第2讲:圆周运动
圆周运动的规律及其应用(开课)
§2-2讲、圆周运动的 规律及其应用
一、教学目标: ●掌握竖直面内圆周运动问题在最高点和最
低点的处理方法,能从运动、受力、能量的 角度分析绳球模型和杆球模型。
●掌握水平面内圆周运动临界问题的处理方法。
考点三 常见竖直平面内的圆周运动最高点临界问题
竖直平面内的圆周运动,是典型的变速圆周运动, 对于物体在竖直平面内做变速圆周运动的问题,中 学物理中只研究物体通过最高点和最低点的情况, 并且经常出现有关最高点的临界问题.
【典例4】 如图所示,质量为m的木块,用一轻
绳拴着,置于很大的水平转盘上,细绳穿过转盘
中央的细管,与质量也为m的小球相连,木块到 中央的距离为r=0.5 m,圆盘匀速转动,要保持 木块与转盘相对静止。求:(g取10 m/s2)
1、若水平转盘光滑,求ω1 。
2、若水平转盘与木块间的最大摩擦 m
力是木块重力的0.2倍,且剪断细线。
两种模型:
绳球模型
杆球模型
绳球模型 等效模型
讨论:
1、受力 2、运动 3、能量
杆球模型 等效模型
讨论:
1、受力 2、运动 3、能量
【典例3】(多选)如图所示,一内壁光滑的半径
为R的圆筒固定,横截面在竖直平面内,圆筒内 最低点有一小球.现给小球2.2mgR的初动能,使
小球从最低点开始沿筒壁运动,则小球沿筒壁运 动过程中( ). A.小球可以到达轨道的最高点 B.小球不能到达轨道的最高点 C.要使小球做完整圆周运动, 小球的最小初速度大于 5gR D.要使小球做完整圆周运动, 小球的最小初速度等于 4gR
ω
求ω2的最大不能超过多少? 力是木块重力的0.2倍,不剪断细线。 求ω3的范围。
圆周运动教案 高中物理《圆周运动》教学设计(优秀5篇)
圆周运动教案高中物理《圆周运动》教学设计(优秀5篇)高中物理《圆周运动》教学设计【优秀5篇】由作者为您收集整理,希望可以在圆周运动教案方面对您有所帮助。
高一物理圆周运动教案篇一教学重点线速度、角速度的概念和它们之间的关系教学难点1、线速度、角速度的物理意义2、常见传动装置的应用。
高中物理圆周运动优秀教案及教学设计篇二做匀速圆周运动的物体依旧具有加速度,而且加速度不断改变,因其加速度方向在不断改变,其运动版轨迹是圆,所以匀速圆周运动是变加速曲线运动。
匀速圆周运动加速度方向始终指向圆心。
做变速圆周运动的物体总能分权解出一个指向圆心的加速度,我们将方向时刻指向圆心的加速度称为向心加速度。
速度(矢量,有大小有方向)改变的。
(或是大小,或是方向)(即a≠0)称为变速运动。
速度不变(即a=0)、方向不变的运动称为匀速运动。
而变速运动又分为匀变速运动(加速度不变)和变加速运动(加速度改变)。
所以变加速运动并不是针对变减速运动来说的,是相对匀变速运动讲的。
匀变速运动加速度不变(须的大小和方向都不变)的运动。
匀变速运动既可能是直线运动(匀变速直线运动),也可能是曲线运动(比如平抛运动)。
圆周运动是变速运动吗篇三高中物理《圆周运动》课件一、教材分析本节内容选自人教版物理必修2第五章第4节。
本节主要介绍了圆周运动的线速度和角速度的概念及两者的关系;学生前面已经学习了曲线运动,抛体运动以及平抛运动的规律,为本节课的学习做了很好的铺垫;而本节课作为对特殊曲线运动的进一步深入学习,也为以后继续学习向心力、向心加速度和生活中的圆周运动物理打下很好的基础,在教材中有着承上启下的作用;因此,学好本节课具有重要的意义。
本节课是从运动学的角度来研究匀速圆周运动,围绕着如何描述匀速圆周运动的快慢展开,通过探究理清各个物理量的相互关系,并使学生能在具体的问题中加以应用。
(过渡句)知道了教材特点,我们再来了解一下学生特点。
也就是我说课的第二部分:学情分析。
2第二讲自然坐标系圆周运动的角量描述
vx
u
dt
dy
gt
vy
dt
v u2 g 2 t 2
2
g
t
dv d
2
2 2
u g t
a
dt dt
u2 g 2 t 2
an a a
2
ug
2
u g t
2
2 2
相对运动
球
垂
直
往
返
运动具有相对性
球作曲线运动
如何变换?
描述运动三参量合成的约定
绝对量
建立自然坐标系:(P的切向)(P的法向)
p
o
ˆ
n̂
规定:切向单位矢量 ˆ , 指向运动方向
法向单位矢量 n̂
指向轨道的凹侧
用这样一对正交的切向、法向单位矢量构成坐
标系统称为自然坐标系。
在自然坐标系中,切向、法向单位矢量并不固
定,它们随质点的位置而变。
p
ˆ
o
ˆ
n̂
n̂
直角坐标系是静坐标系
教学基本要求:
能计算质点在平面内运动时的速度和加速度;
能计算质点作圆周运动时的角速度、角加速度
、切向加速度和法向加速度。
本节内容提纲
一,自然坐标系
1,运动方程
2,速度
3,加速度
二,圆周运动的角量描述
1,角位置
2,角速度
3,角加速度
三,角量与线量的关系
四,一般曲线运动
一、自然坐标系中的运动方程,速度及加速度表示:
=
tgα
=
−
tgα
第五章第2讲圆周运动的规律及其应用
2.描述圆周运动的物理量
描述圆周运动的物理量主要有线速度、角速度、周期、频
率、转速、向心加速度、向心力等,现比较如下表:
定义、意义 ①描述圆周运动的物体 快慢 运动_____的物理量(v) 线速度 ②是矢量,方向和半径 垂直,和圆周相切 转动 ①描述物体绕圆心_____ 快慢 角速度 _____的物理量(ω) ②中学不研究其方向 ①周期是物体沿圆周运 一周 动_____的时间(T) 周期和 ②转速是物体单位时间 转速 圈数 转过的_____ (n),也叫 频率(f) 方向 ①描述速度_____变化 向心加 快慢 _____的物理量(a) 速度 ②方向指向圆心
Ⅰ
(
).
v2 解析 由 a= 知,只有在 v 一定时,a 才与 r 成反比, r 如果 v 不一定,则 a 与 r 不成反比,同理,只有当 ω 一 定时,a 才与 r 成正比;v 一定时,ω与 r 成反比;因 2 π是定值,故 ω 与 n 成正比.
答案
D
【知识存盘】
1.圆周运动
质点沿着圆周的运动称为圆周运动.其轨迹为一圆弧,故 圆周运动是曲线运动.
2
(1)当 v=0 时,FN=mg,FN 为支 持力,沿半径背离圆心 (2)当 0<v< gr时,-FN+mg v2 =m ,FN 背离圆心,随 v 的增 r 大而减小 (3)当 v= gr时,FN=0 v2 (4)当 v> gr时,FN+mg=m , r FN 指向圆心并随 v 的增大而增大
讨 论 分 析
2.向心力
(1)作用效果:向心力产生向心加速度, 方向 只改变速度的_____,不改变速度的
_____大小 .
v2 4π2r mω2r (2)大小:F=m =______=m 2 = r T mωv=4π2mf2r.
高中物理 圆周运动 详细讲解
思考题:
“物体做匀速圆周运动时,其速度 是恒定不变的。”
(这种说法正确吗?)
请选择: 正确
错误
弧 S 跟所用的时间 t 之比是个定
值,这个比值就是匀速圆周运动的速 率(速度的大小):
v s 单位 m/s t
(线速度的大小)
(v在数值上等于质点在单位时间内通过 的弧长)
周期:质点做匀速圆周
运动时,运动一周所用
的时间。用 T 表示。
T质点沿半径为r的Fra bibliotek周做圆周 运动,周期为T,则
v 2r
T
轨迹是圆周的运动叫圆周运动。
皮带轮 飞轮 电动机转子各部分
在我们日常生活中,最常见最简 单的圆周运动是匀速圆周运动。
匀速圆周运动:质点沿圆周运动,如 果在任何相等的时间里通过的圆弧相 等,这种运动就叫做匀速圆周运动。
砂轮上各点
电子钟指针上每 一点
速度
v
s t
s
时间 t
质点做匀速圆周运动时,它通过的圆
角速度
t
时间 t
t 角速度:半径转过的角度 跟所用的
时间 之比。用 表示。
角度的单位是rad,时间的单位是s,故角速 度的单位是rad/s.
