2017-2018学年北京市平谷区初一第二学期期末数学试卷含答案

合集下载

-2017年北京市平谷区七年级下学期数学期末试卷及解析答案

-2017年北京市平谷区七年级下学期数学期末试卷及解析答案

2016-2017学年北京市平谷区七年级(下)期末数学试卷一、选择题(共10道小题,每小题3分,共30分)下列各题均有四个选项,其中只有一个是符合题意的.1.(3分)PM2.5是指大气中直径小于或等于2.5微米的颗粒物,2.5微米等于0.000 0025米,把0.000 0025用科学记数法表示为()A.2.5×106B.0.25×10﹣5C.25×10﹣7D.2.5×10﹣62.(3分)已知a<b,则下列不等式一定成立的是()A.B.﹣2a<﹣2b C.a﹣3>b﹣3 D.a+4>b+43.(3分)下列计算正确的是()A.2a+3a=6a B.a2+a3=a5 C.a8÷a2=a6D.(a3)4=a74.(3分)是二元一次方程2x+ay=5的一个解,则a的值为()A.1 B.C.3 D.﹣15.(3分)把不等式x+2≤0的解集在数轴上表示出来,则正确的是()A. B. C.D.6.(3分)下列因式分解正确的是()A.(x+2)(x﹣2)=x2﹣4 B.x2﹣2x+1=(x﹣1)2C.a2﹣2a+2=(a﹣1)2+1 D.4a2﹣8a=2a(2a﹣4)7.(3分)小文统计了本班同学一周的体育锻练情况,并绘制了直方图①小文同学一共统计了60人;②这个班同学一周参加体育锻炼时间的众数是8;③这个班同学一周参加体育锻炼时间的中位数是9;④这个班同学一周参加体育锻炼时间的平均值为8.根据图中信息,上述说法中正确的是()A.①②B.②③C.③④D.①④8.(3分)将直尺和直角三角板按如图方式摆放,已知∠1=30°,则∠2的大小是()A.30°B.45°C.60°D.65°9.(3分)某市居民用电的电价实行阶梯收费,收费标准如下表:一户居民每月用电量x(单位:度)电费价格(单位:元/度)0<x≤2000.48200<x≤4000.53x>4000.78七月份是用电高峰期,李叔计划七月份电费支出不超过200元,直接写出李叔家七月份最多可用电的度数是()A.100 B.396 C.397 D.40010.(3分)用小棋子摆出如下图形,则第n个图形中小棋子的个数为()A.n B.2n C.n2D.n2+1二、填空题:(共6道小题,每小题3分,共18分)11.(3分)因式分解:2x2﹣18=.12.(3分)计算(8a2b﹣4ab2)÷4ab结果为.13.(3分)一个角的补角是这个角的3倍,这个角的度数为度.14.(3分)已知x,y是有理数,且x2+2x+y2﹣6y+10=0,则x y=.15.(3分)两个同样的直角三角板如图所示摆放,使点F,B,E,C在一条直线上,则有DF∥AC,理由是.16.(3分)《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x人,物品价格为y钱,可列方程组为.三、解答题(共10道小题,共52分,其中第17-24每小题5分,25,26每小题5分)17.(5分)计算:(﹣1)2017+(π﹣3.14)0+()﹣2﹣32.18.(5分)已知x2+x﹣5=0,求代数式(x﹣1)2﹣x(x﹣3)+(x+2)(x﹣2)的值.19.(5分)完成下面的证明:如图,已知DE∥BC,∠DEB=∠GFC,试说明BE∥FG.解:∵DE∥BC∴∠DEB=.()∵∠DEB=∠GFC∴=∠GFC ().∴BE∥FG ().20.(5分)解方程组.21.(5分)解不等式组并求它的所有的非负整数解.22.(5分)某单位有职工200人,其中青年职工(20﹣35岁),中年职工(35﹣50岁),老年职工(50岁及以上)所占比例如扇形统计图所示.为了解该单位职工的健康情况,小张、小王和小李各自对单位职工进行了抽样调查,将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3.表1:小张抽样调查单位3名职工的健康指数年龄264257健康指数977972表2:小王抽样调查单位10名职工的健康指数年龄23252632333739424852健康指数93899083797580696860表3:小李抽样调查单位10名职工的健康指数年龄22293136394043465155健康指数94908885827872766260根据上述材料回答问题:(1)扇形统计图中老年职工所占部分的圆心角度数为(2)小张、小王和小李三人中,的抽样调查的数据能够较好地反映出该单位职工健康情况,并简要说明其他两位同学抽样调查的不足之处.23.(5分)已知:如图,DE平分∠BDF,∠A=∠BDF,DE⊥BF,求证:AC⊥BF.24.(5分)列方程组解应用题新年联欢会上,同学们组织了猜谜活动,并采取每答对一题得分,每答错一题扣分记分方法.王强答对7道题,答错3道题共获得50分;李想答对8道题,答错1道题,共获得62分.问答对一题得多少分,答错一题扣多少分.25.(6分)阅读下面材料:通过整式运算一章的学习,我们发现要验证一个结论的正确性可以有两种方法:例如:要验证结论(a+b)2﹣(a﹣b)2=4ab方法1:几何图形验证:如右图,我们可以将一个边长为(a+b)的正方形上裁去一个边长为(a﹣b)的小正方形则剩余图形的面积为4ab,验证该结论正确.方法2:代数法验证:等式左边=所以,左边=右边,结论成立.观察下列各式:22﹣12=2×1+132﹣22=2×2+142﹣32=2×3+1…(1)按规律,请写出第n个等式;(2)试分别用两种方法验证这个结论的正确性.26.(6分)探究题学习完平行线的性质与判定之后,我们发现借助构造平行线的方法可以帮我们解决许多问题.(1)小明遇到了下面的问题:如图1,l1∥l2,点P在l1、l2内部,探究∠A,∠APB,∠B的关系.小明过点P作l1的平行线,可证∠APB,∠A,∠B之间的数量关系是:∠APB=.(2)如图2,若AC∥BD,点P在AB、CD外部,∠A,∠B,∠APB的数量关系是否发生变化?请你补全下面的证明过程.过点P作PE∥AC.∴∠A=∵AC∥BD∴∥∴∠B=∵∠BPA=∠BPE﹣∠EPA∴.(3)随着以后的学习你还会发现平行线的许多用途.试构造平行线解决以下问题:已知:如图3,三角形ABC,求证:∠A+∠B+∠C=180°.2016-2017学年北京市平谷区七年级(下)期末数学试卷参考答案与试题解析一、选择题(共10道小题,每小题3分,共30分)下列各题均有四个选项,其中只有一个是符合题意的.1.(3分)PM2.5是指大气中直径小于或等于2.5微米的颗粒物,2.5微米等于0.000 0025米,把0.000 0025用科学记数法表示为()A.2.5×106B.0.25×10﹣5C.25×10﹣7D.2.5×10﹣6【解答】解:0.000 0025=2.5×10﹣6,故选:D.2.(3分)已知a<b,则下列不等式一定成立的是()A.B.﹣2a<﹣2b C.a﹣3>b﹣3 D.a+4>b+4【解答】解:∵a<b,∴A、a<b,此选项正确;B、﹣2a>﹣2b,此选项错误;C、a﹣3<b﹣3,此选项错误;D、a+4<a+4,此选项错误;故选:A.3.(3分)下列计算正确的是()A.2a+3a=6a B.a2+a3=a5 C.a8÷a2=a6D.(a3)4=a7【解答】解:A、合并同类项系数相加字母部分不变,故A错误;B、不是同底数幂的乘法指数不能相加,故B错误;C、同底数幂的除法底数不变指数相减,故C正确;D、幂的乘方底数不变指数相乘,故D错误;故选:C.4.(3分)是二元一次方程2x+ay=5的一个解,则a的值为()A.1 B.C.3 D.﹣1【解答】解:把代入二元一次方程2x+ay=5,得:2+3a=5,解得:a=1,故选:A.5.(3分)把不等式x+2≤0的解集在数轴上表示出来,则正确的是()A. B. C.D.【解答】解:解不等式x+2≤0,得x≤﹣2.表示在数轴上为:.故选:D.6.(3分)下列因式分解正确的是()A.(x+2)(x﹣2)=x2﹣4 B.x2﹣2x+1=(x﹣1)2C.a2﹣2a+2=(a﹣1)2+1 D.4a2﹣8a=2a(2a﹣4)【解答】解:A、原式不是分解因式,不符合题意;B、原式=(x﹣1)2,符合题意;C、原式不能分解,不符合题意;D、原式=4a(a﹣2),不符合题意.故选:B.7.(3分)小文统计了本班同学一周的体育锻练情况,并绘制了直方图①小文同学一共统计了60人;②这个班同学一周参加体育锻炼时间的众数是8;③这个班同学一周参加体育锻炼时间的中位数是9;④这个班同学一周参加体育锻炼时间的平均值为8.根据图中信息,上述说法中正确的是()A.①②B.②③C.③④D.①④【解答】解:小文共统计了5+19+17+9=50人;8小时出现了19次,众数为8;第25和26个数为9,中位数为9;这个班同学一周参加体育锻炼时间的平均值为×(5×7+19×8+17×9+9×10)=8.6人.故选:B.8.(3分)将直尺和直角三角板按如图方式摆放,已知∠1=30°,则∠2的大小是()A.30°B.45°C.60°D.65°【解答】解:∵∠1+∠3=90°,∠1=30°,∴∠3=60°.∵直尺的两边互相平行,∴∠2=∠3=60°.故选:C.9.(3分)某市居民用电的电价实行阶梯收费,收费标准如下表:一户居民每月用电量x(单位:度)电费价格(单位:元/度)0<x≤2000.48200<x≤4000.53x>4000.78七月份是用电高峰期,李叔计划七月份电费支出不超过200元,直接写出李叔家七月份最多可用电的度数是()A.100 B.396 C.397 D.400【解答】解:0.48×200+0.53×200=96+106=202(元),故七月份电费支出不超过200元时电费不超过400度,依题意有0.48×200+0.53(x﹣200)≤200,解得x≤396.答:李叔家七月份最多可用电的度数是396.故选:B.10.(3分)用小棋子摆出如下图形,则第n个图形中小棋子的个数为()A.n B.2n C.n2D.n2+1【解答】解:∵第1个图形中棋子数1=12,第2个图形中棋子数1+3=4=22,第3个图形中棋子数1+3+5=9=32,第4个图形中棋子数1+3+5+7=16=42,…∴第n个图形中小棋子的个数为n2,故选:C.二、填空题:(共6道小题,每小题3分,共18分)11.(3分)因式分解:2x2﹣18=2(x+3)(x﹣3).【解答】解:2x2﹣18=2(x2﹣9)=2(x+3)(x﹣3),故答案为:2(x+3)(x﹣3).12.(3分)计算(8a2b﹣4ab2)÷4ab结果为2a﹣b.【解答】解:原式=2a﹣b故答案为:2a﹣b13.(3分)一个角的补角是这个角的3倍,这个角的度数为45度.【解答】解:设这个角的度数为x,则它的补角为(180°﹣x),依题意,得180°﹣x=3x,解得x=45°答:这个角的度数为45°.14.(3分)已知x,y是有理数,且x2+2x+y2﹣6y+10=0,则x y=﹣1.【解答】解:x2+2x+y2﹣6y+10=0,(x2+2x+1)+(y2﹣6y+9)=0,(x+1)2+(y﹣3)2=0,则,∴x=﹣1,y=3,∴x y=(﹣1)3=﹣1,故答案为:﹣1.15.(3分)两个同样的直角三角板如图所示摆放,使点F,B,E,C在一条直线上,则有DF∥AC,理由是内错角相等两直线平行或(垂直于同一条直线的两直线平行).【解答】解:依题意得:∠DFE=∠ACB,则DF∥AC(内错角相等两直线平行.或(垂直于同一条直线的两直线平行))故答案是:内错角相等两直线平行.或(垂直于同一条直线的两直线平行)16.(3分)《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x人,物品价格为y钱,可列方程组为.【解答】解:由题意可得,,故答案为:.三、解答题(共10道小题,共52分,其中第17-24每小题5分,25,26每小题5分)17.(5分)计算:(﹣1)2017+(π﹣3.14)0+()﹣2﹣32.【解答】解:(﹣1)2017+(π﹣3.14)0+()﹣2﹣32.=﹣1+1+22﹣9,=0+4﹣9,=﹣5.18.(5分)已知x2+x﹣5=0,求代数式(x﹣1)2﹣x(x﹣3)+(x+2)(x﹣2)的值.【解答】解:(x﹣1)2﹣x(x﹣3)+(x+2)(x﹣2)=x2﹣2x+1﹣x2+3x+x2﹣4=x2+x﹣3,∵x2+x﹣5=0,∴x2+x=5,∴原式=5﹣3=2.19.(5分)完成下面的证明:如图,已知DE∥BC,∠DEB=∠GFC,试说明BE∥FG.解:∵DE∥BC∴∠DEB=∠1.(两直线平行,内错角相等)∵∠DEB=∠GFC∴∠1=∠GFC (等量代换).∴BE∥FG (同位角相等,两直线平行).【解答】解:∵DE∥BC∴∠DEB=∠1(两直线平行,内错角相等).∵∠DEB=∠GFC∴∠1=∠GFC (等量代换).∴BE∥FG(同位角相等,两直线平行).故答案为:∠1,两直线平行,内错角相等,∠1,等量代换,同位角相等,两直线平行.20.(5分)解方程组.【解答】解:,①×2﹣②得:7y=﹣7,解得:y=﹣1,把y=﹣1代入①得:x=5,则方程组的解为.21.(5分)解不等式组并求它的所有的非负整数解.【解答】解:,由①得x>﹣2,…(1分)由②得x≤,…(3分)所以,原不等式组的解集是﹣2<x≤,…(4分)所以,它的非负整数解为0,1,2.…(5分)22.(5分)某单位有职工200人,其中青年职工(20﹣35岁),中年职工(35﹣50岁),老年职工(50岁及以上)所占比例如扇形统计图所示.为了解该单位职工的健康情况,小张、小王和小李各自对单位职工进行了抽样调查,将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3.表1:小张抽样调查单位3名职工的健康指数年龄264257健康指数977972表2:小王抽样调查单位10名职工的健康指数年龄23252632333739424852健康指数93899083797580696860表3:小李抽样调查单位10名职工的健康指数年龄22293136394043465155健康指数94908885827872766260根据上述材料回答问题:(1)扇形统计图中老年职工所占部分的圆心角度数为72°(2)小张、小王和小李三人中,小李的抽样调查的数据能够较好地反映出该单位职工健康情况,并简要说明其他两位同学抽样调查的不足之处.(1)扇形统计图中老年职工所占部分的圆心角度数为360°×20%=72°,【解答】解:故答案为:72°;(2)小李的抽样调查的数据能够较好地反映出该单位职工健康情况,小张的抽样调查的数据只有3个,样本容量太少.小王的抽样调查的数据主要集中在中青年职工,样本不够全面.故答案为:小李.23.(5分)已知:如图,DE平分∠BDF,∠A=∠BDF,DE⊥BF,求证:AC⊥BF.【解答】证明:∵DE平分∠BDF,∴∠BDE=∠BDF,且∠A=∠BDF,∴∠BDE=∠A,∴AC∥DE,∵DE⊥BF,∴∠ACB=∠DEB=90°,∴AC⊥BF.24.(5分)列方程组解应用题新年联欢会上,同学们组织了猜谜活动,并采取每答对一题得分,每答错一题扣分记分方法.王强答对7道题,答错3道题共获得50分;李想答对8道题,答错1道题,共获得62分.问答对一题得多少分,答错一题扣多少分.【解答】解:设答对道题得x分,答错一道题扣y分,由题意可得:,解得:.答:答对道题得(8分),答错一道题扣(2分).25.(6分)阅读下面材料:通过整式运算一章的学习,我们发现要验证一个结论的正确性可以有两种方法:例如:要验证结论(a+b)2﹣(a﹣b)2=4ab方法1:几何图形验证:如右图,我们可以将一个边长为(a+b)的正方形上裁去一个边长为(a﹣b)的小正方形则剩余图形的面积为4ab,验证该结论正确.方法2:代数法验证:等式左边=所以,左边=右边,结论成立.观察下列各式:22﹣12=2×1+132﹣22=2×2+142﹣32=2×3+1…(1)按规律,请写出第n个等式(n+1)2﹣n2=2n+1;(2)试分别用两种方法验证这个结论的正确性.【解答】解:(1)(n+1)2﹣n2=2n+1(2)方法一:几何图形验证:如右图,我们可以将一个边长为(n+1)的正方形上裁去一个边长为n的小正方形则剩余图形的面积为2n+1,验证该结论正确.方法二:左边=(n+1)2﹣n2=n2+2n+1﹣n2=2n+1=右边所以,左边=右边,结论成立.故答案为:(1)(n+1)2﹣n2=2n+126.(6分)探究题学习完平行线的性质与判定之后,我们发现借助构造平行线的方法可以帮我们解决许多问题.(1)小明遇到了下面的问题:如图1,l1∥l2,点P在l1、l2内部,探究∠A,∠APB,∠B的关系.小明过点P作l1的平行线,可证∠APB,∠A,∠B之间的数量关系是:∠APB=∠A+∠B.(2)如图2,若AC∥BD,点P在AB、CD外部,∠A,∠B,∠APB的数量关系是否发生变化?请你补全下面的证明过程.过点P作PE∥AC.∴∠A=∠1∵AC∥BD∴PE∥BD∴∠B=∠EPB∵∠BPA=∠BPE﹣∠EPA∴∠APB=∠B﹣∠1.(3)随着以后的学习你还会发现平行线的许多用途.试构造平行线解决以下问题:已知:如图3,三角形ABC,求证:∠A+∠B+∠C=180°.【解答】解:(1)如图,过P作PE∥l1,∵l 1∥l2,∴PE∥l1∥l2,∴∠APE=∠A,∠BPE=∠B,∴∠APB=∠APE+∠BPE=∠A+∠B,故答案为:∠A+∠B.(2)如图2,过点P作PE∥AC.∴∠A=∠1,∵AC∥BD,∴PE∥BD,∴∠B=∠EPB,∵∠APB=∠BPE﹣∠EPA,∴∠APB=∠B﹣∠1;故答案为:∠1,PE,BD,∠EPB,∠APB=∠B﹣∠1;(3)证明:如图3,过点A作MN∥BC,∴∠B=∠1,∠C=∠2,∵∠BAC+∠1+∠2=180°,∴∠BAC+∠B+∠C=180°.赠送初中数学几何模型【模型二】半角型:图形特征:45°4321A1FB正方形ABCD 中,∠EAF =45° ∠1=12∠BAD 推导说明:1.1在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且∠FAE =45°,求证:EF =BE +DF45°DEa +b-a45°A1.2在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且EF =BE +DF ,求证:∠FAE =45°DEa +b-aa45°ABE挖掘图形特征:a+bb x-aa 45°D Ba +b-a45°A运用举例:1.正方形ABCD 的边长为3,E 、F 分别是AB 、BC 边上的点,且∠EDF =45°.将△DAE 绕点D 逆时针旋转90°,得到△DCM . (1)求证:EF =FM(2)当AE =1时,求EF 的长.DE2.如图,△ABC 是边长为3的等边三角形,△BDC 是等腰三角形,且∠BDC =120°.以D 为顶点作一个60°角,使其两边分别交AB 于点M ,交AC 于点N ,连接MN ,求△AMN 的周长.ND CABM3.如图,梯形ABCD中,AD∥BC,∠C=90°,BC=CD=2AD=4,E为线段CD上一点,∠ABE=45°.(1)求线段AB的长;(2)动点P从B出发,沿射线..BE运动,速度为1单位/秒,设运动时间为t,则t为何值时,△ABP为等腰三角形;(3)求AE-CE的值.变式及结论:4.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图1),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图2),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图3),请你直接写出线段EF ,BE ,DF 之间的数量关系.ABFEDCF。

