(完整版)任意角和弧度制练习题有答案(2)

合集下载

高一任意角与弧度制题型练习(全)

高一任意角与弧度制题型练习(全)

任意角知识梳理一、角的概念的推广1.角按其旋转方向可分为:正角,零角,负角.①正角:习惯上规定,按照逆时针方向旋转而成的角叫做正角;②负角:按照顺时针方向旋转而成的角叫做负角;③零角:当射线没有旋转时,我们也把它看成一个角,叫做零角.例如,画出下列各角:,,.2.在直角坐标系中讨论角:①角的顶点在原点,始边在轴的非负半轴上,角的终边在第几象限,就说这个角是第几象限角.②若角的终边在坐标轴上,就说这个角不属于任何象限,它叫轴线角.二、终边相同的角的集合设表示任意角,所有与终边相同的角,包括本身构成一个集合,这个集合可记为.集合的每一个元素都与的终边相同,当时,对应元素为.例如,如图,角、角和角都是以射线为终边的角,它们是终边相同的角.特别提醒:为任意角,“”这一条件不能漏;与中间用“”连接,可理解成;当角的始边相同时,相等的角的终边一定相同,而终边相同的角不一定相等.终边相同的角有无数个,它们相差的整数倍.终边不同则表示的角一定不同.三、区间角、区域角1.区间角、区域角的定义介于两个角之间的角的集合叫做区间角,如.终边介于某两角终边之间的角的几何叫做区域角,显然区域角包括无数个区间角.2.区域角的写法(1)若角的终边落在一个扇形区域内,写区域角时,先依逆时针方向由小到大写出一个区间角,然后在它的两端分别加上“”,右端末注明“”即可.(2)若角的终边落在两个对称的扇形区域内,写区域角时,可以先写出终边落在一个扇形区域内的一个区间角,在此区间角的两端分别加上“”,右端末注明“”即可.例如,求终边落在图中阴影内(包括边界)的角的集合,可先求落在第一象限内的区间角,故终边落在图中阴影内(包括边界)的角的集合为.3.各象限角的集合象限角象限角的集合表示第一象限角第二象限角第三象限角第四象限角四、倍角和分角问题已知角的终边所在的象限,求的终边所在象限.1.代数法由的范围求出的范围.通过分类讨论把写成的形式,然后判断的终边所在的象限.2.几何法画出区域:将坐标系每个象限等分,得个区域.标号:自轴正向起,沿逆时针方向把每个区域依次标上、、、,如图所示(此时).确定区域:找出与角的终边所在象限标号一致的区域,即为所求.题型训练题型一任意角的概念1.下列四个命题中,正确的是()A.第一象限的角必是锐角B.锐角必是第一象限的角C.终边相同的角必相等D.第二象限的角必大于第一象限的角2.给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③锐角一定是第一象限的角;④小于的角一定是锐角;⑤终边相同的角一定相等.其中正确命题的个数是()A.1B.2C.3D.43.设集合,,则?题型二终边相同的角的集合1.下列各个角中与2020°终边相同的是()A.-150°B.680°C.220°D.320°2.写出终边在图中直线上的角的集合.3.写出终边落在图中阴影部分(包括边界)的角的集合.4.下列各组中,终边相同的角是()A.和()B.和C.和D.和5.若角与的终边关于轴对称,且,则所构成的集合为.6.与2021°终边相同的最小正角是.7.写出角的终边在阴影中的角的集合.题型三象限角的定义1.在,,,,这五个角中,属于第二象限角的个数是()A.2B.3C.4D.52.若是第四象限角,则一定是第几象限角?3.已知,则所在的象限是()A.第一象限B.第二象限C.第一或第二象限D.第三或第四象限题型四角所在象限的研究1.已知α为第二象限角,则所在的象限是()A.第一或第二象限B.第二或第三象限C.第一或第三象限D.第二或第四象限2.已知θ为第二象限角,那么是()A.第一或第二象限角B.第一或四象限角C.第二或四象限角D.第一、二或第四象限角3.若是第二象限角,则,是第几象限角?弧度制知识梳理一、弧度制和弧度制与角度制的换算1.角度制角可以用度为单位进行度量,度的角等于周角的,这种用度作为单位来度量角的单位制叫做角度制.2.弧度制①弧度的角:长度等于半径长的弧所对的圆心角.②弧度制定义:以弧度作为单位来度量角的单位制.记法:用符号表示,读作弧度.特别提醒:(1)用弧度为单位表示角的大小时,“弧度”或“”可以略去不写,只写这个角对应的弧度数即可,如角可写成.而用度为单位表示角的大小时,“度”或“°”不可以省略.(2)不管是以弧度还是以度为单位的角的大小都是一个与半径大小无关的定值.二、角度与弧度的换算1.弧度与角度的换算公式(1)关键:抓住互化公式rad=180°是关键;(2)方法:度数弧度数;弧度数度数2.一些特殊角的度数与弧度数的对应表:【注意】①在同一问题中,角度制与弧度制不能混用;②弧度制下角可以与实数可以建立一一对应的关系,所以弧度制表示的角的范围可以用区间表示,如,但角度制表示的角的范围一般不用区间表示,即不用表示,因为区间表示的是数集,但角度数不是实数.三、弧长公式、扇形面积公式如图,设扇形的半径为,弧长为,圆心角为.1.弧长公式:.注意:在应用弧长公式时,要注意的单位是“弧度”,而不是“度”,如果一直角是以“度”为单位的,则必须先把它化为以“弧度”为单位,再代入计算.2.扇形面积公式:.3.弧长公式及扇形面积公式的两种表示角度制弧度制弧长公式扇形面积公式注意事项是扇形的半径,是圆心角的角度数是扇形的半径,是圆心角的弧度数题型训练题型一弧度制与角度制互化1.与角终边相同的最小正角是?(用弧度制表示)2.若四边形的四个内角之比为,则四个内角的弧度数依次为.3.对应的弧度数为4.把化为弧度的结果是5.如图,用弧度制表示终边落在下列阴影部分的角.6.若θ=-3rad,则θ的终边落在()A.第一象限B.第二象限C.第三象限D.第四象限题型二扇形的弧长、面积、与圆心角问题1.半径为,中心角为的角所对的弧长为()A.B.C.D.2.已知扇形的面积为,扇形圆心角的弧度数是,则扇形的周长为()A.2B.4C.6D.83.已知扇形的周长为,圆心角为,则扇形的面积为?4.一个扇形的弧长与面积都是,则这个扇形圆心角的弧度数为()A.B.C.D.5.已知弧度的圆心角所对的弦长为,那么,这个圆心角所对的弧长是()A.B.C.D.6.半径为,圆心角为的扇形的弧长为()A.B.C.D.7.设扇形的弧长为,半径为,则该扇形的面积为?8.已知扇形的周长为,面积为,则扇形圆心角的弧度数为?。

高一数学任意角和弧度制和任意角的三角函数试题

高一数学任意角和弧度制和任意角的三角函数试题

高一数学任意角和弧度制和任意角的三角函数试题1.若扇形的周长是8cm,面积4cm2,则扇形的圆心角为 rad.【答案】2【解析】设扇形的圆心角为,半径为,则.【考点】弧度与扇形的面积和周长.2.一个半径大于2的扇形,其周长,面积,求这个扇形的半径和圆心角的弧度数.【答案】,【解析】由题设条件给出周长,面积,因为扇形周长由两半径和弧长组成,故可列出方程,再结合扇形面积公式:,可解得半径,从而求得圆心角试题解析:由得:将上式代入得(舍去)【考点】扇形的面积公式和弧长公式.3.已知,则的集合为()A.B.C.D.【答案】D【解析】由知,在第一或第三象限,因为,所以.【考点】简单三角方程4.与60°角终边相同的角的集合可以表示为( )A.{α|α=k·360°+,k∈Z}B.{α|α=2kπ+60°,k∈Z}C.{α|α=k·180°+60°,k∈Z}D.{α|α=2kπ+,k∈Z}【答案】【解析】显然错误,因为集合中角度和弧度不统一;中错在.只有正确.【考点】终边相同的角的表示.5.若角的终边为第二象限的角平分线,则的集合为______________.【答案】【解析】在上第一个出现终边在第二象限角平分线的角为,之后每隔个单位出现一个终边落在第二象限角平分线上角,因此所求集合为.【考点】终边相同的角的集合.6.已知角的终边经过点,则= ;【答案】【解析】,,.【考点】三角函数的定义7.已知角α的终边经过点(3a,-4a)(a<0),则sin α+cos α等于( )A.B.C.D.-【答案】A【解析】,,.故选A.【考点】三角函数的定义8.的值是()A.1B.C.D.【答案】B【解析】,选B.【考点】诱导公式及特殊角的三角函数值.9.的值是A.B.C.D.【答案】C【解析】根据三角函数的诱导公式可知,故C为正确答案.【考点】三角函数的诱导公式、三角函数值的计算.10.已知角的终边过点,的值为().A.-B.-C.D.【答案】A【解析】,,选A【考点】任意角三角函数的定义11.若角的终边与2400角的终边相同,则的终边在第象限.【答案】二或四【解析】由题意知,,所以的终边在第二或四象限.【考点】象限角问题12. sin(-)= .【答案】【解析】.【考点】本题主要考查了利用三角函数的诱导公式求三角函数值得方法,属基础题.13.已知角的终边过,则= .【答案】【解析】根据题意,由于角的终边过,那么可知,该点的,则可知该点的正切值为,结合角的范围可知,的值为,故答案为。

4.1 任意角、弧度制及任意角的三角函数练习题

4.1 任意角、弧度制及任意角的三角函数练习题

§4.1 任意角、弧度制及任意角的三角函数一、选择题1.sin 2cos 3tan 4的值( ).A .小于0B .大于0C .等于0D .不存在 解析 ∵sin 2>0,cos 3<0,tan 4>0, ∴sin 2cos 3tan 4<0. 答案 A2.已知点P (sin 5π4,cos 3π4)落在角θ的终边上,且θ∈[0,2π),则θ是第________象限角.( )A .一B .二C .三D .四 解析:因P 点坐标为(-22,-22),∴P 在第三象限. 答案:C3.已知扇形的周长是6 cm ,面积是2 cm 2,则扇形的中心角的弧度数是( )A .1B .4C .1或4D .2或4解析 设此扇形的半径为r ,弧长是l ,则⎩⎨⎧2r +l =6,12rl =2,解得⎩⎨⎧r =1,l =4或⎩⎨⎧r =2,l =2.从而α=l r =41=4或α=l r =22=1.答案 C4.若cos α=-32,且角α的终边经过点(x,2),则P 点的横坐标x 是( ).A .2 3B .±2 3C .-2 2D .-2 3解析 由cos α=x x 2+4=-32,解得,x =-2 3.答案 D5.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos2θ=( )A.45-B.35-C.35D.45解析 设(,2)P a a 是角θ终边上任意一点,则由三角函数定义知:cos θ=,所以223cos 22cos 12(15θθ=-=⨯-=-,故选B. 答案 B6.已知角α的终边过点P (-8m ,-6sin 30°),且cos α=-45,则m 的值为( ).A .-12 B.12 C .-32 D.32解析 ∵r =64m 2+9,∴cos α=-8m 64m 2+9=-45,∴m >0,∴4m 264m 2+9=125,∴m =±12.∵m >0,∴m =12. 答案 B7.点P 从(1,0)出发,沿单位圆x 2+y 2=1逆时针方向运动2π3弧长到达Q 点,则Q 点的坐标为( ).A.⎝ ⎛⎭⎪⎫-12,32B.⎝ ⎛⎭⎪⎫-32,-12C.⎝ ⎛⎭⎪⎫-12,-32D.⎝ ⎛⎭⎪⎫-32,12解析 设α=∠POQ ,由三角函数定义可知,Q 点的坐标(x ,y )满足x =cos α, y =sin α,∴x =-12,y =32,∴Q 点的坐标为⎝ ⎛⎭⎪⎫-12,32.答案 A 二、填空题8.若β的终边所在直线经过点P ⎝ ⎛⎭⎪⎫cos 3π4,sin 3π4,则sin β=________, tan β=________.解析:因为β的终边所在直线经过点P ⎝ ⎛⎭⎪⎫cos 3π4,sin 3π4,所以β的终边所在直线为y =-x ,则β在第二或第四象限. 所以sin β=22或-22,tan β=-1. 答案:22或-22-1 9.已知点P (tan α,cos α)在第三象限,则角α的终边在第______象限. 解析 ∵点P (tan α,cos α)在第三象限,∴tan α<0,cos α<0. ∴角α在第二象限. 答案 二10.弧长为3π,圆心角为135的扇形的半径为 ,面积为 .解析 由扇形面积公式得:12lR =6π.答案 4;6π11.若三角形的两个内角α,β满足sin αcos β<0,则此三角形为________. 解析 ∵sin αcos β<0,且α,β是三角形的两个内角. ∴sin α>0,cos β<0,∴β为钝角.故三角形为钝角三角形. 答案 钝角三角形 12.函数y =sin x +12-cos x 的定义域是________. 解析由题意知⎩⎨⎧sin x ≥0,12-cos x ≥0,即⎩⎨⎧sin x ≥0,cos x ≤12.∴x 的取值范围为π3+2k π≤x ≤π+2k π,k ∈Z.答案 ⎣⎢⎡⎦⎥⎤π3+2k π,π+2k π(k ∈Z)三、解答题13. (1)确定tan -3cos8·tan5的符号;(2)已知α∈(0,π),且sin α+cos α=m (0<m <1),试判断式子sin α-cos α的符号.解析 (1)∵-3,5,8分别是第三、第四、第二象限角, ∴tan(-3)>0,tan5<0,cos8<0, ∴原式大于0.(2)若0<α<π2,则如图所示,在单位圆中,OM =cos α,MP =sin α,∴sin α+cos α=MP +OM >OP =1.若α=π2,则sin α+cos α=1.由已知0<m <1,故α∈⎝ ⎛⎭⎪⎫π2,π.于是有sin α-cos α>0.14.已知角θ的终边上有一点P (x ,-1)(x ≠0),且tan θ=-x ,求sin θ,cos θ.解析:∵θ的终边过点(x ,-1)(x ≠0),∴tan θ=-1x,又tan θ=-x ,∴x 2=1,∴x =±1. 当x =1时,sin θ=-22,cos θ=22; 当x =-1时,sin θ=-22,cos θ=-22. 15.如图所示,A ,B 是单位圆O 上的点,且B 在第二象限,C 是圆与x 轴正半轴的交点,A 点的坐标为⎝ ⎛⎭⎪⎫35,45,△AOB 为正三角形.(1)求sin ∠COA ; (2)求cos ∠COB .解析 (1)根据三角函数定义可知sin ∠COA =45.(2)∵△AOB 为正三角形,∴∠AOB =60°, 又sin ∠COA =45,cos ∠COA =35,∴cos ∠COB =cos(∠COA +60°) =cos ∠COA cos 60°-sin ∠COA sin 60° =35·12-45·32=3-4310. 16.角α终边上的点P 与A (a,2a )关于x 轴对称(a >0),角β终边上的点Q 与A 关于直线y =x 对称,求sin α·cos α+sin β·c os β+tan α·tan β的值.解析 由题意得,点P 的坐标为(a ,-2a ), 点Q 的坐标为(2a ,a ). 所以,sin α=-2aa 2+-2a2=-25, cos α=a a 2+-2a 2=15, tan α=-2aa=-2,sin β=a 2a 2+a 2=15,cos β=2a 2a2+a2=25, tan β=a 2a =12,故有sin α·cos α+sin β·cos β+tan α·tan β =-25×15+15×25+(-2)×12=-1.。

