刘次华《随机过程及其应用(第三版)》课件6b剖析
随机过程课件打印版
当An An 1 , n 1
9
A1 A2
连续性定理
A1 A2
则称P为(Ω,F)上的概率,(Ω,F,P)称 为概率空间,P(A)为事件A的概率。
An Ai 新事件:lim n i 1
lim An Ai
n i 1
3 对于R n中的任意区域, a1 , b1; a2 , b2 ;;a n , bn ,其中 ai bi , i 1,, n
F b1 , b2 ,, bn F b1 ,, bi 1 , ai , bi 1 ,bn F b1 ,, bi 1 , ai , bi 1 ,, b j 1 , a j , b j 1 ,, bn ,
d P({e : g( X ) y, e X }) dy
如果上式右端概率的导数对于y处处存在,那么这 个导数就给出了随机变量Y的概率密度
fY ( y)
19
20
n维联合分布函数F x1 , x 2 , x n 具有下列性质 :
三、边缘分布
若二维联合分布函数中有一个变元趋于无 穷,则其极限函数便是一维分布函数,对于这 种特殊性质,我们称其为边缘分布。 对于任意两个随机变量X,Y,其联合分布函数为: F ( x, y ) 则: FX ( x ) P ( X x ) P ( X x , Y ) F ( x , )
P( X x,Y y) P((X x) (Y y)) P( X x)P(Y y)kFra biblioteknpkq
nk
, k 0 ,1 , 2 n
p
P(X k)
k
k!
《随机过程及其应用》PPT课件
• 我们称这个极限limP(x(n)=0)= 为{x(n),n 0} 的绝灭概率,显然 0 1 • 定理2.5设{x(n),n 0}是一个初始状态为1的以 f(s)=p(0)+p(1)s+…为本原母函数的分枝过程。 为其绝灭概率,则 • (1) =f( ) =1 • (2)当 1,p(1)<1时有 • (3)当1< 时, 是s=f(s)在[0,1)内的唯一解
• 所以对于一个取非负整数值的随机变量x,只要 知道了它的母函数其分布也就完全知道了。 • 二、分枝过程 • • • • 设有一个反应堆,最初有n(0)个质点,由于质 点之间的相互碰撞或其它射线的轰击,每隔一 单位时间,一个质点可分离成k个质点 (k=0,1,2…)并设 • (1)这些质点的分离情况是相互独立的,具 有共同分布 • (2)质点的分离情况与其年龄无关
k
(5) 2 (1) n(0) 2 , 2 f " (1) f ' (1) ( f ' (1))2 (6) 当 1时, 2 (n) n(0) 2 n ( n 1) /( 2 ) 2 2 当 = 1时, (n) n0 n 从定理2.4可知,只要f(s)已知,则{X(n),n 0} 的一切信息都知道了。 对于某一时刻n,若x(n)=0,则该过程就灭绝了。 下面来讨论过程灭绝的概率 • 因为{X(n)=0} {x(n+1) =0} • 所以0 P(x(n)=0) P(x(n+1)=0)1,即 {P(x(n)=0),n=1,2,…}是一个单调有界序列,故 其极限一定存在。 • • • • • •
• Z(n+1,i)表示时刻n存在的第i个质点在下一时刻 (n+1)时刻分离出的质点数。 • X(n)表示n时刻反应堆中的质点数,则有 • X(0)=n(0) • X(1)=Z(1,1)+Z(1,2)+…+Z(1,n(0)) • X(2)=Z(2,1)+Z(2,2)+…Z(2,x(1)) • ……………. • X(n+1)=Z(n+1,1)+Z(n+1,2)+…+Z(n+1),x(n)) • 上面的假设(1)、(2)说明{z(n+1,i),i 1,n 0}是一族相互独立具有共同分布的取非负整数 的随机变量。令其共同分布为p(k)=P(z(n,i)=k)
《随机过程及其应用(第三版)》课件SJGC6-2
1 p1 j = P{ X (n + 1) = j | X ( n) = 1} = , j = 1, 2, L , 6 6 而又当X(n)=2时 由题意应知条件概率
p 21 = P{ X ( n + 1) = 1 | X ( n ) = 2} = 0 p2 j = 1 , j = 3, 4, 5, 6 6
1) pij ( k ) ≥ 0 2) ∑ p ij ( k ) = 1
j∈E
∀ i, j ∈ E ∀i ∈ E
第1)条性质是由概率定义所决定的; 第2)条性质利用全概率公式可知其正确性 实际上 ∀i ∈ E , ∑ pij (k ) = ∑ P{ X (k + 1) = j | X (k ) = i}
2
一 马氏链的定义
1 可列状态与有限状态马氏链