( 在数值上等于质点在单位时间内沿
半径所转过的角度 )
质点做匀速圆周运动,周期是T
则有: 2
T
例1. 半径10cm的砂轮,每0.2秒转一周,砂 砂轮旋转的角速度多大?砂轮边沿一
点的速度大小为多少?
解:从题中知r=10cm=0.1m,T=0.2s
2 2 10 rad/s
T 0.2
v 2 2 0.10 m/s
t
0.2
第2讲:圆周运动的四个结论
n
v 2πnr t
如图:质点做半径为2m的匀速圆周运动, 周期为4s
求:质点的线速度?
•
o
第一步:写已知量 已知:r=2m,T=4s。求:v=? 第二步:默写线速度的三大公式
v s t
v 2r v r
T
第三步:选择公式 选哪个式子呢?很明显选
v
2r
大圆半径是小圆半径的2倍,通过皮带传动。 则 TA :TB ___
A·
·B
第一步:默写与周期有关的公式
T 2
T 2r
v
第二步:选公式
问:选哪一个式子判断好些? 答:因为边缘v相等,所以选 T 2r
v
第三步:求周期之比
根据 T 2r 知:因为边缘v相等,所以T
同轴转动时,角速度相等 A B C
问:地球上各位置一天的时间都是24h吗? 答:是的,T 24h 243600s 因为地球上的各位置都绕地轴旋转,属于
同轴转动。你绕地轴转一圈,我也绕地轴 转一圈。所以时间是最公平的。
问:为什么人站在地球上,感受不到地球 的自转?
则:A : B ___
A·
·B
问:A、B的线速度是否相等? 答:相等。因为皮带传动时,边缘的线速
度相等。
问:A、B的角速度可相等? 答:因为线速度v相等,因为半径r不相等 ,
所以角速度ω不相等。
问:大圆的角速度大些还是小些?
答:小些。
根据v r知:半径r越大,角速度ω越小 所以 A : B 1: 2
一圈,所以周期相等。
问:为什么圆盘上各点的角速度 ω相等? 答: 因为周期相等,根据ω=2π/T知:角
2.第二讲 圆周运动
(2)切向加速度的大小 ;0.40
(3)这两时刻(t1和t1+t2时刻)的法向加速度an1和an2。0.40、0.23
例4.一质点沿圆轨道由静止开始作匀加速圆周运动。试求此质点的加速度与速度的夹角a与其经过的那段圆弧对应的圆心角 之间的关系。tga=2θ
例5.一飞轮的角速度在5s内由900转/min均匀地减到800转/min。求:
符号用f表示,单位是Hz。频率也是描述匀速圆周运动快慢的物理量,频率低运动慢,频率高运动快。f=1/T
例:某物体做圆周运动的周期为0.5s,则其每秒运动2周,其频率为2Hz。
(3)线速度
周期和频率能粗略描述物体圆周运动的快慢程度,但无法精确衡量物体圆周运动的快慢,如地球绕太阳运转的周期是不变的,但其在近日点和远日点的运动快慢并不相同。因此,要精确衡量圆周运动的快慢还需引入其他物理量。
如图示,质点绕O作半径为R的圆周运动。设t时刻,质点运动到A点,角位置为 , 时刻质点达到B点,角位置为 。在 时间内质点转过的角度为 ( 称为角位移,单位为弧度rad),则角速度定义为:
(单位为rad/s)
角速度为矢量,其方向可用右手螺旋定则确定。
(5)线速度与角速度的关系
而 时, ,故
以上四个量是物理研究中用以研究物体圆周运动快慢程度的物理量,在工程学上还常用到其他量。
匀速圆周运动的匀速仅指匀速率,其实质上是变速运动。
(3)匀速圆周运动的角速度
对确定的匀速圆周运动, 与所用时间 的比值是恒定不变的。因此匀速圆周运动也可以说成是角速度不变的圆周运动。
(4)角速度、线速度、周期之间的关系
ω=
结论:由v=rω知,当v一定时,ω与r成反比;当ω一定时,v与r成正比;当r一定时,v与ω成正比。
物理系列教案43《圆周运动及其应用》
第2讲 圆周运动及其应用考点1 描述圆周运动的物理量1.线速度①定义:质点做圆周运动通过的弧长S 与通过这段弧长所用时间t 的叫做圆周运动的线速度.②线速度的公式为,③方向为.作匀速圆周运动的物体的速度、方向时刻在变化,因此匀速圆周运动是一种运动.2.角速度①定义:用连接物体和圆心的半径转过的角度θ跟转过这个角度所用时间t 的叫做角速度. ②公式为,单位是.3.周期①定义:做匀速圆周运动的物体运动的时间,称为周期.②公式:4.描述匀速圆周运动的各物理量的关系①.角速度ω与周期的关系是:②.角速度和线速度的关系是:③.周期与频率的关系是:;④.向心加速度与以上各运动学物理量之间的关系:5.描述圆周运动的力学物理量是向心力(F 向),它的作用是.描述圆周运动的运动学物理量和力学物理量之间的关系是:.[例1]图所示为一皮带传动装置,右轮的半径为r ,A 是它边缘上的一点.左侧是一轮轴,大轮的半径为4r ,小轮的半径为2r .B 点在小轮上,它到小轮中心的距离为r .C 点和D 点分别位于小轮和大轮的边缘上.若在传动过程中,皮带不打滑.则( )A .A 点与B 点的线速度大小相等B .A 点与B 点的角速度大小相等C .A 点与C 点的线速度大小相等D .A 点与D 点的向心加速度大小相等考点2匀速圆周运动、离心现象1.匀速圆周运动:质点沿圆周运动,如果在相等的时间内通过的相等,这种运动就叫做匀速成圆周运动。
2.向心力:做匀速圆周运动的物体所受到的始终指向圆心的合力,叫做向心力。
向心力只能改变速度的,不能改变速度的。
向心力的表达式为:3.向心力始终沿半径指向圆心,是分析向心力的关键,而圆周运动的圆心一定和物体做圆周运动的轨道在.例如沿光滑半球内壁在水平面上做圆周运动的物体,匀速圆周运动的圆心在与小球同一水平面上的O´而不在球心O 点(如图1).4.离心现象:做匀速圆周运动的物体,在合外力突然,或者物体做圆周运动所需要的向心力时,即:r v m F 2.物体将做,这种现象叫做离心现象. [例2]如图3所示,水平的木板B 托着木块A 一起在竖直平面内做匀速圆周运动,从水平位置a 沿逆时针方向运动到最高点b 的过程中()A .B 对A 的支持力越来越大B .B 对A 的支持力越来越小C .B 对A 的摩擦力越来越大D .B 对A 的摩擦力越来越小[例3]如图所示,光滑水平面上,小球m 在拉力,作用下做匀速圆周运动,若小球运动到P 点时,拉力F 发生变化,关于小球运动情况的说法正确的是 ( )A .若拉力突然消失,小球将沿轨迹Pa 做离心运动B .若拉力突然变小,小球将沿轨迹pa 做离心运动C .若拉力突然变大,小球将沿轨迹pb 做离心运动D .若拉力突然变小,小球将沿轨迹pc 做离心运动[解析]开始时小球做圆周运动,说明此时的拉力恰好能提供向心力。
物理课件:必修2第4章第二讲_圆周运动及其应用
A.它们的运动周期都是相同的 B.它们的速度都是相同的 C.它们的线速度大小都是相同的 D.它们的角速度是不同的 解析: 地球上的物体均绕一个轴运动,其角速度、周期都相同,
由v=Rω知,R不同则v不同,只有A正确. 答案: A
2.关于做匀速圆周运动物体的向心加速度方向,下列说法正确的 是( ) A.与线速度方向始终垂直
二、向心力的来源分析
向心力不是和重力、弹力、摩擦力等相并列的一种性质的力,是
根据力的效果命名的,在分析做圆周运动的质点受力情况时,切不可在 物体所受的作用力 (重力、弹力、摩擦力、万有引力等)以外再添加一个 向心力.向心力可能是物体受到的某一个力,也可能是物体受到的几个 力的合力或某一个力的分力. 例:几种常见的匀速圆周运动的实例
为将被困人员 B尽快运送到安全处,飞机在空中旋转后静止在空中寻找
最近的安全目标,致使被困人员 B在空中做圆周运动,如图乙所示.此 时悬索与竖直方向成 37°角,不计空气阻力,求被困人员 B做圆周运动 的线速度以及悬索对被困人员B的拉力.(sin 37°=0.6,cos 37°=0.8)
【规范解答】 解:(1)被困人员在水平方向上做匀速直线运动,
三、火车转弯问题
在火车转弯处,让外轨高于内轨,如右图所示,转弯时所需向心
力由重力和弹力的合力提供. 设车轨间距为L,两轨高度差为h,车转弯半径为R,质量为M的火 车运行时应当有多大的速度?
