生化论述题

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

生化论述题

1、现有两支试管,有一支装有一种DNA溶液,另外一支装有一种RNA溶液,请根据核酸的理化性质设计一个实验来对二者进行鉴别,并对相关的核酸理化性质进行解释(可使用的设备和试剂:水浴锅,分光光度计,蒸馏水,移液器,试管)。

题解:

1)通过加热后测定吸光度,吸光度升高的是DNA,吸光度基本不变的是RNA。

2)DNA和RNA的结构上的不同,DNA为双链双螺旋结构,RNA为单链。

3) DNA双链之间通过硷基之间的氢键相连接,加热会破坏氢键,暴露出硷基,260nm吸光度增加。

2、凝血因子II,VII, IX和X是依赖维生素K的凝血因子.γ-羧化酶参与了催化这些凝血因子的合成过程.维生素K对γ-羧化酶的催化活性是必需的.所以临床上,为防止手术中及术后出血过多,常补充一定量的维生素K,对促进病人的凝血功能有明显效果.请结合酶的结构和功能相关理论进行解释。

题解:

1) 酶蛋白与辅助因子共同组成全酶,单独存在无活性,γ-羧化酶是一个结合酶,只有辅助因

子维生素K存在的情况下,酶才具有活性。

2) 酶的辅助因子分为辅酶和辅基,辅酶和酶蛋白结合疏松;辅基和酶蛋白结合紧密。

3、举例论述蛋白质的结构与功能之间的紧密关联。

每一种蛋白质都具有特定的结构,也具有特定的功能。

一)蛋白质的一级结构与其构象及功能的关系

蛋白质一级结构是空间结构的基础,特定的空间构象主要是由蛋白质分子中肽链和侧链R基团形成的次级键来维持,在生物体内,蛋白质的多肽链一旦被合成后,即可根据一级结构的特点自然折叠和盘曲,形成一定的空间构象。

一级结构相似的蛋白质,其基本构象及功能也相似,例如,不同种属的生物体分离出来的同一功能的蛋白质,其一级结构只有极少的差别,而且在系统发生上进化位置相距愈近的差异愈小。

在蛋白质的一级结构中,参与功能活性部位的残基或处于特定构象关键部位的残基,即使在整个分子中发生一个残基的异常,那么该蛋白质的功能也会受到明显的影响。被称之为“分子病”的镰刀状红细胞性贫血仅仅是574个氨基酸残基中,一个氨基酸残基即β亚基N端的第6号氨基酸残基发生了变异所造成的,这种变异来源于基因上遗传信息的突变。

(二)蛋白质空间构象与功能活性的关系

蛋白质多种多样的功能与各种蛋白质特定的空间构象密切相关,蛋白质的空间构象是其功能活性的基础,构象发生变化,其功能活性也随之改变。蛋白质变性时,由于其空间构象被破坏,故引起功能活性丧失,变性蛋白质在复性后,构象复原,活性即能恢复。如血红蛋白结构与氧离曲线,Hb中的亚基和氧结合后,会促进下一个亚基和氧的结合。

4、在不同生物细胞色素C或其它某种蛋白的一级结构的异同比较的基础上,思考生物分子进化。

物种越接近,则细胞色素c的一级结构越相似,其空间构想和功能也越相似。猕猴与人类很接近,两者的一级结构只相差一个氨基酸,,而人类与黑猩猩的细胞色素c一级结构完全相同。面包酵母与人类从物种进化看,两者的细胞色素c的一级结构相差51个氨基酸之多。

而保守区的存在说明这些结构对于各自的功能是十分重要的,因而在生物进化过程中不容轻易改变。

至于个别基因或染色体片段的位置改变则在进化过程中可以发生而保存下来。个别核苷酸的改变同样可以发生而保存下来,这些变化可以清楚地反映在各种近缘生物的染色体和遗传学图的比较研究中,也可以反映在蛋白质的比较研究中。功能强的分子或分子局部的进化具有较强的“保守性”。

生物大分子进化的保守性说明大分子进化并非完全随机的。

中性学说将分子的进化与生物个体的进化联系起来,并说明了长期进化过程中变异从量变导致质变。它是从更深的一个层次对达尔文的自然选择学说进行阐

释,是在分子水平上对达尔文主义的补充和发展

5、论述DNA双螺旋结构的特点及其生物学功能。

DNA的二级结构是双螺旋结构,其特点为:

DNA两条反向平行的多核甘酸链相互缠绕形成一个右手的双螺旋结构。碱基位于双螺旋内侧,磷酸与糖基在外侧,通过磷酸二脂键相连,形成核酸的骨架。碱基平面与假象的中心轴垂直,糖环平面则与轴平行,

2.两条链皆为右手螺旋。双螺旋的直径为2nm,碱基堆积距离为0.34nm,两核甘酸之间的

夹角是36゜,每对螺旋由10对碱基组成,碱基按A-T,G-C配对互补,彼此以氢键相联系。

3.维持DNA双螺旋结构的稳定的力主要是碱基堆积力。双螺旋表面有两条宽窄`深浅不一的

一个大沟和一个小沟。

由于腺膘呤总是与胸腺嘧啶配对、鸟膘呤总是与胞嘧啶配对,这说明两条链的碱基顺序是彼此互补的,只要确定了其中一条链的碱基顺序,另一条链的碱基顺序也就确定了。因此,只需以其中的一条链为模版,即可合成复制出另一条链,所以DNA具有独特的双螺旋结构,能为复制提供模板;碱基具有互补配对的能力,能够使复制准确无误。从而保证了物种的相对稳定性,保持了遗传信息的连续性,使种族得以延续。

6、论述核酸分子杂交技术原理及其应用。

不同来源的核酸变性后,合并在一处进行复性,这时,只要这些核酸分子的核苷酸序列含有可以形成碱基互补配对的片段,复性也会发生于不同来源的核酸链之间,形成所谓的杂化双链,这个过程称为杂交。杂交可以发生于DNA与DNA之间,也可以发生于RNA与RNA之间和DNA与RNA之间。核酸杂交技术是目前研究核酸结构、功能常用手段之一,不仅可用来检验核酸的缺失、插入,还可用来考察不同生物种类在核酸分子中的共同序列和不同序列以确定它们在进化中的关系。

在核酸杂交的基础上发展起来的一种用于研究和诊断的非常有用的技术称探针技术例如:想知道某种病毒是否和某种肿瘤有关,可把病毒的DNA制成探针。从肿瘤组织提取DNA,与探针杂交处理后,有杂化双链的出现,就说明两种DNA之间有同源性。这不等于可以说这种病毒引起肿瘤,但至少这是可以继续深入研究下去的一条重要线索。探针技术在遗传性疾病诊断上已开始应用。例如诊断地中海贫血或血红蛋白病,可以由已确诊的病人白细胞中提取DNA,这就是诊断探针。用诊断探针检查,不但可以对有症状患者进行确诊,还可以发现一些没有症状的隐性遗传性疾病。从胎儿的羊水也可以提取到少量DNA。由于探针技术比较灵敏,就使遗传性疾病的产前诊断较为容易办得到了

相关文档
最新文档