2017-2018学年新课标最新北京市第二学期初一期末数学考试题及答案解析-精品试卷

2017-2018学年新课标最新北京市第二学期初一期末数学考试题及答案解析-精品试卷

2017-2018学年度第二学期期末检测试卷初一数学在每道小题给出的四个备选答案中,只有一个是符合题目要求的,请将所选答案前的字母按规定要求涂在答题纸第1-10题的相应位置上.1.6月5日是世界环境日.某班召开了“保护环境,从我做起”的主题班会.同学们了解到:在空气污染中,PM2.5对人体健康危害极大.PM2.5也称为可入肺颗粒物,是指大气中直径小于或等于2.5微米的颗粒物.2.5微米等于0.000 002 5米,把0.000 002 5用科学记数法表示为A .2.5×106B .0.25×10-5 C. 2.5×10-6 D .25×10-7 2.已知a b <,则下列不等式一定成立的是A .770a b -<B .22a b -<-C .33a b >D .44a b +>+ 3.已知二元一次方程572=-y x ,用含x 的代数式表示y ,正确的是 A .257x y +=B .257x y -= C .275yx += D .572y x -= 4.下列运算正确的是A. 632)(x x = B. 33()xy xy = C. )0(4423≠=÷x y x x y x D. 422x x x =+5.已知⎩⎨⎧==11y x ,⎩⎨⎧==32y x 是关于x,y 的二元一次方程y=kx+b 的解,则k,b 的值是 A .k=1, b=0 B .k=-1, b=2 C .k=2, b=-1 D .k=-2, b=1 6.下列调查中,适合用普查方法的是A. 了解CCTV1传统文化类节目《中国诗词大会》的收视率B. 了解初一(1)班学生的身高情况C. 了解庞各庄某地块出产西瓜的含糖量D. 调查某品牌笔芯的使用寿命7.化简)3()(2b a b a +--的结果是 A .b a 2-- B .b a 3-- C .b a -- D .b a 5--8.下列变形是因式分解的是A. 8)6(862++=++x x x x B. 4)2)(2(2-=-+x x xC. )31(322x x x x +=+D. )2)(1(232--=+-x x x x9.如图,1∠和2∠不是同位角的是10.如图,直线AB ,CD 相交于点O ,OE 平分∠BOC ,OF ⊥OE 于O ,若∠AOD =70°,则∠AOF 的度数是A. 35°B. 45°C. 55°D. 65° 二、填空题(本题共8小题,每题2分,共16分) 11.用不等式表示“y 的21与5的和是正数”______________. 12.请你写出一个二元一次方程组,使它的解是x 2y 3=⎧⎨=⎩. 13. 已知a x=3,a y=4,ayx +2的值是______________.14. 分解因式:=-22ay ax ______________.15.某班气象兴趣小组的同学对北京市2016年5月份每天的最高气温做了统计,如下表:16.如图,直线l 1∥l 2,AB 与直线l 1交于点C ,BD 与直线l 2相交于点D , 若∠1=60°,∠2=50°,则∠3=______________.17.如图,利用直尺和三角尺过直线外一点画已知直线的平行线.第一步:作直线AB ,并用三角尺的一边贴住直线AB ;第二步:用直尺紧靠三角尺的另一边;第三步:沿直尺下移三角尺;第四步:沿三角尺作出直线CD.这样就得到AB ∥CD.这种画平行线的依据是______________.18.观察下列各等式:323323⨯=+()()1-211-21⨯=+⎪⎭⎫ ⎝⎛⨯=⎪⎭⎫ ⎝⎛+21-3121-31 …请你再找出一组满足以上特征的两个不相等的有理数,并写成等式形式:____________.三、解答题(本题共54分,其中第28小题4分,其余每小题5分)19. 解不等式3)12(221->-x x ,并把它的解集在数轴上表示出来.20.解不等式组523(2),12123x x x x +<+⎧⎪--⎨⎪⎩ ≤. 21. 解方程组⎩⎨⎧=+=+323732y x y x22. 计算()()2--3--21-2--10⎪⎭⎫ ⎝⎛+23.计算(x+2)(x -2)(x 2-4)24.若关于x,y 的方程组35223x y m x y m+=+⎧⎨+=⎩的解x 与y 的值的和等于2,求244m m -+的值.25.列方程组解应用题:2016年5月18日,国际月季洲际大会在大兴开幕.某校初一年级生物、美术等兴趣小组前去参观学习.为减少现场排队购票时间,张老师利用网络购票。

2017-2018学年度第二学期期末考试初一数学试题及答案

2017-2018学年度第二学期期末考试初一数学试题及答案

2017—2018学年度第二学期期末考试初一数学试题一、填空题(每空1分,共22分)1、如果下降5米,记作-5米,那么上升4米记作()米;如果+2千克表示增加2千克,那么-3千克表示()。

2、从80减少到50,减少了()%;从50增加到80,增加了()%。

3、某班有60人,缺席6人,出勤率是()%。

4、如果3a=5b(a、b≠0),那么a:b=()。

5、一个圆锥的体积12dm3 ,高3dm,底面积是()。

6、甲、乙两数的比是5:8,甲数是150,乙数是()。

7、比较大小:-7○-5 1.5○5 20○-2.4 -3.1○3.18、某服装店一件休闲装现价200元,比原价降低了50元,相当于打()折。

照这样的折扣,原价800元的西装,现价()元。

9、一个圆柱和一个圆锥的体积相等,底面积也相等,圆柱的高是4米,圆锥的是高()米。

10、一桶油连桶称7.5千克,用去一半油后,连桶称还重4.5千克。

桶重()千克,油重()千克。

11、13只鸡放进4个鸡笼里,至少有()只鸡要放进同一个笼子里。

12、一个圆柱形的木料,底面半径是3厘米,高是8厘米,这个圆柱体的表面积是()平方厘米。

如果把它加工成一个最大的圆锥体,削去部分的体积是()立方厘米。

13、找出规律,填一填。

3,11,20,30,(),53,()。

二、判断题:对的在括号打√,错的打×。

(每小题1分共5分)1、0是负数。

()2、书店以50元卖出两套不同的书,一套赚10%,一套亏本10%,书店是不亏也不赚。

()3、时间一定,路程和速度成正比例。

()4、栽120棵树,都成活了,成活率是120%。

()5、圆柱的体积大于与它等底等高的圆锥的体积。

()三、选择题(每题3分,共15分)1、规定10吨记为0吨,11吨记为+1吨,则下列说法错误的是()A、9吨记为-9吨B、12吨记为+2吨C、6吨记为-4吨D、+3吨表示重量为13吨2、在a12=13中,a的值是()A、12B、4C、6D、83、把长1.2米的圆柱形钢材按2:3:7截成三段,表面积比原来增加56平方厘米,这三段圆钢中最长的一段比最短的一段体积多()A、700立方厘米B、800立方厘米C、840立方厘米D、980立方厘米4、小刚把1000元钱按年利率2.4%存入银行,存期为两年,那么计算到期时她可以从银行取回多少钱(不计利息税),列式正确的是()。

2017-2018第2学期初1期末数学考试题答案-平谷

2017-2018第2学期初1期末数学考试题答案-平谷

平谷区2017-2018学年度第二学期期末质量监控初一数学试卷参考答案及评分标准 2016.7一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的.二、填空题(本题共18分,每小题3分)11.a (a +b )(a -b ) ;12.两直线平行,同位角相等; 13.2a -3b >0;14.+352+494x y x y =⎧⎨=⎩;15.21.16.答案不唯一,如:∠CDA =∠DAB ,依据:内错角相等,两直线平行 或 ∠ECD =∠BAC ,依据:同位角相等,两直线平行或 ∠BAC +∠ACD =180°,依据:同旁内角互补,两直线平行; (条件1分,依据2分)三、解答题(本题共52分,第17—24题,每小题5分,第25,26题,每小题6分)17.()()25212 3.1412π-⎛⎫-+-+-+- ⎪⎝⎭. 解:=-4+1-1+4 ································································································ 4 =0. ··········································································································· 5 18.已知x 2﹣4x ﹣1=0,求代数式(2x ﹣3)2﹣(x +y )(x ﹣y )﹣y 2的值.解:原式=4x 2﹣12x +9﹣x 2+y 2﹣y 2......................................... . (2)=3x 2﹣12x +9. ·························································· ····························· 3 ∵x 2﹣4x ﹣1=0,∴x 2﹣4x =1,∴原式=3(x 2﹣4x )+9 ....................................................... .. (4)=12. .................................................................... .. (5)19.解:()5931311122x x x ⎧-<-⎪⎨-≤-⎪⎩①②解不等式①得:x <3,···················································································· 1 解不等式②得:x ≥1, ····················································································· 3 ∴不等式组的解集为:1≤x <3,········································································ 4 ∴不等式组的整数解为:1,2. ······································································· 5 A20.解:32823 ,.x y x y ⎧+=⎨-=⎩①②②×2,得 426x y -= ③ ····································································· 1 ①+③,得 7x =14,x =2. (2)把x =2带入②,得 4—y =3, ·...................................................................... 3 y =1. .. (4)∴原方程组得解是21,.x y ⎧=⎨=⎩······································································· 5 21.已知:如图,AD ⊥BC ,EF ⊥BC ,∠1=∠2.求证:∠DGC =∠BAC .请你把书写过程补充完整. 证明:∵AD ⊥BC ,EF ⊥BC ,∴∠EFB =∠ADB =90°. ∴ EF ∥AD . ················································ 1 ∴∠1= ∠BAD ( 两直线平行,同位角相等 ). ··································· 3 ∵∠1=∠2, ∴∠2=∠BAD .∴ DG ∥AB ( 内错角相等,两直线平行 ). ······························ 5 ∴∠DGC =∠BAC .22.解:(1)设购买甲种树苗x 棵,则需购买乙种树苗y 棵. (1)由题意可得: 400200300900 0 0x y x y +=⎧⎨+=⎩, (2)解得300100x y =⎧⎨=⎩. (4)答:甲种树苗需购买300棵,乙种树苗需购买100棵. ........................................... 5 23.(1)10.7%; ................................................................................................. 1 (2)如图所示 (5)24.解:(1)14 (1)(2)(2k+2)2﹣(2k)2 (2)=(2k+2+2k)(2k+2﹣2k) (3)=2(4k+2)=4(2k+1). (4)∵k为非负整数,∴2k+1一定为正整数,∴4(2k+1)一定能被4整除,即由这两个连续偶数构成的“和谐数”是4的倍数. (5)25.(1)如图所示 (1)(2)证明:∵BD平分∠ABC,∴∠ABD=∠EBD(角平分线定义). (2)∵DE∥AB,∴∠ABD=∠BDE(两直线平行,内错角相等). (3)∴∠EBD=∠BDE. (4)∵EF∥BD,∴∠EBD=∠CEF(两直线平行,同位角相等).∠BDE=∠DEF(两直线平行,内错角相等). (5)∴∠CEF=∠DEF.∴EF平分∠CED(角平分线定义). (6)26.解:(1)(i)x+3=2; (1)(ii)11x y =-⎧⎨=⎩ (2)(2)325 9419 x yx y-=⎧⎨-=⎩①②将方程②变形为:3(3x-2y)+2y=19③. (3)把方程①代入方程③得:3×5+2y=19,解得y=2. (4)把y=2代入方程①得x=3. (5)∴原方程组的解为32xy=⎧⎨=⎩. (6)B。

2017-2018学年新课标最新北京市第2学期初一期末数学考试题及答案解析-精品试卷

2017-2018学年新课标最新北京市第2学期初一期末数学考试题及答案解析-精品试卷

初一数学下学期期末学业水平质量检测一、选择题:(共8个小题,每小题3分,共24分)在每个小题的四个备选答案中,只有一个是符合题目要求的,请把所选答案前的字母填涂在答题卡上.1. 在式子 -3<0,x ≥ 2, x = a ,x 2-2x ,x≠3,x +1>y 中,是不等式的有 ( )A. 2个B. 3个C. 4个D. 5个 2. 北京奥运会主体育场鸟巢的坐席约为91000个,将91000用科学记数法表示正的A. 91×310B. 9.1×410C. 0.91×510D. 9×4103. 计算 (–a 5 )2 + (–a 2 )5的结果是 ( )A .–2a 7B .0C .2a 10D .–2a 104. 把多项式y x y x y x 222362--分解因式时,应提取的公因式为 ( ) A. y x 2B. 2xyC. y x 32D. y x 265. 不等式组⎩⎨⎧>+≤02,12x x 的解集在数轴上表示正确的是A. B.C. D.1 20 1 21 20 1 26. 对于数据组3,3,2,3,6,3,10,3,6,3,2.①这组数据的众数是3;②这组数据的众数与中位数的数值相等;③这组数据的中位数与平均数的数值相等;④这组数据的平均数与众数的数值相等,其中正确的结论有( ) A. 1个B. 2个C. 3个D. 4个 7. 已知21x y =⎧⎨=⎩是二元一次方程组71ax by ax by +=⎧⎨-=⎩的解,则a b -的值为( ) A. 3 B. 2 C. 1D. -18. 如图,1l //2l ,∠1=105°,∠2=140°,则∠а等于( )A. 55°B. 60°C. 65°D. 70°二、填空:(共8个小题,每题3分,共24分) 9. 写出方程x -2y = 1的一个解: .10. 分解因式: x 2y -6xy+9y 错误!未找到引用源。