h 据三角形边角关系知sin θ= ,对火车的受力情况分析得tan θ= L F合 . Mg
h F合 h 因为θ角很小,所以sin θ=tan θ,故 = ,所以向心力F合= Mg. L Mg L 又因为F合=Mv2/R,所以车速v= ghR . L
圆周运动教案(最新7篇)
圆周运动教案(最新7篇)圆周运动教案篇一一、教学目标知识与技能1、知道什么是圆周运动,什么是匀速圆周运动。
2、知道线速度的物理意义、定义式、矢量性,知道匀速圆周运动线速度的特点。
3、知道角速度的物理意义、定义式及单位,了解转速和周期的意义。
4、掌握线速度和角速度的关系,掌握角速度与转速、周期的关系。
5、能在具体的情景中确定线速度和角速度与半径的关系。
过程与方法1、通过线速度的平均值以及瞬时值的学习使学生体会极限法在物理问题中的应用,让学生体验用比较的观点、联系的观点分析问题的方法。
情感态度与价值观1、通过对圆周运动知识的学习,培养学生对同一问题多角度进行分析研究的习惯。
二、重点、难点重点:线速度、角速度、周期的概念及引入的过程,掌握它们之间的联系。
难点:1、理解线速度、角速度的物理意义及概念引入的必要性。
2、让学生分析传动装置中主动轮、被动轮上各点的线速度、角速度的关系。
三、教学过程(一)复习回顾师、某物体做曲线运动,如何确定物体在某一时刻的速度方向呢?生:质点在某一点的速度方向沿曲线在这一点的切线方向。
(二)新课引入师:今天这节课我们来学习一个在日常生活常见的曲线运动____圆周运动,那么什么叫圆周运动呢?生:物体沿着圆周的运动叫做圆周运动。
师:组织学生举一些生产和生活中物体做圆周运动的实例。
生1:行驶中的汽车轮子。
生2:公园里的“大转轮”。
生3:自行车上的各个转动部分。
生4:时钟的分针或秒针上某一点的运动轨迹是圆周。
师:演示1:用事先准备好的用细线拴住的小球,演示水平面内的圆周运动,提醒学生注意观察小球运动轨迹有什么特点?演示2:教师在讲台上转动微型电风扇,让学生观察电风扇叶片的转动,注意观察用红色胶带选定的点的运动轨迹有什么特点?生:它们的轨迹都是一个圆周。
师:很好,以上我们所观察的两个物体,它们的运动轨迹都是一个圆,物体沿着圆周的运动我们称它为圆周运动,在日常生活中,圆周运动是一种常见的运动,那么什么样的圆周运动最简单呢?师:最简单的直线运动是匀速直线运动。
圆周运动讲解
圆周运动圆周运动1.物体做匀速圆周运动的条件:匀速圆周运动的运动条件:做匀速圆周运动的物体所受合外力大小不变,方向总是和速度方向垂直并指向圆心。
2.描述圆周运动的运动学物理量(1)圆周运动的运动学物理量有线速度v 、角速度ω、周期T 、转速n 、向心加速度a 等。
它们之间的关系大多是用半径r 联系在一起的。
如:Tr r v πω2=⋅=,22224T r r r v a πω===。
要注意转速n 的单位为r/min ,它与周期的关系为nT 60=。
(2)向心加速度的表达式中,对匀速圆周运动和非匀速圆周运动均适用的公式有:ωωv r r v a ===22,公式中的线速度v 和角速度ω均为瞬时值。
只适用于匀速圆周运动的公式有:224T ra π= ,因为周期T 和转速n 没有瞬时值。
二、匀速圆周运动的描述1.线速度、角速度、周期和频率的概念(1)线速度v 是描述质点沿圆周运动快慢的物理量,是矢量,其大小为T rt s v π2==; 其方向沿轨迹切线,国际单位制中单位符号是m/s ;(2)角速度ω是描述质点绕圆心转动快慢的物理量,是矢量,其大小为Ttπφω2==; 在国际单位制中单位符号是rad /s ;(3)周期T 是质点沿圆周运动一周所用时间,在国际单位制中单位符号是s ;(4)频率f 是质点在单位时间内完成一个完整圆运动的次数,在国际单位制中单位符号是 Hz ;(5)转速n 是质点在单位时间内转过的圈数,单位符号为r /s ,以及r /min . 2、速度、角速度、周期和频率之间的关系线速度、角速度、周期和频率各量从不同角度描述质点运动的快慢,它们之间有关系v =r ω.f T 1=,T v π2=,f πω2=。
由上可知,在角速度一定时,线速度大小与半径成正比;在线速度一定时,角速度大小与半径成反比.三、向心力和向心加速度 1.向心力(1)向心力是改变物体运动方向,产生向心加速度的原因.(2)向心力的方向指向圆心,总与物体运动方向垂直,所以向心力只改变速度的方向. 2.向心加速度(1)向心加速度由向心力产生,描述线速度方向变化的快慢,是矢量.(2)向心加速度方向与向心力方向恒一致,总沿半径指向圆心;向心加速度的大小为22224T r r rv a n πω=== 公式:1.线速度V =s/t =2πr/T2.角速度ω=Φ/t =2π/T =2πf3.向心加速度a =V 2/r =ω2r =(2π/T)2r4.向心力F 心=mV 2/r =m ω2r =mr(2π/T)2=m ωv=F 合5.周期与频率:T =1/f6.角速度与线速度的关系:V =ωr7.角速度与转速的关系ω=2πn (此处频率与转速意义相同) 8.主要物理量及单位:弧长s:米(m);角度Φ:弧度(rad );频率f :赫(Hz );周期T :秒(s );转速n :r/s ;半径r :米(m );线速度V :(m/s );角速度ω:(rad/s );向心加速度:(m/s 2)。
圆周运动讲解
圆周运动圆周运动是非匀变速曲线运动。
要理解描写它的各个物理量的意义:如线速度、角速度、周期、转速、向心加速度。
速度方向的变化和向心加速度的产生是理解上的重点和关键。
1、物体做匀速圆周运动的条件合外力的大小不变,且方向总是与速度的方向垂直要注重理解圆周运动的动力学原因:圆周运动实际上是惯性运动和外力作用这一对矛盾的统一。
2、描写圆周运动的物理量及其相互关系线速度:角速度:周期T:周期是圆周运动的线速度大小和方向完全恢复初始状态所用的最小时间;周期长说明圆周运动的物体转动得慢,周期短说明转动的快。
3、几个量的关系:线速度、角速度、周期以及转速之间的关系(转速n的单位取r/s)4、向心加速度大小的计算方法(1)由牛顿第二定律计算:;(2)由运动学公式计算:5、圆周运动的向心力圆周运动的向心力可以是重力、万有引力、弹力、摩擦力以及电磁力等某种性质的力; 可以是单独的一个力或几个力的合力,还可以认为是某个力的分力;向心力是按效果命名的;注意:匀速圆周运动和变速圆周运动的区别:匀速圆周运动的物体受到的合外力完全用来提供向心力,而在变速圆周运动中向心力是合外力的一个分量,合外力沿着切线方向的分量改变圆周运动速度的大小。
6、向心运动和离心运动注意需要的向心力和提供的向心力之不同,如是质量为m的物体做圆周运动时需要向心力的大小;提供的向心力是实实在在的相互作用力。
需要的向心力和提供的向心力之间的关系决定着物体的运动情况,即决定着物体是沿着圆周运动还是离心运动或者向心运动。
向心运动和离心运动已经不是圆周运动,圆周运动的公式已经不再适用。
7、方法解决圆周运动的方法就是解决动力学问题的一般方法,学习过程中要特别注意方法的迁移和圆周运动的特点。