定义2.1 设{X(n),n 0}为一随机序列 其状态集为 E= {i0,i1,i2,…} 若对于任意的n 及i0,i1,i2,…in+1 对应的随机变量X(0),X(1),X(2),...,X(n+1)满足
P{X (n +1) = j | X (n) = in , X (n −1) = in−1,L, X (1) = i1, X (0) = i0} = P{X (n +1) = j | X (n) = in )
= P{X (n +1) = in+1 | X (0) = i0 , X (1) = i1,L, X (n) = in }P{X (0) = i0 ,
X (1) = i1,L, X (n) = in } = P{X (n +1) = in+1 | X (n) = in }P{X (0) = i0 , X (1) = i1,L, X (n) = in }
随机过程课件第一章概率复习
f ( x)
1 2
e
指数分布
e x , f ( x) 0,
x0 x0
随机变量函数的分布
在给定某任意的随机变量X,以及它的概率分布函数FX(x),希望进一步求 出给定的随机变量的某些可测函数(如Y=g(X))的概率分布函数。
X
非线性放大器
X(e)就是一个函数,它把样本点映射到实数轴上, 随机变量就是从原样本空间Ω到新样本空间的一
种映射,我们通常把这样一种对应关系称之为在
概率空间上的一个随机变量。
离散型随机变量: 只取有限个数值或可列无穷多个值。 连续型随机变量: 从原样本空间到新样本空间的映射是某一 个范围,是一段(或几段)实线(也可能 是整个坐标轴)。
fA
nA n
f A P( A)
当试验次数n增大时,其中大量的频率聚集在一个常数周围; 这个常数是客观存在的,反映了事件A出现可能性的大小, 我们认为这个常数就是事件的概率。
公理化定义概率
1. 2. 3.
对于一个事件A∈样本空间Ω,假定满足以下3个 条件的数P(A): 0≤P(A) ≤1; P(Ω)=1; 若A1,A2,……..,Ak两两互斥,则
P ( Ai | B ) P ( Ai ) P ( B | Ai )
P( A ) P( B | A )
i 1 i i
N
独立事件
P( A B) P( A) P( B)
随机变量
定义:
设( Ω ,F,P)是概率空间,X=X(e)是定义在Ω 上的实函数,如果对任意实数x,{e:X(e) ≤x} ∈F, 则称X(e)是F上的随机变量。 由于数学分析不能直接利用来研究集合函数, 这样影响对随机现象的研究。解决这个问题的方 法,主要是设法在集合函数与数学分析中所研究 的点函数间建立某种联系,从而能用数学分析法 研究随机现象。
刘次华 随机过程 第二章
x12 +s
2
−
2ρ
(1 +
x1 x2 s2 )(1+
t
2)
+
x
2 2
1+ t
2
⎥⎤⎪⎬⎫ ⎥⎦⎪⎭
s, t > 0
2.2 随机过程的分布律和数字特征
例:设X(t)=g1(t+ε), Y(t)=g2(t+ε), g1(t), g2(t)是周期为L的函数,ε~U(0, L)
求互相关函数RXY(t, t+τ)。
BX
(s,
t)
=
RX
(s,
t)
=
σ
2 X
(min(s,
t ))
2.4 几种重要的随机过程
证明:设T=[a,b] , 规定X(a)=0, 对于a<s<t<b , BX (s, t) = RX (s, t) − mX (s)mX (t) = RX (s, t) = E[ X (s) X (t)] = E[( X (s) − X (a))( X (t) − X (s) + X (s))]
=1+ 0+ 0+ st =1+ st
2.2 随机过程的分布律和数字特征
ρ X (s, t) =
BX (s, t) = DX (s) DX (t)
1+ st (1+ s2 )(1+ t 2 )
随机过程{X(t), t >0}的一维概率密度
ft (x) =
1
2πσ
exp{−
(
x−µ 2σ 2
)2
}
=
解: RXY (t, t + τ ) = E[ X (t)Y (t + τ )]
《随机过程及其应用(第三版)》课件SJGC5-1
3. 严平稳过程的数字特征
(1)均值函数 m X ( t ) = E [ X ( t )]
=∫
2
+∞
−∞
xf ( x, t )dx = ∫
+∞
−∞
xf ( x)dx = 常数= mX
均方值函数
2 (t) = E[X 2 (t)]= ψX
∫
+∞
−∞
x f (x, t)dx =
+∞ −∞ 2
2
∫
+∞
一 二 三
平稳过程 宽平稳过程 联合平稳过程
1
一
平稳过程
为一随机过程 若对任
1. 严平稳过程定义
定义1.1 设{X (t) ,t 意整数n 任意的
t1 , t 2 , L , t n ∈ T ,