2017---2018学年度第二学期期末考试七年级数学试卷含答案

2017---2018学年度第二学期期末考试七年级数学试卷含答案

2017---2018学年度第二学期期末考试七年级数学试卷一、选择题(共10道小题,每小题3分,共30分) 下列各题均有四个选项,其中只有一个..是符合题意的. 1.PM2.5也称为可入肺颗粒物,是指大气中直径小于或等于2.5微米的颗粒物.2.5微米等于 0.000 002 5米,把0.000 002 5用科学记数法表示为 A .2.5×106 B .0.25×10-5 C. 25×10-7 D .2.5×10-6 2. 已知a b <,则下列不等式一定成立的是 A .b a 2121<B .22a b -<-C .33->-b aD .44a b +>+3.下列计算正确的是A .2a +3a =6a B. a 2+a 3=a 5 C. a 8÷a 2=a 6 D. (a 3)4= a 74.⎩⎨⎧==3,1y x 是二元一次方程52=+ay x 的一个解,则a 的值为A. 1B.31C. 3D. -1 5.若把不等式x +2≤0的解集在数轴上表示出来,则正确的是A .B .C .D .6.下列因式分解正确的是A .4)2)(2(2-=-+x x x B .22)1(12x -=+-x x C .()222211a a a -+=-+D .()248224a a a a -=-7.小文统计了本班同学一周的体育锻练情况,并绘制了直方图①小文同学一共统计了60人;②这个班同学一周参加体育锻炼时间的众数是8; ③这个班同学一周参加体育锻炼时间的中位数是9; ④这个班同学一周参加体育锻炼时间的平均值为8.根据图中信息,上述说法中正确的是A. ①②B. ②③C.③④D. ①④8.将直尺和直角三角板按如图所示方式摆放,已知∠1=30°,则∠2的大小是A.30°B.45°C.60°D.65°9.某市居民用电的电价实行阶梯收费,收费标准如下表:一户居民每月用电量x(单位:度)电费价格(单位:元/度)0≤< 0.48x200<0.53200≤x400x>0.78400七月份是用电高峰期,李叔计划七月份电费支出不超过200元,直接写出李叔家七月份最多可用电的度数是A.100 B.396 C.397 D.40010用小棋子摆出如下图形,则第n个图形中小棋子的个数为A. nB. 2n C. n2D.n2+1二、填空题:(共6道小题,每小题3分,共18分) 11.因式分解:=__________________. 12.计算ab ab b a 44822÷-)(结果为_____________.13.一个角的补角等于这个角的3倍,则这个角的度数为_____________.14.已知x ,y 是有理数,且0106222=+-++y y x x , 则y x = .15.两个同样的直角三角板如图所示摆放,使点F ,B ,E ,C 在一条直线上,则有DF ∥AC ,理由是__________________.16.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x 人,物品价格为y 钱,可列方程组为__________________.三、解答题(共10道小题,共52分,其中第17—24每小题5分,25,26每小题6分)17.计算:22-020173-)21()14.3-()1-(++π18.化简求值:已知250x x +-=,求代数式2(1)(3)(2)(2)x x x x x ---++-的值.19.完成下面的证明:2218x -如图,已知DE ∥BC ,∠DEB =∠GFC ,试说明BE ∥FG . 解:∵DE ∥BC∴∠DEB =______( ). ∵∠DEB =∠GFC∴______=∠GFC ( ).∴BE ∥FG ( ).20.解方程组⎩⎨⎧=-=+133232y x y x21.解不等式组()315112 4.2x x x x -+⎧⎪⎨--⎪⎩<,≥并求出它的非负整数解.22.某单位有职工200人,其中青年职工(20-35岁),中年职工(35-50岁),老年职工(50岁及以上)所占比例如扇形统计图所示.为了解该单位职工的健康情况,小张、小王和小李各自对单位职工进行了抽样调查,将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3.表1:小张抽样调查单位3名职工的健康指数年龄 26 42 57 健康指数977972表2:小王抽样调查单位10名职工的健康指数年龄 23 25 26 32 33 37 39 42 48 52 健康指数 93899083797580696860表3:小李抽样调查单位10名职工的健康指数年龄 22 29 31 36 39 40 43 46 51 55 健康指数94908885827872766260根据上述材料回答问题:(1)扇形统计图中老年职工所占部分的圆心角度数为(2)小张、小王和小李三人中, 的抽样调查的数据能够较好地反映出该单位职工健康情况,并简要说明其他两位同学抽样调查的不足之处.23.已知:如图,DE 平分∠BDF ., ∠A =21∠BDF ,DE ⊥BF ,求证:AC ⊥BF24.列方程组解应用题新年联欢会上,同学们组织了猜谜活动,并采取每答对一题得分,每答错一题扣分记分方法。

【全国区级联考】北京市平谷区2017-2018学年七年级第二学期期末质量监控数学试卷

【全国区级联考】北京市平谷区2017-2018学年七年级第二学期期末质量监控数学试卷

【全国区级联考】北京市平谷区2017-2018学年七年级第二学期期末质量监控数学试卷学校_________ 班级__________ 姓名__________ 学号__________一、单选题1. 人体中红细胞的直径约为,将用科学记数法表示数的结果是()A.B.C.D.2. 如图,∠AOB的角平分线是()A.射线OB B.射线OE C.射线OD D.射线OC3. 若m>n,则下列不等式中一定成立的是()A.m+2<n+3 B.2m<3n C.-m<-n D.ma2>na24. 如图,将三角板的直角顶点放在直尺的一边上.若∠1=65°,则∠2 的度数为()A.15°B.35°C.25°D.40°5. 要使式子成为一个完全平方式,则需加上()A.B.C.D.6. 男子跳高的15名运动员的成绩如下表所示:成绩/m 1.50 1.60 1.65 1.70 1.75 1.80人数 2 3 2 3 4 1根据表中信息可以判断这些运动员成绩的中位数、众数分别为()A.1.70,1.75 B.1.70,1.80 C.1.65,1.75,D.1.65,1.80 7. 计算(2x)3÷x的结果正确的是()A.8x2B.6x2C.8x3D.6x38. 图(1)是一个长为2m,宽为2n(m>n)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是()A.2mn B.(m+n)2C.(m-n)2D.m2-n2二、填空题9. 分解因式:a3﹣a=_____.10. 用不等式表示:a与3的差不小于2: ________________11. 把命题“两直线平行,内错角相等”改成“如果……那么……”的形式:____________________12. 计算:=___________.13. 如图:请你添加一个条件_____可以得到14. 关于、的方程组中,_____.15. 如图,是我国南宋数学家杨辉所著的《详解九章算术》一书中,用下图的三角形解释二项式(a+b)n(n为整数)的展开时的系数规律,(按a的次数由大到小的顺序),此规律称之为“杨辉三角”.请依据此规律,写出(a+b)2018展开式中含a2017项的系数是______________.…………16. 阅读下面材料:在数学课上,老师提出如下问题:作图:过直线外一点作已知直线的平行线.已知:直线l及其外一点A.求作:l的平行线,使它经过点A.小天利用直尺和三角板进行如下操作:如图所示:①用三角板的斜边与已知直线l重合;②用直尺紧靠三角板一条直角边;③沿着直尺平移三角板,使三角板的斜边通过已知点A;④沿着这条斜边画一条直线,所画直线与已知直线平行.老师说:“小天的作法正确.”请回答:小天的作图依据是___________.三、解答题17. 解不等式:,并在数轴上表示出它的解集.18.19. 解不等式组:并写出它的所有的非负整数解.20. 用适当的方法解二元一次方程组(1)(2)21. 先化简,再求值:,求代数式的值.22. 某校有500名学生.为了解全校每名学生的上学方式,该校数学兴趣小组在全校随机抽取了100名学生进行抽样调查.整理样本数据,得到扇形统计图如右图:(1)本次调查的个体是,样本容量是;(2)扇形统计图中,乘私家车部分对应的圆心角是度;(3)请估计该校500名学生中,选择骑车和步行上学的一共有多少人?23. 小明和小丽两人相距8千米,小明骑自行车,小丽步行,两人同时出发相向而行,1小时相遇;若两人同时出发同向而行,小明2小时可以追上小丽,求小明、小丽每小时各走多少千米?24. 如图,AB∥CD,点O是直线AB上一点,OC平分∠AOA.(1)求证:∠DCO=∠COF;(2)若∠DCO=40°,求∠EDF的度数.25. 为了更好地保护环境,某区污水处理厂决定购买A,B两种型号污水处理设备10台,其中每台的价格、月处理污水量如下表.已知购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元.(1)求a,b的值;(2)某区污水处理厂决定购买污水处理设备的资金既不少于108万元也不超过110万元,问有几种购买方案?每月最多能处理污水多少吨?26. 小红同学在做作业时,遇到这样一道几何题:已知:AB∥CD∥EF,∠A=110°,∠ACE=100°,过点E作EH⊥EF,垂足为E,交CD于H点.(1)依据题意,补全图形;(2)求∠CEH的度数.小明想了许久对于求∠CEH的度数没有思路,就去请教好朋友小丽,小丽给了他如图2所示的提示:请问小丽的提示中理由①是;提示中②是:度;提示中③是:度;提示中④是:,理由⑤是.提示中⑥是度;27. 阅读下列材料:小明在一本课外读物上看到一道有意思的数学题:例1、解不等式:,根据绝对值的几何意义,到原点距离小于1的点在数轴上集中在-1和+1之间,如图:所以,该不等式的解集为-1<x<1.因此,不等式的解集为x<-1或x>1.根据以上方法小明继续探究:例2:求不等式:的解集,即求到原点的距离大于2小于5的点的集合就集中在这样的区域内,如图:所以,不等式的解集为-5<x<-2或2<x<5.仿照小明的做法解决下面问题:(1)不等式的解集为____________.(2)不等式的解集是____________.(3)求不等式的解集.。

北京平谷区初一七年级下册数学期末试题

北京平谷区初一七年级下册数学期末试题

北京平谷区初一(七年级)下册数学期末试题初 一 数 学 2012年6月学校 班级 姓名 考场 考号 .一、选择题(此题共30分,每题3分)以下每题的四个选项中,只有一个是正确的.请将正确选项前的字母填写在下表相应题号的下面. 1. 不等式的解集是 A .3x < B .3x > C .7x <- D .3x >- 2. 若是c 为有理数,且c ≠0,以下不等式中正确的选项是 A .32c c >B .32c c> C .32c c +>+ D .32c c -<-3. 以下 4对数值中是方程23x y +=的解的是A.2,0.x y =⎧⎨=⎩ B.0,1.x y =⎧⎨=-⎩C. 1,1.x y =-⎧⎨=-⎩ D.1,1.x y =⎧⎨=⎩4. 方程组3212 3.x y x+y +=⎧⎨=⎩,的解是A .=1 1.x y ⎧⎨=-⎩,B .11.x y =-⎧⎨=⎩,C .12.x y =-⎧⎨=⎩,D .=21.2x ⎧⎪⎨⎪⎩,y =5.如图,直线a ∥b ,直线c 与a 、b 相交,假设∠1=70°, 则∠2 的度数是 A .20° B .70° C .50° D .110°12 a bcOEDCBA216.以下说法错误..的是 A .直角三角板的两个锐角互余 B .通过直线外一点只能画一条直线与已知直线平行 C .若是两个角互补,那么,这两个角必然都是直角 D .平行于同一条直线的两条直线平行 7.以下计算正确的选项是A.22xx x =· B .()22xy xy = C .224x x x += D .()326x x =8.以下运算正确的选项是A .235a a a += B .22(2)4a a -=- C .22223a a a -=- D .2(1)(1)2a a a +-=-9. 学雷锋活动中,师大附中举行初中校内歌咏竞赛活动,10名评委给各班打分,评委给该中学某班的合唱成绩的打分如下表:成绩(分) 9.2 9.3 9.6 9.7 9.9 人数(人)22321去掉一个最高分...和最低分...后,余下数据的平均分是 A .分 B .分C .分D .分10. 如图,从边长为(a +4)cm 的正方形纸片中剪去一个边长为()1a +cm 的正方形(0)a >,剩余部份沿虚线又剪拼成一个长方形(不重叠无裂缝),那么长方形的面积为A .22(25)cm a a + B .2(315)cm a + C .2(69)cm a + D .2(615)cm a +二、填空题(此题共20分,每题4分)11.不等式组 的解集是 .12. “x 与5的差不小于0”用不等式表示为 .13. 如图,CO ⊥AB ,EO ⊥OD ,若是∠1=38°, 那么,∠2= .14. 如图,将三角形纸板ABC 沿直线AB 向右平行移动,使 ∠A 抵达∠B 的位置,假设∠CAB =50°,∠ABC =100°,那么∠CBE 的度数为 .得分 阅卷人35.x x >⎧⎨-<⎩,15. 观看以下算式:① 1 × 3 - 22 = 3 - 4 =-1,② 2 × 4 - 32 = 8 – 9=-1 , ③ 3 × 5 - 42 = 15 – 16= -1 , ……按以上规律第4个算式为 ;第n (n 是正整数)个算式为 ;(把那个规律用含字母n 的式子表示出来.三、解答题(此题共35分,每小题5分)16.分解因式:53a a - 解:17. 分解因式:(21)(1)(1)x x+x x +-+解:18. 计算:2324(3)8()mn mn mn m n m --+ 解:19.化简:2(3)2a a a ++-() 解:20. 已知2570x x --=,求2(1)(21)(1)1x x x ---++的值. 解:21. 解方程组: 324 5.x y x y =⎧⎨-=⎩,解:22. 解不等式组()+10213 1.x x x >⎧⎪⎨+-⎪⎩,≥ 并求其整数解.解:四、解答题(此题共12分,每题6分)23.已知:如图,AB ∥EF ,BC ∥ED ,AB ,DE 交于点G . 求证:B E ∠=∠. 证明:24.已知:如图,AB ∥CD ,AC 平分∠BCD ,∠122=∠. 求证:AD ∥CB . 证明:五、解答题(此题共6分)25. 某校体育组对本校九年级全部同窗体育测试情形进行调查,他们随机抽查部份同窗体育测试成绩(由高到低分A B C D 、、、四个品级),依照调查的数据绘制成如下的条形统计图和扇形统计图.请依照以上不完整的统计图提供的信息,解答以下问题:(1)该:校体育组共抽查了__________名同窗的体育测试成绩,扇形统计图中B 级所占的百分比b =___________; (2)补全条形统计图;(3)假设该校九年级共有200名同窗,请估量该校九年级同窗体育测试达标(测试成绩C 级以上,含C 级)约有___________名.得分 阅卷人0 48 12 16 20 2428 32 20 32 4 A 级 C 级 D 级B 级 D 级,d =5%C 级, c =30% A 级,a =25% B 级,b =?频数(人数)六、解答题(此题共12分,每题6分)26. 列方程组解应用题:自从两岸实现“大三通”以来,据测算,空运平均每航次可节省4小时,海运平均每航次可节省22小时,以两岸每一年往来合计500万人次计算,那么共可为民众节省2900万小时.依照这些信息,求每一年采纳空运和海运往来两岸的人员各有多少万人次.解:27.解应用题:两位搬运工人要将假设干箱一样的货物用电梯运到楼上.已知一箱货物的质量是65千克,两位工人的体重之和是150千克,电梯的载重量是1800千克,问两位工人一次最多能运多少箱货物.解:图1a 2ba a ab a 2b 2ab ab ab 七、解答题(此题共5分)28.先阅读后作答:咱们已经明白,用几何图形中面积的几何意义能够说明平方差公式和完全平方公式,事实上还有一些等式也能够用这种方式加以说明.例如:(2a +b )( a +b ) = 2a 2 +3ab +b 2,就能够够用图1中面积的几何意义来讲明 . 问题:(1)依照图2写出一个等式 ;(2)已知等式:(x +p )(x +q )=x 2 + (p +q ) x + pq ,其中p ≠q ,请你依照图1的样子,画出一个用几何图形中的面积说明那个等式的几何图形.解:(2)画图如下:北京平谷区初一(七年级)下册数学期末试题参考答案及评分参考一、选择题(此题共30分,每题3分) 月11. 3x > ; 12. 50x -≥ ;13. 52°;14. 30°;15.246524251⨯-=-=-;222(2)(1)2(21)n n n n n n n +-+=+-++或()()2211n n n +-+=- (答案不唯一).三、解答题(此题共35分,每小题5分)16. 解:原式32(1)a a =- .......................................................................................3分 3(1)(1)a a a =+- .....................................................................................5分 17.解法一:原式(1)(21)x x x =++- .....................................................................3分 (1)(1)x x =++ ...............................................................................4分 2(1)x =+ ............................................................................................5分 2222221)(1)(1)(221)()23121(1)x x+x x x x x x x x x x x x x x +-++++-+=++--=++=+.......................................................................3分18. 解:2324(3)8()mn mn mn m n m -⋅-⋅+2233529(88)m n mn m n m n =⋅--.......................................................................2分35352988m n m n m n =-- ................................................................................4分 3528m n m n =- ................................................................................................5分19.解:2(3)2a a a ++-()=22692a a a a +++- ...........................................................................................4分 =89a + ......................................................................................................................5分20. 解: 2(1)(21)(1)1x x x ---++22221(21)1x x x x x =--+-+++ .............................................................2分22221211x x x x x =--+---+ -----------------------------------------------------3分251x x =-+ . ---------------------------------------------------------------------------4分 ∵257x x -=,原式=718=+=. ...................................................................................................5分321CAD21.解:324 5.x y x y =⎧⎨-=⎩,由①,得 23x y =. ③ .............................................................................................1分 把③代入②,得 24 5.3y y -= ...............................................................................2分解那个方程,得 32y =-. .........................................................................................3分把32y =-代入③,得1x =-. ...................................................................................4分因此方程组的解是 13.2x y =-⎧⎪⎨=-⎪⎩, ..................................................................................5分22. ()+10213x x x >⎧⎪⎨+-⎪⎩,≥解:解不等式 ① 得 ········································································ 1分解不等式 ② 得 x ≤3. ·········································································· 3分 因此原不等式组的解集为1x -<≤3. ··························································· 4分 其整数解为0,1,2,3. ················································································ 5分 四、解答题(此题共12分,每题6分)23.证明:∵ AB ∥EF ,∴ ∠E =∠AGD . ..............................................2分 ∵ BC ∥ED ,∴ B AGD ∠=∠,.......................................4分 ∴.B E ∠=∠ ...............................................6分24.证明:∵ AB ∥CD ,∴ ∠2=∠3. .................................................2分 ∵ AC 平分∠BCD ,∴ ∠BCD =2∠3. .......................................3分 ∵ ∠122=∠,∴ ∠BCD =∠1..........................................4分②① ① ②∴ AD ∥CB . ...............................................6分 五、解答题(此题共6分)25.解:(1)80 ;40% ;.......................2分(每空1分) (2)24%3080=⨯;补全条形图形; .......4分 (3)190 . ........................................................6分六、解答题(此题共12分,每题6分)26. 解:设每一年采纳空运往来的有x 万人次,海运往来的有y 万人次. ----------1分依题意,得 ⎩⎨⎧x +y =5004x +22y =2900 ……………………………………………………4分解方程组, 得 ⎩⎨⎧x =450y =50…………………………………………………..5分答:每一年采纳空运往来的有450万人次,海运往来的有50万人次. ----------6分27.解:设一次能运x 箱货物. ..................................................................................................1分 依照题意,得 651501800x +≤. --------------------------------------------------------------3分 解那个不等式得 52513x ≤. --------------------------------------------------------------------------4分 因为x 为正整数,因此x 的最大整数值为25. ..................................................................5分 答:两位工人一次最多能运25箱货物. ---------------------------------------------------------6分七、解答题(此题共5分)解:(1)22(2)(2)252a b a b a ab b ++=++ ............................................................ 2分 (2)如下图:.....................................................5分得分 阅卷人pqqxpx x 2qpx x。