(1)根据解决问题的需要,选取某一位置对物体进行受力分析(2)明确向心力的方向,通过对物体受到的力进行分解或合成求出向心力(3)用适当的量(如线速度、角速度或周期等)表示处物体在该位置的向心加速度(4)用牛顿第二定律列方程求解,必要时进行讨论说明:要重视分析圆周运动中的临界状态8、一些特别关注的问题①同一转动物体上的各点的角速度相同;皮带传动、链条传动以及齿轮传动时,各轮边缘上的点的线速度大小相等。
高考物理一轮复习讲义 第2讲 圆周运动的基本规律及应用
高考物理一轮复习讲义 第2讲 圆周运动的基本规律及应用一、描述圆周运动的物理量物理量 物理意义定义、公式、单位线速度描述物体沿切向运动的快慢程度①物体沿圆周通过的弧长与时间的比值②v =Δl Δt③单位:m/s④方向:沿圆弧切线方向角速度描述物体绕圆心转动的快慢①连接运动质点和圆心的半径扫过的角度与时间的比值②ω=ΔθΔt③单位:rad/s周期和转速描述匀速圆周运动的快慢程度①周期T :物体沿圆周运动一周所用的时间,公式T =2πrv,单位:s②转速n :物体单位时间内所转过的圈数,单位:r/s 、r/min向心加速度描述速度方向变化快慢的物理量①大小:a n =v 2r=ω2·r②方向:总是沿半径指向圆心,方向时刻变化③单位:m/s 2v 、ω、T 、n 、a 的相互关系v =ωr =2πrTa =v 2r =ω2r =ω·v =⎝ ⎛⎭⎪⎫2πT 2·r 二、向心力1.定义:做圆周运动的物体受到的指向圆心方向的合外力,只改变线速度方向,不会改变线速度的大小.2.大小:F 向=ma 向=m v 2R=mRω2=mR ⎝ ⎛⎭⎪⎫2πT 2=mR (2πf )2.3.方向:总指向圆心,时刻变化,是变力.4.向心力的向心力是按效果来命名的,对各种情况下向心力的来源要明确. 三、匀速圆周运动和非匀速圆周运动 1.匀速圆周运动(1)运动特点:线速度的大小恒定,角速度、周期和频率都恒定不变的圆周运动.(2)受力特点:合外力完全用来充当向心力.向心力(向心加速度)大小不变、方向时刻指向圆心(始终与速度方向垂直),是变力.(3)运动性质:变加速曲线运动(加速度大小不变、方向时刻变化). 2.变速圆周运动(非匀速圆周运动)(1)运动特点:线速度大小、方向时刻在改变的圆周运动.(2)受力特点:变速圆周运动的合外力不指向圆心,合外力产生两个效果(如图所示).①沿半径方向的分力F n :此分力即向心力,产生向心加速度而改变速度方向. ②沿切线方向的分力F τ:产生切线方向加速度而改变速度大小. (3)运动性质:变加速曲线运动(加速度大小、方向都时刻变化). 四、离心运动1.定义:做圆周运动的物体,在所受合外力突然消失或不足以提供圆周运动所需向心力的情况下,就做逐渐远离圆心的运动.2.本质:做圆周运动的物体,由于本身的惯性,总有沿着圆周切线方向飞出去的倾向. 3.受力特点:(1)当F =m rω2时,物体做匀速圆周运动; (2)当F =0时,物体沿切线方向飞出;(3)当F <m rω3时,物体逐渐远离圆心,F 为实际提供的向心力,如图所示.1.关于运动和力的关系,下列说法正确的是( ) A .物体在恒力作用下不可能做直线运动 B .物体在恒力作用下不可能做曲线运动 C .物体在恒力作用下不可能做圆周运动 D .物体在恒力作用下不可能做平抛运动解析:物体在恒力作用下不可能做圆周运动,选项C 正确. 答案: C2.关于向心力,下列说法中正确的是( ) A .向心力不改变做圆周运动物体速度的大小 B .做匀速圆周运动的物体,其向心力是不变的 C .做圆周运动的物体,所受合力一定等于向心力D .做匀速圆周运动的物体,一定是所受的合外力充当向心力解析:向心力始终指向圆心,所以方向是时刻变化的;做匀速圆周运动的物体,所受合力才等于向心力.答案:AD 3.汽车在公路上行驶一般不打滑,轮子转一周,汽车向前行驶的距离等于车轮的周长.某国产轿车的车轮半径约为30 cm ,当该型号的轿车在高速公路上行驶时,驾驶员面前速率计的指针指在“120 km/h”上,可估算出该车轮的转速约为( )A .1000 r/sB .1 000 r/minC .1 000 r/hD .2 000 r/s解析: 由公式ω=2πn ,v =ωr =2πrn ,其中r =30 cm =0.3 m ,v =120 km/h =1003m/s ,代入公式得n =1 00018πr /s ,约为1 000 r/min.答案: B4.(2013·山西高三月考)荡秋千是儿童喜爱的运动,当秋千荡到最高点时小孩的加速度方向可能是( )A .1方向B .2方向C .3方向D .4方向解析:小孩在最高点时速度为零,由a =v 2R可知,此时的向心加速度为零,小球只沿切线方向加速,切向加速度不为零,所以在最高点时小孩的加速度方向为2方向,B 选项正确.答案: B5.一种新型高速列车转弯时,车厢会自动倾斜,提供转弯需要的向心力;假设这种新型列车以360 km/h 的速度在水平面内转弯,弯道半径为1.5 km ,则质量为75 kg 的乘客在列车转弯过程中所受到的合力为( )A .500 NB .1 000 NC .500 2 ND .0 答案: A圆周运动的运动学问题对公式v =rω和a n =v 2r=rω2的理解(1)由v =rω知,r 一定时,v 与ω成正比;ω一定时,v 与r 成正比;v 一定时,ω与r 成反比.(2)由a n =v 2r=rω2知,在v 一定时,an 与r 成反比;在ω一定时,a n 与r 成正比.如图所示是一个玩具陀螺.A 、B 和C 是陀螺上的三个点.当陀螺绕垂直于地面的轴线以角速度ω稳定旋转时,下列表述正确的是( )A .A 、B 和C 三点的线速度大小相等 B .A 、B 和C 三点的角速度相等 C .A 、B 的角速度比C 的大D .C 的线速度比A 、B 的大解析:A 、B 和C 均是同一陀螺上的点,它们做圆周运动的角速度都为陀螺旋转的角速度ω,B 对、C 错.三点的运动半径关系r A =r B >r C ,据v =ωr 可知,三点的线速度关系v A =v B >v C ,A 、D 错.答案:B在传动装置中各物理量之间的关系传动类型图示结论共轴传动各点角速度ω相同,而线速度v =ωr 与半径r 成正比,向心加速度大小a =rω2与半径r 成正比.皮带(链条)传动当皮带不打滑时,用皮带连接的两轮边沿上的各点线速度大小相等,由ω=v r 可知,ω与r 成反比,由a =v 2r可知,a 与r 成反比.1-1:如图所示为某一皮带传动装置.主动轮的半径为r 1,从动轮的半径为r 2.已知主动轮做顺时针转动,转速为n ,转动过程中皮带不打滑.下列说法正确的是( )A .从动轮做顺时针转动B .从动轮做逆时针转动C .从动轮的转速为r 1r 2nD .从动轮的转速为r 2r 1n解析:因为主动轮顺时针转动,从动轮通过皮带的摩擦力带动转动,所以从动轮逆时针转动,A 错误、B 正确;由于通过皮带传动,皮带与轮边缘接触处的速度相等,所以由2πnr 1=2πn 2r 2,得从动轮的转速为n 2=nr 1r 2,C 正确、D 错误. 答案:BC匀速圆周运动的实例分析1.汽车转弯类问题汽车(或自行车)在水平路面上转弯如图所示.路面对汽车(或自行车)的静摩擦力提供向心力.若动摩擦因数为μ,则由μmg =m v 2R得汽车(或自行车)安全转弯的最大速度为v =μgR .2.火车拐弯问题 设火车车轨间距为L ,两轨高度差为h ,火车转弯半径为R ,火车质量为M ,如图所示.