新高考高中数学必修一-任意角和弧度制同步测试题(含解析)

新高考高中数学必修一-任意角和弧度制同步测试题(含解析)

人教A 版(2019)必修第一册 5.1 任意角和弧度制一、单选题1.已知第二象限角α的终边上一点()sin ,tan P ββ,则角β的终边在 A .第一象限 B .第二象限C .第三象限D .第四象限2.“角A 小于2π”是“角A 是第一象限角”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件3.下列选项中,满足αβ<的是( ) A .1α=,2β=︒ B .1α=,60β=-︒ C .225α=︒,4β= D .180α=︒,πβ=4.下列各组的两个角中,终边不相同的一组角是( ) A .-56°与664° B .800°与-1360° C .150°与630° D .-150°与930°5.角α和β满足关系:2()k k αππβ=+-∈Z ,则角α与β的终边( ) A .关于x 轴对称 B .关于y 轴对称C .关于原点对称D .以上答案都不对6.将一条闭合曲线放在两条平行线之间,无论这条闭合曲线如何运动,只要它与两平行线中的一条直线只有一个交点,就必与另一条直线也只有一个交点,则称此闭合曲线为等宽曲线,这两条平行直线间的距离叫等宽曲线的宽比.如圆所示就是等宽曲线.其宽就是圆的直径.如图所示是分别以A 、B 、C 为圆心画的三段圆弧组成的闭合曲线Γ(又称莱洛三角形),下列关于曲线Γ的描述中,正确的有( ) (1)曲线Γ不是等宽曲线;(2)曲线Γ是等宽曲线且宽为线段AB 的长; (3)曲线Γ是等宽曲线且宽为弧AB 的长; (4)在曲线Γ和圆的宽相等,则它们的周长相等; (5)若曲线Γ和圆的宽相等,则它们的面积相等.A .1个B .2个C .3个D .4个7.半径为1cm ,圆心角为120︒的扇形的弧长为( ) A .1cm 3B .2cm 3C .cm 3πD .2cm 3π8.已知()1,4k k k πθααπ⎧⎫∈=+-⋅∈⎨⎬⎩⎭Z ,则角θ的终边所在的象限是( )A .第一象限B .第二象限C .第一或第二象限D .第三或第四象限9.如图所示的时钟显示的时刻为4:30,此时时针与分针的夹角为()0ααπ<≤.若一个半径为1的扇形的圆心角为α,则该扇形的面积为( )A .2πB .4π C .8π D .16π10.已知扇形的圆心角为120°,半径为3,则扇形面积为( ) A .2π B .3πC .154π D .52π11.下列说法:①终边相同的角必相等;①锐角必是第一象限角;①小于90︒的角是锐角;①第二象限的角必大于第一象限的角;①若角α的终边经过点(0,3)M -,则角α是第三或第四象限角,其中错误的是( ) A .①①①B .①①①C .①①①①D .①①①①{}|4590,B k k Z ββ==︒+⋅︒∈,则( )A .AB =∅ B .B①AC .A①BD .A B =二、填空题13.已知本次数学考试总时间为2小时,你在奋笔疾书沙沙答题,分针滴答滴答忙着转圈.现在经过了1小时,则此时分针转过的角的弧度数是 _______.14.已知角2020α=-︒,则与α终边相同的最小正角是______.15.大于360-︒且终边与角75︒重合的负角是________.16.已知扇形的周长为16cm ,面积为162cm ,则扇形的圆心角α的弧度数为___________.三、解答题17.已知扇形的周长为20cm ,求扇形面积的最大值,并求此时圆心角的弧度数.18.一扇形的周长为20cm ,当扇形的圆心角α等于多少弧度时,这个扇形面积最大,并求此扇形的最大面积.19.用弧度制表示顶点在原点,始边重合于x 轴的非负半轴,终边落在阴影部分内的角的集合(包括边界,如图7-1-7所示).20.把下列各角化为2(02,)k k πααπ+<∈Z 的形式且指出它是第几象限角,并写出与它终边相同的角的集合. (1)463π-; (2)1485-︒;21.分别写出当角α在第四象限时,角2α的所在象限.参考答案:1.C根据第二象限横纵坐标的正负值判断得sin 0,tan 0,ββ<⎧⎨>⎩再判断角β的象限即可.【详解】因为点()sin ,tan P ββ在第二象限,所以有sin 0,tan 0,ββ<⎧⎨>⎩所以β是第三象限角.故选:C本题考查各象限三角函数值的正负.属于基础题. 2.D利用特殊值法结合充分、必要条件的定义判断可得出结论. 【详解】若角A 小于2π,取4A π=-,此时,角A 不是第一象限角,即“角A 小于2π”⇒“角A 是第一象限角”;若角A 是第一象限角,取24A ππ=+,此时,2A π>,即“角A 小于2π”⇐/“角A 是第一象限角”. 因此,“角A 小于2π”是“角A 是第一象限角”的既不充分也不必要条件.故选:D. 3.C先判断出B ,D 不满足αβ<;然后利用角度制与弧度制的互化,判断出C 正确. 【详解】解:对于选项B ,有αβ>, 对于D ,有αβ=; 对于A ,因为1801()2π=︒>︒,所以满足αβ>, 对于C ,因为18044()225π=⨯︒>︒,满足αβ<.故选:C . 4.C利用终边相同的两个角符合的规律逐一判断各选项即可得解. 【详解】因终边相同的两个角总是相差360的整数倍,对于A ,664(56)7202360--==⋅,即角-56°与664°终边相同,A 不正确; 对于B ,800(1360)21606360--==⋅,即角800°与-1360°终边相同,B 不正确; 对于C ,6301504801360120-==⋅+,即角150°与630°终边不相同,C 正确; 对于D ,930(150)10803360--==⋅,即角-150°与930°终边相同,D 不正确, 所以角150°与630°终边不相同. 故选:C 5.B根据终边相同角的定义判断可得; 【详解】解:因为角α和β满足关系:2()k k αππβ=+-∈Z , 因为β与πβ-的终边关于y 轴对称, 而2()k k αππβ=+-∈Z 与πβ-的终边相同, 所以角α与β的终边关于y 轴对称 故选:B 6.B若曲线Γ和圆的宽相等,设曲线Γ的宽为1,则圆的半径为12,根据定义逐项判断即可得出结论. 【详解】若曲线Γ和圆的宽相等,设曲线Γ的宽为1,则圆的半径为12, (1)根据定义,可以得曲线Γ是等宽曲线,错误; (2)曲线Γ是等宽曲线且宽为线段AB 的长,正确; (3)根据(2)得(3)错误;(4)曲线Γ的周长为1326ππ⨯⨯=,圆的周长为122ππ⨯=,故它们的周长相等,正确; (5)正三角形的边长为1,则三角形对应的扇形面积为2166ππ⨯=,正三角形的面积1112S =⨯⨯,则一个弓形面积6S π=则整个区域的面积为3(62ππ= 而圆的面积为2124ππ⎛⎫= ⎪⎝⎭,不相等,故错误;综上,正确的有2个, 故选:B.本题主要考查新定义,理解“等宽曲线”得出等边三角形是解题的关键. 7.D利用扇形弧长公式直接计算即可. 【详解】圆心角120︒化为弧度为23π, 则弧长为221cm 33ππ⨯=. 故选:D.8.C利用终边相同的角的概念,对当k 是奇数和偶数进行分类讨论,即可得解. 【详解】由已知,()1,4k k k πθααπ⎧⎫∈=+-⋅∈⎨⎬⎩⎭Z ,当()2k m m =∈Z 时,24m πθπ=+,即角θ的终边在第一象限;当()21k m m =+∈Z 时,324m πθπ=+,即角θ的终边在第二象限. 所以角θ的终边在第一或第二象限. 故选:C 9.C求出α的值,利用扇形的面积公式可求得扇形的面积. 【详解】由图可知,1284παπ=⨯=,所以该扇形的面积212481S ππ=⨯⨯=.故选:C. 10.B把圆心角化为弧度,然后由面积公式计算. 【详解】 21203π︒=.2123323S ππ=⨯⨯=. 故选:B . 11.C①取特殊角:0︒与360︒进行判断;①根据锐角的范围直接判断; ①取负角进行否定; ①取特殊角进行否定; ①取特殊角进行否定. 【详解】①终边相同的角必相等错误,如0︒与360︒终边相同,但不相等; ①锐角的范围为(0,90)︒︒,必是第一象限角,正确; ①小于90︒的角是锐角错误,如负角;①第二象限的角必大于第一象限的角错误,如120︒是第二象限角,390︒是第一象限角; ①若角α的终边经过点(0,3)M -,则角α是终边在y 轴负半轴上的角,故①错误. 其中错误的是①①①①. 故选C .(1)要证明一个命题为真命题,需要严格的证明;要判断一个命题为假命题,举一个反例就可以了.(2)角的概念的辨析题中,通常可以取特殊角来否定结论. 12.D考虑A 中角的终边的位置,再考虑B 中角的终边的位置,从而可得两个集合的关系. 【详解】. 45180,k k Z α=︒+⋅︒∈ 表示终边在直线y x =上的角,135180,k k Z α=︒+⋅︒∈ 表示终边在直线y x =-上的角,而4590,k k Z β=︒+⋅︒∈ 表示终边在四条射线上的角,四条射线分别是射线,0;,0;,0;,0y x x y x x y x x y x x =≥=-≤=≤=-≥ , 它们构成直线y x =、直线y x =-,故A B =. 故选:D.本题考查终边相同的角,注意180k α⋅︒+的终边与α 的终边的关系是重合或互为反向延长线,而90k α⋅︒+的终边与α 的终边的关系是重合或互为反向延长线或相互垂直,本题属于中档题. 13.2π-先明确1小时是60分钟,得到分针转过的角度,再算出弧度数. 【详解】因为1小时是60分钟,分针正好转过一周360-, 所以转过的角的弧度数是2π-. 故答案为:2π-本题主要考查弧度制,还考查了理解辨析的能力,属于基础题. 14.140°先求出与α终边相同角的集合,再通过解不等式进行求解即可. 【详解】与2020α=-︒终边相同的角的集合为{}2020360,k k Z θθ=-︒+⋅︒∈, 令20203600k -︒+⋅︒>︒,解得10118k >,故当6k =时,140θ=︒满足条件. 故答案为:140° 15.285-︒根据终边相同的角的概念进行判断. 【详解】大于360-︒且终边与角75︒重合的负角是285-︒. 故答案为:285-︒本题考查终边相同的角,属于基础题. 16.2设扇形圆心角为α,半径为r ,列方程组求出α的值.【详解】解:由扇形的周长为16cm ,面积为216cm ,可设扇形圆心角为α,且(0,2)απ∈,半径为r , 则22161162r r r αα+=⎧⎪⎨⋅=⎪⎩, 解得24r α=⎧⎨=⎩所以2α=.故答案为:2.17.面积最大值为225cm ,此时圆心角弧度数为2设扇形的半径为R ,弧长为l ,依题意有220l R +=,利用扇形面积公式12S lR =扇形,利用基本不等式即可求得答案.【详解】解:设扇形的半径为R ,弧长为l ,则220l R +=.()()()210112021025222R R S lR R R R R -+⎡⎤==-⋅=-⋅=⎢⎥⎣⎦扇形(当且仅当5R =时取等号). S 扇形最大值为25,此时5R =,10l =.故扇形圆心角的弧度数2l Rα==. 所以扇形面积最大值为225cm ,此时圆心角弧度数为2.18.2α=弧度,最大面积225cm设扇形的半径为r ,得出弧长为202,010r r -<<,确定扇形面积函数式,利用二次函数的性质,求出面积最大时半径和弧长的值,即可得出结论【详解】设扇形的半径为r ,其周长为20,则扇形弧长为202r -,且2020,010r r ->∴<<, 扇形面积221(202)10(5)252S r r r r r =-=-+=--+, 当=5r ,1025α==时,S 取最大值为25, 所以圆心角为2弧度时,扇形面积最大为25.本题考查扇形面积、弧长公式的应用、以及二次函数的最值,合理设元是解题的关键,考查计算求解能力,属于基础题.19.(1)522,612k k k ππαπαπ⎧⎫-≤≤+∈⎨⎬⎩⎭Z ; (2)3322,44k k k ππαπαπ⎧⎫-≤≤+∈⎨⎬⎩⎭Z ; (3),62k k k ππαπαπ⎧⎫+≤≤+∈⎨⎬⎩⎭Z .将角度化成弧度,结合任意角概念表示出来即可.【详解】对图(1),可看作5,612ππ⎡⎤-⎢⎥⎣⎦范围内的角,结合任意角概念,可表示为522,612k k k ππαπαπ⎧⎫-≤≤+∈⎨⎬⎩⎭Z ; 对图(2),可看作33,44ππ⎡⎤-⎢⎥⎣⎦范围内的角,结合任意角概念,可表示为3322,44k k k ππαπαπ⎧⎫-≤≤+∈⎨⎬⎩⎭Z ; 对图(3),可看作由,62ππ⎡⎤⎢⎥⎣⎦的范围角,经过旋转半圈整数倍形成的角,故可表示为,62k k k ππαπαπ⎧⎫+≤≤+∈⎨⎬⎩⎭Z .20.(1)第二象限角,终边相同的角的集合为22,3k k πββπ⎧⎫=+∈⎨⎬⎩⎭Z ∣;(2)第四象限角.终边相同的角的集合为72,4k k πββπ⎧⎫=+∈⎨⎬⎩⎭Z ∣;(3)第四象限角,终边相同的角的集合为{2(820),}k k ββππ=+-∈Z ∣.利用与角α终边相同的角的集合的结论,即可得出结果.【详解】(1)4628233πππ-=-⨯+,它是第二象限角,终边相同的角的集合为22,3k k πββπ⎧⎫=+∈⎨⎬⎩⎭Z ∣. (2)714855*********ππ-︒=-⨯︒+︒=-⨯+,它是第四象限角.终边相同的角的集合为72,4k k πββπ⎧⎫=+∈⎨⎬⎩⎭Z ∣. (3)2042(820)ππ-=-⨯+-,而382022πππ<-<. 所以20-是第四象限角,终边相同的角的集合为{2(820),}k k ββππ=+-∈Z ∣. 21.答案见解析由终边相同的角和象限角的定义进行判断即可【详解】(1)当角α在第一象限时,即22,2k k k Z ππαπ<<+∈,则,24k k k Z απππ<<+∈, 当2k n =(n Z ∈)时,22,24n n n Z απππ<<+∈,则2α为第一象限的角, 当21k n =+(n Z ∈)时,(21)(21),24n n n Z απππ+<<++∈,即522,24n n n Z αππππ+<<+∈,则角2α为第三象限的角, 综上,角2α在第一或第三象限; (2)当角α在第二象限时,即22,2k k k απ+π<<π+π∈Z ,则,422k k k αππ+π<<+π∈Z , 当2k n =(n Z ∈)时,22,422n n n Z παπππ+<<+∈,则 2α为第一象限的角,当21k n =+(n Z ∈)时,(21)(21),422n n n Z παπππ++<<++∈,即5322,422n n n Z παπππ+<<+∈,则 2α为第三象限的角, 综上,角2α在第一或第三象限; (3)当角α在第三象限时,即322,2k k k Z πππαπ+<<+∈,则3,224k k k Z παπππ+<<+∈, 当2k n =(n Z ∈)时,322,224n n n Z παπππ+<<+∈,则2α为第二象限的角, 当21k n =+(n Z ∈)时,3(21)(21),224n n n Z παπππ++<<++∈,即3722,224n n n Z παπππ+<<+∈,则2α为第四象限的角, 综上,角2α在第二或第四象限; (4)当角α在第四象限时,即3222,2k k k Z ππαππ+<<+∈,则3,42k k k Z παπππ+<<+∈, 当2k n =(n Z ∈)时,322,42n n n Z παπππ+<<+∈,则2α为第二象限的角, 当21k n =+(n Z ∈)时,3(21)(21),42n n n Z παπππ++<<++∈,即 7222,42n n n Z παπππ+<<+∈,则2α在第二或第四象限, 综上,角2α在第二或第四象限。