2017-2018学年第二学期七年级数学期末试题(含答案)

2017-2018学年第二学期七年级数学期末试题(含答案)

2017—2018学年度第二学期期末考试七年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分,考试用时120分钟.考试结束后,只收交答题卡.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、考试号、座号填写在答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,必须用0.5毫米黑色签字笔将该答案选项的字母代号填入答题卡的相应表格中,不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题 共36分)一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,并将该选项的字母代号填入答题卡的相应表格中.每小题涂对得3分,满分36分. 1.下列叙述中,正确的是 A .相等的两个角是对顶角 B .一条直线有且只有一条垂线C .连接直线外一点与这条直线上各点的所有线段中,垂线段最短D .同旁内角互补2.如图所示,直线a ,b 被直线c 所截,∠1与∠2是A .同位角B .内错角C .同旁内角D .邻补角3.如图,若△DEF 是由△ABC 经过平移后得到的,则平移的距离是A .线段BC 的长度B .线段BE 的长度C .线段EC 的长度D .线段EF 的长度 4.下列语言是命题的是A .画两条相等的线段B .等于同一个角的两个角相等吗?C .延长线段AO 到C ,使OC =OAD .两直线平行,内错角相等(第2题图) (第3题图)A .9B .±9C .3D .±36.下列计算结果正确的是A6± B3.6- CD .7.如果12x y =⎧⎨=-⎩和14x y =-⎧⎨=-⎩都是某个二元一次方程的解,则这个二元一次方程是A .x +2y =-3B .2x -y =2C .x -y =3D .y =3x -58.用加减法解方程组时,若要消去y ,则应A .①×3+②×2B .①×3-②×2C .①×5+②×3D .①×5-②×3 9.如果x ≤y ,那么下列结论中正确的是 A .4x ≥4y B .-2x +1≥-2y +1 C .x -2≥y +2D .2-x ≤2-y10.利用数轴求不等式组103x x -≤⎧⎨>-⎩的解集时,下列画图表示正确的是A .B .C .D .11.在调查收集数据时,下列做法正确的是A .电视台为了了解电视节目的收视率,调查方式选择在火车站调查50人B .在医院里调查老年人的健康状况C .抽样调查选取样本时,所选样本可按自己的喜好选取D .检测某城市的空气质量,适宜采用抽样调查的方式12.小宁同学根据全班同学的血型情况绘制了如图所示的扇形统计图,已知该班血型为A 型的有20人,那么该班血型为AB 型的人数为A .2人B .5人C .8人D .10人第Ⅱ卷(非选择题 共114分)二、填空题:本大题共10个小题,每小题4分,满分40分. 13.命题“对顶角相等”的题设是 .14.为了解某山区金丝猴的数量,科研人员在该山区不同的地方捕获了15只金丝猴,并在它们的身上做标记后放回该山区.过段时间后,在该山区不同的地方又捕获了32只金丝猴,其中4只身上有上次做的标记,由此可估计该山区金丝猴的数量约有 只. 15.一个容量为89的样本中,最大值是153,最小值是60,取组距为10,则可分成 组.16.-1.4144,2220.373π-g,,, 2.12112.其中 是无理数.(第12题图)17.如图,∠1=∠2=40°,MN 平分∠EMB ,则∠3= °.18.如图,若棋盘的“将”位于点(0,0),“车”位于点(-4,0),则“马”位于点 .19.甲、乙两人相距42千米,若两人同时相向而行,可在6小时后相遇;而若两人同时同向而行,乙可在14小时后追上甲.设甲的速度为x 千米/时,乙的速度为y 千米/时,列出的二元一次方程组为 .20.某花店设计了若干个甲、乙两种造型的花篮,一个甲种花篮由15朵红花、25朵黄花和20朵紫花搭配而成;一个乙种花篮由10朵红花、20朵黄花和15朵紫花搭配而成.若这些花篮一共用了2900朵红花,4000朵紫花,则黄花一共用了 朵.21.不等式组10324x x x ->⎧⎨>-⎩的非负整数解是 .22.船在静水中的速度是24千米/小时,水流速度是2千米/小时,如果从一个码头逆流而上后,再顺流而下,那么这船最多开出 千米就应返回才能在6小时内回到码头. 三、解答题:本大题共6个小题,满分74分. 解答时请写出必要的演推过程. 23.请先阅读以下内容:,即23, ∴11<2,1的整数部分为1,12. 根据以上材料的学习,解决以下问题:已知a3的整数部分,b3的小数部分,求32()(4)a b -++的平方根. 24.解下列方程组(不等式组): (1)4(1)3(1)2,2;23x y y x y --=--⎧⎪⎨+=⎪⎩ (2)12(1)5;32122x x x --≤⎧⎪⎨-<+⎪⎩.25.某学校为加强学生的安全意识,组织了全校1500名学生参加安全知识竞赛,从中抽取了部分学生成绩(得分取正整数,满分为100分)进行统计.请根据尚未完成的频率分布表和频数分布直方图(如图),解答下列问题:(1)这次抽取了 名学生的竞赛成绩进行统计,其中m = ,n = ; (2)补全频数分布直方图;(3)若成绩在70分以下(含70分)的学生为安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?(第17题图)(第18题图)26.某商场销售国外、国内两种品牌的智能手机,这两种手机的进价和售价如下表所示:该商场计划购进两种手机若干部,共需14.8万元,预计全部销售后可获毛利润共2.7万元.[注:毛利润=(售价-进价)×销售量](1)该商场计划购进国外品牌、国内品牌两种手机各多少部?(2)通过市场调研,该商场决定在原计划的基础上,减少国外品牌手机的购进数量,增加国内品牌手机的购进数量.已知国内品牌手机增加的数量是国外品牌手机减少数量的3倍,而且用于购进这两种手机的总资金不超过15.6万元,问该商场最多减少购进多少部国外品牌手机?27.如图,在长方形OABC 中,O 为平面直角坐标系的原点,点A 坐标为(a ,0),点C 的坐标为(0,b ),且a 、b 60b -=,点B 在第一象限内,点P 从原点出发,以每秒2个单位长度的速度沿着O →C →B →A →O 的线路移动. (1)a = ,b = ,点B 的坐标为 ; (2)求移动4秒时点P 的坐标;(3)在移动过程中,当点P 到x 轴的距离为5个单位长度时,求点P 移动的时间.28.如图,已知直线AB∥CD ,∠A =∠C =100°,点E ,F 在CD 上,且满足∠DBF =∠ABD ,BE 平分∠CBF . (1)求证:AD ∥BC ; (2)求∠DBE 的度数;(3)若平移AD 使得∠ADB =∠BEC ,请直接写出此时∠ADB 的度数是 .(第28题图)(第27题图)2017—2018学年第二学期七年级数学试题参考答案及评分标准二、填空题:(每题4分,共40分)13. 两个角是对顶角;14.120;15. 10;16.23π-,;17.110;18. (3,3);19.6642,141442x yy x+=⎧⎨-=⎩;20.5100 ;21.0;22.71.5.三、解答题:(共74分)23. 解:∵<<,……………………………………………………1分∴4<<5,…………………………………………………………………2分∴1<﹣3<2,…………………………………………………………………3分∴a=1,…………………………………………………………………………4分b=﹣4,………………………………………………………………………6分∴(﹣a)3+(b+4)2=(﹣1)3+(﹣4+4)2=﹣1+17 …………………………………………………………………………8分=16,…………………………………………………………………………9分∴(﹣a)3+(b+4)2的平方根是±4.………………………………………10分24. (1)解:化简,得………………………………………2分①×2+②得1122,x=③………………………………………3分2x=,………………………………………4分②①把2x =代入③,得3.y = ……………………………………5分所以这个方程组的解是23.x y =⎧⎨=⎩,……………………………………6分 (2)解:由①得:1﹣2x +2≤5 ………………………………………7分∴2x ≥﹣2即x ≥﹣1 ………………………………………8分 由②得:3x ﹣2<2x +1 ………………………………………9分∴x <3. ………………………………………10分∴原不等式组的解集为:﹣1≤x <3. ……………………………………12分25. 解:(1)200, ………………………………………3分70;0.12; ………………………………………7分(2)如图,…………………………………9分(3)1500×(0.08+0.2)=420, ……………………………………11分 所以该校安全意识不强的学生约有420人. …………………………………12分 26. 解:(1)设商场计划购进国外品牌手机x 部,国内品牌手机y 部,由题意得 0.440.214.8,0.060.05 2.7,x y x y +=⎧⎨+=⎩…………………………………4分解得 20,30.x y =⎧⎨=⎩…………………………………6分答:商场计划购进国外品牌手机20部,国内品牌手机30部. ………7分(2)设国外品牌手机减少a部,由题意得-++≤15.6 …………………………………10分a a0.44(20)0.2(303)解得a≤5 …………………………………12分答:该商场最多减少购进5部国外品牌手机. ……………………………13分27. (1)a= 4 ,b= 6 ,点B的坐标为(4,6);………………6分(2)∵P从原点出发以每秒2个单位长度的速度沿O→C→B→A→O的线路移动,∴2×4=8,……………………………………7分∵OA=4,OC=6,∴当点P移动4秒时,在线段CB上,离点C的距离是8﹣6=2,…………8分∴点P的坐标是(2,6);……………………………………9分(3)由题意可知存在两种情况:第一种情况,当点P在OC上时,点P移动的时间是:5÷2=2.5秒,……………………………………11分第二种情况,当点P在BA上时.点P移动的时间是:(6+4+1)÷2=5.5秒,……………………………………12分故在移动过程中,当点P到x轴的距离为5个单位长度时,点P移动的时间是2.5秒或5.5秒.……………………………………13分28. 证明:(1)∵AB∥CD,∴∠A+∠ADC=180°,……………………………………2分又∵∠A=∠C∴∠ADC+∠C=180°,……………………………………4分∴AD∥BC;……………………………………6分(2)∵AB∥CD,∴∠ABC+∠C=180°………………………………8分又∠C=100°,∴∠ABC=180°﹣100°=80°,………………………………9分∵∠DBF=∠ABD,BE平分∠CBF,∴∠DBF=∠ABF,∠EBF=∠CBF,…………………10分∴∠DBE=∠ABF+∠CBF=∠ABC=40°;……………12分(3)∠ADB=60°.……………………………………14分。

2017-2018学年北京市平谷区七年级(下)期末数学试卷-含详细解析

2017-2018学年北京市平谷区七年级(下)期末数学试卷-含详细解析
14.已知:关于x、y的方程组 ,则x+y=______.
15.如图,是我国南宋数学家杨辉所著的《详解九章算术》一书中,用下图的三角形解释二项式(a+b)n(n为整数)的展开时的系数规律,(按a的次数由大到小的顺序),此规律称之为“杨辉三角”.请依据此规律,写出(a+b)2018展开式中含a2017项的系数是______.
四、解答题(本大题共9小题,共56.0分)
19.解不等式:-2x+1≥-1,并在数轴上表示出它的解集.
20.(-1)2017+(π-3)0-22+(- )-1
21.用适当的方法解二元一次方程组
(1)
(2)
22.先化简,再求值:x2-3x-1=0,求代数式(x-3)2+(x+y)(x-y)+y2的值.
23. 某校有500名学生.为了解全校每名学生的上学方式,该校数学兴趣小组在全校随机抽取了100名学生进行抽样调查.整理样本数据,得到扇形统计图如右图:
(1)本次调查的个体是______,样本容量是______;
(2)扇形统计图中,乘私家车部分对应的圆心角是______度;
(3)请估计该校500名学生中,选择骑车和步行上学的一共有多少人?
24.小明和小丽两人相距8千米,小明骑自行车,小丽步行,两人同时出发相向而行,1小时相遇;若两人同时出发同向而行,小明2小时可以追上小丽,求小明、小丽每小时各走多少千米?
25.如图,AB∥CD,点O是直线AB上一点,OC平分∠AOF.
(1)求证:∠DCO=∠COF;
(2)若∠DCO=40°,求∠DEF的度数.
(a+b)0=1
1
(a+b)1=a+b

北京市2017-2018学年七年级数学下学期期末模拟试卷及答案(二)

北京市2017-2018学年七年级数学下学期期末模拟试卷及答案(二)