因为θ角很小,所以sin θ≈tan θ,故h L=F n Mg,所以向心力Fn =h LMg .又因为Fn =Mv 2/R ,所以车速v =ghR L.3.汽车过桥问题 项目 凸形桥 凹形桥受力 分析图以a 方向为正方向,根据牛顿第二定律列方程mg -F N 1=m v 2r F N 1=mg -m v 2rF N 2-mg =m v 2r F N 2=mg +m v 2r讨论v 增大,小车对桥的压力F′N 1减小;当v增大到rg 时,F′N 1=0 v 增大,小车对桥的压力F′N 2增大;只要v ≠0,F′N 1<F′N 2由列表比较可知,汽车在凹形桥上行驶对桥面及轮胎损害大,但在凸形桥上,最高点速率不能超过gr .在半径为r 的半圆柱面最高点,汽车以v =gr 的速率行驶将脱离桥面. 在高速公路的拐弯处,通常路面都是外高内低.如图所示,在某路段汽车向左拐弯,司机左侧的路面比右侧的路面低一些.汽车的运动可看做是做半径为R 的圆周运动.设内外路面高度差为h ,路基的水平宽度为d ,路面的宽度为L .已知重力加速度为g .要使车轮与路面之间的横向摩擦力(即垂直于前进方向)等于零,则汽车转弯时的车速应等于( )A. gRhL B. gRh d C.gRLh D. gRd h解析:汽车做匀速圆周运动,向心力由重力与斜面对汽车的支持力的合力提供,且向心力的方向水平,向心力大小F 向=mg tan θ.根据牛顿第二定律:F 向=m v 2R,tan θ=h d ,解得汽车转弯时的车速v =gRhd,B 对. 答案:B解决圆周运动问题的主要步骤2-1:“飞车走壁”是一种传统的杂技艺术,演员骑车在倾角很大的桶面上做圆周运动而不掉下来.如图所示,已知桶壁的倾角为θ,车和人的总质量为m ,做圆周运动的半径为r .若使演员骑车做圆周运动时不受桶壁的摩擦力,下列说法正确的是( )A .人和车的速度为gr tan θB .人和车的速度为gr sin θC .桶面对车的弹力为mg cos θD .桶面对车的弹力为mgsin θ解析:对人和车进行受力分析如图所示.根据直角三角形的边角关系和向心力公式可列方程:F N cos θ=mg ,mg tan θ=m v 2r.解得v =gr tan θ,F N =mgcos θ. 答案:AC竖直面内圆周运动中的临界问题有关临界问题出现在变速圆周运动中,竖直平面内的圆周运动是典型的变速圆周运动,一般情况下,只讨论最高点和最低点的情况.(2012·济南模拟)如图所示,小球紧贴在竖直放置的光滑圆形管道内壁做圆周运动,内侧壁半径为R,小球半径为r,则下列说法正确的是( ) A.小球通过最高点时的最小速度v min=g R+rB.小球通过最高点时的最小速度v min=0C.小球在水平线ab以下的管道中运动时,内侧管壁对小球一定无作用力D.小球在水平线ab以上的管道中运动时,外侧管壁对小球一定有作用力解析:小球沿管上升到最高点的速度可以为零,故A错误,B正确;小球在水平线ab以下的管道中运动时,由外侧管壁对小球的作用力F N与球重力在背离圆心方向的分力F mg的合力提供向心力,即:F N-F mg=ma,因此,外侧管壁一定对球有作用力,而内侧壁无作用力,C正确;小球在水平线ab以上的管道中运动时,小球受管壁的作用力情况与小球速度大小有关,D错误.答案:BC(2012·江西南昌模拟)如图所示,两段长均为L 的轻质线共同系住一个质量为m 的小球,另一端分别固定在等高的A 、B 两点,A 、B 两点间距也为L .现使小球在竖直平面内做圆周运动,当小球到达最高点的速率为v 时,两段线中张力恰好均为零,若小球到达最高点速率为2v ,则此时每段线中张力为多大?(重力加速度为g )解析:本题属于最高点无支持物的情况.当速率为v 时,mg =mv 2R当速率为2v 时,满足mg +F =m 2v 2R得F =3mg则设每根线上的张力为F T ,满足:2F T cos 60°2=3mg即F T =3mg . 答案: 3mg1.如图是摩托车比赛转弯时的情形.转弯处路面常是外高内低,摩托车转弯有一个最大安全速度,若超过此速度,摩托车将发生滑动.对于摩托车滑动的问题,下列论述正确的是( )A .摩托车一直受到沿半径方向向外的离心力作用B .摩托车所受外力的合力小于所需的向心力C .摩托车将沿其线速度的方向沿直线滑去D .摩托车将沿其半径方向沿直线滑去解析:本题考查圆周运动的规律和离心现象.摩托车只受重力、地面支持力和地面的摩擦力作用,没有离心力,A 项错误;摩托车正确转弯时可看做是做匀速圆周运动,所受的合力等于向心力,如果向外滑动,说明提供的向心力即合力小于需要的向心力,B 项正确;摩托车将在沿线速度方向与半径向外的方向之间做离心曲线运动,C 、D 项错误.答案:B2.如图所示,用细线拴着一个小球,在光滑水平面上做匀速圆周运动,则下列说法中正确的是( )A .小球线速度大小一定时,线越长越容易断B .小球线速度大小一定时,线越短越容易断C .小球角速度一定时,线越长越容易断D .小球角速度一定时,线越短一定越容易断 解析:小球线速度大小一定时,线的拉力大小与线的长度L 的关系可用F =m v 2L来判断;小球角速度一定时,线的拉力大小与线的长度L的关系可用F =mω2L 来判断.答案:BC3.如图所示的齿轮传动装置中,主动轮的齿数z 1=24,从动轮的齿数z 2=8,当主动轮以角速度ω顺时针转动时,从动轮的运动情况是( )A .顺时针转动,周期为2π/3ωB .逆时针转动,周期为2π/3ωC .顺时针转动,周期为6π/ωD .逆时针转动,周期为6π/ω解析:主动轮顺时针转动,从动轮逆时针转动,两轮边缘的线速度相等,由齿数关系知主动轮转一周时,从动轮转三周,故T 从=2π3ω,B 正确.答案:B4.如图所示,长为L 的轻杆一端固定一质量为m 的小球,另一端可绕固定光滑水平转轴O 转动,现使小球在竖直平面内做圆周运动,C 为圆周的最高点,若小球通过圆周最低点D 的速度大小为6gL ,则小球在C 点( )A .速度等于gLB .速度大于gLC .受到轻杆向上的弹力D .受到轻杆向下的拉力解析:小球从最低点转到最高点,由2mgL =12mv 2D -12mv 2C ,解得v C =2gL ,则小球在C 点的速度大于gL ,B 项对.在C 点,由牛顿第二定律得F +mg =m v 2CL,得F =mg ,F 方向向下,故D 项正确.答案:BD5.“飞车走壁”杂技表演比较受青少年的喜爱,这项运动由杂技演员驾驶摩托车,简化后的模型如图所示.表演者沿表演台的侧壁做匀速圆周运动.若表演时杂技演员和摩托车的总质量不变.摩托车与侧壁间沿侧壁倾斜方向的摩擦力恰好为零,轨道平面离地面的高度为H 、侧壁倾斜角度α不变,则下列说法中正确的是( )A .摩托车做圆周运动的H 越高,向心力越大B .摩托车做圆周运动的H 越高,线速度越大C .摩托车做圆周运动的H 越高,向心力做功越多D .摩托车对侧壁的压力随高度H 变大而减小 解析:考查圆周运动向心力相关知识,学生的分析能力、建模能力.经分析可知向心力由重力及侧壁对摩托车弹力的合力提供,因摩托车和演员整体做匀速圆周运动,所受合外力等于向心力,因而B 正确.答案:B。
(完整版)圆周运动讲义
圆周运动讲义【知识点】1.匀速圆周运动:质点沿圆周运动,如果在相等的时间里通过的圆弧的长度相等,这种运动叫做匀速圆周运动。