高一数学任意角和弧度制和任意角的三角函数试题

高一数学任意角和弧度制和任意角的三角函数试题

高一数学任意角和弧度制和任意角的三角函数试题1.化为弧度是( )A.B.C.D.【答案】B【解析】本题角度化为弧度,变换规则是度数乘以,,故选B.【考点】弧度与角度的互化.2.是第( )象限角.A.一B.二C.三D.四【答案】C【解析】本题主要考查三角函数终边相同的角.由得出终边在第三象限,故选C.【考点】终边相同的角的表示.3.已知角的终边过点(-5,12),则=________.【答案】【解析】.【考点】任意角的三角函数的定义.4.与终边相同的最小正角是.【答案】【解析】因为与终边相同的角是所以当时,与终边相同的最小正角是【考点】与终边相同的角5.与60°角终边相同的角的集合可以表示为( )A.{|=k·360°+,k Z}B.{|=2k+60°,k Z}C.{|=k·180°+60°,k Z}D.{|=2k+,k Z}【答案】D【解析】A,B把弧度制与角度制混在了一起,不规范,而C,应为=k·360°+60°,D正确.【考点】终边相同的角的集合.6.已知是第一象限的角,那么是()A.第一象限角B.第二象限角C.第一或第二象限角D.第一或第三象限角【答案】D【解析】∵α的取值范围(k∈Z)∴的取值范围是(k∈Z),分类讨论①当k="2n+1" (其中n∈Z)时的取值范围是即属于第三象限角.②当k=2n(其中n∈Z)时的取值范围是即属于第一象限角.故答案为:D.【考点】象限角、轴线角.7.设,,,则( )A.B.C.D.【答案】D【解析】因为,所以<;因为,所以>,<,,所以b<a<c.故答案为:D.【考点】三角函数值.8.计算:= ;【答案】1【解析】原式=【考点】三角函数值的计算9.一个扇形的周长是6,该扇形的中心角是1弧度,该扇形的面积是_______.【答案】【解析】设该扇形的半径、弧长分别为,则依题意有,从中解得,从而.【考点】1.扇形的弧长公式;2.扇形的面积公式.10.已知角的顶点在坐标原点,始边在轴的正半轴,终边经过点,则【答案】-.【解析】由题意可得 x=-1,y=,r2=x2+y2=4,r=2,故cosa==-.【考点】任意角的三角函数的定义.11.已知圆中一段弧长正好等于该圆的外切正三角形的边长,那么这段弧所对的圆心角的弧度数为 ( )A.B.C.D.2【答案】D【解析】根据题意,由于设圆的半径为r,则可知,圆中一段弧长正好等于该圆的外切正三角形的边长,可知圆心到三角形不边长的距离为r,利用30得三角函数知可知,正三角形得边长得的长度为2r,那么利用弧长公式可知,弧度数等于弧长除以半径即为2,故选D.【考点】弧度数的问题点评:解决的关键是根据弧长公式,利用圆的半径来得到弧度数,属于基础题。

高中数学总复习练习题---任意角和弧度制(解析版)

高中数学总复习练习题---任意角和弧度制(解析版)