北京市2017-2018学年七年级数学下学期期末模拟试卷及答案(二)一、选择题(共8个小题,每小题4分,共32分)下面各题均有四个选项,其中只有一个是符合题意的.1.在广东东莞结束的2015年苏迪曼杯决赛中,中国队以3:0的大比分击败日本队,刷新了六届蝉联冠军记录的同时,更是第10次夺得苏迪曼杯世界羽毛球混合团体锦标赛冠军.目前国际比赛通用的羽毛球质量大约是0.005千克,把0.005用科学记数法表示为()A.0.5×10﹣2B.5×10﹣3 C.5×10﹣2 D.0.5×10﹣32.计算a3•a2的结果是()A.2a5B.a5C.a6D.a93.下列事件中,必然事件是()A.任意掷一枚均匀的硬币,正面朝上B.从一副扑克牌中,随意抽出一张是大王C.通常情况下,抛出的篮球会下落D.三角形内角和为360°4.一条葡萄藤上结有五串葡萄,每串葡萄的粒数如图所示(单位:粒),则这组数据的众数为()A.37 B.35 C.32 D.285.已知是方程x+ay=3的解,则a的值为()A.0 B.1 C.2 D.36.如图,若AB∥CD,∠A=70°,则∠1的度数是()A.20°B.30°C.70°D.110°7.在足球、篮球、网球和垒球中,小张、小王、小李和小刘分别喜欢其中的一种,根据下面的提示,判断小刘喜欢的是()①小张不喜欢网球;②小王不喜欢足球;③小王和小李都是既不喜欢篮球也不喜欢网球.A.足球B.篮球C.网球D.垒球8.已知关于x的不等式组的解集为3≤x<5,则的值为()A.﹣2 B.﹣C.﹣4 D.﹣二、填空题(共4个小题,每小题4分,共16分)9.我区将对某校初一年级学生体质健康测试成绩进行抽查,检查组到校后随机从整个年级中抽取一个班进行测试,若该校初一年级共有6个班,则初一(1)班被抽到的概率是______.10.已知∠α=20°,那么∠α的余角的度数是______.11.写出二元一次方程x+3y=13的一个正整数解为______.12.如图,数轴上点A的初始位置表示的数为2,将点A做如下移动:第1次点A向左移动2个单位长度至点A1,第2次从点A1向右移动4个单位长度至点A2,第3次从点A2向左移动6个单位长度至点A3,…按照这种移动方式进行下去,点A5表示的数是______;如果点A n与原点的距离等于10,那么n的值是______.三、解答题(共6个小题,每小题5分,共30分)13.计算:.14.分解因式:(1)2m2﹣8;(2)ax2﹣(2ax﹣a).15.解方程组:.16.解不等式5x﹣12≤2(4x﹣3),并把它的解集在数轴上表示出来.17.已知a=﹣1,b=2,求[(2a+b)2﹣(4a+b)(a﹣2b)]÷b的值.18.已知:如图,AB∥CD,∠B+∠D=180°.求证:BE∥DF.四、解答题(共4道小题,每小题5分,共20分)19.列方程或方程组解应用题:尼泊尔当地时间4月25日14时11分,发生8.1级地震,我国迅速做出反应,国航、东航、南航和川航等航空公司克服困难,安全接回近6000名在尼滞留的我国公民.我国红十字会以最快的速度准备了第一批救援物资,其中甲、乙两种帐篷共2000顶,甲种帐篷每顶安置6人,乙种帐篷每顶安置4人,总共可以安置11000人.求甲、乙两种帐篷各准备多少顶?20.已知:如图,DE∥BC,CD平分∠ACB,∠A=68°,∠DFB=72°,∠AED=72°,求∠BDF和∠FDC的度数.21.昌平区为响应国家“低碳环保,绿色出行”的号召,基于“服务民生”理念,运用信息化管理与服务手段,为居住区、旅游景点等人流量集中的地区提供公共自行车服务的智能交通系统.七年级(1)班的小刚所在的学习小组对6月份昌平某站点一周的租车情况进行了调查,并把收集的数据绘制成下面的统计表和扇形统计图:6月份昌平某站点一周的租车次数(1)根据上面统计图表提供的信息,可得这个站点一周的租车总次数是______次;(2)补全统计表;(3)该站点一周租车次数的中位数是______;(4)周五租车次数所在扇形的圆心角度数为______;(5)已知小客车每百公里二氧化碳的平均排量约为25千克,如果6月份(30天)改开小客车为骑自行车,每次租车平均骑行4公里,估计6月份二氧化碳排量因此减少了______千克.22.我们知道用几何图形的面积可以解释多项式乘法的运算:(1)如图1,可知:(a+b)2=______;(2)如图2,可知:(a+b)2=(a﹣b)2+______;(3)计算:(a+b)(a+2b)=______;(4)在下面虚线框内画图说明(3)中的等式.五、解答题(23题7分,24题7分,25题8分,共3道小题,共22分)23.现场学习:我们学习了由两个一元一次不等式组成的不等式组的解法,知道可以借助数轴准确找到不等式组的解集,即两个不等式的解集的公共部分.解决问题:解不等式组并利用数轴确定它的解集;拓展探究:由三个一元一次不等式组成的不等式组的解集是这三个不等式解集的公共部分.(1)直接写出的解集为______;(2)已知关于x的不等式组无解,则a的取值范围是______.24.问题情境:如图1,AB∥CD,判断∠ABP,∠CDP,∠BPD之间的数量关系.小明的思路:如图2,过点P作PE∥AB,通过平行线性质,可得∠ABP+∠CDP+∠BPD=______°.问题迁移:AB∥CD,直线EF分别与AB,CD交于点E,F,点P在直线EF上(点P与点E,F不重合)运动.(1)当点P在线段EF上运动时,如图3,判断∠ABP,∠CDP,∠BPD之间的数量关系,并说明理由;(2)当点P不在线段EF上运动时,(1)中的结论是否成立,若成立,请你说明理由;若不成立,请你在备用图上画出图形,并直接写出∠ABP,∠CDP,∠BPD之间的数量关系.25.昌平区兴寿镇草莓种植户张强、李亮,均在自家的大棚里种植了丰香和章姬两个品种的草莓,两个种植户的草莓种植面积与纯收入如表:(说明:同类草莓每亩平均纯收入相等)(1)求丰香和章姬两类草莓每亩平均纯收入各是多少万元?(2)王刚准备租20亩地用来种植丰香和章姬两类草莓,为了使纯收入超过10万元,且种植章姬的面积不超过种植丰香的面积的2倍(两类草莓的种植面积均为整数),求种植户王刚所有的种植方案.参考答案与试题解析一、选择题(共8个小题,每小题4分,共32分)下面各题均有四个选项,其中只有一个是符合题意的.1.在广东东莞结束的2015年苏迪曼杯决赛中,中国队以3:0的大比分击败日本队,刷新了六届蝉联冠军记录的同时,更是第10次夺得苏迪曼杯世界羽毛球混合团体锦标赛冠军.目前国际比赛通用的羽毛球质量大约是0.005千克,把0.005用科学记数法表示为()A.0.5×10﹣2B.5×10﹣3 C.5×10﹣2 D.0.5×10﹣3【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:把0.005用科学记数法表示为5×10﹣3.故选:B.2.计算a3•a2的结果是()A.2a5B.a5C.a6D.a9【考点】同底数幂的乘法.【分析】根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,即可求得答案.【解答】解:a3•a2=a5.故选B.3.下列事件中,必然事件是()A.任意掷一枚均匀的硬币,正面朝上B.从一副扑克牌中,随意抽出一张是大王C.通常情况下,抛出的篮球会下落D.三角形内角和为360°【考点】随机事件.【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:任意掷一枚均匀的硬币,正面朝上是随机事件;从一副扑克牌中,随意抽出一张是大王是随机事件;通常情况下,抛出的篮球会下落是必然事件;三角形内角和为360°是不可能事件,故选:C.4.一条葡萄藤上结有五串葡萄,每串葡萄的粒数如图所示(单位:粒),则这组数据的众数为()A.37 B.35 C.32 D.28【考点】众数.【分析】找到出现次数最多的数,即为众数;【解答】解:∵该组数据中出现次数最多的数是37,∴该组数据的众数是37,故选A.5.已知是方程x+ay=3的解,则a的值为()A.0 B.1 C.2 D.3【考点】二元一次方程的解.【分析】把代入方程x+ay=3,求出a的值为多少即可.【解答】解:∵是方程x+ay=3的解,∴﹣1+2a=3,∴a=2.故选:C.6.如图,若AB∥CD,∠A=70°,则∠1的度数是()A.20°B.30°C.70°D.110°【考点】平行线的性质.【分析】先根据平行线的性质求出∠2的度数,再由平角的定义即可得出结论.【解答】解:∵AB∥CD,∠A=70°,∴∠2=∠A=70°,∴∠1=180°﹣∠2=180°﹣70°=110°.故选D.7.在足球、篮球、网球和垒球中,小张、小王、小李和小刘分别喜欢其中的一种,根据下面的提示,判断小刘喜欢的是()①小张不喜欢网球;②小王不喜欢足球;③小王和小李都是既不喜欢篮球也不喜欢网球.A.足球B.篮球C.网球D.垒球【考点】推理与论证.【分析】由③可知小王喜欢足球、垒球,又由②可知小王喜欢垒球,所以小李喜欢足球,由此为突破口,找出小张和小刘喜欢的项目.【解答】解:由小王和小李都是既不喜欢篮球也不喜欢网球,得小王喜欢足球、垒球;小王不喜欢足球,得小王喜欢垒球,小李喜欢足球.由小张不喜欢网球,得小张喜欢篮球,只剩下网球,故小刘喜欢网球,故选:C.8.已知关于x的不等式组的解集为3≤x<5,则的值为()A.﹣2 B.﹣C.﹣4 D.﹣【考点】解一元一次不等式组;二元一次方程组的解.【分析】先解不等式组,解集为a+b≤x<,再由不等式组的解集为3≤x<5,转化成关于a,b的方程组来解即可.【解答】解:不等式组由①得,x≥a+b,由②得,x<,∴,解得,∴=﹣2.故选A.二、填空题(共4个小题,每小题4分,共16分)9.我区将对某校初一年级学生体质健康测试成绩进行抽查,检查组到校后随机从整个年级中抽取一个班进行测试,若该校初一年级共有6个班,则初一(1)班被抽到的概率是.【考点】概率公式.【分析】直接利用概率公式求出初一(1)班被抽到的概率.【解答】解:∵该校初一年级共有6个班,∴初一(1)班被抽到的概率是:.故答案为:.10.已知∠α=20°,那么∠α的余角的度数是70°.【考点】余角和补角.【分析】根据互余两角之和等于90°,求解即可.【解答】解:∵∠α=20°,∴∠α的余角的度数=90°﹣20°=70°.故答案为:70°.11.写出二元一次方程x+3y=13的一个正整数解为或或或(任意一个即可).【考点】解二元一次方程.【分析】直接利用二元一次方程分别得出符合题意的解.【解答】解:当x=1,y=4;当x=4时,y=3;当x=7时,y=2;当x=10时,y=1.故答案为:或或或(任意一个即可).12.如图,数轴上点A的初始位置表示的数为2,将点A做如下移动:第1次点A向左移动2个单位长度至点A1,第2次从点A1向右移动4个单位长度至点A2,第3次从点A2向左移动6个单位长度至点A3,…按照这种移动方式进行下去,点A5表示的数是﹣4;如果点A n与原点的距离等于10,那么n的值是8或11.【考点】规律型:图形的变化类;数轴.【分析】根据题意可以分别写出点A移动的规律,当点A奇数次移动后对应数的都是负数,偶数次移动对应的数都是正数,从而可知A n与原点的距离等于10分两种情况,从而可以解答本题.【解答】解:第一次点A向左移动2个单位长度至点A1,则A1表示的数,2﹣2=0;第2次从点A1向右移动4个单位长度至点A2,则A2表示的数为0+4=4;第3次从点A2向左移动6个单位长度至点A3,则A3表示的数为4﹣6=﹣2;第4次从点A3向右移动8个单位长度至点A4,则A4表示的数为﹣2+8=6;第5次从点A4向左移动10个单位长度至点A5,则A5表示的数为6﹣10=﹣4;…;第奇数次移动的点表示的数是:2+(﹣2)×,第偶数次移动的点表示的数是:2+2×,∵点A n与原点的距离等于10,∴当点n为奇数时,则﹣10=2+(﹣2)×,解得,n=11;当点n为偶数,则10=2+2×,解得n=8.故答案为:8或11.三、解答题(共6个小题,每小题5分,共30分)13.计算:.【考点】实数的运算;零指数幂;负整数指数幂.【分析】原式利用乘方的意义,零指数幂、负整数指数幂法则计算即可得到结果.【解答】解:原式=1+2﹣(﹣8)+(﹣1)=1+2+8﹣1=10.14.分解因式:(1)2m2﹣8;(2)ax2﹣(2ax﹣a).【考点】提公因式法与公式法的综合运用.【分析】(1)原式提取2,再利用平方差公式分解即可;(2)原式整理后,提取公因式,再利用完全平方公式分解即可.【解答】解:(1)原式=2(m2﹣4)=2(m+2)(m﹣2);(2)原式=ax2+2ax+a=a(x2+2x+1)=a(x+1)2.15.解方程组:.【考点】解二元一次方程组.【分析】方程组利用加减消元法求出解即可.【解答】解:,①×3+②得:10x=20,即x=2,把x=2代入①得:y=1,则方程组的解为.16.解不等式5x﹣12≤2(4x﹣3),并把它的解集在数轴上表示出来.【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】解不等式5x﹣12≤2(4x﹣3),先去括号,5x﹣12≤8x﹣6,不等式两边同时减8x+12得﹣3x≤6,再化系数为1便可求出不等式的解集.【解答】解:去括号得,5x﹣12≤8x﹣6,移项得,5x﹣8x≤﹣6+12,合并同类项得,﹣3x≤6.系数化为1得,x≥﹣2.不等式的解集在数轴上表示如图:.17.已知a=﹣1,b=2,求[(2a+b)2﹣(4a+b)(a﹣2b)]÷b的值.【考点】整式的混合运算—化简求值.【分析】原式中括号中利用完全平方公式,多项式乘以多项式法则计算,去括号合并后利用多项式除以单项式法则计算得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=(4a2+4ab+b2﹣4a2+8ab﹣ab+2b2)÷b=(11ab+3b2)÷b=11a+3b,当a=﹣1,b=2时,原式=﹣11+6=﹣5.18.已知:如图,AB∥CD,∠B+∠D=180°.求证:BE∥DF.【考点】平行线的判定与性质.【分析】利用平行线的性质,由AB∥CD易得∠B=∠CME,再利用对顶角的性质,可得∠B=∠BMD,易得∠BMD+∠D=180°,由平行线的判定定理可得结论.【解答】证明:∵AB∥CD,∴∠B=∠CME,∵∠CME=∠BMD,∴∠B=∠BMD,∵∠B+∠D=180°,∴∠BMD+∠D=180°,∴BE∥DF.四、解答题(共4道小题,每小题5分,共20分)19.列方程或方程组解应用题:尼泊尔当地时间4月25日14时11分,发生8.1级地震,我国迅速做出反应,国航、东航、南航和川航等航空公司克服困难,安全接回近6000名在尼滞留的我国公民.我国红十字会以最快的速度准备了第一批救援物资,其中甲、乙两种帐篷共2000顶,甲种帐篷每顶安置6人,乙种帐篷每顶安置4人,总共可以安置11000人.求甲、乙两种帐篷各准备多少顶?【考点】二元一次方程组的应用.【分析】设准备甲种帐篷和乙种帐篷各x、y顶,根据准备捐助甲、乙两种型号的帐篷共2000顶可以方程x+y=2000,根据甲种帐篷每顶安置6人,乙种帐篷每顶安置4人,共安置9000人可以列出方程6x+4y=11000,联立两个方程组成方程组即可解决问题.【解答】解:设准备甲种帐篷和乙种帐篷各x、y顶,依题意得,解之得,答:甲种帐篷和乙种帐篷分别是1500、500顶.20.已知:如图,DE∥BC,CD平分∠ACB,∠A=68°,∠DFB=72°,∠AED=72°,求∠BDF和∠FDC的度数.【考点】平行线的性质.【分析】由平行线的性质可求得∠AED=∠ACB=∠DFB,可判定DF∥AC,∠BDF=∠A,由平行线的性质可得∠FDC=∠FCD=∠DFB,可求得答案.【解答】解:∵DE∥BC,∴∠ACB=∠AED=72°,∵∠DFB=72°,∴∠ACB=∠DFB,∴DF∥AC,∴∠BDF=∠A=68°,∵CD平分∠ACB,∴∠ACD=∠FCD,∵DF∥AC,∴∠FDC=∠ACD,∴∠FDC=∠FCD,∵∠DFB=∠FDC+∠FCD,∴2∠FDC=∠DFB=72°,∴∠FDC=36°.21.昌平区为响应国家“低碳环保,绿色出行”的号召,基于“服务民生”理念,运用信息化管理与服务手段,为居住区、旅游景点等人流量集中的地区提供公共自行车服务的智能交通系统.七年级(1)班的小刚所在的学习小组对6月份昌平某站点一周的租车情况进行了调查,并把收集的数据绘制成下面的统计表和扇形统计图:6月份昌平某站点一周的租车次数(1)根据上面统计图表提供的信息,可得这个站点一周的租车总次数是700次;(2)补全统计表;(3)该站点一周租车次数的中位数是105次;(4)周五租车次数所在扇形的圆心角度数为72°;(5)已知小客车每百公里二氧化碳的平均排量约为25千克,如果6月份(30天)改开小客车为骑自行车,每次租车平均骑行4公里,估计6月份二氧化碳排量因此减少了3000千克.【考点】扇形统计图;用样本估计总体;统计表;中位数.【分析】(1)用周二租车次数除以其所占的百分比即可求得租车总次数;(2)用总次数减去周一至周六的次数即可求得周日的次数,从而不全统计表;(3)强所有租车次数排序后位于中间位置的数即为中位数;(4)用周五租车次数除以总次数后乘以360°即可;(5)算出总租车里程乘以平均排二氧化碳量即可得到答案.【解答】解:(1)∵周二租车84次,占12%,∴一周租车总次数为84÷12%=700次;故答案为:700;(2)周日的租车次数为700﹣56﹣84﹣126﹣105﹣140﹣84=161,统计表为:(3)排序为:56,84,84,105,126,140,161,位于中间位置的数为105,故中位数为105次,故答案为:105次.(4)周五租车次数所在扇形的圆心角为:×360°=72°,故答案为:72°.(5)租车次数的平均数为:700÷7=100次,所以6月份的总次数为100×30=3000次,∵每次租车平均骑行4公里,∴租车3000次总里程为3000×4=12000公里=120百公里,∵小客车每百公里二氧化碳的平均排量约为25千克,∴6月份二氧化碳排量因此减少了120×25=3000千克,故答案为:3000.22.我们知道用几何图形的面积可以解释多项式乘法的运算:(1)如图1,可知:(a+b)2=a2+2ab+b2;(2)如图2,可知:(a+b)2=(a﹣b)2+ 4ab;(3)计算:(a+b)(a+2b)=a2+3ab+2b2;(4)在下面虚线框内画图说明(3)中的等式.【考点】完全平方公式的几何背景.【分析】(1)根据图1中边长为a+b的大正方形的面积=边长为a的正方形的面积+两个长方形的面积+边长为b的正方形的面积,即可求解;(2)根据图2中边长为a+b的大正方形的面积=边长为a﹣b的正方形的面积+四个长方形的面积,即可求解;(3)根据多项式乘以多项式的法则计算即可求解;(4)画一个长为(a+2b),宽为(a+b)的矩形即可.【解答】解:(1)如图1,根据图形可得:(a+b)2=a2+2ab+b2.故答案为:a2+2ab+b2;(2)如图2,根据图形可得:(a+b)2=(a﹣b)2+4ab.故答案为:4ab;(3)(a+b)(a+2b)=a2+3ab+2b2.故答案为:a2+3ab+2b2;(4)如图所示:五、解答题(23题7分,24题7分,25题8分,共3道小题,共22分)23.现场学习:我们学习了由两个一元一次不等式组成的不等式组的解法,知道可以借助数轴准确找到不等式组的解集,即两个不等式的解集的公共部分.解决问题:解不等式组并利用数轴确定它的解集;拓展探究:由三个一元一次不等式组成的不等式组的解集是这三个不等式解集的公共部分.(1)直接写出的解集为﹣2<x<3;(2)已知关于x的不等式组无解,则a的取值范围是a≥2.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】读懂材料所给信息,求出不等式的解集,找到公共部分,画出数轴,结合图形解答.【解答】解:,由①,得x<5;由②,得x≥3,不等式组的解集为3≤x<5.在数轴上表示为(1)如图所示:不等式组的解集为﹣2<x<3.(2)如图所示:若无解,则a≥2.故答案为﹣2<x<3,a≥2.24.问题情境:如图1,AB∥CD,判断∠ABP,∠CDP,∠BPD之间的数量关系.小明的思路:如图2,过点P作PE∥AB,通过平行线性质,可得∠ABP+∠CDP+∠BPD=360°.问题迁移:AB∥CD,直线EF分别与AB,CD交于点E,F,点P在直线EF上(点P与点E,F不重合)运动.(1)当点P在线段EF上运动时,如图3,判断∠ABP,∠CDP,∠BPD之间的数量关系,并说明理由;(2)当点P不在线段EF上运动时,(1)中的结论是否成立,若成立,请你说明理由;若不成立,请你在备用图上画出图形,并直接写出∠ABP,∠CDP,∠BPD之间的数量关系.【考点】平行线的性质.【分析】(1)过P作PQ∥AB,推出AB∥PQ∥CD,根据平行线性质得出∠BPQ=∠B,∠D=∠DPQ,求出即可;(2)过P作PQ∥AB,推出AB∥PQ∥CD,根据平行线性质得出∠BPQ=∠B,∠D=∠DPQ,求出即可.【解答】解:∵过点P作PE∥AB,则PE∥CD,∴∠B+∠BPE=∠D+∠DPE=180°,∴∠ABP+∠CDP+∠BPD=360°,故答案为:360;(2)∠ABP+∠CDP=∠BPD;证明:如图②,过P作PQ∥AB,∵AB∥CD,∴AB∥PQ∥CD,∴∠B=∠1,∠D=∠2,∴∠BPD=∠1+∠2=∠B+∠D;(3)不成立,关系式是:∠B﹣∠D=∠BPD,理由:如图4,过P作PQ∥AB,∵AB∥CD,∴AB∥PQ∥CD,∴∠BPQ=∠B,∠D=∠DPQ,∴∠B﹣∠D=∠BPQ﹣∠DPQ=∠BPD,∠BPQ=∠B﹣∠D.25.昌平区兴寿镇草莓种植户张强、李亮,均在自家的大棚里种植了丰香和章姬两个品种的草莓,两个种植户的草莓种植面积与纯收入如表:(说明:同类草莓每亩平均纯收入相等)(1)求丰香和章姬两类草莓每亩平均纯收入各是多少万元?(2)王刚准备租20亩地用来种植丰香和章姬两类草莓,为了使纯收入超过10万元,且种植章姬的面积不超过种植丰香的面积的2倍(两类草莓的种植面积均为整数),求种植户王刚所有的种植方案.【考点】一元一次不等式组的应用;二元一次方程组的应用.【分析】(1)根据等量关系:张强种植户总收入为1.8元,李亮种植户总收入为2.6元,列出方程组求解即可;(2)根据纯收入超过10万元,且种植章姬的面积不超过种植丰香的面积的2倍列出不等式组求解即可.【解答】解:(1)设丰香和章姬两类草莓每亩平均纯收入分别是x元,y元.由题意得:,解得:,答:丰香和章姬两类草莓每亩平均纯收入各是4000元,6000元.(2)设用来种植丰香的面积a亩,则用来种植章姬的面积为(20﹣a)亩.由题意得:,解得:9≤a≤.∵a取整数为:9,10,11、12、13.∴租地方案为:丰香9亩,章姬11亩;丰香10亩,章姬10亩;丰香11亩,章姬9亩;丰香12亩,章姬8亩;丰香13亩,章姬7亩.。