即
t1 + ε, t2 + ε ,L, tn + ε ∈T
其n维分布函数相等
F , xn,t1,t2,L ,tn) = F(x1, x2,L , xn,t1 +ε,t2 +ε,L ,tn +ε) n(x 1, x2,L
[
]
[
] [
]
14
2 ) R X ( −τ ) = R X (τ )
பைடு நூலகம்
因为R X (τ ) = E X (t ) X (t + τ ) = E X (t )X (t + τ )
= E X (t + τ ) X (t ) = E ( X ( s ) X ( s − τ )] = R X ( −τ )
[
CX (t1 , t2 ) = Cov( X (t), X (t2 )) = RX (t1 , t2 ) − mX (t1 )mX (t 2 ) = RX (t2 − t1 ) − mX mX = CX (t2 − t1 )
随机过程 课件
fY
y
f
X
0
h
y
h
'
y , y
其它情况
,
h(y)是g(x)的反函数, min g x , max g x 。
1.2 二维随机变量及其概率分布
1.2.1 分布函数
定义1:二维分布函数
设X,Y为定义在同一概率空间 S,, P 上的两个随机变量,
则(X,Y)称为二维随机变量,对任意 x, y R ,令
,则n维向量 Y Y1,,Yn 的概率密度函数为
fY
y
fX hy
h
y
h1
h
y
y1
hn
y1
hn yn
hn yn
1.4 随机变量的数字特征
1.4.1数字期望(expected value, probabilistic average, mean) 1、一维随机变量的数学期望
E
X
x xpX
xf
则
P n1
An
n1
P
An
则称P(A)为事件A出现的概率,称(S, Ω, P)为一个概率空间。
定义2:随机变量
设已知一个概率空间 S,, P ,对于 s S , X(s)是一个取实数值的单值函数,若对于任意实数x,s : X s x 是一个随机事件,也就是 s : X s x ,则称X(s)为随机变量。
1.3.2 边沿分布
F xk F ,, xk ,,
1.3.3 独立性
定义2:如果 P X1 x1,, X n xn P X1 x1 P Xn xn
,则 X1,, X n 是相互独立得。
离散型:
P X1 x1,, X n xn P X1 x1 P X n xn
第11讲 随机过程及其应用(第三版) 刘次华第4章马尔科夫链(3)
其中 D = {1} 是非常返集
C1 = {2 ,3,4},C2 = {5,6,7}
2 3 4
1 5 7 6
是常返闭集,非周期
lim (1)求每一个不可约闭集的极限分布(2)求 n →∞ p12
( n)
解(1):这是一个可约马氏链。根据状态空间的分解 定理,状态空间分解为: I = {1} + {2,3, 4} + {5, 6, 7}
5
6
1
二、平稳分布
定义4.11
例1 :设马尔科夫链的转移概率矩阵为
⎡ 0.7 0.1 0.2⎤ P = ⎢ 0.1 0.8 0.1⎥ ⎢ ⎥ ⎢ ⎦ ⎣0.05 0.05 0.9⎥
设齐次马氏链转移概率矩阵为P,
且
若π = (π 1 , π 2 , )满足方程:
π =πP
∑π
j
j
=1
则称 π = (π 1 , π 2 , ) 为该马氏链的 平稳分布 定理4.16 不可约非周期的马氏链,其极限分布存 在(或状态是正常返)的充要条件是存在平稳分 布,且此平稳分布就是极限分布。即 1 πj =
15
故从上式可解得:
16
2 lim p12 ( n ) = n →∞ 9
注: 对于一般可约马氏链, lim pij (
n →∞
n)
的情形如下:
例4 马氏链的概率转移图所示,分析转移概率极限:
I = D + C1 + C2 = {1, 5} + {2,3} + {4,, 6}
先进行状态空间分解: I = D + C1 + C2 +
,
(设j ∈ C
m
, Cm为不可约非周期常返闭集 )
随机过程及其应用
第3章 3.1
3.2
3.3 3.4