高中数学总复习练习题专题47 任意角和弧度制一、选择题1.(2019·广西高一期末(文))150o 化成弧度制为( ) A.56πB.4π C.23π D.3π 【答案】A【解析】由题意可得51501501806ππ=⨯=o,故选:A. 2.把85π-化为角度是( ) A.96-o B.144-oC.288-oD.576-o【答案】C【解析】由题意,根据角度制和弧度制的互化,可得8818028855π-=-⨯=-o o . 故选:C.3.下列角的终边与37o 角的终边在同一直线上的是( ) A.37-o B.143oC.379oD.143-o【答案】D【解析】与37o 角的终边在同一直线上的角可表示为37180k +⋅o o ,k Z ∈,当1k =-时,37180143-=-o o o ,所以,143-o 角的终边与37o 角的终边在同一直线上. 故选:D .4.与468-o 角的终边相同的角的集合是( )A.{}360456,k k Z αα=⋅+∈ooB.{}360252,k k Z αα=⋅+∈ooC.{}36096,k k Z αα=⋅+∈ooD.{}360252,k k Z αα=⋅-∈oo【答案】B【解析】因为4682360252-=-⨯+o o o ,所以252o 角与468-o 角的终边相同,所以与468-o 角的终边相同的角的集合为{}360252,k k Z αα=⋅+∈o o. 故选:B .5.如果角α的终边上有一点()0,3P -,那么α( )A.是第三象限角B.是第四象限角C.是第三或第四象限角D.不是象限角【答案】D【解析】因为点P 在y 轴的负半轴上,即角α的终边落在y 轴的非正半轴上,所以α不是象限角. 故选:D.6.已知角α的终边落在x 轴的非负半轴上,则角2α的终边落在( ) A.x 轴的非负半轴上 B.x 轴上 C.y 轴的非负半轴上 D.y 轴上【答案】B【解析】由题意,知()360k k Z α=⋅∈o,则()1802k k Z α=⋅∈o .当k 为偶数时,设()2k n n Z =∈,则3602n α=⋅o ,此时,角2α的终边在x 轴的非负半轴上; 当k 为奇函数时,设()21k n n Z =+∈,则()()211801803602n n n Z α=+⋅=+⋅∈o o o ,此时,角2α的终边在x 轴的非正半轴上. 综上所述,角2α的终边在x 轴上.故选:B .7.(2019·河南高一期末)已知一个扇形的圆心角为56π,半径为3.则它的弧长为( ) A.53πB.23π C.52πD.2π 【答案】C【解析】由扇形弧长公式得:55362L r ππα==⨯= 本题正确选项:C8.(2019·山东高一期末)下列各角中,与角6π终边相同的角是( ) A.136π-B.116π-C.116πD.196π【答案】B 【解析】角6π终边相同的角可以表示为2,()6a k k Z ππ=+∈,当1k =-时,6a 11π=-,所以答案选择B 9.若角α的顶点与原点重合,始边与x 轴的非负半轴重合,则集合{}1804518090,k k k Z αα⋅+≤≤⋅+∈oooo中的角α的终边在图中的位置(阴影部分)是( )A. B. C. D.【答案】C【解析】当k 为偶数时,设()2k n n Z =∈,则有3604536090n n α⋅+≤≤⋅+o o o o ,角α的终边在介于4590o o :角终边所在的区域;当k 为奇数时,设()21k n n Z =+∈,则有360225360270n n α⋅+≤≤⋅+o o o o ,角α的终边在介于225270o o :角终边所在的区域.故选:C.10.若2弧度的圆心角所对的弧长为4,则这个圆心角所在的扇形的面积为( ) A .4 B .2C .4πD .2π【答案】A【解析】由已知得,=24l θ=,,又因为弧长l R θ=,所以扇形的半径=2R ,所以面积11=42=422S lR =⋅⋅.选A .11.(2019·安徽高三月考(文))已知某扇形的面积为22.5cm ,若该扇形的半径r ,弧长l 满足27cm r l +=,则该扇形圆心角大小的弧度数是( )A.45B.5C.12D.45或5 【答案】D【解析】据题意,得27,1 2.5,2l r lr +=⎧⎪⎨=⎪⎩解得5,22r l ⎧=⎪⎨⎪=⎩或1,5,r l =⎧⎨=⎩所以45l r =或5.故选D . 12.(2019·湖北高三月考(文))《九章算术》是我国古代的数学巨著,其中《方田》章给出了计算弧田面积所用的经验公式为:弧田面积12=⨯(弦×矢+矢2),弧田(如图阴影部分所示)是由圆弧和弦围成,公式中的“弦”指圆弧所对的弦长,“矢”等于半径长与圆心到弦的距离之差,现有圆心角为23π,矢为2的弧田,按照上述方法计算出其面积是( )A.2+43B.13+2C.2+83D.4+83【答案】A 【解析】如图,由题意可得23AOB π∠=, 在Rt AOD ∆中,,36AOD DAO ππ∠=∠=,所以2OB OD =,结合题意可知矢2OB OD OD =-==,半径4OB =, 弦2216443AB AD ==-= 所以弧田面积12=(弦⨯矢+矢2)21(4322)4322=+=, 故选A. 二、填空题13.(2019·上海交大附中高一开学考试)2018°是第________象限角. 【答案】三【解析】20185360218=⨯+o o o Q ,又218o 是第三象限角,所以2018o 也是第三象限角. 故答案为:三.14.(2019·上海市吴淞中学高一期末)圆心角为60︒的扇形,它的弧长为2π,则该扇形所在圆的半径为______. 【答案】6 【解析】263l r r r παπ===∴=故答案为:615.(2018·江西高一期末)扇形的半径为1cm ,圆心角为30°,则该扇形的弧长为________cm 【答案】6π【解析】圆弧所对的圆心角为30°即为6π弧度,半径为1cm 弧长为l =|α|•r 6π=⨯16π=(cm ).故答案为:6π. 16.(2019·上海市复兴高级中学高一月考)若角α与角3-2π终边相同(始边相同且为x 轴正半轴),且302πα≤<,则=α______. 【答案】2π 【解析】因为角α与角32π-终边相同(始边相同且为x 轴正半轴), 所以322k παπ=-,k ∈Z , 又因302πα≤<, 所以当1k =时,2πα=.故答案为:2π 三、解答题17.如图所示,用弧度制表示顶点在原点,始边重合于x 轴的非负半轴,终边落在阴影部分的角的集合.【答案】(1) {α|+2k π<α<+2k π,k ∈Z};(2) {α|-+2k π<α≤+2k π,k ∈Z};(3){α|k π≤α≤+k π,k ∈Z};(4) {α|+k π<α<+k π,k ∈Z}. 【解析】 (1)将阴影部分看成是由OA 逆时针转到OB 所形成, 故满足条件的角的集合为{α|+2kπ<α<+2kπ,k∈Z}.(2)若将终边为OA 的一个角改写为-,此时阴影部分可以看成是OA 逆时针旋转到OB 所形成,故满足条件的角的集合为{α|-+2kπ<α≤+2kπ,k∈Z}.(3)将图中x 轴下方的阴影部分看成是由x 轴上方的阴影部分旋转πrad 而得到,所以满足条件的角的集合为{α|kπ≤α≤+kπ,k∈Z}.(4)与第(3)小题的解法类似,将第二象限阴影部分旋转πrad 后可得到第四象限的阴影部分.所以满足条件的角的集合为{α|+kπ<α<+kπ,k∈Z}.18.已知1570α=-o ,2750α=o,135βπ=,23βπ=-. (1)将12,αα用弧度制表示出来,并指出它们各自的终边所在的象限;(2)将12,ββ用角度制表示出来,并在720,180⎡⎤--⎣⎦o o内找出与它们终边相同的所有角.【答案】(1)1196πα=-终边位于第二象限,2256πα=终边位于第一象限; (2)12108,60ββ==-o o,与1β终边相同的角为252-o 和612-o ,与2β终边相同的角为420-o .【解析】(1)由题意,根据角度制与弧度制的互化公式,可得:1195705701806ππα=-=-⨯=-o oo, 2257507501806ππα==⨯=o o o, 又由1195466ππαπ=-=-+,所以1α与角56π的终边相同,所以1α终边位于第二象限;225466ππαπ==+,所以2α与角6π的终边相同,所以2α终边位于第第一象限.(2)根据角度制与弧度制的互化公式,可得131085βπ==o ,2603βπ=-=-o , 根据终边相同角的表示,可得与1β终边相同的角为1360108,k k Z θ=⨯+∈o o,当1k =-时,1360108252θ=-+=-o o o ;当2k =-时,12360108612θ=-⨯+=-o o o. 与2β终边相同的角为236060,k k Z θ=⨯-∈o o ,当1k =-时,136060420θ=--=-o o o.19.在角的集合{}|9045,k k αα︒︒=+∈Z g, (1)有几种终边不同的角?(2)写出区间(180,180)︒︒-内的角? (3)写出第二象限的角的一般表示法.【答案】(1) 4种.(2) 135,45,45,135︒︒︒︒--.(3) 360135,k k ︒︒+∈Z g .【解析】(1)由题知9045,k k α︒︒=+∈Z g ,令0,1,2,3k =,则45,135,225,315α︒︒︒︒=, ∴在给定的角的集各中,终边不同的角共有4种. (2)由1809045180,k k ︒︒︒︒-<+<∈Z g ,得53,22k k -<<∈Z ,∴2,1,0,1k =--, ∴在区间(180,180)︒︒-内的角有135,45,45,135︒︒︒︒--. (3)由(1)知,第二象限的角可表示为360135,k k ︒︒+∈Z g .20.已知扇形面积为225cm ,当扇形的圆心角为多大时,扇形的周长取得最小值? 【答案】当扇形的圆心角为2时,扇形的周长取得最小值.【解析】设扇形的半径为R ,弧长为l ,扇形的周长为y ,则2y l R =+. 由题意,得1252lR =,则50l R =,故502522(0)y R R R R R ⎛⎫=+=+> ⎪⎝⎭. 利用函数单调性的定义,可得当05R <…时,函数502y R R=+是减函数; 当5R >时,函数502y R R=+是增函数. 所以当5R =时,y 取得最小值20,此时10l =,2lRα==, 即当扇形的圆心角为2时,扇形的周长取得最小值.21.(2019·宁夏银川一中高一期中)已知在半径为的圆中,弦的长为.(1)求弦所对的圆心角的大小;(2)求圆心角所在的扇形弧长及弧所在的弓形的面积. 【答案】(1)(2)【解析】(1)由于圆的半径为,弦的长为,所以为等边三角形,所以.(2)因为,所以.,又,所以.22.已知一扇形的中心角为α,所在圆的半径为R .(1)若,6cm 3R απ== ,求该扇形的弧长l . (2)若扇形的周长为12cm ,问当α多大时,该扇形有最大面积?并求出这个最大面积.【答案】(1)2π; (2)2α=,扇形的最大面积为29cm . 【解析】(1)由扇形的弧长公式,可得该扇形的弧长为623l R παπ==⨯=;(2)由题意,扇形的周长为12cm ,所以212R l +=,可得122l R =-, 又由扇形的面积公式,可得2211(122)6(3)922S lR R R R R R ==-=-+=--+, 当3R =时,扇形的面积取得最大值,此时最大面积为29S cm =, 此时1226l R =-=,即36R αα=⨯=,解得2α=.。

高三数学任意角和弧度制和任意角的三角函数试题答案及解析

高三数学任意角和弧度制和任意角的三角函数试题答案及解析

高三数学任意角和弧度制和任意角的三角函数试题答案及解析1.已知角为第二象限角,且,则的值为()A.B.C.D.【答案】B【解析】由,得:又因为:所以,解得:又因为角为第二象限角,所以,所以,故选B.【考点】同角三角函数基本关系及诱导公式.2.设α是第二象限角,P(x,4)为其终边上的一点,且cosα=x,则tanα=() A.B.C.-D.-【答案】D【解析】∵α是第二象限角,∴cosα=x<0,即x<0.又cosα=x=,解得x=-3,∴tanα==-.3.已知点P(sinα-cosα,tanα)在第一象限,则在[0,2π]内α的取值范围是()A.(,)B.(π,)C.(,)D.(,)∪(π,)【答案】D【解析】由已知得,解得α∈(,)∪(π,).4.已知角α终边上一点P(-,y),且sinα=y,求cosα和tanα的值.【答案】cosα=-1,tanα=0.【解析】r2=x2+y2=y2+3,由sinα===y,∴y=±或y=0.当y=即α是第二象限角时,cosα==-,tanα=-;当y=-即α是第三象限角时,cosα==-,tanα=;当y=0时,P(-,0),cosα=-1,tanα=0.5.设集合M=,N={α|-π<α<π},则M∩N=________.【答案】【解析】由-π<<π,得-<k<.∵k∈Z,∴k=-1,0,1,2,故M∩N=6.一段圆弧的长度等于其圆内接正三角形的边长,则其圆心角的弧度数为()A.B.C.D.【答案】C【解析】由题意可知,圆内接正三角形边长a与圆的半径之间关系为a=r,∴α===.7. tan(-1 410°)的值为()A.B.-C.D.-【答案】A【解析】tan(-1 410°)=tan(-4×360°+30°)=tan 30°=8.《九章算术》是我国古代数学成就的杰出代表.其中《方田》章给出计算弧田面积所用的经验公式为:弧田面积=(弦´矢+矢2).弧田(如图),由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.按照上述经验公式计算所得弧田面积与其实际面积之间存在误差.现有圆心角为,弦长等于9米的弧田.(1)计算弧田的实际面积;(2)按照《九章算术》中弧田面积的经验公式计算所得结果与(1)中计算的弧田实际面积相差多少平方米?(结果保留两位小数)【答案】(1) ();(2)少.【解析】(1)本题比较简单,就是利用扇形面积公式来计算弧田面积,弧田面积等于扇形面积对应三角形面积.(2)由弧田面积的经验计算公式计算面积与实际面积相减即得.试题解析:(1) 扇形半径, 2分扇形面积等于 5分弧田面积=(m2) 7分(2)圆心到弦的距离等于,所以矢长为.按照上述弧田面积经验公式计算得(弦´矢+矢2)=. 10分平方米 12分按照弧田面积经验公式计算结果比实际少1.52平米.【考点】(1)扇形面积公式;(2)弧田面积的经验计算公式.9.在平面直角坐标系中,若角的顶点在坐标原点,始边在轴的非负半轴上,终边经过点(其中)则的值为( )A.B.C.D.【答案】D【解析】,根据任意角的三角函数的定义得,,所以.【考点】任意角三角函数的定义.10.( )A.B.C.D.【答案】A【解析】.【考点】特殊角的三角函数值11.在平面直角坐标系中,已知角的顶点在坐标原点,始边在轴的非负半轴上,终边经过点,则 .【答案】【解析】由任意角的三角函数的定义得:.【考点】任意角的三角函数的定义.12.已知,则满足的角所在的象限为.【答案】二或四【解析】根据指数函数的单调性和,得,即和异号,所以角是第二象限或第四象限的角.【考点】指数函数的单调性、各象限三角函数的符号.13.已知为钝角,且,则与角终边相同的角的集合为.【答案】【解析】由为钝角,且,得,所以与角终边相同的角的集合为,当然也可写成,但注意制度要统一,不要丢掉.【考点】特殊角的三角函数、终边相同角的集合.14.已知,则满足的角所在的象限为.【答案】二或四【解析】根据指数函数的单调性和,得,即和异号,所以角是第二象限或第四象限的角.【考点】指数函数的单调性、各象限三角函数的符号.15.如图所示,在平面直角坐标系xOy中,角α的终边与单位圆交于点A,点A的纵坐标为,则cosα=.【答案】.【解析】由题意及图所示,易知A点的横坐标为,所以.【考点】三角函数的定义.16.已知函数的定义域为[a,b],值域为[-2,1],则的值不可能是()A.B.C.D.【答案】C【解析】因的值域[-2,1]含最小值不含最大值,根据图象可知定义域小于一个周期,故选D.【考点】三角函数的定义域和值域.17.若角的终边上有一点P(a,-2),则实数a的值为()A.B.C.D.【答案】D【解析】因为,所以.【考点】三角函数的定义.18.若,则角是()A.第一或第二象限角B.第二或第三象限角C.第三或第四象限角D.第二或第四象限角【答案】D【解析】因为,则角是第二或第四象限角,选D19.点位于直角坐标面的A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】因为,位于直角坐标面的第四象限,选D20.已知圆与轴的正半轴相交于点,两点在圆上,在第一象限,在第二象限,的横坐标分别为,则=( )A.B.C.D.【答案】B【解析】设与轴正半轴的夹角分别为则,21.已知动点在圆x2+y2=1上绕坐标原点沿逆时针方向匀速旋转,12秒旋转一周,已知时间t=0时,点A(,则0≤t≤12时,动点A的横坐标x关于t(单位:秒)的函数单调递减区间是()A.[0, 4]B.[4,10]C.[10,12]D.[0,4]和[10,12]【答案】D【解析】解:设动点A与x轴正方向夹角为α,则t=0时α=π/ 3 ,每秒钟旋转π /6 ,在t∈[0,1]上α∈[π/ 3 ,π/ 2 ],在[7,12]上α∈[3π/ 2 ,7π /3 ],动点A的纵坐标y关于t都是单调递增的.故选D.22.曲线与坐标轴所围的面积是【答案】3【解析】据余弦函数的图象,23.已知,且在第二象限,那么在 ( )A.第一象限B.第二象限C.第三象限D.第四象限【答案】C【解析】解:∵sinθ="3" /4 ,且θ在第二象限,∴cosθ=-/4,所以sin2θ=2sinθcosθ=-3/16Cos2θ=1-2sin2θ=-1/8故2θ在第三象限。