【精品】北京市平谷区七年级下期末数学试卷及答案

【精品】北京市平谷区七年级下期末数学试卷及答案

七年级数学第二学期期末考试试卷一、选择题(共10道小题,每小题3分,共30分) 下列各题均有四个选项,其中只有一个..是符合题意的. 1.PM2.5也称为可入肺颗粒物,是指大气中直径小于或等于2.5微米的颗粒物.2.5微米等于 0.000 002 5米,把0.000 002 5用科学记数法表示为A .2.5×106B .0.25×10-5C. 25×10-7D .2.5×10-62. 已知a b <,则下列不等式一定成立的是A .b a 2121< B .22a b -<- C .33->-b a D .44a b +>+3.下列计算正确的是A .2a +3a =6a B. a 2+a 3=a 5 C. a 8÷a 2=a 6D. (a 3)4= a 74.⎩⎨⎧==3,1y x 是二元一次方程52=+ay x 的一个解,则a 的值为A. 1B. 31C. 3D. -15.若把不等式x +2≤0的解集在数轴上表示出来,则正确的是A .B .C .D .6.下列因式分解正确的是 A .4)2)(2(2-=-+x x x B .22)1(12x -=+-x x C .()222211a a a -+=-+D .()248224a a a a -=-/小时 7.小文统计了本班同学一周的体育锻练情况,并绘制了直方图①小文同学一共统计了60人;②这个班同学一周参加体育锻炼时间的众数是8; ③这个班同学一周参加体育锻炼时间的中位数是9; ④这个班同学一周参加体育锻炼时间的平均值为8. 根据图中信息,上述说法中正确的是 A. ①② B. ②③C. ③④D. ①④8.将直尺和直角三角板按如图所示方式摆放,已知∠1=30°,则∠2的大小是A . 30°B .45°C .60°D .65°9.某市居民用电的电价实行阶梯收费,收费标准如下表:七月份是用电高峰期,李叔计划七月份电费支出不超过200元,直接写出李叔家七月份最多可用电的度数是A .100B .396C .397D . 400 10用小棋子摆出如下图形,则第n 个图形中小棋子的个数为A. nB. 2n C. n 2 D.n 2+1二、填空题:(共6道小题,每小题3分,共18分) 11.因式分解:2218x -=__________________. 12.计算ab ab b a 44822÷-)(结果为_____________.13.一个角的补角等于这个角的3倍,则这个角的度数为_____________.14.已知x ,y 是有理数,且0106222=+-++y y x x , 则y x = .15.两个同样的直角三角板如图所示摆放,使点F ,B ,E ,C 在一条直线上,则有DF ∥AC ,理由是__________________.16.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x 人,物品价格为y 钱,可列方程组为__________________.三、解答题(共10道小题,共52分,其中第17—24每小题5分,25,26每小题6分)17.计算:22-020173-)21()14.3-()1-(++π18.化简求值:已知250x x +-=,求代数式2(1)(3)(2)(2)x x x x x ---++-的值.19.完成下面的证明:如图,已知DE ∥BC ,∠DEB =∠GFC ,试说明BE ∥FG . 解:∵DE ∥BC∴∠DEB =______( ). ∵∠DEB =∠GFC∴______=∠GFC ( ).∴BE ∥FG ( ).20.解方程组⎩⎨⎧=-=+133232y x y x21.解不等式组()315112 4.2x xxx-+⎧⎪⎨--⎪⎩<,≥并求出它的非负整数解.2和表好地反映出该单位职工健康情况,并简要说明其他两位同学抽样调查的不足之处.23.已知:如图,DE 平分∠BDF ., ∠A =21∠BDF ,DE ⊥BF , 求证:AC ⊥BF24.列方程组解应用题新年联欢会上,同学们组织了猜谜活动,并采取每答对一题得分,每答错一题扣分记分方法。

最新北京市平谷区七年级下期末数学试卷及答案

最新北京市平谷区七年级下期末数学试卷及答案

/小时七年级数学第二学期期末考试试卷一、选择题(共10道小题,每小题3分,共30分) 下列各题均有四个选项,其中只有一个..是符合题意的. 1.PM2.5也称为可入肺颗粒物,是指大气中直径小于或等于2.5微米的颗粒物.2.5微米等于 0.000 002 5米,把0.000 002 5用科学记数法表示为A .2.5×106B .0.25×10-5 C. 25×10-7 D .2.5×10-6 2. 已知a b <,则下列不等式一定成立的是A .b a 2121< B .22a b -<- C .33->-b a D .44a b +>+3.下列计算正确的是A .2a +3a =6a B. a 2+a 3=a 5 C. a 8÷a 2=a 6 D. (a 3)4= a 74.⎩⎨⎧==3,1y x 是二元一次方程52=+ay x 的一个解,则a 的值为A. 1B. 31C. 3D. -15.若把不等式x +2≤0的解集在数轴上表示出来,则正确的是A .B .C .D .6.下列因式分解正确的是A .4)2)(2(2-=-+x x x B .22)1(12x -=+-x x C .()222211a a a -+=-+D .()248224a a a a -=-7.小文统计了本班同学一周的体育锻练情况,并绘制了直方图①小文同学一共统计了60人; ②这个班同学一周参加体育锻炼时间的众数是8;③这个班同学一周参加体育锻炼时间的中位数是9;④这个班同学一周参加体育锻炼时间的平均值为8.根据图中信息,上述说法中正确的是A. ①②B. ②③C.③④D. ①④8.将直尺和直角三角板按如图所示方式摆放,已知∠1=30°,则∠2的大小是A.30°B.45°C.60°D.65°9.某市居民用电的电价实行阶梯收费,收费标准如下表:七月份是用电高峰期,李叔计划七月份电费支出不超过200元,直接写出李叔家七月份最多可用电的度数是A.100 B.396 C.397 D.40010用小棋子摆出如下图形,则第n个图形中小棋子的个数为A. nB. 2n C. n2D.n2+1二、填空题:(共6道小题,每小题3分,共18分) 11.因式分解:2218x -=__________________. 12.计算ab ab b a 44822÷-)(结果为_____________.13.一个角的补角等于这个角的3倍,则这个角的度数为_____________.14.已知x ,y 是有理数,且0106222=+-++y y x x , 则y x = .15.两个同样的直角三角板如图所示摆放,使点F ,B ,E ,C 在一条直线上,则有DF ∥AC ,理由是__________________.16.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x 人,物品价格为y 钱,可列方程组为__________________.三、解答题(共10道小题,共52分,其中第17—24每小题5分,25,26每小题6分)17.计算:22-020173-)21()14.3-()1-(++π18.化简求值:已知250x x +-=,求代数式2(1)(3)(2)(2)x x x x x ---++-的值.19.完成下面的证明:如图,已知DE ∥BC ,∠DEB =∠GFC ,试说明BE ∥FG . 解:∵DE ∥BC∴∠DEB =______( ). ∵∠DEB =∠GFC∴______=∠GFC ( ).∴BE ∥FG ( ).20.解方程组⎩⎨⎧=-=+133232y x y x21.解不等式组()315112 4.2x x x x -+⎧⎪⎨--⎪⎩<,≥并求出它的非负整数解.22.某单位有职工200人,其中青年职工(20-35岁),中年职工(35-50岁),老年职工(50岁及以上)所占比例如扇形统计图所示.为了解该单位职工的健康情况,小张、小王和小李各自对单位职工进行了抽样调查,23.已知:如图,DE 平分∠BDF ., ∠A =21∠BDF ,DE ⊥BF ,求证:AC ⊥BF24.列方程组解应用题新年联欢会上,同学们组织了猜谜活动,并采取每答对一题得分,每答错一题扣分记分方法。