匀速圆周运动是一种变加速曲线运动,虽然匀速圆周运动的速度大小不变,但它的速度的方向时刻在发生变化,所以匀速圆周运动不是匀速圆周运动,而是匀速率圆周运动。
2.线速度v①物理意义:描述物体做圆周运动快慢的物理量;②定义:质点沿圆周运动通过的弧长s 和所以时间t 的比值叫做线速度 ③大小:v =s/t ,单位:m/s④矢量,它的方向是质点在圆周上某点沿圆周上的切线方向。
实际上就是该点的瞬时速度。
3.角速度①物理意义:描述质点转过的圆心角的快慢②定义:在匀速圆周运动中,连接运动质点和圆心的半径转过的角度跟所用时间t 的比值,就是质点运动的角速度。
③大小:=/t ,单位:rad/s④匀速圆周运动是角速度不变的圆周运动。
4.周期T 、频率f 和转速n①周期T :在匀速圆周运动中,物体沿圆周转过一周所用的时间叫做匀速圆周运动的周期。
在国际单位制中,单位是秒(s )。
匀速圆周运动是一种周期性的运动。
②频率f :每秒钟完成圆周运动的转数。
在国际单位制中,单位是赫兹(Hz )。
③转速n:单位时间内做匀速圆周运动的物体转过的转数。
在国际单位制中,单位是转/秒(n/s). 匀速圆周运动的T 、f 和n 均不变。
5.描述匀速圆周运动的物理量之间的关系①线速度和角速度间的关系: ②线速度和周期的关系: ③角速度和周期的关系: ④周期和频率之间的关系: 6。
描述圆周运动的动力学物理量———向心力(1)向心力来源:向心力是根据力的作用效果命名的,不是一种特殊的性质力。
向心力可以是某一个性质力,也可以是某一个性质力的分力或某几个性质力的合力。
做匀速圆周运动的物体向心力是所受外力的合力做非匀速圆周运动的物体,其向心力为沿半径方向的外力的合力,而不是物体所受合外力。
(2)向心力大小:根据牛顿第二定律和向心加速度公式可知,向心力大小为:22224T r m r m r v m F πω=== 其中r 为圆运动半径。
圆周运动 参考系-概述说明以及解释
圆周运动参考系-概述说明以及解释1.引言1.1 概述在圆周运动中,物体围绕固定轴或点以特定的路径进行运动。
圆周运动是物体运动的一种普遍形式,广泛应用于日常生活、自然界和科学研究中。
圆周运动的基本特点是物体在运动过程中不断改变方向,但保持距离固定。
在圆周运动中,物体会沿着一个圆形轨道或弧线进行运动,同时遵循特定的速度和加速度规律。
圆周运动可以以直观、美学和实用的方式展示出来,例如地球围绕太阳的公转、行星围绕恒星的运动,或者钟表上指针的转动等。
在物理学中,圆周运动可以通过数学方法进行描述。
通过引入角度的概念,我们可以用角度来表示物体在圆周运动中所处的位置。
同时,线速度和角速度的概念也被引入,用于描述物体在圆周运动中的速度和旋转快慢。
而参考系则是指观察和描述物体运动时所选择的参考框架。
在圆周运动中,选择不同的参考系会对我们对运动的观察和描述产生影响。
不同的参考系可能导致不同的运动轨迹、速度和加速度的测量结果。
因此,对于准确理解和描述圆周运动,必须明确所选择的参考系。
本文旨在探讨圆周运动及其数学描述,并重点研究参考系对圆周运动的影响。
通过分析不同参考系下的运动特点和描述方法,旨在揭示圆周运动中的规律和规则,并深入探讨参考系对圆周运动的影响以及其在科学研究和实际应用中的重要性。
总之,圆周运动是一种常见且重要的物体运动形式,它在日常生活和科学研究中都具有重要的应用价值。
通过研究圆周运动的定义、基本概念、数学描述以及参考系对其影响的现象,我们可以更好地理解和应用圆周运动的规律,并为未来的研究提供新的思路和方向。
1.2文章结构文章结构(Article Structure)是指文章的整体组织和布局,它决定了文章的逻辑序列和篇章框架,使读者能够清晰地理解和吸收文章中的内容。
本文的文章结构主要分为引言、正文、参考系对圆周运动的影响、结论四个部分。
引言(Introduction)部分主要是对文章的研究对象进行概述,并说明文章的目的和意义。
大学物理 第一章 第二节圆周运动与一般平面曲线运动
2、角加速度
lim
t 0 t
d
dt
d 2
dt 2
方向?
四、 圆周运动中线量和角量的关系 1、线速度与角速度 v R
角速度 的方向:
按“右旋规则”确定 角加速度 的方向: 加速时与方向相同 减速时与方向相反
y
R
o
x
2、切向加速度与角加速度 3、 法向加速度与角速度
a R
an
v2 R
v
R 2
4、速度分量式
(1)可将抛体运动分解为 沿x和y 两个方向的独立运动。
立进行的运动迭加而成。
※
抛体运动方程的矢量形式
v
(v0cos )i
(v0
sin
gt)
j
v0t
r
1
gt
2
2
v dr dt
r
t vdt
0
t 0
(vxi
vy
j )dt
(v0t
cos
)i
(v0t
sin
1 2
gt2 )
j
(2)也可将抛体运动分解为沿初速度方向的匀速直线运动和
t
a a
ax2
a
2 y
R 2
7
五、匀变速率圆周运动
常量, 故 at r,an r 2
dω 常量,
dt
又
dω dt d dt,
如 t 0 时, 0 , 0
可得:
0 t θ θ0 0t
1 2
t
2
2
2 0
2 (
0)
匀变速率圆周运动
0 t
θ
θ0
0t
1 2
t
高一物理圆周运动及其应用
第2讲 圆周运动及其应用自主学习回顾☆知识梳理描述圆周运动的物理量主要有线速度、角速度、周期、频率、转速、向心加速度、向心力等,现比较如下表:☆要点深化1.向心力有哪些主要特点?(1)大小:r n m r Tm r m r v m ma F 2222)2()2(ππω=====向向 (2)方向:总是沿半径方向指向圆心,方向时刻改变,是变力.(3)效果:产生向心加速度.仅改变速度的方向,不改变速度的大小.(4)产生:向心力是按效果命名的,不是性质力,它可以是某一个力,也可以是某一个力沿某方向的分力,也可以是某几个力的合力.2.向心力的来源向心力可以是重力、弹力、摩擦力等各种力,也可以是各力的合力或某力的分力,总之,只要达到维持物体做圆周运动效果的力,就是向心力.向心力是按力的作用效果来命名的.对各种情况下向心力的来源应明确.如:水平圆盘上跟随圆盘一起匀速转动的物体(如图4-2-1(a))和水平地面上匀速转弯的汽车,其摩擦力是向心力;圆锥摆(如图4-2-1(b))和以规定速率转弯的火车,向心力是重力与弹力的合力. ☆针对训练 1.如图4-2-2所示,在验证向心力公式的实验中,质量相同的钢球①放在A 盘的边缘,钢球②放在B 盘的边缘,A 、B 两盘的半径之比为2∶1.a 、b 分别是与A 盘、B 盘同轴的轮.a 轮、b 轮半径之比为1∶2,当a 、b 两轮在同一皮带带动下匀速转动时,钢球①②受到的向心力之比为( )A .2∶1B .4∶1C .1∶4D .8∶1 知识点二 匀速圆周运动☆知识梳理1.定义:做圆周运动的物体,若在相等的时间内通过的圆弧长 ,就是匀速圆周运动.2.特点:加速度大小 ,方向始终指向 ,是变加速运动.3.条件:合外力大小 、方向始终与 方向垂直且指向圆心. 思考:匀速圆周运动是不是匀变速曲线运动?为什么?