高三数学任意角和弧度制和任意角的三角函数试题

高三数学任意角和弧度制和任意角的三角函数试题

高三数学任意角和弧度制和任意角的三角函数试题1.若角的终边经过点P,则的值是.【答案】.【解析】由角的终边经过点P,知,由三角函数的定义可知:,故答案为:.【考点】三角函数的定义.2.已知角的终边经过点(-4,3),则cos=( )A.B.C.-D.-【答案】D【解析】由题意可知x=-4,y=3,r=5,所以.故选D.【考点】三角函数的概念.3.如图所示,在平面直角坐标系xOy中,角α的终边与单位圆交于点A,点A的纵坐标为,则cos α=________.【答案】-=,且A点在第二象限,又因为圆O为单位圆,所以A点横坐标【解析】因为A点纵坐标yAx=-,由三角函数的定义可得cos α=-.A4.下列三角函数值的符号判断错误的是()A.sin165°>0B.cos280°>0C.tan170°>0D.tan310°<0【答案】C【解析】165°是第二象限角,因此sin165°>0正确;280°是第四象限角,因此cos280°>0正确;170°是第二象限角,因此tan170°<0,故C错误;310°是第四象限角,因此tan310°<0正确.5.如图,正三角形ABC的边长为2,D,E,F分别在三边AB,BC和CA上,且D为AB的中点,,,.(1)当时,求的大小;(2)求的面积S的最小值及使得S取最小值时的值.【答案】(1)θ=60°;(2)当θ=45°时,S取最小值.【解析】本题主要考查正弦定理、直角三角形中正切的定义、两角和的正弦公式、倍角公式、三角形面积公式等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,在中,,①,而在中,利用正弦定理,用表示DE,在中,利用正弦定理,用表示DF,代入到①式中,再利用两角和的正弦公式展开,解出,利用特殊角的三角函数值求角;第二问,将第一问得到的DF和DE代入到三角形面积公式中,利用两角和的正弦公式和倍角公式化简表达式,利用正弦函数的有界性确定S的最小值.在△BDE中,由正弦定理得,在△ADF中,由正弦定理得. 4分由tan∠DEF=,得,整理得,所以θ=60°. 6分(2)S=DE·DF=. 10分当θ=45°时,S取最小值. 12分【考点】正弦定理、直角三角形中正切的定义、两角和的正弦公式、倍角公式、三角形面积公式.6.是第二象限角,则是第象限角.【答案】一或三【解析】是第二象限角,则有,于是,因此是第一、三象限角.【考点】象限角的概念.7.已知一扇形的中心角是α,所在圆的半径是R.(1)若α=60°,R=10cm,求扇形的弧长及该弧所在的弓形面积;(2)若扇形的周长是一定值C(C>0),当α为多少弧度时,该扇形有最大面积?【答案】(1)50cm2(2)【解析】(1)设弧长为l,弓形面积为S弓.∵α=60°=,R=10,∴l=π(cm).S弓=S扇-S△=×π×10-×102·sin60°=50cm2.(2)∵扇形周长C=2R+l=2R+αR,∴R=,∴S扇=α·R2=α=,当且仅当α=,即α=2(α=-2舍去)时,扇形面积有最大值.8.已知α=,回答下列问题.(1)写出所有与α终边相同的角;(2)写出在(-4π,2π)内与α终边相同的角;(3)若角β与α终边相同,则是第几象限的角?【答案】(1)(2)-、-、(3)第一、三象限的角【解析】(1)所有与α终边相同的角可表示为.(2)由(1)令-4π<2kπ+<2π(k∈Z),则有-2-<k<1-.∵k∈Z,∴取k=-2、-1、0.故在(-4π,2π)内与α终边相同的角是-、-、.(3)由(1)有β=2kπ+ (k∈Z),则=kπ+(k∈Z).∴是第一、三象限的角.9.已知角α的终边上一点的坐标为(sin,cos),则角α的最小正值为()A.B.C.D.【答案】C【解析】∵sin>0,cos>0,∴角α的终边在第一象限,∴tanα====,∴角α的最小正值为.10.已知角α的终边上一点的坐标为,则角α的最小正值为()A.B.C.D.【答案】C【解析】因为角α的终边上一点的坐标为,所以角α在第四象限,tan α==-,故α的最小正值为.11.已知则= .【答案】【解析】.【考点】三角函数求值.12.已知则等于()A.7B.C.D.【答案】B【解析】因为所以,,,选B.【考点】任意角的三角函数,两角和与差的三角函数.13.已知角x的终边上一点坐标为,则角x的最小正值为( ) A.B.C.D.【答案】C【解析】因为角终边上一点的坐标为,在第四象限,所以角是第四象限角,又,所以角的最小正值为.【考点】特殊角的三角函数值14.角的终边经过点,则的可能取值为( )A.B.C.D.【答案】D【解析】.【考点】1.任意角的三角函数;2.同角三角函数的基本关系15.( )A.B.C.D.【答案】A【解析】.【考点】特殊角的三角函数值16.角的终边经过点,则的可能取值为( )A.B.C.D.【答案】D【解析】.【考点】1.任意角的三角函数;2.同角三角函数的基本关系17.已知角的顶点为坐标原点,始边为轴的非负半轴,若是角终边上的一点,且,则的值为( )A.B.C.或D.或【答案】A【解析】因为,角的顶点为坐标原点,始边为轴的非负半轴,且是角终边上的一点,所以,,又由三角函数的定义,得,解得,的值为故选A.【考点】任意角的三角函数18.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是()A.2B.C.D.【答案】B【解析】已知弧度数为2的圆心角所对的弦长也是2,所以,即,所以.【考点】弧度制.19.在中,若,则=( )A.B.C.D.【答案】B【解析】因为,在中,若,所以,,,故选B.【考点】任意角的三角函数20.如图,在平面直角坐标系中,以x轴为始边作两个锐角、,它们的终边分别与单位圆交于A、B两点.已知点A的横坐标为;B点的纵坐标为.则 .【答案】【解析】单位圆的半径是1,根据勾股定理以及点A的横坐标为,B点的纵坐标为,可知点A的纵坐标为,点B的横坐标为,所以,,,,因为,是锐角,所以,所以.【考点】1.任意角的三角函数;2.三角函数的和角公式21.已知为钝角,且,则与角终边相同的角的集合为.【答案】【解析】由为钝角,且,得,所以与角终边相同的角的集合为,当然也可写成,但注意制度要统一,不要丢掉.【考点】特殊角的三角函数、终边相同角的集合.22.在平面直角坐标系xOy中,若角α的始边与x轴的正半轴重合,终边在射线y=-x(x>0)上,则sin5α=.【答案】【解析】根据题意,由于平面直角坐标系xOy中,若角α的始边与x轴的正半轴重合,终边在射线y=-x(x>0)上,则可知,那么可知sin5α=sin,故答案为【考点】三角函数定义点评:解决的关键是利用三角函数的定义来求解三角函数值,属于基础题。

(完整版)任意角与弧度制练习题

(完整版)任意角与弧度制练习题

(完整版)任意角与弧度制练习题§5。

1 任意角和弧度制班级 姓名 评价一、归纳基础知识:1.任意角的概念:正角、负角、零角; 象限角,终边在坐标轴上的角(轴线角)的表示方法;2.终边相同的角:所有与角α终边相同的角,连同角α在内,可构成集合{β|β= }.3. 弧度制:长度等于________长的弧所对的圆心角叫做1rad (弧度)的角。

弧度与角度的换算公式:360o=_____rad ; πrad=_____; 1o=_______rad ; 1rad=________。

4。

扇形的弧长公式:L =_________ ; 扇形的面积公式:S=_________=__________5.单位圆:在直角坐标系中,以______为圆心,以_________为半径的圆叫做单位圆。

在单位圆中,圆心角α的弧度数的绝对值,等于圆心角α所对的_________。

二、举例示范解题:例1、“角︒=90α”是“角α终边在y 轴的正半轴上”的( )条件.A 充分不必要B 必要不充分C 充要D 既不充分也不必要例2、填空:(1)02230化为弧度制是 ;(2)52rad 化成角度是 ;(3)扇形的中心角为23,弧长为2,则其内切圆的半径等于 。

例3.(2005湖南文)tan600°的值是( )A .33-B .33C .3-D .3例4、已知角︒=1690α,()1试将α写成)[()πββπ2,0,2∈∈+Z k k 的形式;()2求θ,使θ与α的终边相同,且()ππθ2,4--∈.三、巩固挑战高考:1。