Gauss 过程 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Gauss 过程的基本定义 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40 3.1.1 多元 Gauss 分布的定义 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.1.2 多元 Gauss 分布的特征函数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.1.3 协方差阵 Σ 不满秩的情况 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 多元 Gauss 分布的性质 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.2.1 边缘分布 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.2.2 独立性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.2.3 高阶矩 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.2.4 线性变换 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.2.5 条件分布 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Gauss-Markov 性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49 Gauss 过程通过非线性系统 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.4.1 理想限幅器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.4.2 全波线性检波 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.4.3 半波线性检波 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.4.4 平方律检波 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
《随机过程教程》PPT课件幻灯片PPT
主要教学成果
编写出版了教材?通信与信息工程中的随 机过程? 开设的?随机过程?课程2002年12月被评为 江苏省优秀研究生课程 至今培养了7名硕士研究生获得硕士学位, 目前正在指导13名硕士研究生 协助指导5名博士研究生获得博士学位 指导本科毕业设计20名
教学理念
教者方面 认真、尽职 教的过程也是学的过程 学者方面 “贤良、喜悦、勤奋〞可使学习者臻于完善的 境地 共同方面 互换角度、互相尊重 互相配合、互相理解、互相学习
科研方向
主要科研方向
无线通信中的各种信号处理问题 无线通信系统中的无线资源管理问题
具体涉及的研究领越
DS/CDMA通信系统中的多用户检测 智能天线技术 MIMO系统中的空时编码技术 HSDPA技术 无线网络规划
完成的科研工程
1997年1月到12月,作为工程负责人完成了国 家863高技术开展工程“多址干扰抑制技术〞 1998年4月到2001年3月,作为工程技术负责人, 完成了本室与芬兰NOKIA移动 公司的国际合作 工程“移动通信中的新方法〞 2001年7月到2002年5月,作为工程负责人,完 成了深圳华为公司的委托工程 “WCDMA/HSDPA系统仿真分析〞
科研方向主要科研方向?无线通信中的各种信号处理问题?无线通信系统中的无线资源管理问题具体涉及的研究领越?dscdma通信系统中的多用户检测?智能天线技术?mimo系统中的空时编码技术?hsdpa技术?无线网络规划完成的科研项目1997年1月到12月作为项目负责人完成了国家863高技术发展项目多址干扰抑制技术1998年4月到2001年3月作为项目技术负责人完成了本室与芬兰nokia移动电话公司的国际合作项目移动通信中的新方法2001年7月到2002年5月作为项目负责人完成了深圳华为公司的委托项目wcdmahsdpa系统仿真分析2001年4月至今作为项目技术负责人负责本室与芬兰nokia移动电话公司的国际合作项目3g以后系统的基带算法研究2003年1月至今作为项目负责人正在进行深圳华为公司委托的开发项目hsdparrm调度算法建模和网络规划的建模2003年2月至今作为项目负责人正在进行和中国移动集团总公司的委托研究项目ngsobsss卫星系统和地面wcdma系统的干扰分析2002年9月至今作为项目副组长负责国家863高技术发展项目新型天线和分集技术研究的基带研究部分在研的科研项目主要教学成果编写出版了教材通信与信息工程中的随机过程开设的随机过程课程2002年12月被评为江苏省优秀研究生课程至今培养了7名硕士研究生获得硕士学位目前正在指导13名硕士研究生协助指导5名博士研究生获得博士学位指导本科毕业设计20名教学理念教者方面?认真尽职?教的过程也是学的过程学者方面?贤良喜悦勤奋可使学习者臻于完善的境地共同方面?互换角度互相尊重?互相配合互相理解互相学习一张去年的照片内容提要教者简介所教内容简介教学方式约定考核方式劝勉勤奋学习随机过程的内容随机对象
