分成两个三位数之和,其中一个是9的倍数,另一个是17的倍数,这两个数分别是多少?
5、求50至70之间只有4个不同因数的最大自然数。

6,、求2至1000中只有15个因数的最大自然数。

7、一串数排成一行,头两个数都是1,从第三个数开始,每一个数都是前两个数的和,即1,1,2,3,5,8,13,21,……,在这串数前2000个数中,共有多少个6的倍数?
【典型例题】(质数与合数)
例4、用1,2,3三个数字,允许重复使用,可以组成100以内的哪些质数?
例5、判断269,437这两个数是合数还是质数?
例6、将50写成10个质数相加的和的形式。

如果要使其中最大的质数尽可能大,这个最大的质数是多少?
【学以致用】
1、刘叔叔家的电话号码可以写成ABCCDB的形式,相同的字母表示相同的数
字,不同的字母表示不同的数字,已知这6个数字之和是14,B是任何自然数的因数,C不是任何自然的因数,A是质数,D是合数,你知道他家的电话号码是多少吗?
2、有这样一个质数,它分别加上10和14后仍然为质数,你会求这个质数
吗?
3、50以内,由1——7组成的两位数的质数共有多少个?
4、110可以用两个质数的和来表示,这两个质数的差(大数减小数)的最小
值是几?
5、有两个合数A和B,它们的和是质数。

如果要使这个质数最小,那么这两
个合数分别是多少?
6、有7个不同的质数,它们的和是60,其中最小的质数是几?。

相关文档
最新文档