2017-2018学年新课标最新北京市平谷区七年级下册期末数学试卷(有答案)-精品试卷

2017-2018学年新课标最新北京市平谷区七年级下册期末数学试卷(有答案)-精品试卷

2017-2018学年北京市七年级(下)期末数学试卷一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.杨絮纤维的直径约为0.0000105米,该0.0000105用科学记数法表示为( )A .0.105×10﹣5B .1.05×10﹣5C .1.5×10﹣5D .0.105×10﹣42.不等式x ﹣1<0 的解集在数轴上表示正确的是( )A.B. C. D.3.下列事件中,最适合使用普查方式收集数据的是( )A .了解某地区人民对修建高速路的意见B .了解同批次 LED 灯泡的使用寿命C .了解本班同学的课外阅读情况D .了解某地区八年级学生对“社会主义核心价值观”的知晓率4.下列运算正确的是( )A .632)(a a a -=∙-B .236a a a =÷C .222)2(a a =D .632)(a a =5.下列各组数中,不是二元一次方程x ﹣2y=1的解的是( )A. B. C. D.6.下列命题中,假命题是( )A .如果两条直线都与第三条直线平行,那么这两条直线也互相平行B .在同一平面内,过一点有且只有一条直线与已知直线垂直C .两条直线被第三条直线所截,同旁内角互补D .两直线平行,内错角相等7.某班组织了一次读书活动,统计了10名同学在一周内的读书时间,他们一周内的读书时间累计如表,则这10名同学一周内累计读书时间的中位数和众数分别是( )A.8,8 B.7,14 C.9,8 D.10,148.如图,直线a∥b,直线c分别与直线a,b相交于点A,B,且AC垂直直线c于点A,若∠1=40°,则∠2的度数为()A.140°B.90°C.50°D.40°9.若实数a,b,c在数轴上对应点的位置如图所示,则下列不等式成立的是()A.a﹣c>b﹣c B.a+c<b+c C.ac>bc D.<10.已知a+b=5,ab=1,则a2+b2的值为()A.6 B.23 C.24 D.27二、填空题(本题共18分,每小题3分)11.分解因式:a3﹣ab2= .12.命题“同位角相等,两直线平行”的逆命题是:.13.用不等式表示“2a与3b的差是正数”.14.《孙子算经》是中国重要的古代数学著作.书中叙述了算筹记数的纵横相间制度和筹算乘除法则,举例说明筹算分数算法和筹算开平方法.同时,书中还记载了有趣的“鸡兔同笼”问题:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这句话的意思是:“有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚.求笼中各有几只鸡和兔?”设有鸡x只,兔y只,可列方程组为.15.如图,要使输出值y大于100,则输入的最小正整数x是.16.如图,请你添加一个条件,使AB∥CD,这个条件是,你的依据是.三、解答题(本题共52分,第17-24题,每小题5分,第25,26题,每小题5分)17.计算:﹣22+(π﹣3.14)0+(﹣1)5+(﹣)﹣2.18.已知x2﹣4x﹣1=0,求代数式(2x﹣3)2﹣(x+y)(x﹣y)﹣y2的值.19.解不等式组,并写出它的整数解.20.解方程组:.21.已知:如图,AD⊥BC,EF⊥BC,∠1=∠2.求证:∠DGC=∠BAC.请你把书写过程补充完整.证明:∵AD⊥BC,EF⊥BC,∴∠EFB=∠ADB=90°.∴∥AD.∴∠1= ().∵∠1=∠2,∴∠2=∠BAD.∴∥().∴∠DGC=∠BAC.22.(5分)列方程组解应用题:为建设美丽的家乡,将对某条道路进行绿化改造,某施工队准备购买甲、乙两种树苗共400棵,已知甲种树苗每棵200元,乙种树苗每棵300元.若购买两种树苗的总金额为90 000元,求需购买甲、乙两种树苗各多少棵?23.(5分)中国科学院第十八次院士大会于2016年5月30日至6月3日在北京召开.作为中国自然科学最高学术机构、科学技术最高咨询机构、自然科学与高技术综合研究发展中心,中国科学院建院以来时刻牢记使命,与科学共进,与祖国同行,以国家富强、人民幸福为己任,人才辈出,硕果累累,为我国科技进步、经济社会发展和国家安全做出了不可替代的重要贡献.现在,中国科学院共有院士767人,其中外籍院士81人.院士们的年龄构成如下:80岁以上的人数占37.4%,70﹣79岁的人数占27.2%,60﹣69岁的人数占m,60岁以下的人数占24.7%.根据以上材料回答下列问题:(1)m= ;(2)请用扇形统计图,将中国科学院院士们的各年龄阶段的人数分布表示出来.24.(5分)如果一个正整数能表示为两个连续偶数的平方差,那么我们称这个正整数为“和谐数”,如4=22﹣02,12=42﹣22,20=62﹣42,因此,4,12,20这三个数都是“和谐数”.(1)当28=m2﹣n2时,m+n= ;(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构成的“和谐数”是4的倍数吗?为什么?25.如图,BD平分∠ABC交AC于点D,DE∥AB交BC于E,过E作EF∥BD交AC于F.(1)依据题意补全图形;(2)求证:EF平分∠CED.26.阅读理解:善于思考的小聪在解方程组时,发现方程组①和②之间存在一定关系,他的解法如下:解:将方程②变形为:2x﹣3y﹣2y=5③.把方程①代入方程③得:3﹣2y=5,解得y=﹣1.把y=﹣1代入方程①得x=0.∴原方程组的解为.小聪的这种解法叫“整体换元”法.请用“整体换元”法完成下列问题:(1)解方程组:;①把方程①代入方程②,则方程②变为;②原方程组的解为.(2)解方程组:.参考答案与试题解析一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.杨絮纤维的直径约为0.0000105米,该0.0000105用科学记数法表示为()A.0.105×10﹣5B.1.05×10﹣5C.1.5×10﹣5D.0.105×10﹣4【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000105用科学记数法表示为1.05×10﹣5.故选:B.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.2.不等式x﹣1<0 的解集在数轴上表示正确的是()A.B.C.D.【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】首先解不等式求得x的范围,然后在数轴上表示即可.【解答】解:解x﹣1<0得x<1.则在数轴上表示为:.故选A.【点评】本题考查了用数轴表示不等式的解集,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.3.下列事件中,最适合使用普查方式收集数据的是()A.了解某地区人民对修建高速路的意见B.了解同批次LED 灯泡的使用寿命C .了解本班同学的课外阅读情况D .了解某地区八年级学生对“社会主义核心价值观”的知晓率【考点】全面调查与抽样调查.【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行判断即可.【解答】解:了解某地区人民对修建高速路的意见适合使用抽样调查方式;了解同批次 LED 灯泡的使用寿命适合使用抽样调查方式;了解本班同学的课外阅读情况适合使用普查方式;了解某地区八年级学生对“社会主义核心价值观”的知晓率适合使用抽样调查方式; 故选:C .【点评】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.下列运算正确的是( )A .632)(a a a -=∙-B .236a a a =÷C .222)2(a a =D .632)(a a =【考点】同底数幂的除法;幂的乘方与积的乘方.【分析】根据幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】解:A 、532)(a a a -=∙-,此选项错误;B 、a 6÷a 3=a 3,此选项错误;C 、(2a )2=4a 2,此选项错误;D 、(a 2)3=a 6,此选项正确;故选D .【点评】本题考查了幂的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.5.下列各组数中,不是二元一次方程x ﹣2y=1的解的是( )A .B .C .D . 【考点】二元一次方程的解.【分析】分别把各组值分别代入方程x ﹣2y=1,然后根据二元一次方程解的定义进行判断.【解答】解:A、当x=0,y=﹣时,x﹣2y=0﹣2×(﹣)=1,所以A选项错误;B、当x=1,y=1时,x﹣2y=1﹣2×1=﹣1,所以B选正确;C、当x=1,y=0时,x﹣2y=1﹣2×0=1,所以C选项错误;D、当x=﹣1,y=﹣1时,x﹣2y=﹣1﹣2×(﹣1)=1,所以D选项错误.故选B.【点评】本题考查了二元一次方程的解:一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.6.下列命题中,假命题是()A.如果两条直线都与第三条直线平行,那么这两条直线也互相平行B.在同一平面内,过一点有且只有一条直线与已知直线垂直C.两条直线被第三条直线所截,同旁内角互补D.两直线平行,内错角相等【考点】命题与定理.【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:∵如果两条直线都与第三条直线平行,那么这两条直线也互相平行,∴选项A是真命题;∵在同一平面内,过一点有且只有一条直线与已知直线垂直,∴选项B是真命题;∵两条直线被第三条直线所截,同旁内角不一定互补,∴选项C是假命题;∵两直线平行,内错角相等,∴选项D是真命题.故选:C.【点评】主要主要考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.7.某班组织了一次读书活动,统计了10名同学在一周内的读书时间,他们一周内的读书时间累计如表,则这10名同学一周内累计读书时间的中位数和众数分别是( )【考点】众数;统计表;中位数.【分析】先将这10名同学的读书时间按照从小到大的顺序排列,然后根据中位数和众数的概念求解即可.【解答】解:将这10名同学的读书时间按照从小到大的顺序排列为:5,5,8,8,8,8,10,10,14,14,可得出中位数为:=8,众数为:8. 故选A .【点评】本题考查了众数和中位数的概念:(1)一组数据中出现次数最多的数据叫做众数.(2)将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.8.如图,直线a ∥b ,直线c 分别与直线a ,b 相交于点A ,B ,且AC 垂直直线c 于点A ,若∠1=40°,则∠2的度数为( )A .140°B .90°C .50°D .40°【考点】平行线的性质.【分析】先由平行线的性质求出∠3的度数,再由余角的定义即可得出结论.【解答】解:∵直线a ∥b ,∠1=40°,∴∠3=∠1=40°.∵AC ⊥AB ,∴∠BAC=90°,∴∠2=90°﹣∠1=90°﹣40°=50°.故选C.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.9.若实数a,b,c在数轴上对应点的位置如图所示,则下列不等式成立的是()A.a﹣c>b﹣c B.a+c<b+c C.ac>bc D.<【考点】不等式的性质;实数与数轴.【分析】根据数轴判断出a、b的大小以及c是正数,再根据不等式的性质对各选项分析判断即可得解.【解答】解:由图可知,a<b<0,c>0,A、应为a﹣c<b﹣c,故本选项错误;B、a+c<b+c正确,故本选项正确;C、应为ac<bc,故本选项错误;D、>0,<0,应为>,故本选项错误.故选B.【点评】本题考查了不等式的性质,实数与数轴熟记性质并准确识图,正确确定出a、b、c 的关系是解题的关键.10.已知a+b=5,ab=1,则a2+b2的值为()A.6 B.23 C.24 D.27【考点】完全平方公式.【分析】把已知条件a+b=5两边平方,根据完全平方公式展开,然后代入数据计算即可求解.【解答】解:∵a+b=5,∴a2+2ab+b2=25,∵ab=1,∴a2+b2=25﹣2×1=23.故选B【点评】本题考查了完全平方公式,熟记公式结构是解题的关键.二、填空题(本题共18分,每小题3分)11.分解因式:a3﹣ab2= a(a+b)(a﹣b).【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式a,进而利用平方差公式分解因式得出答案.【解答】解:a3﹣ab2=a(a2﹣b2)=a(a+b)(a﹣b).故答案为:a(a+b)(a﹣b).【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用平方差公式是解题关键.12.命题“同位角相等,两直线平行”的逆命题是:两直线平行,同位角相等.【考点】命题与定理.【分析】把一个命题的题设和结论互换就得到它的逆命题.【解答】解:命题:“同位角相等,两直线平行.”的题设是“同位角相等”,结论是“两直线平行”.所以它的逆命题是“两直线平行,同位角相等.”故答案为:“两直线平行,同位角相等”.【点评】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.13.用不等式表示“2a与3b的差是正数”2a﹣3b>0 .【考点】由实际问题抽象出一元一次不等式.【分析】先表示出2a与3b的差,再根据“差是正数”即“>0”可列不等式.【解答】解:根据题意,可列不等式:2a﹣3b>0,故答案为:2a﹣3b>0.【点评】此题主要考查了由实际问题抽象出一元一次不等式,关键是掌握要抓住题目中的关键词,如“大于(小于)、不超过(不低于)、是正数(负数)”“至少”、“最多”等等,正确选择不等号.因此建立不等式要善于从“关键词”中挖掘其内涵,不同的词里蕴含这不同的不等关系.14.《孙子算经》是中国重要的古代数学著作.书中叙述了算筹记数的纵横相间制度和筹算乘除法则,举例说明筹算分数算法和筹算开平方法.同时,书中还记载了有趣的“鸡兔同笼”问题:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这句话的意思是:“有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚.求笼中各有几只鸡和兔?”设有鸡x只,兔y只,可列方程组为.【考点】由实际问题抽象出二元一次方程组.【分析】根据题意可以列出相应的方程组,本体得解决.【解答】解;由题意可得,,故答案为:.【点评】本题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的二元一次方程组.15.如图,要使输出值y大于100,则输入的最小正整数x是21 .【考点】一元一次不等式的整数解.【分析】分x为奇数和偶数两种情况,分别求解,再比较作出判断即可.【解答】解:若x为偶数,根据题意,得:x×4+13>100,解之,得:x>,所以此时x的最小整数值为22;若x为奇数,根据题意,得:x×5>100,解之,得:x>20,所以此时x的最小整数值为21,综上,输入的最小正整数x是21.【点评】此类题目,属于读图解不等式,关键是依流程图列出准确的不等式.16.如图,请你添加一个条件,使AB∥CD,这个条件是∠CDA=∠DAB ,你的依据是内错角相等,两直线平行.【考点】平行线的判定.【分析】根据平行线的判定,选择“内错角相等,两直线平行.”来证明平行,根据∠CDA与∠DAB为内错角,令其相等,即可得出结论.【解答】解:若要证AB∥CD,只需找出∠CDA=∠DAB,所用的理论依据为:内错角相等,两直线平行.故答案为:∠CDA=∠DAB;内错角相等,两直线平行.【点评】本题考查了平行线的判定,解题的关键是熟记两直线平行的各判定定理.本题属于基础题,难度不大,解决该题型题目时,熟记平行线的判定定理是关键.三、解答题(本题共52分,第17-24题,每小题5分,第25,26题,每小题5分)17.计算:﹣22+(π﹣3.14)0+(﹣1)5+(﹣)﹣2.【考点】实数的运算;零指数幂;负整数指数幂.【分析】原式利用乘方的意义,零指数幂、负整数指数幂法则计算即可得到结果.【解答】解:原式=﹣4+1﹣1+4=0.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.已知x2﹣4x﹣1=0,求代数式(2x﹣3)2﹣(x+y)(x﹣y)﹣y2的值.【考点】整式的混合运算—化简求值.【分析】原式利用完全平方公式及平方差公式化简,去括号合并得到最简结果,把已知等式变形后代入计算即可求出值.【解答】解:∵x2﹣4x﹣1=0,即x2﹣4x=1,∴原式=4x2﹣12x+9﹣x2+y2﹣y2=3x2﹣12x+9=3()+9=12.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.19.解不等式组,并写出它的整数解.【考点】解一元一次不等式组;一元一次不等式组的整数解.【分析】分别解不等式,然后找出不等式的解集,求出整数解.【解答】解:,解不等式①得:x<3,解不等式②得:x≥1,则不等式的解集为:1≤x<3,则整数解为:1,2.【点评】本题考查了解一元一次不等式组,注意要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.20.解方程组:.【考点】解二元一次方程组.【分析】方程组利用加减消元法求出解即可.【解答】解:,②×2,得4x﹣2y=6③,①+③,得7x=14,解得:x=2,把x=2带入②,得4﹣y=3,解得:y=1,则原方程组得解是.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.21.已知:如图,AD⊥BC,EF⊥BC,∠1=∠2.求证:∠DGC=∠BAC.请你把书写过程补充完整.证明:∵AD⊥BC,EF⊥BC,∴∠EFB=∠ADB=90°.∴EF ∥AD.∴∠1= ∠BAD (两直线平行,同位角相等).∵∠1=∠2,∴∠2=∠BAD.∴DG ∥AB (内错角相等,两直线平行).∴∠DGC=∠BAC.【考点】平行线的判定与性质.【分析】求出AD∥EF,推出∠1=∠2=∠BAD,推出DG∥AB即可.【解答】证明:∵AD⊥BC,EF⊥BC,∴∠EFB=∠ADB=90°.∴EF∥AD,∴∠1=∠BAD(两直线平行,同位角相等),∵∠1=∠2,∴∠2=∠BAD.∴DG∥AB,(内错角相等,两直线平行)∴∠DGC=∠BAC.故答案为:EF,∠BAD,两直线平行,同位角相等,DG,AB,内错角相等,两直线平行.【点评】本题考查了平行线的性质和判定的应用,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然,题目比较好,难度适中.22.列方程组解应用题:为建设美丽的家乡,将对某条道路进行绿化改造,某施工队准备购买甲、乙两种树苗共400棵,已知甲种树苗每棵200元,乙种树苗每棵300元.若购买两种树苗的总金额为90 000元,求需购买甲、乙两种树苗各多少棵?【考点】二元一次方程组的应用.【分析】设购买甲种树苗x棵,则购买乙种树苗y棵,根据购买两种树苗的总金额为90000元建立方程组求出其解即可.【解答】解:(1)设购买甲种树苗x棵,则需购买乙种树苗y棵.由题意可得:,解得.答:甲种树苗需购买300棵,乙种树苗需购买100棵.【点评】本题考查了列二元一次方程组解实际问题的运用,解答时建立方程组是关键.23.中国科学院第十八次院士大会于2016年5月30日至6月3日在北京召开.作为中国自然科学最高学术机构、科学技术最高咨询机构、自然科学与高技术综合研究发展中心,中国科学院建院以来时刻牢记使命,与科学共进,与祖国同行,以国家富强、人民幸福为己任,人才辈出,硕果累累,为我国科技进步、经济社会发展和国家安全做出了不可替代的重要贡献.现在,中国科学院共有院士767人,其中外籍院士81人.院士们的年龄构成如下:80岁以上的人数占37.4%,70﹣79岁的人数占27.2%,60﹣69岁的人数占m,60岁以下的人数占24.7%.根据以上材料回答下列问题:(1)m= 10.7% ;(2)请用扇形统计图,将中国科学院院士们的各年龄阶段的人数分布表示出来.【考点】扇形统计图.【分析】(1)根据各年龄段人数所占百分比之和等于1即可得;(2)先计算出各年龄段人数所对应扇形圆心角度数,再在院中画出相应扇形,在各扇形内写上相应的名称及百分数即可.【解答】解:(1)m=1﹣37.4%﹣27.2%﹣24.7%=10.7%,故答案为:10.7%;(2)如图所示:80岁以上的人数对应圆心角度数为:360°×37.4%=134.64°,70﹣79岁的人数对应圆心角度数为:360°×27.2%=97.92°,60﹣69岁的人数对应圆心角度数为:360°×10.7%=38.52°,60岁以下的人数对应圆心角度数为:360°×24.7%=88.92°,【点评】本题主要考查扇形统计图,制作扇形图的步骤①根据有关数据先算出各部分在总体中所占的百分数,再算出各部分圆心角的度数,公式是各部分扇形圆心角的度数=部分占总体的百分比×360°.②按比例取适当半径画一个圆;按扇形圆心角的度数用量角器在圆内量出各个扇形的圆心角的度数;④在各扇形内写上相应的名称及百分数.24.如果一个正整数能表示为两个连续偶数的平方差,那么我们称这个正整数为“和谐数”,如4=22﹣02,12=42﹣22,20=62﹣42,因此,4,12,20这三个数都是“和谐数”.(1)当28=m2﹣n2时,m+n= 14 ;(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构成的“和谐数”是4的倍数吗?为什么?【考点】平方差公式;规律型:数字的变化类.【分析】(1)利用“和谐数”的定义得到m﹣n=2,已知等式右边利用平方差公式化简,即可确定出m+n的值;(2)表示出两个连续偶数的平方差,整理后即可作出判断.【解答】解:(1)∵28=m2﹣n2=(m+n)(m﹣n),且m﹣n=2,∴m+n=14;故答案为:14;(2)(2k+2)2﹣(2k)2=(2k+2+2k)(2k+2﹣2k)=2(4k+2)=4(2k+1),∵k为非负整数,∴2k+1一定为正整数,∴4(2k+1)一定能被4整除,则由这两个连续偶数构成的“和谐数”是4的倍数.【点评】此题考查了平方差公式,以及规律型:数字的变化类,弄清题中“和谐数”的定义是解本题的关键.25.如图,BD平分∠ABC交AC于点D,DE∥AB交BC于E,过E作EF∥BD交AC于F.(1)依据题意补全图形;(2)求证:EF平分∠CED.【考点】平行线的性质.【分析】(1)过E画EF∥DB即可;(2)根据角平分线定义可得∠ABD=∠EBD,再根据DE∥AB可得∠ABD=∠BDE,再由EF∥BD可得∠EBD=∠CEF,∠BDE=∠DEF,然后证明∠CEF=∠DEF,可得EF平分∠CED.【解答】(1)解:如图所示:(2)证明:∵BD平分∠ABC,∴∠ABD=∠EBD(角平分线定义),∵DE∥AB,∴∠ABD=∠BDE(两直线平行,内错角相等),∴∠EBD=∠BDE,∵EF∥BD,∴∠EBD=∠CEF(两直线平行,同位角相等),∠BDE=∠DEF(两直线平行,内错角相等),∴∠CEF=∠DEF,∴EF平分∠CED(角平分线定义).【点评】此题主要考查了平行线的判定,关键是掌握两直线平行,同位角、内错角相等.26.阅读理解:善于思考的小聪在解方程组时,发现方程组①和②之间存在一定关系,他的解法如下:解:将方程②变形为:2x﹣3y﹣2y=5③.把方程①代入方程③得:3﹣2y=5,解得y=﹣1.把y=﹣1代入方程①得x=0.∴原方程组的解为.小聪的这种解法叫“整体换元”法.请用“整体换元”法完成下列问题:(1)解方程组:;①把方程①代入方程②,则方程②变为x+3=2 ;②原方程组的解为.(2)解方程组:.【考点】解二元一次方程组.【分析】(1)应用“整体换元”法,求出方程组的解是多少即可.(2)应用“整体换元”法,求出方程组:的解是多少即可.【解答】解:(1)解方程组:;①把方程①代入方程②,则方程②变为:x+3=2;②原方程组的解为:.(2)将方程(2)变形为:3(3x﹣2y)+2y=19(3).把方程(1)代入方程(3),可得:3×5+2y=19,解得y=2,把y=2代入方程(1),可得x=3。

2017-2018学年北京市平谷区七年级第二学期期末数学试卷(含答案)

2017-2018学年北京市平谷区七年级第二学期期末数学试卷(含答案)