快速口答题:︒90= π;︒45= π;︒135= π;︒150= π;︒450= π;︒-150= π;︒390= π;︒1440= π。

2。

时针走过2小时45分,则分针转过了 度, 弧度。

3. 若α是第二象限角,则α-︒180是( )A 、第一象限角B 、第二象限角C 、第三象限角D 、第四象限角 4.与45终边相同的角集合是 。

高一数学任意角和弧度制和任意角的三角函数试题答案及解析

高一数学任意角和弧度制和任意角的三角函数试题答案及解析

高一数学任意角和弧度制和任意角的三角函数试题答案及解析1.如果角的终边经过点,则()A.B.C.D.【答案】A【解析】直接利用三角函数的定义,求出.因为角θ的终边经过点,由三角函数的定义可知,,故选A.【考点】任意角的三角函数的定义.2.已知扇形半径为8, 弧长为12, 则中心角为弧度, 扇形面积是【答案】.【解析】圆心角;由扇形的面积公式得.【考点】扇形的面积公式及圆心角的计算.3.若点P位于第三象限,则角是第象限的角.【答案】二【解析】点P位于第三象限,则即,所以角是第二象限的角,答案为二.【考点】三角函数的符号4.半径为,中心角为所对的弧长是().A.B.C.D.【答案】D.【解析】弧长cm,故选D.【考点】弧长公式:(其中的单位是弧度).5.已知cosθ•tanθ<0,那么角θ是().A.第一或第二象限角B.第二或第三象限角C.第三或第四象限角D.第一或第四象限角【答案】B【解析】,,是第二象限角或第三象限角.【考点】象限角的符号.6.已知,则的集合为()A.B.C.D.【答案】D【解析】由知,在第一或第三象限,因为,所以.【考点】简单三角方程7.与角-终边相同的角是()A.B.C.D.【答案】C【解析】与−终边相同的角为2kπ−,k∈z,当 k=-1时,此角等于,故选:C.【考点】终边相同的角的定义和表示方法.8.如图,长为4米的直竹竿AB两端分别在水平地面和墙上(地面与墙面垂直),T为AB中点,,当竹竿滑动到A1B1位置时,,竹竿在滑动时中点T也沿着某种轨迹运动到T1点,则T运动的路程是_________米.【答案】.【解析】如图可知,点运动的轨迹为一段圆弧,由题意已知:,,∴,∴点运动的路程为.【考点】弧度制有关公式的运用.9.已知角的终边上有一点(1,2),则的值为( ).A.B.C.D.–2【答案】A【解析】角的终边过,,.【考点】任意角三角函数的定义.10.若角的终边上有一点,则的值是()A.B.C.D.【答案】B.【解析】先利用诱导公式化简,根据三角函数的定义知,即,故选B.【考点】运用诱导公式化简求值;任意角的三角函数的定义.11. 60°=_________.(化成弧度)【答案】【解析】根据,可得.【考点】角度与弧度的互化.12.与终边相同的最小正角是.【答案】【解析】因为与终边相同的角是所以当时,与终边相同的最小正角是【考点】与终边相同的角13.比较的大小 .【答案】【解析】,在上为增函数,可知,,可得.【考点】正弦函数的性质,特殊角的三角函数.14.已知扇形的周长为30,当它的半径R和圆心角各取何值时,扇形的面积S最大?并求出扇形面积的最大值.【答案】当扇形半径为,圆心角为2时,扇形有最大面积.【解析】根据条件扇形的周长为30可以得到l+2R=30,从而扇形的面积S=lR=(30-2R)R=,即把S表示为R的二次函数,根据二次函数求最值的方法,可以进一步变形为S=-(R-)2+,从而得到当扇形半径为,圆心角为2时,扇形有最大面积.∵扇形的周长为30,∴l+2R=30,l=30-2R,∴S=lR=(30-2R)R==-(R-)2+.....5分∴当R=时,扇形有最大面积,此时l=30-2R=15,==2........8分答:当扇形半径为,圆心角为2时,扇形有最大面积.....10分.【考点】1、弧度制下扇形相关公式;2、二次函数求最值.15.若点P(Cos,Sin)在直线y=-2x上,则=( )A.B.C.D.【答案】B【解析】因为点在直线上,所以,则.【考点】任意角的三角函数的定义;同角三角函数间的基本关系.16.已知是第一象限的角,那么是()A.第一象限角B.第二象限角C.第一或第二象限角D.第一或第三象限角【答案】D【解析】∵α的取值范围(k∈Z)∴的取值范围是(k∈Z),分类讨论①当k="2n+1" (其中n∈Z)时的取值范围是即属于第三象限角.②当k=2n(其中n∈Z)时的取值范围是即属于第一象限角.故答案为:D.【考点】象限角、轴线角.17.设,,,则( )A.B.C.D.【答案】D【解析】因为,所以<;因为,所以>,<,,所以b<a<c.故答案为:D.【考点】三角函数值.18.扇形的半径是,圆心角是60°,则该扇形的面积为 .【答案】π【解析】扇形的面积公式为.【考点】扇形的弧度制面积公式.19.的值()A.小于B.大于C.等于D.不存在【答案】A【解析】因为,所以,从而,选A.【考点】任意角的三角函数.20.计算:= ;【答案】1【解析】原式=【考点】三角函数值的计算21.已知扇形的圆心角为2rad,扇形的周长为8cm,则扇形的面积为___________cm2。

必修四 任意角和弧度制 课时练习 含答案

必修四 任意角和弧度制 课时练习 含答案

必修四§1.1任意角和弧度制第一课时:§1.1.1任意角1. 下列命题中正确的是( )A .终边在y 轴非负半轴上的角是直角B .第二象限角一定是钝角C .第四象限角一定是负角 D.若β=α+k·360°(k∈Z),则α与β终边相同2.将-885化为360k α+⋅ (0360α≤<k ,∈Z )的形式是 ( ) A.-165(2)360+-⨯ B.195(3)360+-⨯ C.195(2)360+-⨯ D.165(3)360+-⨯3.在[360°,1440°]中与-21°16′终边相同的角有( )A .1个B .2个C .3个D .4个4.终边落在X 轴上的角的集合是( )A.{ α|α=k ·360°,K ∈Z }B.{ α|α=(2k+1)·180°,K ∈Z }C.{ α|α=k ·180°,K ∈Z }D.{ α|α=k ·180°+90°,K ∈Z }5.角α=45°+k·180°,k∈Z的终边落在 ( )A .第一或第三象限B .第一或第二象限C .第二或第四象限D .第三或第四象限6.设,,,,那么( ) A .B C A B .B A C C .D (A ∩C) D .C ∩D=B7.下列各组角中终边相同的是( )A. +90与Z B.与ZC. +30与+30Z D.与+60Z 8.若角和的终边关于y 轴对称,则有 ( ) A. B.Z C.Z D.Zo {90A =小于的角}{B =锐角}{C =第一象限的角}00{900}D =小于而不小于的角180k ⋅90k ⋅k ,∈(21)180k +⋅(41)180k ±⋅k ,∈180k ⋅360k ⋅k ,∈60k ⋅180k ⋅k ,∈αβ90αβ+=90αβ+=360k +⋅k ,∈360k αβ+=⋅k ,∈180αβ+=360k +⋅k ,∈9.若β是第四象限角,则180β-是第 象限角。

高一数学弧度制与任意角试题

高一数学弧度制与任意角试题

高一数学弧度制与任意角试题1.(2分)圆的半径是6cm,则15°的圆心角与圆弧围成的扇形面积是()A.cm2B.cm2C.πcm2D.3πcm2【答案】B【解析】利用扇形面积公式,即可求得结论.解:15°化为弧度为=∴15°的圆心角与圆弧围成的扇形面积是==cm2故选B.点评:本题考查扇形的面积公式,考查学生的计算能力,属于基础题.2.(2分)﹣πrad化为角度应为.【答案】﹣345°【解析】利用角的弧度数与角的度数之间的换算关系:π rad=180°,求出结果即可.解:∵π rad=180°,∴两边同时乘以﹣,得﹣πrad=﹣345°故答案为:﹣345°点评:本题考查利用角的弧度数与角的度数之间的互化,利用角的弧度数与角的度数之间的换算关系:π rad=180°.3.(2分)设α,β满足﹣<α<β<,则α﹣β的范围是.【答案】﹣π<α﹣β<0【解析】先确定﹣β的范围,再利用不等式的性质,即可得到结论.解:∵﹣<β<,∴﹣<﹣β<,∵﹣<α<,∴﹣π<α﹣β<π∵α<β∴﹣π<α﹣β<0故答案为:﹣π<α﹣β<0点评:本题考查不等式的性质,考查学生的计算能力,属于基础题.4.(2分)若α角与角终边相同,则在[0,2π]内终边与角终边相同的角是.【答案】.【解析】利用角与α为终边相同的角可得,α=2kπ+,k∈z,从而可得与终边相同的角,继而可得答案.解:依题意,α=2kπ+,k∈z,∴=+,k∈z,又∈[0,2π],∴k=0,α=;k=1,α=;k=2,α=;k=3,α=.故答案为:.点评:本题考查终边相同的角,表示出与终边相同的角是关键,考查分析与转化及运算能力,属于中档题.5.(8分)1弧度的圆心角所对的弦长为2,求这个圆心角所对的弧长及圆心角所夹的扇形的面积.=.【答案】r=,∴l=r•α=,S扇【解析】利用弦长求出扇形的半径,从而可求圆心角所对的弧长及圆心角所夹的扇形的面积.解:由已知可得r=,∴l=r•α==l•r=•r2•α=•=.S扇点评:本题考查圆心角所对的弧长及圆心角所夹的扇形的面积,考查学生的计算能力,属于基础题.6.(5分)已知2弧度的圆心角所对的弦长为2,那么这个圆心角所对弧长为.【答案】【解析】解直角三角形AOC,求出半径AO,代入弧长公式求出弧长的值.解:如图:设∠AOB=2,AB=2,过点0作OC⊥AB,C为垂足,并延长OC交于D,则∠AOD=∠BOD=1,AC=AB=1.Rt△AOC中,r=AO==,从而弧长为α•r=2×=,故答案为.点评:本题考查弧长公式的应用,解直角三角形求出扇形的半径AO的值,是解决问题的关键,属于基础题.7.(5分)已知sinα=m,(|m|<1),,那么tanα=【答案】【解析】先根据α的范围和sinα的值,利用同角三角函数的基本关系求得cosα的值,最后利用tanα=求得答案.解:∵∴cosα=﹣∴tanα==故答案为:点评:本题主要考查了同角三角函数的基本关系.要熟练记忆三角函数中平方关系,商数关系和倒数关系等.8.(5分)(2007•江苏)某时钟的秒针端点A到中心点O的距离为5cm,秒针均匀地绕点O旋转,当时间t=0时,点A与钟面上标12的点B重合,将A,B两点的距离d(cm)表示成t(s)的函数,则d=,其中t∈[0,60].【答案】10sin.【解析】由题意知可以先写出秒针转过的角度,整个圆周对应的圆心角是360°,可以算出一秒转过的角度,再乘以时间,连接AB,过圆心向它做垂线,把要求的线段分成两部分,用直角三角形得到结果.解:∵∴根据直角三角形的边长求法得到d=2×5×sin=10sin,故答案为:10sin.点评:本题是一个实际应用问题,为了学生掌握这一部分的知识,必须使学生熟练的掌握所有公式,在此基础上并能灵活的运用公式,培养他们的观察能力和分析能力,提高他们的解题方法.9.在单位圆中画出适合下列条件的角α的终边的范围,并由此写出角α的集合:(1)sin α≥;(2)cos α≤﹣.【答案】(1){α|2kπ+≤α≤2kπ+,k∈z,}.(2){α|2kπ+≤α≤2kπ+,k∈z,}.【解析】(1)作直线交单位圆于A、B两点,OA与OB围成的区域(阴影部分)即为角α的终边的范围,在[0,2π)内的角的范围为[,],可得足条件的角α的集合.(2)作直线交单位圆于C、D两点,OC与OD围成的区域(图中阴影部分)即为角α终边的范围,在[0,2π)内的角的范围为[,],得足条件的角α的集合.解:(1)作直线交单位圆于A、B两点,连接OA、OB,则OA与OB围成的区域(阴影部分)即为角α的终边的范围,故满足条件的角α的集合为{α|2kπ+≤α≤2kπ+,k∈z,}.(2)作直线交单位圆于C、D两点,连接OC、OD,则OC与OD围成的区域(图中阴影部分)即为角α终边的范围.故满足条件的角α的集合为{α|2kπ+≤α≤2kπ+,k∈z,}.点评:本题考查利用单位圆中的三角函数线来表示三角函数的值的方法,体现了数形结合的数学思想.10.(1)一个半径为r的扇形,若它的周长等于弧所在的半圆的长,那么扇形的圆心角是多少弧度?是多少度?扇形的面积是多少?(2)一扇形的周长为20 cm,当扇形的圆心角α等于多少弧度时,这个扇形的面积最大?【答案】(1)π﹣2,65°26′,(π﹣2)r2.(2)当α=2rad时,扇形的面积取最大值.【解析】(1)设扇形的圆心角,利用弧长公式得到弧长,代入题中条件,求出圆心角的弧度数,再化为度数,利用扇形的面积公式求扇形的面积.(2)设出弧长和半径,由周长得到弧长和半径的关系,再把弧长和半径的关系代入扇形的面积公式,转化为关于半径的二次函数,配方求出面积的最大值.解:(1)设扇形的圆心角是θrad,因为扇形的弧长是rθ,所以扇形的周长是2r+rθ.依题意,得2r+rθ=πr,∴θ=π﹣2=(π﹣2)×≈1.142×57.30°≈65.44°≈65°26′,∴扇形的面积为S=r2θ=(π﹣2)r2.(2)设扇形的半径为r,弧长为l,则l+2r=20,即l=20﹣2r(0<r<10)①扇形的面积S=lr,将①代入,得S=(20﹣2r)r=﹣r2+10r=﹣(r﹣5)2+25,所以当且仅当r=5时,S有最大值25.此时l=20﹣2×5=10,α==2.所以当α=2rad时,扇形的面积取最大值.点评:本题考查角的弧度数与度数间的转化,扇形的弧长公式和面积公式的应用,体现了转化的数学思想.。

(完整版)任意角和弧度制练习题(含答案)

(完整版)任意角和弧度制练习题(含答案)