随机过程第1章概论课件
随机过程讲义陈庆虎武汉大学电子信息学院参考书:1.随机信号分析基础。
王永德王军编著,电子工业出版社。
2.随机信号分析。
朱华等编著,北京理工大学出版社。
3.随机过程及其应用。
陆大絟编著,清华大学出版社。
第一章 随机信号概论1.1 确定性信号与随机信号工程中的数字信号主要指被量化的各种物理量,按特性可分为:长度、热学、力学、电磁、无线电、放射性、光学、声学、化学、生物、医学等类型。
按可预测性和可再现性原则,信号可分为确定性信号与随机信号两类。
按确定性规律变化的信号称为确定性信号。
确定性信号可以用数学解析式表达,或用确定性曲线准确地描述。
在相同的条件下,确定性信号可以重复、再现,确定性信号可用函数()s t 或(,)s t θ来表达,其中θ是待定参数或参数向量,t 是时间或空间自变量。
例1 正弦信号0()sin(2)s t A t πωφ=+A 、0ω、φ分别是信号的振幅、频率、相位,可以是确定的数值,也可以是待定参数。
不遵循任何确定性规律变化的信号称为随机信号。
随机信号具有不重复、不可预测的特点,在完全相同的条件下,不能保证信号能完全重现,对信号的未来值不能完全准确地预测。
随机信号产生的原因是信号在产生、发射、传输、接收、测量、采样、计算等处理过程中受到各种噪声的干扰。
随机信号常用随机函数()X t 表示,它与确定性信号(,)s t θ往往有如下关系:()(,)()X t s t t θε=+()(,)()X t s t t θε=∙()t ε是噪声干扰。
信号的确定性是相对的。
在理想的环境、理想的条件下,信号是确定的;或者在精度要求不高的情况下,在某些噪声和干扰忽略不计的前提下,信号是确定的。
由于噪声和干扰无处不在、无时不在,工程应用中的信号往往都具有随机性。
处理随机信号的主要方法是信号统计处理方法,其中信号估计与信号检测是信号统计处理方法的核心内容。
理论上,随机信号()X t 是时间连续的,即时间t 的取值是连续的。
第13讲 随机过程及其应用(第三版) 刘次华 第六章平稳过程(2)简
即
h1 →0 h2 →0
lim
RX (t + h1 , t + h2 ) − RX (t + h1 , t ) − RX (t , t + h2 ) + RX (t , t ) h1h2
存在。
7
所以有如下定理:
8
定理 (均方可微准则) 二阶矩过程{X( t ),t∈T}在t∈T处均方可微的充要 条件是极限
不加证明,给出均方导数如下的性质: (假定涉及到的各函数和随机过程都可导) 性质1 性质2 均方可导必均方连续 均方导数具有线性性
= E[l ⋅ i ⋅ m
Δs →0
X ( s + Δs) − X ( s) ⋅ X ′(t )] Δs
X (s + Δs) − X (s) = lim E[ ⋅ X ′(t )] Δs →0 Δs
称X(t)在t点均方连续; 若对T中一切点都连续,称X(t) 为均方连续过程
= R ( t + h, t + h ) − R ( t + h, t ) − R ( t , t + h ) + R ( t , t )
只需在上试中令 h → 0 即得 X(t),在t∈T 处均方连续。
1 2
必要性: 若
t 2 →t
存在
∫ ∫
a
b
a
R ( s , t ) dsdt
存在
19 20
所以有如下定理:
定理:(均方积分的数字特征) 设X(t)在[a,b]}均方可积, 则 b b (1) E ∫a X ( t ) dt = ∫a EX ( t ) dt (2)
随机过程课件
解得实值连续函数
x( t ) = x0e , t ≥ 0.
2)随机性方法 设时刻t 细菌数为随机变量X(t),设(t, t+Δt)内 增加的细菌数与Δt 有关而与t无关, 在X(t)=x条件下,X(t+Δt)变为x+1个的概率为
λt
P{X ( t + ∆t ) = x + 1 X ( t ) = x} = λx∆t + o(∆t )
X(t) p
2cost 2/3
-2cost 1/3
特别
X(0) 2
p 2/3
1
-2 1/3
X(
π
4 p
)
2
− 2
2/3
1/3
2) 分析
2
x(t,ω1)=2cost
-1
− 2
x(t,ω2)=-2cost
有
(X(0),X(π/4)) ( −2,− 2 ) ( 2, 2 )
p
1/3
2/3
服从二维两点分布 问题: 随机变量X(0)和X(π/4)是否相互独立?