/小时 平谷区2017—2017学年度第二学期期末七年级教学质量检测数学试卷一、选择题(共10道小题,每小题3分,共30分) 下列各题均有四个选项,其中只有一个..是符合题意的. 1.PM2.5也称为可入肺颗粒物,是指大气中直径小于或等于2.5微米的颗粒物.2.5微米等于 0.000 002 5米,把0.000 002 5用科学记数法表示为 A .2.5×106 B .0.25×10-5 C. 25×10-7 D .2.5×10-6 2. 已知a b <,则下列不等式一定成立的是 A .b a 2121<B .22a b -<-C .33->-b aD .44a b +>+3.下列计算正确的是A .2a +3a =6a B. a 2+a 3=a 5 C. a 8÷a 2=a 6 D. (a 3)4= a 74.⎩⎨⎧==3,1y x 是二元一次方程52=+ay x 的一个解,则a 的值为A. 1B.31C. 3D. -1 5.若把不等式x +2≤0的解集在数轴上表示出来,则正确的是 A .B .C .D .6.下列因式分解正确的是 A .4)2)(2(2-=-+x x x B .22)1(12x -=+-x xC .()222211a a a -+=-+D .()248224a a a a -=-7.小文统计了本班同学一周的体育锻练情况,并绘制了直方图①小文同学一共统计了60人;②这个班同学一周参加体育锻炼时间的众数是8; ③这个班同学一周参加体育锻炼时间的中位数是9; ④这个班同学一周参加体育锻炼时间的平均值为8.根据图中信息,上述说法中正确的是 A. ①② B. ②③C. ③④D. ①④8.将直尺和直角三角板按如图所示方式摆放,已知∠1=30°,则∠2的大小是A . 30°B .45°C .60°D .65°9.某市居民用电的电价实行阶梯收费,收费标准如下表:七月份是用电高峰期,李叔计划七月份电费支出不超过200元,直接写出李叔家七月份最多可用电的度数是A .100B .396C .397D . 400 10用小棋子摆出如下图形,则第n 个图形中小棋子的个数为A. nB. 2n C. n 2 D.n 2+1二、填空题:(共6道小题,每小题3分,共18分) 11.因式分解:2218x -=__________________. 12.计算ab ab b a 44822÷-)(结果为_____________.13.一个角的补角等于这个角的3倍,则这个角的度数为_____________.14.已知x ,y 是有理数,且0106222=+-++y y x x , 则y x = .15.两个同样的直角三角板如图所示摆放,使点F ,B ,E ,C 在一条直线上,则有DF ∥AC ,理由是__________________.16.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x 人,物品价格为y 钱,可列方程组为__________________.三、解答题(共10道小题,共52分,其中第17—24每小题5分,25,26每小题6分)17.计算:22-020173-)21()14.3-()1-(++π18.化简求值:已知250x x +-=,求代数式2(1)(3)(2)(2)x x x x x ---++-的值.19.完成下面的证明:如图,已知DE ∥BC ,∠DEB =∠GFC ,试说明BE ∥FG .解:∵DE ∥BC∴∠DEB =______( ). ∵∠DEB =∠GFC∴______=∠GFC ( ).∴BE ∥FG ( ).20.解方程组⎩⎨⎧=-=+133232y x y x21.解不等式组()315112 4.2x x x x -+⎧⎪⎨--⎪⎩<,≥并求出它的非负整数解.42 48 52 69686023.已知:如图,DE 平分∠BDF ., ∠A =21∠BDF ,DE ⊥BF ,求证:AC ⊥BF24.列方程组解应用题新年联欢会上,同学们组织了猜谜活动,并采取每答对一题得分,每答错一题扣分记分方法。

北京市XX区2017-2018学年度第二学期七年级数学下册期末试卷及答案

北京市XX区2017-2018学年度第二学期七年级数学下册期末试卷及答案

北京市XX区2017-2018学年度第二学期七年级数学下册期末试卷及答案2017-2018学年度第二学期期末考试七年级数学试卷一、选择题(共10个小题,每小题2分,共20分)1.以下问题,不适合用全面调查的是:A.旅客上飞机前的安检B.学校招聘教师,对应聘人员的面试C.了解全校学生的课外读书时间D.了解全国中学生的用眼卫生情况2.下列运算正确的是:A.a×a=aB.(ab)=abC.(a)=aD.a÷a=13.XXX随机抽样调查本校20名女同学所穿运动鞋尺码,并统计如表:尺码/cm | 人数 |21.5.|。

2.|22.0.|。

4.|22.5.|。

2.|23.0.|。

8.|23.5.|。

3.|定应用的统计量是:A.平均数B.加权平均数C.众数D.中位数4.分解因式ab-b的结果正确的是:A.b(a+b)(a-b)B.b(a-b)C.2b(a^2-b^2)D.b(a+b)^25.若x>y,则下列式子中错误的是:A.x-3>y-3B.xy>x^2C.x+3>y+3D.-3x<-3y6.如图,直线a∥b,点B在直线b上,且AB⊥BC,∠1=55,则∠2的度数为:A.35B.45C.55D.1257.《九章算术》是我国东汉初年编订的一部数学经典著作。

在它的“方程”一章里,一次方程组是由算筹布置而成的。

《九章算术》中的算筹图是竖排的,现在我们把它改为横排,如图1、图2.图中各行从左到右列出的算筹数分别表示未知数x,y的系数与相应的常数项。

把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是:27 |2 |。

|3 |。

|1 |。

|2 | 14 |图1类似地,图2所示的算筹图我们可以表述为:A.{2x+y=16,4x+3y=22}B.{2x+y=16,4x+3y=27}C.{2x+y=11,4x+3y=27}D.{2x+y=11,4x+3y=22}8.将一张面值100元的人民币,兑换成10元或20元的零钱,兑换方案有:A.6种B.7种C.8种D.9种9.如图,长为a,宽为b的长方形的周长为14,面积为10,则a^2+b的值为:A.140B.7C.35D.29图案如下,将一个边长为a的正方形纸片剪去两个小长方形,得到一个如下图所示的形状。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

102030405060708017016015014013012011010010203040506070801701601501401301201101000090180180DC E BOA北京市平谷区2017-2018学年度第二学期期末质量监控初一数学试卷一.选择题(本题共16分,每小题2分)下列各题均有四个选项,其中只有一个是符合题意的.1.人体中红细胞的直径约为0.000007m ,将0.000007m 用科学记数法表示数的结果是 A .50.7710m -⨯ B .60.7710m -⨯C.57.710m -⨯D .67.710m -⨯2.如图,∠AOB 的角平分线是A . 射线OB B .射线OEC .射线OD D .射线OC3.若m >n ,则下列不等式中一定成立的是A .m +2<n +3B .2m <3nC .-m <-nD .ma 2>na 24. 如图,将三角板的直角顶点放在直尺的一边 上.若∠1=65°,则∠2 的度数为 A .15° B .35°C .25°D .40° 5.要使式子22x y + 成为一个完全平方式,则需加上A .xyB .xy ±C .2xyD .2xy ±6.男子跳高的15名运动员的成绩如下表所示: 成绩/m 1.50 1.60 1.65 1.70 1.75 1.80 人数 2 3 2 3 4 1 根据表中信息可以判断这些运动员成绩的中位数、众数分别为 A .1.70,1.75 B .1.70,1.80 C . 1.65,1.75, D . 1.65,1.807. 计算 (2x )3÷x 的结果正确的是 A . 8x 2 B . 6x 2 C . 8x 3 D . 6x 38.如图,是一个长为2a 宽为2b (a >b )的矩形,用剪刀沿矩形的两条对角轴剪开,把它分成四个全等的小矩形,然后按图(2)拼成一个新的正方形,则中间空白部分的面积 A .22a b - B .2()a b + C .2()a b - D .ab二、填空题(本题共16分,每小题2分) 9.分解因式:a 3-a = .10. 用不等式表示:a 与 3 的差不小于2: 11.把命题“两直线平行,内错角相等”改写成“如果 那么 ”的形式为 .12.计算:()()32x x -+= .13.如图:请你添加一个条件 可以得到DE AB14. 已知:关于 , 的方程组 36x a y a +=⎧⎨-=⎩,则 x+y= .15.如图,是我国南宋数学家杨辉所著的《详解九章算术》一书中,用下图的三角形解释二项式(a +b )n (n 为整数)的展开时的系数规律,(按a 的次数由大到小的顺序),此规律称之为“杨辉三角”.请依据此规律,写出(a +b )2018展开式中含a 2017项的系数是 .0()1a b += 1 1()a b a b +=+ 1 1 222()2a b a ab b +=++1 2 1 33223()33a b a a b ab b +=+++1 3 3 1 3442233()464a b a a b a b ab b +=++++1 4 6 4 116. 阅读下面材料:在数学课上,老师提出如下问题:小天利用直尺和三角板进行如下操作:老师说:“小天的作法正确.”请回答:小天的作图依据是 .作图:过直线外一点作已知直线的平行线. 已知:直线l 及其外一点A .求作:l 的平行线,使它经过点A .如图所示:① 用三角板的一条边与已知直线l 重合; ② 用直尺紧靠三角板一条边;③ 沿着直尺平移三角板,使三角板的一条边通过已知点A; ④ 直线重合的斜边通过已知点A ;④沿着这条斜边画一条直线,所画直线与已知直线平行. Al三、解答题(本题共68分,第17~18题每小题5分,第19题10分,第20题6分,第21题7分,第22题5分,第23题6分,第24题5分,第25、26、27题每小题7分)17. 解不等式:211x -+≥- ,并在数轴上表示出它的解集.18.20170211(1)(3)2()2π--+--+-19. 解不等式组:51788(),521x x x x -⎧⎪⎨--≤<-⎪⎩并写出它的所有的非负整数解.20.用适当的方法解二元一次方程组(1)4,316;x y x y =+⎧⎨+=⎩ (2)26,2(1) 4.x y x y +=⎧⎨+-=⎩21.先化简,再求值:2310x x --=,求代数式 22(3)()()x x y x y y -++-+ 的值.22.某校有500名学生.为了解全校每名学生的上学方式,该校数学兴趣小组在全校随机抽取了100名学生进行抽样调查.整理样本数据,得到扇形统计图如右图:(1)本次调查的个体是 ,样本容量是 ; (2)扇形统计图中,乘私家车部分对应的圆心角是 度; (3)请估计该校 500名学生中,选择骑车和步行上学的一共有多少人?23.小明和小丽两人相距 8千米,小明骑自行车,小丽步行,两人同时出发相向而行,1小时相遇;若两人同时出发同向而行,小明2小时可以追上小丽,求小明、小丽每小时各走多少千米?24.如图,AB ∥CD ,点O 是直线AB 上一点,OC 平分∠AOF .(1)求证:∠DCO =∠COF ;(2)若∠DCO =40°,求∠DEF 的度数.25.为了更好地保护环境,某区污水处理厂决定购买A ,B 两种型号污水处理设备,其中每台的价格、月处理污水量如下表.已知购买一台A 型设备比购买一台B 型设备多2万元,购买2 台A 型设备比购买3台B 型设备少6万元.A 型B 型价格(万元/台) a b 处理污水量(吨/月) 220180(1)求a ,b 的值;(2)某区污水处理厂决定购买污水处理设备的资金既不少于108万元也不超过110万元,问有几种购买方案?每月最多能处理污水多少吨?DEB AHCF9. 小红同学在做作业时,遇到这样一道几何题:已知:AB∥CD∥EF,∠A=110°,∠ACE=100°,过点E作EH⊥EF,垂足为E,交CD于H点.(1)依据题意,补全图形;(2)求∠CEH的度数.小明想了许久对于求∠CEH的度数没有思路,就去请教好朋友小丽,小丽给了他如图2所示的提示:请问小丽的提示中理由①是;提示中②是:度;提示中③是:度;提示中④是:,理由⑤是.提示中⑥是度;27.阅读下列材料:小明在一本课外读物上看到一道有意思的数学题:解不等式1<x,根据绝对值的几何意义,到原点距离小于1的点在数轴上集中在-1和+1之间,如图:所以,该不等式的解集为-1<x<1.因此,不等式1>x的解集为x<-1或x>1.根据以上方法小明继续探究了不等式52<<x的解集,即到原点的距离大于2小于5的点的集合就集中在这样的区域内,如图:所以,不等式的解集为-5<x<-2或2<x<5.仿照小明的做法解决下面问题:(1)不等式5x<的解集为____________.(2)不等式13x<<的解集是____________.(3)求不等式22x-<的解集.北京市平谷区2017-2018学年度第二学期期末质量监控数学试卷答案及评分标准 2018.4一、 选择题(本题共16分,每小题2分)题号 1 2 3 4 5 6 7 8 答案DBCCDAAC二、 填空题(本题共16分,每小题2分)9.(1)(1)a a a +-;10.32a -≥;11.如果两直线平行,那么内错角相等;12.26x x --;13. 答案不唯一,EDC C ∠=∠或E EBC =∠∠或180E EBA +=∠∠等.14.9;15.2018;16.同位角相等,两直线平行.三、解答题(本题共68分,第17~19题每小题5分,第20题10分,第21题6分,第22题5分,第23题5分,第24题6分,第25、26、 27题每小题7分)17.解:(1)移项,得211x -≥--. ……………………………………………… 1分合并,得22x -≥-. ……………………………………………… 2分 系数化1,得1x ≤ . ……………………………………………… 3分-3-2-14321…………………………………… 4分所以此不等式的解集为1x ≤. ……………………………………… 5分18.解: 12017021(1)(3)22π-⎛⎫-+--+- ⎪⎝⎭1142=-+-+-() ……………………………………………………………… 4分=-6 . ………………………………………………………………… 5分19.解:原不等式组为 51785.2x x x x -⎧⎪⎨--≤⎪⎩<8(-1)解不等式①,得x >-3. ………………………………………2分 解不等式②,得2x ≤. …………………………………… 3分 ∴ 该不等式组的解集为32x -≤<. ……………………………………… 4分∴ 该不等式组的非负整数解为012,,.……………………………………… 5分20.(1)解:4, 316 x y x y =+⎧⎨+=⎩①②把①代入②得:4316y y ++=.…………………………………………………………… 1分解得:3y = ………………………………………………………………………2分把3y =代入①中,解得:7x =.…………………………………………………………………… 4分所以这个方程组的解是7,3.x y =⎧⎨=⎩…………………………………………5分(2) 解:26, 2(1) 4. x y x y +=⎧⎨+-=⎩①②②整理得:22x y -=③ ………………………………………………………………1分①⨯2得:2412x y +=④ ……………………………………………………………2分④-③得:5102y y == ………………………………………………………………… 3分把2y =代入①中,解得:2x = …………………………………………………………………………4分所以这个方程组的解是2,2.x y =⎧⎨=⎩ ………………………………………………5分21. 解:22(3)()()x x y x y y -+-++222269x x x y y =-++-+……………………………………………………2分226 9x x =-+ …………………………………………………………3分∵ 2310x x --=.∴ 231x x -=. …………………………………………………………4分原式:22(3)9x x =-+ …………………………………………………………5分 29=+11= …………………………………………………………6分22.(1)本次调查的个体是:每名学生的上学方式 …………………………………1分样本容量 100 …………………………………………………………2分(2) 72° …………………………………………………………………… 3分(3) 1529500220(100+⨯=人) …………………………………………………4分 答:估计该校 500名学生中,选择骑车和步行上学的一共有 220人. ………… 5分23. 解:(1)设小明每小时走x 千米,小丽每小时走y 千米.……………………… 1分根据题意得:8 228x y x y +=⎧⎨-=⎩……………………………………………… 3分 解得:6 2x y =⎧⎨=⎩………………………………………………5分 答 :小明每小时走6千米,小丽每小时走2千米.说明:如果列一元一次方程,则对应给分.24.(1)证明:∵AB ∥CD ,∴∠DCO =∠COA . ……………………………………………………………1分 ∵OC 平分∠AOF ,∴∠DCO =∠COA . ……………………………………………………………2分 ∴∠DCO =∠COF . ………………………………………………………………3分(2)∵∠DCO =40°,∴∠DCO =∠COA =∠COF =40°. …………………………………………………4分 ∴∠FOB =100°, ………………………………………………………………5分 ∵AB ∥CD ,∴∠DEF =∠BOF =100°. …………………………………………………………6分25.(1) 根据题意,得 2 326a b b a -=⎧⎨-=⎩ ………………………………………………2分 解得: 12 10a b =⎧⎨=⎩答: 的值是 , 的值是 . ………………………………………… 4分(2) 设购买A 型设备 x 台,则B 型设备(10x -)台,根据题意得:1210(10)101210(10)110x x x x --≥⎧⎨--≤⎩解得:45x ≤≤,∵x 为正整数,∴有两种购买方案,方案 :购买A 型设备 台,则B 型设备 台;…………………………… 5分 方案 :购买A 型设备 台,则B 型设备 台;…………………………… 6分 当 时,,则最多能处理污水 吨. …………………………………………………… 7分26.(1)依据题意补全图形H E C A BDF ………………………1分(2)①:两直线平行,同旁内角互补 ………………………………………2分 ②:70° ………………………………………………………………3分 ③:30° ………………………………………………………………4分 ④:CEF ∠ ……………………………………………………………5分 ⑤:两直线平行,内错角相等 ………………………………………6分 ⑥:60° ………………………………………………………………7分27.(1)-5<x <5 ………………………………………………………………2分(2)-3<x <-1或1<x <3 ………………………………………………4分(3)x -2>-2x >0 ………………………………………………………………5分x -2<2x <4 ………………………………………………………………6分∴不等式224x x -<的解集是0<< ………………………………7分。

相关文档
最新文档