§1.1 任意角和弧度制班级 姓名 学号 得分一、选择题1.若α是第一象限角,则下列各角中一定为第四象限角的是 ( )(A) 90°-α (B) 90°+α (C)360°-α (D)180°+α2.终边与坐标轴重合的角α的集合是 ( )(A){α|α=k ·360°,k ∈Z} (B){α|α=k ·180°+90°,k ∈Z}(C){α|α=k ·180°,k ∈Z}(D){α|α=k ·90°,k ∈Z} 3.若角α、β的终边关于y 轴对称,则α、β的关系一定是(其中k ∈Z ) ( )(A) α+β=π (B) α-β=2π (C) α-β=(2k +1)π (D) α+β=(2k +1)π 4.若一圆弧长等于其所在圆的内接正三角形的边长,则其圆心角的弧度数为 ( ) (A)3π (B)32π (C)3 (D)25.将分针拨快10分钟,则分针转过的弧度数是 ( ) (A)3π (B)-3π (C)6π (D)-6π *6.已知集合A ={第一象限角},B ={锐角},C ={小于90°的角},下列四个命题:①A =B =C ②A ⊂C ③C ⊂A ④A ∩C =B ,其中正确的命题个数为 ( )(A)0个 (B)2个 (C)3个 (D)4个二.填空题7.终边落在x 轴负半轴的角α的集合为 ,终边在一、三象限的角平分线上的角β的集合是 .8. -1223πrad 化为角度应为 . 9.圆的半径变为原来的3倍,而所对弧长不变,则该弧所对圆心角是原来圆弧所对圆心角的 倍.*10.若角α是第三象限角,则2α角的终边在 ,2α角的终边在 .三.解答题11.试写出所有终边在直线x y 3-=上的角的集合,并指出上述集合中介于-1800和1800之间的角.12.已知0°<θ<360°,且θ角的7倍角的终边和θ角终边重合,求θ.13.已知扇形的周长为20 cm,当它的半径和圆心角各取什么值时,才能使扇形的面积最大?最大面积是多少?*14.如下图,圆周上点A依逆时针方向做匀速圆周运动.已知A点1分钟转过θ(0<θ<π)角,2分钟到达第三象限,14分钟后回到原来的位置,求θ.参考答案§1.1任意角和弧度制一、CDDCBA二、7.{x |x =k ·3600+1800, k ∈Z }, {x |x =k ·1800+450,k ∈Z } ; 8.-345°; 9. 31; 10.第二或第四象限, 第一或第二象限或终边在y 轴的正半轴上三、11.{ α|α=k ·3600+1200或α=k ·3600+3000, k ∈Z } -60° 120°12.由7θ=θ+k ·360°,得θ=k ·60°(k ∈Z )∴θ=60°,120°,180°,240°,300°13.∵l =20-2r ,∴S =21lr =21(20-2r )·r =-r 2+10r =-(r -5)2+25∴当半径r =5 cm 时,扇形的面积最大为25 cm 2,此时,α=r l =55220⨯-=2(rad) 14.A 点2分钟转过2θ,且π<2θ<23π,14分钟后回到原位,∴14θ=2k π,θ=72πk ,且2π<θ<43π,∴ θ=74π或75π。

人教A版必修1《5.1 任意角和弧度制》练习卷(2)

人教A版必修1《5.1 任意角和弧度制》练习卷(2)

人教A版必修1《5.1 任意角和弧度制》练习卷(2)一、选择题(本大题共10小题,共50.0分)1.集合{α|kπ+π4≤α≤kπ+π2,k∈Z},中的角所表示的范围(阴影部分)是()A. B.C. D.2.已知角α是第二象限角,则α2所在的象限是()A. 第一象限或第二象限B. 第一象限或第三象限C. 第二象限或第三象限D. 第二象限或第四象限3.已知α是第三象限角,且|cosα3|=−cosα3,则α3是()A. 第一象限角B. 第二象限角C. 第三象限角D. 第四象限角4.已知α是第二象限的角,那么α2是()A. 第一象限角B. 第二象限角C. 第一或第二象限角D. 第一或第三象限角5.已知集合M={x|x=kπ4+π4,k∈Z},集合N={x|x=kπ8−π4,k∈Z},则()A. M∩N=⌀B. M⊆NC. N⊆MD. M=N6.角α=−60°+k⋅180°(k∈Z)的终边落在()A. 第四象限B. 第一、二象限C. 第一象限D. 第二、四象限7.已知A={第一象限角},B={锐角},C={小于90°的角},那么A、B、C关系是()A. A∩C=CB. B⊆CC. B∪A=CD. A=B=C8.中国传统折扇文化有着极其深厚的底蕴,一般情况下,折扇可看作是由从一个圆面中剪下的扇形制作而成,设扇形的面积为S1,圆面中剩余部分的面积为S2,当S1与S2的比值为√5−12≈0.618(黄金分割比)时,扇面看上去形状较为美观,那么此时扇形的圆心角的度数约为()A. 127.50°B. 137.50°C. 147.50°D. 150.50°9.已知α为第三象限角,则α2所在的象限是()A. 第一或第二象限B. 第二或第三象限C. 第一或第三象限D. 第二或第四象限10.已知集合M={x|x=m+16,m∈Z},N={x|x=n2−13,n∈Z},P={x|x=p2+16,p∈Z},则M,N,P的关系为()A. M=N⊆PB. M⊆N=PC. M⊆N⊆PD. N⊆P⊆M二、填空题(本大题共4小题,共20.0分)11.设α=2019°−360°×k,β=2019°,若α是与β终边相同的最小正角,则k=__________.12.终边落在y轴上的角的集合可以表示为______ .13.已知扇形的圆心角为60∘,其弧长为π,则此扇形的半径为______,面积为______.14.已知集合A={0,1},B={−1,0,a+3}且A⊆B,则a=________.三、解答题(本大题共6小题,共72.0分)15.写出终边在下列阴影部分内的角的集合(含边界).(1)(2)16.已知α=−1910°,(1)把α写成β+k·360°(k∈Z,0°≤β<360°)的形式,指出它是第几象限的角;(2)求θ,使θ与α的终边相同,且−720°≤θ<0°.17.已知α是第二象限角,且8α与2α的终边相同,判断2α是第几象限角。

高一数学任意角和弧度制和任意角的三角函数试题答案及解析

高一数学任意角和弧度制和任意角的三角函数试题答案及解析

高一数学任意角和弧度制和任意角的三角函数试题答案及解析1.化为弧度是( )A.B.C.D.【答案】B【解析】本题角度化为弧度,变换规则是度数乘以,,故选B.【考点】弧度与角度的互化.2.若是第三象限角,则是第象限角.【答案】一【解析】是第三象限角,则.所以,故在第一象限.【考点】角的象限.3.化简sin600°的值是( ).A.0.5B.-C.D.-0.5【答案】B【解析】.【考点】诱导公式.4.已知cosθ•tanθ<0,那么角θ是().A.第一或第二象限角B.第二或第三象限角C.第三或第四象限角D.第一或第四象限角【答案】B【解析】,,是第二象限角或第三象限角.【考点】象限角的符号.5.若角的终边经过点,则的值为.【答案】【解析】由三角函数定义知,==.考点:三角函数定义6.函数的定义域为A.B.为第Ⅰ、Ⅱ象限的角C.D.【答案】C【解析】由题知,解得,故选C【考点】三角函数在各象限的符号7.已知角的终边经过点,则=___________.【答案】【解析】由题知,所以==.【考点】三角函数定义8.某扇形的半径为1cm,它的弧长为2cm,那么该扇形的圆心角为()A.2°B.4rad C.4°D.2rad【答案】D【解析】因为扇形的弧长公式为l=r|α|,由已知,l=2,r=1,所以=2弧度故选D.【考点】扇形的弧长公式.9.与13030终边相同的角是()A.B.C.D.【答案】C【解析】终边与1303°相同的角是k•360°+1303°,k∈Z∴k=-4时,k•360°+1303°=-137°.故选C.【考点】终边相同的角.10.已知P(-8,6)是角终边上一点,则的值等于( ) A.B.C.D.【答案】D【解析】P(-8,6)是角终边上一点,所以,;则=【考点】三角函数的定义.11. 60°="_________" .(化成弧度)【答案】【解析】根据角的弧度数的定义,弧度.【考点】角度制与弧度制的转化.12.若点P(Cos,Sin)在直线y=-2x上,则=( )A.B.C.D.【答案】B【解析】因为点在直线上,所以,则.【考点】任意角的三角函数的定义;同角三角函数间的基本关系.13.已知是第一象限的角,那么是()A.第一象限角B.第二象限角C.第一或第二象限角D.第一或第三象限角【答案】D【解析】∵α的取值范围(k∈Z)∴的取值范围是(k∈Z),分类讨论①当k="2n+1" (其中n∈Z)时的取值范围是即属于第三象限角.②当k=2n(其中n∈Z)时的取值范围是即属于第一象限角.故答案为:D.【考点】象限角、轴线角.14. sin2100 = ( )A.B.-C.D.-【答案】D【解析】sin210°=sin(180°+30°)=-sin30°=-.【考点】运用诱导公式化简求值.15.将120o化为弧度为()A.B.C.D.【答案】B【解析】,故.【考点】弧度制与角度的相互转化.16.化为弧度角等于;【答案】【解析】,.【考点】角度制与弧度制的互化17.已知角α的终边经过点(3a,-4a)(a<0),则sin α+cos α等于( )A.B.C.D.-【答案】A【解析】,,.故选A.【考点】三角函数的定义18.圆心角为弧度,半径为6的扇形的面积为 .【答案】【解析】扇形面积公式,即(必须为弧度制).【考点】扇形面积公式.19.已知角的终边上有一点,则的值是()A.B.C.D.【答案】D【解析】由三角函数的定义可知,故选D.【考点】三角函数的定义.20.点A(x,y)是300°角终边上异于原点的一点,则值为 ( )A.B.-C.D.-【答案】B【解析】由题意知,故正确答案为B.【考点】三角函数的定义21.已知,,则=________.【答案】-【解析】法一:因为,,则可取角的终边上一点P,,则;法二:,因为,所以=-【考点】任意角三角函数定义,同角三角函数基本关系式22. sin(-)= .【答案】【解析】.【考点】本题主要考查了利用三角函数的诱导公式求三角函数值得方法,属基础题.23.给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不伦用角度制还是用弧度制度量一个角,它们与扇形所在圆的半径的大小无关;④若,则与的终边相同;⑤若,则是第二或第三象限角.其中正确命题的个数是()A.B.C.D.【答案】A【解析】由终边相同的角的定义易知①是错误的;②的描述中没有考虑直角,直角属于的正半轴上的角,故②是错误的;④中与的终边不一定相同,比如;⑤中没有考虑轴的负半轴上的角.只有③是正确的.【考点】角的推广与象限角.24. .【答案】-【解析】由三角函数的诱导公式,=-。