称F为XT 的有限维分布函数族.
XT的任意有 限维分布函 数的全体构 成的集合
定义3 过程{ X ( t ), t ∈ T } 的n 维特征函数定义为
φ (t1 , t 2 ,L , t n ; θ1 ,θ 2 ,L ,θ n )
= E {e
i [θ 1 X ( t 1 ) + L+θ n X ( t n )]
Tt1 ,L , Tt n 相互独立.
3) 独立增量过程
, 对任一正整数n及任意 t i ∈ T , t1 < t 2 < L < t n 随 机变量
4 刘次华《随机过程及其应用(第三版)》课件
内容提要
平稳过程的概念与性质
平稳过程 的各态历经性
平稳过程的功率谱密度
联合平稳过程
4.1
平稳过程的概念与性质
严平稳过程
[定义] 设{X (t), t T }是随机过程,若对任意常数 和正整 数n,t1 , t2 , … , tn T ,t1+ , t2+ , … , tn+ T ,( X (t1), X(t2), … , X (tn) )与( X (t1+ ), X(t2+ ), … , X (tn+ ) )有相
故 随机序列的均值为常数,相关函数仅与有关, 因此它是平稳随机序列。
例2
设有状态连续、时间离散的随机过程 X (t) = sin(2t),
其中 为(0, 1)上均匀分布的随机变量,t 只取整数 值 1, 2, ,试讨论随机过程X (t)的平稳性。
[解] E [ X ( t )] E [sin( 2 t )]
在 T 上对 t 取平均,即得时间平均。
大数定理(回顾)
设独立同分布的随机变量序列 {Xn , n = 1, 2, }, 具有 E[Xn] = m, D[Xn] = 2, ( n = 1, 2, ),则
1 N lim P X m 1 k N N k 1
均值各态历经的充要条件
[定理] 设 { X (t), < t < } 是均方连续的平稳过程,
则它的均值具有各态历经性的充要条件为
T 12 2 lim 1 [ R ( ) m d 0 X X] 2 T T 2 T 2 T
R ( ) R ( ) X X
《随机过程——计算与应用》课件随机过程引论课件3
4
2
解:
t 3 时, 4
Xt
V
cos 3 4
2V 2
由于函数 x 2 V 的反函数为 2
V h( x ) 2x, 其导数为 h( x ) 2,
3
利用随机变量的函数的概率密度计算公式,得
f
3 4
(
x)
fV
(h(x)) 0
h(
x)
0 h(x) 1 其它
2
0
0 2x 1 其它
则利用特征函数性质: (k) (0) jk EXk
得 EX (0)
j
EX
2
(0)
j2
2
DX EX 2 (EX )2
补例4. 设X1 , X 2 ,
,
X
相互独立,且
n
Xk服从正态分布:N(k,k2),k =1,2, ,n
n
用特征函数求随机变量Y= Xk的概率分布
k=1
解:由题意Xk
练习题
1.利用重复掷硬币的试验定义一个随机过程
Xt
cost ,出现正面
2t ,
出现反面
0 t
出现正面与反面的概率相等.
2.利用掷一枚硬币的试验定义一个随机过程
Xt
cost ,出现正面
2t ,
出现反面
0 t
⑴ 求Xt的一维分布函数F(1/2; x),F(1; x).
⑵ 求Xt的二维分布函数F(1/2,1; x1,x2).
为随机过程X的有限维特征函数族.
关于随机变量的特征函数的回顾 定义 设随机变量X的分布函数F(x),则称
(u) E[e juX ]
u
为随机变量X的特征函数.
特征函数的几点说明 (1) 特征函数总是存在的.