☆要点深化匀速圆周运动和非匀速圆周运动的比较项目 匀速圆周运动 非匀速圆周运动运动性质 是速度大小不变,方向时刻变化的变速曲线运动,是加速度大小不变而方向时刻变化的变加速曲线运动是速度大小和方向都变化的变速曲线运动,是加速度大小和方向都变化的变加速曲线运动 加速度 加速度方向与线速度方向垂直.即只存在向心加速度,没有切向加速度 由于速度的大小、方向均变,所以不仅存在向心加速度且存在切向加速度,合加速度的方向不断改变向心力 ⎪⎪⎪⎩⎪⎪⎪⎨⎧==r Tm rm r v m F F 222)2(πω向合 ⎪⎩⎪⎨⎧==切向合沿切线的分力沿半径的分力ma F ma F F y x图4-2-1图4-2-2☆针对训练 2.如图4-2-3所示,固定的锥形漏斗内壁是光滑的,内壁上有两个质量相等的小球A 和B ,在各自不同的水平面做匀速圆周运动,以下说法正确的是( )A .v A >vB B .ωA >ωBC .a A >a BD .压力F NA >F NB知识点三 离心运动及受力特点☆知识梳理 1.定义做匀速圆周运动的物体,在合外力 或者不足以提供做圆周运动所需的向心力的情况下,就做逐渐远离圆心的运动.2.离心运动的成因做圆周运动的物体,由于本身的惯性,总有沿着圆周切线方向飞出去的倾向.(1)当F =mr ω2时,物体做 运动;(2)当F =0时,物体沿 飞出;(3)当F <mr ω2时,物体逐渐远离圆心,F 为实际提供的向心力.如图4-2-4所示.3.向心运动当提供向心力的合外力大于做圆周运动所需向心力时,即F >mr ω2,物体渐渐向圆心靠近.如图4-2-4所示.☆针对训练3.如图4-2-5是摩托车比赛转弯时的情形,转弯处路面常是外高内低,摩托车转弯有一个最大安全速度,若超过此速度,摩托车将发生滑动.对于摩托车滑动的问题,下列论述正确的是( )A .摩托车一直受到沿半径方向向外的离心力作用B .摩托车所受外力的合力小于所需的向心力C .摩托车将沿其线速度的方向沿直线滑去D .摩托车将沿其半径方向沿直线滑去图4-2-3图4-2-4 图4-2-5解题思路探究 题型1 描述圆周运动的物理量及其关系 【例1】 无级变速在变速范围内任意连续地变换速度,性能优于传统的挡位变速,很多种高档汽车都应用了无级变速.如图4-2-6是截锥式无级变速模型示意图,两个锥轮之间有一个滚轮,主动轮、滚轮、从动轮之间靠着彼此之间的摩擦力带动.以下判断中正确的是( )A .当位于主动轮与从动轮之间的滚轮从右向左移动时从动轮转速降低,滚轮从左向右移动时从动轮转速增加B .当位于主动轮与从动轮之间的滚轮从左向右移动时从动轮转速降低,滚轮从右向左移动时从动轮转速增加C .当滚轮位于主动轮直径为D 1、从动轮直径为D 2的位置上时,则主动轮转速为n 1、从动轮转速为n 2之间的关系为:2112D D n n = D .当滚轮位于主动轮直径为D 1、从动轮直径为D 2的位置上时,则主动轮转速为n 1、从动轮转速为n 2之间的关系为:1212D D n n = 变式训练1-1 图4-2-7是自行车传动机构的示意图,其中Ⅰ是大齿轮,Ⅱ是小齿轮,Ⅲ是后轮.(1)假设脚踏板的转速为n r/s ,则大齿轮的角速度是________ rad/s.(2)要知道在这种情况下自行车前进的速度有多大,除需要测量大齿轮Ⅰ的半径r 1,小齿轮Ⅱ的半径r 2外,还需要测量的物理量是________.(3)用上述量推导出自行车前进速度的表达式:________________.题型2 匀速圆周运动的实例分析【例2】 随着经济的持续发展,人民生活水平的不断提高,近年来我国私家车数量快速增长,高级和一级公路的建设也正加速进行.为提高公路弯道部分的行车速度,防止发生侧滑,常将弯道部分设计成外高内低的斜面.如果某品牌汽车的质量为m ,汽车行驶时弯道部分的半径为r ,汽车轮胎与路面的动摩擦因数为μ,路面设计的倾角为θ,如图4-2-8所示.(重力加速度g 取10 m/s 2)(1)为使汽车转弯时不打滑,汽车行驶的最大速度是多少?(2)若取sin θ=1/20,r =60 m ,汽车轮胎与雨雪路面的动摩擦因数为μ=0.3,则弯道部分汽车行驶的最大速度是多少?图4-2-7变式训练2-1 世界上平均海拔最高的铁路——青藏铁路于2006年7月1日全线贯通.假设某新型国产机车总质量为m,沿青藏铁路运行.如图4-2-9所示,已知两轨间宽度为L,内外轨高度差为H,重力加速度为g,如果机车要进入半径为R的弯道,请问,该弯道处的设计速度为多少最适宜?2-2 在一次趣味游戏中,某同学在地面上放置一个半径为R的圆形跑道,在跑道左边放置一个高为h的平台,平台边缘上的P点在地面上P′点的正上方,P′与跑道圆心O的距离为L(L>R),如图4-2-7所示.跑道上有一辆玩具小车,现让一同学从P点水平抛出小砂袋,并使其落入小车中(砂袋所受空气阻力不计).问:(1)当小车分别位于A点和B点时(∠AOB=90°),砂袋被抛出时的初速度各为多大?(2)若小车在跑道上做匀速圆周运动,则砂袋被抛出时的初速度在什么范围内才能使砂袋落入小车中?(3)若小车沿跑道顺时针做匀速圆周运动,当小车恰好经过A点时,将砂袋抛出,为使砂袋能在B点处落入小车中,小车的速率v应满足什么条件?图4-2-9。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2讲 圆周运动一、知能要点1、匀速圆周运动、角速度、线速度、向心加速度 (1)、匀速圆周运动①定义:做圆周运动的物体,若在相等的时间内通过的圆弧长相等,就是匀速圆周运动。
②特点:加速度大小不变,方向始终指向圆心,是变加速运动。
③条件:合外力大小不变、方向始终与速度方向垂直且指向圆心。
(2)、描述圆周运动的物理量描述圆周运动的物理量主要有线速度、角速度、周期、频率、转速、向心加速度、向心力等,现比较如下表:定义、意义公式、单位 线速度(v)①描述圆周运动的物体运动快慢的物理量 ②是矢量,方向和半径垂直,和圆周相切 ①v =Δs Δt =2πrT②单位:m/s 角速度(ω)①描述物体绕圆心转动快慢的物理量 ②中学不研究其方向①ω=ΔθΔt =2πT②单位:rad/s周期(T)和转速(n)或频率(f) ①周期是物体沿圆周运动一周的时间 ②转速是物体单位时间转过的圈数,也叫频率①T =2πrv单位:s②n 的单位:r/s 、r/min ,f 的单位:Hz 向心加速度(a)①描述速度方向变化快慢的物理量 ②方向指向圆心①a =v 2r =rω2②单位:m/s 22①、作用效果:向心力产生向心加速度,只改变速度的方向,不改变速度的大小。
②、大小:F =m v 2r =mω2r =m 4π2T2r =mωv =4π2mf 2r 。
③、方向:始终沿半径方向指向圆心,时刻在改变,即向心力是一个变力。
④、来源:向心力可以由一个力提供,也可以由几个力的合力提供,还可以由一个力的分力提供。
3、离心现象①定义:做圆周运动的物体,在所受合外力突然消失或不足以提供圆周运动所需向心力的情况下,就做逐渐远离圆心的运动。
②本质:做圆周运动的物体由于本身的惯性,总有沿着切线方向飞出去的趋势。
③受力特点当F =mrω2时,物体做匀速圆周运动; 当F =0时,物体沿切线方向飞出;当F <mrω2时,物体逐渐远离圆心,F 为实际提供的向心力,如图所示。
4、圆周运动中的运动学分析 (1).对公式v =ωr 的理解:当r 一定时,v 与ω成正比;当ω一定时,v 与r 成正比;当v 一定时,ω与r 成反比。