高考数学《任意角和弧度制及任意角的三角函数》真题练习含答案

高考数学《任意角和弧度制及任意角的三角函数》真题练习含答案

高考数学《任意角和弧度制及任意角的三角函数》真题练习含答案一、选择题1.若一个扇形的面积是2π,半径是23 ,则这个扇形的圆心角为( )A .π6B .π4C .π2D .π3答案:D解析:设扇形的圆心角为θ,因为扇形的面积S =12 θr 2,所以θ=2S r 2 =4π(23)2 =π3 ,故选D.2.三角函数值sin 1,sin 2,sin 3的大小关系是( ) 参考值:1弧度≈57°,2弧度≈115°,3弧度≈172° A .sin 1>sin 2>sin 3 B .sin 2>sin 1>sin 3 C .sin 1>sin 3>sin 2 D .sin 3>sin 2>sin 1 答案:B解析:因为1弧度≈57°,2弧度≈115°,3弧度≈172°,所以sin 1≈sin 57°,sin 2≈sin 115°=sin 65°,sin 3≈sin 172°=sin 8°,因为y =sin x 在0°<x <90°时是增函数,所以sin 8°<sin 57°<sin 65°,即sin 2>sin 1>sin 3,故选B.3.若角θ满足sin θ>0,tan θ<0,则θ2是( )A .第二象限角B .第一象限角C .第一或第三象限角D .第一或第二象限角 答案:C解析:由sin θ>0,tan θ<0,知θ为第二象限角,∴2k π+π2 <θ<2k π+π(k ∈Z ),∴k π+π4<θ2 <k π+π2 (k ∈Z ),∴θ2为第一或第三象限角. 4.若角α的顶点为坐标原点,始边在x 轴的非负半轴上,终边在直线y =-3 x 上,则角α的取值集合是( )A .⎩⎨⎧⎭⎬⎫α|α=2k π-π3,k ∈ZB .⎩⎨⎧⎭⎬⎫α|α=2k π+2π3,k ∈ZC .⎩⎨⎧⎭⎬⎫α|α=k π-2π3,k ∈ZD .⎩⎨⎧⎭⎬⎫α|α=k π-π3,k ∈Z答案:D解析:∵y =-3 x 的倾斜角为23π,∴终边在直线y =-3 x 上的角的集合为⎩⎨⎧⎭⎬⎫α|α=k π-π3,k ∈Z .5.一个扇形的弧长与面积都是6,则这个扇形的圆心角的弧度数是( ) A .1 B .2 C .3 D .4 答案:C解析:设扇形的圆心角为θ,半径为R ,由题意得⎩⎪⎨⎪⎧θR =6,12θR 2=6,得θ=3.6.已知角α的顶点为坐标原点,始边为x 轴的正半轴.若角α的终边过点P ⎝⎛⎭⎫35,-45 ,则cos α·tan α的值是( )A.-45 B .45C .-35D .35答案:A解析:由三角函数的定义知cos α=35 ,tan α=-4535=-43 ,∴cos αtan α=35 ×⎝⎛⎭⎫-43 =-45. 7.给出下列各函数值:①sin (-1 000°);②cos (-2 200°);③tan (-10);④sin 710πcos πtan 179π;其中符号为负的有( )A .①B .②C .③D .④ 答案:C解析:∵-1 000°=-3×360°+80°,为第一象限角, ∴sin (-1 000°)>0;又-2 200°=-7×360°+320°,为第四象限角, ∴cos (-2 200°)>0;∵-10=-4π+(4π-10),为第二象限角, ∴tan (-10)<0;∵sin 710 π>0,cos π=-1,179 π=2π-π9,为第四象限角, ∴tan 179 π<0,∴sin 710πcos πtan 179π>0.8.已知角θ的终边经过点P (x ,3)(x <0)且cos θ=1010x ,则x =( ) A .-1 B .-13C .-3D .-223答案:A 解析:∵r =x 2+9 ,cos θ=xx 2+9 =1010 x ,又x <0,∴x =-1.9.(多选)下列结论中正确的是( )A .若0<α<π2,则sin α<tan αB .若α是第二象限角,则α2为第一象限角或第三象限角C .若角α的终边过点P (3k ,4k )(k ≠0),则sin α=45D .若扇形的周长为6,半径为2,则其圆心角的大小为1弧度 答案:ABD解析:若0<α<π2 ,则sin α<tan α=sin αcos α,故A 正确;若α是第二象限角,即α∈⎝⎛⎭⎫2k π+π2,2k π+π ,k ∈Z ,则α2 ∈⎝⎛⎭⎫k π+π4,k π+π2 ,k ∈Z ,所以α2为第一象限或第三象限角,故B 正确;若角α的终边过点P (3k ,4k )(k ≠0),则sin α=4k 9k 2+16k 2=4k|5k |,不一定等于45 ,故C 错误;若扇形的周长为6,半径为2,则弧长为6-2×2=2,圆心角的大小为22=1弧度,故D 正确.故选ABD.二、填空题10.已知扇形的圆心角为π6 ,面积为π3,则扇形的弧长等于________.答案:π3解析:设扇形所在圆的半径为r ,则弧长l =π6 r ,又S 扇=12 rl =π12 r 2=π3,得r =2,∴弧长l =π6 ×2=π3.11.已知角α的终边过点P (-3cos θ,4cos θ),其中θ∈⎝⎛⎭⎫π2,π ,则sin α=________.答案:-45解析:∵θ∈⎝⎛⎭⎫π2,π ,∴-1<cos θ<0,∴r =9cos 2θ+16cos 2θ =-5cos θ,故sin α=-45.12.已知角α的终边经过点P (-8m ,-6sin 30°),且cos α=-45,则m =________.答案:12解析:由题可知P (-8m ,-3),∴cos α=-8m64m 2+9 =-45 ,得m =±12,又cos α=-45 <0,∴-8m <0,∴m =12 .。

(完整版)任意角和弧度制测试题(含答案),推荐文档

(完整版)任意角和弧度制测试题(含答案),推荐文档

任意角和弧度制测试题一.选择题1.已知A={第一象限},B={锐角},C={小于90°的角},那么A,B,C 的关系是( )。

.;.;.;..A B A C B B C C C A C D A B C =⋃=⊆== 2.有下列说法:(1)终边相同的角一定相等;(2)不相等的角的终边不重合;(3)角α与角-α的终边关于Y 轴对称;(4)小于180°的角是锐角、钝角或直角。

其中错误的个数为 ( )。

A. 1 B.2 C.3D.43.若角α是第四象限角,则180°-α是( )。

A.第一象限角;B.第二象限角;C. 第三象限角;D.第四象限角.4.若α=-3,则角α的终边在( )。

A.第一象限;B.第二象限;C.第三象限;D.第四象限。

5.圆弧的长等于该圆内接正三角形的边长,则该弧所对的圆心角的弧度数是( )A .3B .1C .23D .3π6.设集合,,,22k M x x k Z N x x k k Z πππ⎧⎫⎧⎫==∈==+∈⎨⎬⎨⎬⎩⎭⎩⎭,则M 与N 的关系是()A.M N =B.M N ⊆C.M N ⊇D.M N =∅7.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是( )A.2 B.1sin 2C.2sin1D.sin28.若α是钝角,则,k k Z θπα=+∈是( )A. 第二象限角B. 第三象限角C. 第二象限角或第三象限角D. 第二象限角或第四象限角9.设k Z ∈,下列终边相同的角是( )A . ()21180k + 与()41180k ±B . 90k ⋅ 与18090k ⋅+C . 18030k ⋅+ 与36030k ⋅±D . 18060k ⋅+ 与60k ⋅10.若角α是第二象限的角,则2α是( )(A )第一象限或第二象限的角 (B )第一象限或第三象限的角(C )第二象限或第四象限的角 (D )第一象限或第四象限的角11.在单位圆中,面积为1的扇形所对的圆心角为( )弧度A . 1B . 2C .3D . 412.某扇形面积为,它的周长为4cm ,那么该扇形圆心角的大小为( 21cm )A 、B 、C 、D 、︒2rad 2︒4rad 4二.填空题1.时钟从6时50分走到10时50分,时针旋转了_____________弧度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

任意角和弧度制练习题
一、选择题
1、下列角中终边与330°相同的角是( )
A .30°
B .-30°
C .630°
D .-630°
2、-1120°角所在象限是 ( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
3、把-1485°转化为α+k ·360°(0°≤α<360°, k ∈Z )的形式是( )
A .45°-4×360°
B .-45°-4×360°
C .-45°-5×360°
D .315°-5×360°
4.在“①160°②480°③-960°④-1600°”这四个角中,属于第二象限的角是( )
A.①
B.①②
C.①②③
D.①②③④
5、终边在第二象限的角的集合可以表示为: ( )
A .{α∣90°<α<180°}
B .{α∣90°+k ·180°<α<180°+k ·180°,k ∈Z }
C .{α∣-270°+k ·180°<α<-180°+k ·180°,k ∈Z }
D.{α∣-270°+k ·360°<α<-180°+k ·360°,k ∈Z }
6.终边落在X 轴上的角的集合是( )
Α.{ α|α=k ·360°,K ∈Z } B.{ α|α=(2k+1)·180°,K ∈Z }
C.{ α|α=k ·180°,K ∈Z }
D.{ α|α=k ·180°+90°,K ∈Z }
7.若α是第四象限角,则180°+α一定是( )
Α.第一象限角 B. 第二象限角 C.第三象限角 D. 第四象限角
8.下列结论中正确的是( )
A.小于90°的角是锐角
B.第二象限的角是钝角
C.相等的角终边一定相同
D.终边相同的角一定相等
9.下列命题中的真命题是 ( )
A .三角形的内角是第一象限角或第二象限角
B .第一象限的角是锐角
C .第二象限的角比第一象限的角大
D .{
}Z k k ∈±⋅=,90360|οοαα={}Z k k ∈+⋅=,90180|οοαα 10、已知A={第一象限角},B={锐角},C={小于90°的角},那么A 、B 、C 关系是( )
A .B=A ∩C
B .B ∪C=
C C .A ⊂C
D .A=B=C
11.若α是第一象限的角,则-2α是( ) A.第一象限的角 B.第一或第四象限的角 C.第二或第三象限的角 D.第二或第四象限的角
12.集合A={α|α=k ·90°,k ∈N +}中各角的终边都在( )
A.x 轴的正半轴上
B.y 轴的正半轴上
C.x 轴或y 轴上
D.x 轴的正半轴或y 轴的正半轴上
13.α是一个任意角,则α与-α的终边是( ) A.关于坐标原点对称 B.关于x 轴对称
C.关于直线y=x 对称
D.关于y 轴对称
14.设k ∈Z ,下列终边相同的角是 ( )
A .(2k +1)·180°与(4k ±1)·180°
B .k ·90°与k ·180°+90°
C .k ·180°+30°与k ·360°±30°
D .k ·180°+60°与k ·60° 15.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是()
A .2
B .1sin 2
C .1sin 2
D .2sin
16.一钟表的分针长10 cm ,经过35分钟,分针的端点所转过的长为:( )
A .70 cm
B .
670 cm C .(3425-3
π)cm D .3π35 cm 17.180°-α与α的终边( )
A .关于x 轴对称
B .关于y 轴对称
C .关于原点对称
D .以上都不对
18.设集合M ={α|α=5
-2ππk ,k ∈Z },N ={α|-π<α<π},则M ∩N 等于() A .{-105ππ3,} B .{-5
10ππ4,7} C .{-5-105ππππ4,107,3,} D .{07,031-1ππ } 19.某扇形的面积为12cm ,它的周长为4cm ,那么该扇形圆心角的度数为( )
A .2°
B .2
C .4°
D .4
20.如果弓形的弧所对的圆心角为
3
π,弓形的弦长为4 cm ,则弓形的面积是:( ) A .(344-9π) cm 2 B .(344-3
π )cm 2 C .(348-3π)cm 2 D .(328-3π) cm 2 21.设集合M ={α|α=k π±6
π,k ∈Z },N ={α|α=k π+(-1)k 6π,k ∈Z }那么下列结论中正确的是( )
A.M=N B.M N C.N M D.M N且N M
二、填空题(每小题4分,共16分,请将答案填在横线上)
22. 若角α的终边为第二象限的角平分线,则α的集合为
____________________.
23.与1991°终边相同的最小正角是______,绝对值最小的角是_________.
α角的终边在,2α角的终边
24.若角α是第三象限角,则
2
在______________.
25. 若角α、β的终边互为反向延长线,则α与β之间的关系是___________.
α则α的范围是.
26.已知α是第二象限角,且,4
|2
+
|≤
27. 在0o与360o范围内,找出与下列各角终边相同的角,并判断它们是第几象限
角?(1)120
-o(2)640o(3)95012'
-o
28.中心角为60°的扇形,它的弧长为2π,求它的内切圆的面积
29.已知扇形的周长为20 cm,当扇形的中心角为多大时,它有最大面积,最大
面积是多少?
答案:
1.B
2.D
3.D
4.D
5.D
6.C
7.B
8.C
9.D 10.B
11.D 12.C 13.B 14.A 15.B
16.D 17.B 18.C 19.B 20.C 21.C
22.
试题分析:在上第一个出现终边在第二象限角平分线的角为,之后每隔个单位出现一个落在第二象限角平分线上角,因此所求集合为.
23. 1991=360*5+191=360*6-169
与1991°终边相同的最小正角是(191),绝对值最小的角是(169)
24.这里有一个技巧,就是把每个象限两等分(求角的几等分,就把每个象限几等分),就是
沿原点对折,给这八个区域依次编上号,怎么编呢,就是1,2,3,4,1,2,3,4,这里出现三的区域是第二象限和第四象限 (看原来的那个角在第几象限,这里就找出现几的区域),所以答案就是第二象限和第四象限,你多练几次,就知道了.第二问的话,因为180度+2k π= 25. 角α与角β的终边互为反向延长线,说明α=β+(2k+1)π,k ∈Z , 故答案为:(1)α=π-β+2k π,(k ∈z );(2)α=π+β+2k π,(k ∈z ). 26. 第二象限角为2k π+π∕2﹤a ﹤2k π+π,又由绝对值≤4得,-6≤a ≤2. k=0时,π∕2﹤a ﹤π,满足范围;
k=1时,-3/2 π﹤a ﹤-π,满足范围.k 取其他值时不成立,故a 的取值范围为]2,2
(),23(πππ⋃-- 27. (1)-120度=-360度+240度 所以0度到360度的范围内 240度和-120度终边相同 在第三象限
(2)640度=360度+280度 所以0度到360度的范围内 280度和640度终边相同 在第四象限
(3)-990度12分=-360度×3+89度48分 所以0度到360度的范围内 89度48分和-990度12分终边相同 在第一象限
28. 设扇形和内切圆的半径分别为R ,r .
由2π=
π 3
R ,解得R=6.
∵3r=R=6,∴r=2.
∴S=4π
29.25. 设半径=x,则弧长为20-2x
扇形面积
=1/2*半径*弧长
=1/2*x*(20-2x)
=-x ²+10x
对称轴是x=5
∴x=5时,扇形面积最大值=-25+50=25平方厘米
弧长为=10cm
圆心角=弧长/半径=10/5=2 rad。

相关文档
最新文档