5a 刘次华《随机过程及其应用(第三版)》课件
( t t ) 1 2
输出与输入的互相关函数
R ( t ,t )E [ Y ( t )X ( t ) ]E X ( t u ) h ( u )X ( t ) d u YX 1 2 1 2 1 2
[X ( t u )X ( t ) ] h ( u ) d u 1 2 E
1 2 X 1 2
当输入过程 X (t) 为自相关平稳时,
R ( ) ( u v ) h ( u ) h ( v ) d u d v Y X R
R ( ) h ( ) h ( ) , X
5
平稳过程通过线性系统的分析
线性时不变系统
系统:
y ( t ) L [ x ( t )]
线性系统:
L [ a x ( t ) a x ( t )] a L [ x ( t )] a L [ x ( t )] 1 1 2 2 1 1 2 2 a y ( t ) a y ( t ) 1 1 2 2
2
因为 R ( ) R ( )h ( )h ( ) Y X 故s ) sX( )H ( )H ( ) Y( 2 H ( ) s ( ) X
[例2] 如图RC电路,若输入白噪声电压 X (t) ,其相关
h ( t ) 0 ,当 t 0
h (t)d t
随机过程通过线性系统的输出
设线性系统的单位脉冲响应为 h (t) ,当输入一个随机 过程 X (t) 时,其输出随机过程 Y (t) 为
Y ( t ) X ( t ) h ( t ) ( t ) h ( ) d X
随机数学第1讲 第一章预备知识
c12 c 22 cn2
c1 n ⎞ ⎟ c2n ⎟ ⎟ ⎟ c nn ⎟ ⎠
为 n 维随机变量的 协方差矩阵 .
定理:( X 1 ,
当 ρXY = 0 时, X 和 Y 不相关.
, X n ) 的协方差阵B 是对称,非负定的。
证明:对任意
x Bx = ∑
T i =1 n n n
x T = ( x1 , x2 ,
(
))
)
⎡ n = E ⎢∑ ⎣ i =1
n
∑x x (X
j =1 i j
n
i
⎤ − EX i ) X j − EX j ⎥ ⎦
(
证明: 对任意的实数t,
E[ X + Yt ]2 = t 2 EY 2 + 2tE[ XY ] + EX 2 ≥ 0 Δ = b 2 − 4ac = ( 2 E[ XY ]) − 4 EY 2 EX 2 ≤φ( t ) = E (e itX ) = 1i e itc = e itc , t ∈ R. Ex.2 两点分布
X 0 1 PX 1-p p
X c PX 1
Ex.3 指数分布 f ( x ) = ⎨
⎧λ e − λ x , ⎪ ⎪0, ⎩
x ≥ 0; x < 0.
(λ > 0)
φ(t ) = E e itX = ∫ e itx λe −λx dx
0
( )
2
+∞
φ(t ) = E eitX
( )
= ∫0 λe − λx costxdx + i λ ∫0 e − λx sintxdx
=λ
=
+∞
+∞
= eit⋅0 (1 − p) + eit⋅1 p
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
协方差函数 CX (s, t) RX (s, t) mX (s)mX (t)
min( s,t) s , (s t)
(2) 时间间隔与等待时间
设 {X (t), t 0 }是泊松过程,令X (t)表示 t 时刻事件A
发生的次数, T1 T2 T3
n
Wn Ti (n 1)
Tn
i 1
考虑机器在 (t, t+h] 内发生故障这一事件。若机器发生故障, 立即修理后继续工作,则在 (t, t+h] 内机器发生故障而停止 工作的事件数构成一个随机点过程,它可以用泊松过程来描 述。
6.2 泊松过程的基本性质
泊松分布:
P{X (t s) X (s) n} (t)n et , n 0,1,
fT
(t )
et
(t)k 1 ,
(k 1)!
t
0
0 ,
t 0
故仪器在时刻 t0 正常工作的概率为:
P P(T t0 )
e
t
(t)k 1
dt
t0
(k 1)!
P[ X (t0 )
k]
k 1
e t0
n0
(t0 )n
n!
(3) 到达时间的条件分布
假设在[0 , t ]内事件A已经发生一次,确定这一事件到 达时间W1的分布 ——均匀分布
P( X
k)
n kpkqnkE( X ) np, D( X ) npq
[泊松定理] 在二项分布中,设 np= 是常数,则有
lim P( X k ) ke
n
k!
泊松分布
[泊松分布] 随机变量X 的所有可能取值为0, 1, 2, … ,而 取各个值的概率为
P{X k} ke , k 0,1, 2, ( 0为常数)
[定理] 设 {X (t), t 0 }是具有参数的泊松过程,{Wn , n1} 是对应的等待时间序列,则随机变量Wn 服从参数为n与 的 分布(又称为爱尔兰分布),其概率密度为
FWn
(t )
1
et
n1 k 0
(t ) k
k!
u (t )
fWn (t )
e t
(t)n1 u(t)
(n 1)!
P{W1
s
X
(t)
1}
P{W1 s, X (t) 1} P{X (t) 1}
P{X (s) 1, X (t) X (s) 0} P{X (t) 1}
ΦWn
( )
(
n j )n
E[Tn ] n
D[Tn ] n
2
[例1] 已知仪器在 [ 0 , t ] 内发生振动的次数 X(t) 是具有参
数的泊松过程。若仪器振动k (k 1)次就会出现故障,
求仪器在时刻 t0 正常工作的概率。
[解] 仪器发生第k振动的时刻Wk 就是故障时刻T ,
则T 的概率分布为 分布:
泊松过程
[定义] 称计数过程{ X (t) , t 0 }为具有参数 的泊松过程,
若它满足下列条件: (1) X (0) = 0 ; (2) X (t) 是独立增量过程; (3) (平稳性)在任一长度为 t 的区间中,事件A发生的
次数服从参数 >0的泊松分布,即对任意 s , t 0 ,有
P{X (t s) X (s) n} (t)n et , n 0,1,
n!
P{X (t) n} (t)n et , n 0,1, 2,
n!
ΦX () E[ejX (t) ] et(ej 1)
(1) 泊松过程的数字特征
均值函数
mX (t) E[X (t)] t
方差函数 相关函数
2 X
(t)
DX
(t)
t
RX (s,t) E[ X (s) X (t)] s(t 1) , (s t)
泊松过程的几个例子
考虑某一电话交换台在某段时间接到的呼叫。令X(t)表示电 话交换台在 [0, t] 时间内收到的呼叫次数,则{ X(t), t 0 } 是 一个泊松过程。
考虑来到某火车站售票窗口购买车票的旅客。若记X(t) 为时 间 [0, t] 内到达售票窗口的旅客数,则{ X(t), t 0 } 是一个泊 松过程。
n!
泊松过程的另一个定义
[定义] 称计数过程{ X (t) , t 0 }为具有参数 >0 的泊松
过程,若它满足下列条件: (1) X (0) = 0 ; (2) X (t) 是独立、平稳增量过程; (3) X (t) 满足下列两式:
P{X (t h) X (t) 1} h o(h)
P{X (t h) X (t) 2} o(h)
t
0 W1 W2 W3
Wn-1 Wn
Wn —— 第n次事件A发生的时刻,或称等待时间, 或者到达时间
Tn —— 从第n-1次事件A发生到第n次事件A发生的 时间间隔,或称第n个时间间隔
时间间隔Tn
[定理] 设 {X (t), t 0 }是具有参数的泊松过程,{Tn , n 1 }
是对应的时间间隔序列,则随机变量Tn (n=1,2,…)是独立同
分布的均值为1/ 的指数分布。
Tn 的分布函数: FTn (t) P{Tn t} (1 et )u(t)
Tn 的概率密度函数: fTn (t) etu(t)
Tn 的特征函数:
ΦTn (t) j
Tn 的数字特征: E[Tn ] 1 , D[Tn ] 1 2
等待时间(到达时间)Wn
6 泊松过程
内容提要
泊松过程的定义 泊松过程的基本性质 泊松脉冲列 散粒噪声 非齐次泊松过程 复合泊松过程
引言
[(0-1)分布] 随机变量 X 只可能有两个值: 0 和 1,其概率 分布为:
P(X 1) p, P(X 0) 1 p q E(X ) p, D(X ) pq
[二项分布] 随机变量 X 为n重贝努利试验中事件A发生的 次数,则 X ~ B (n, p)
k! 则随机变量X 服从参数为 的泊松分布,简记为 ()。
E( X ) , D( X )
6.1 泊松过程的定义
[定义] 称{ N (t), t 0 } 为计数过程,若N (t)表示到时间t 为止已发生的“事件A”的总数,且N (t)满足下列条件: (1) N (t) 0 ,且 N (0) = 0 ; (2) N (t) 取非负整数值; (3) 若 s < t ,N (s) N (t) ; (4) 当s < t 时, N (t) N (s)等于区间 (s, t] 中“事件A” 发生的次数。