(2).对a =v 2r =ω2r =ωv 的理解:在v 一定时,a 与r 成反比;在ω一定时,a 与r 成正比。
5、常见的三种传动方式及特点:(1).皮带传动:如图甲、乙所示,皮带与两轮之间无相对滑动时,两轮边缘线速度大小相等,即v A =v B 。
(2).摩擦传动:如图,两轮边缘接触,接触点无打滑现象时,两轮边缘线速度大小相等,即v A =v B 。
(3).同轴传动:如图甲、乙所示,绕同一转轴转动的物体,角速度相同,ωA =ωB ,由v =ωr 知v 与r 成正比。
6、匀速圆周运动的实例分析(1)、运动实例:汽车、火车转弯、飞机在水平面内做匀速圆周飞行等。
(2)、问题特点①)运动轨迹是圆且在水平面内; ②向心力的方向沿半径指向圆心;③向心力来源:一个力或几个力的合力或某个力的分力。
判断对错:(1)做圆周运动的物体,一定受到向心力的作用,所以分析做圆周运动物体的受力,除了分析其受到的其他力,还必须指出它受到向心力的作用( )(2)一物体以4 m/s 的线速度做匀速圆周运动,周期为2 s ,则速度变化率的大小为4π m/s 2( ) (3)在绝对光滑的水平路面上汽车可以转弯( )(4)火车转弯速率小于规定的数值时,内轨受到的压力会增大( )(5)飞机在空中沿半径为R 的水平圆周盘旋时,飞机机翼一定处于倾斜状态( ) (6)做平抛运动的物体、在任意相等的时间内速度的变化相同( ) (7)做平抛运动的物体初速度越大,在空中运动时间越长( )(8)从同一高度水平抛出的物体,不计空气阻力,初速度越大,落地速度越大( )二、针对训练1、(多选)质点做匀速圆周运动,则:A.在任何相等的时间里,质点的位移都相同B.在任何相等的时间里,质点通过的路程都相等C.在任何相等的时间里,连接质点和圆心的半径转过的角度都相等D.在任何相等的时间里,质点运动的平均速度都相同2、(多选)如图,有一皮带传动装置,A、B、C三点到各自转轴的距离分别为R A、R B、R C,已知R B=R C=R A2,若在传动过程中,皮带不打滑。
则:A.A点与C点的角速度大小相等B.A点与C点的线速度大小相等C.B点与C点的角速度大小之比为2∶1D.B点与C点的向心加速度大小之比为1∶43、(多选)如图所示为一链条传动装置的示意图。
已知主动轮是逆时针转动的,转速为n,主动轮和从动轮的齿数比为k,以下说法中正确的是:A.从动轮是顺时针转动的B.主动轮和从动轮边缘的线速度大小相等C.从动轮的转速为nkD.从动轮的转速为n/k4、(2013·江苏卷)如图,“旋转秋千”中的两个座椅A、B质量相等,通过相同长度的缆绳悬挂在旋转圆盘上。
不考虑空气阻力的影响,当旋转圆盘绕竖直的中心轴匀速转动时,下列说法正确的是:A.A的速度比B的大B.A与B的向心加速度大小相等C.悬挂A、B的缆绳与竖直方向的夹角相等D.悬挂A的缆绳所受的拉力比悬挂B的小5、(多选)铁路转弯处的弯道半径r是根据地形决定的。
弯道处要求外轨比内轨高,其内、外轨高度差h的设计不仅与r有关。
还与火车在弯道上的行驶速度v有关。
下列说法正确的是:A.速率v一定时,r越小,要求h越大B.速率v一定时,r越大,要求h越大C.半径r一定时,v越小,要求h越大D.半径r一定时,v越大,要求h越大6、长为L的轻杆A一端固定一个质量为m的小球B,另一端固定在水平转轴O上,杆随转轴O在竖直平面内匀速转动,角速度为ω。
某时刻杆与水平方向成α角,如图,则此时刻杆对小球的作用力方向在哪个方向或哪个范围内:A.竖直向上B.沿OB方向C.图中区域ⅠD.图中区域Ⅱ7、(多选)(2013·新课标全国卷Ⅱ)公路急转弯处通常是交通事故多发地带。
如图,某公路急转弯处是一圆弧,当汽车行驶的速率为v c时,汽车恰好没有向公路内外两侧滑动的趋势,则在该弯道处:A.路面外侧高内侧低B.车速只要低于v c,车辆便会向内侧滑动C.车速虽然高于v c,但只要不超出某一最高限度,车辆便不会向外侧滑动D.当路面结冰时,与未结冰时相比,v c的值变小8、(多选)如图,两根长度相同的细线分别系有两个完全相同的小球,细线的上端都系于O点。
设法让两个小球均在水平面上做匀速圆周运动。
已知L1跟竖直方向的夹角为60°,L2跟竖直方向的夹角为30°,O点到水平面距离为h,下列说法正确的是:A.细线L1和细线L2所受的拉力大小之比为3∶1B.小球m1和m2的角速度大小之比为3∶1C.小球m1和m2的向心力大小之比为3∶1D.小球m1和m2的线速度大小之比为33∶19、如图,一木块放在圆盘上,圆盘绕通过圆盘中心且垂直于盘面的竖直轴匀速转动,木块和圆盘保持相对静止,那么:A.木块受到圆盘对它的摩擦力,方向沿半径背离圆盘中心B.木块受到圆盘对它的摩擦力,方向沿半径指向圆盘中心C.木块受到圆盘对它的摩擦力,方向与木块运动的方向相反D.因为木块与圆盘一起做匀速转动,所以它们之间没有摩擦力10、(多选)如图甲所示,杂技表演“飞车走壁”的演员骑着摩托车飞驶在光滑的圆台形筒壁上,筒的轴线垂直于水平面,圆台筒固定不动。
现将圆台筒简化为如图乙所示,若演员骑着摩托车先后在A、B两处紧贴着内壁分别在图乙中虚线所示的水平面内做匀速圆周运动,则下列说法正确的是:A.A处的线速度大于B处的线速度B.A处的角速度小于B处的角速度C.A处对筒的压力大于B处对筒的压力D.A处的向心力等于B处的向心力11、如图,一光滑轻杆沿水平方向放置,左端O处连接在竖直的转动轴上,a、b为两个可视为质点的小球,穿在杆上,并用细线分别连接Oa和ab,且Oa=ab,已知b球质量为a球质量的3倍。
当轻杆绕O轴在水平面内匀速转动时,Oa和ab两线的拉力之比为:A.1∶3B.1∶6C.4∶3D.7∶612、(2013·重庆卷)如图,半径为R的半球形陶罐,固定在可以绕竖直轴旋转的水平转台上,转台转轴与过陶罐球心O的对称轴OO′重合。
转台以一定角速度ω匀速旋转,一质量为m的小物块落入陶罐内,经过一段时间后,小物块随陶罐一起转动且相对罐壁静止,它和O点的连线与OO′之间的夹角θ为60°,重力加速度大小为g。
(1)若ω=ω0,小物块受到的摩擦力恰好为零,求ω0;(2)若ω=(1±k)ω0,且0<k≪1,求小物块受到的摩擦力大小和方向。
第2讲知能运用课后训练等级1、(多选)质点做匀速圆周运动时,下列说法正确的是:A.速度的大小和方向都改变B.匀速圆周运动是匀变速曲线运动C.当物体所受合力全部用来提供向心力时,物体做匀速圆周运动D.向心加速度大小不变,方向时刻改变2、(多选)(2014·广东韶关一模)如图,由于地球的自转,地球表面上P、O两物体均绕地球自转轴做匀速圆周运动,对于P、O两物体的运动,下列说法正确的是:A.P、O两点的角速度大小相等B.P、O两点的线速度大小相等C.同一物体在O点的向心加速度比在P点的向心加速度大D.放在P、O两处的物体均只受重力和支持力两个力作用3、如图,洗衣机脱水筒在转动时,衣服贴靠在匀速转动的圆筒内壁上而不掉下来,则衣服:A.受到重力、弹力、静摩擦力和离心力四个力的作用B.所需的向心力由重力提供C.所需的向心力由弹力提供D .转速越快,弹力越大,摩擦力也越大4、如图,质量不计的轻质弹性杆P 插入桌面上的小孔中,杆的另一端套有一个质量为m 的小球,今使小球在水平面内做半径为R 的匀速圆周运动,角速度为ω,则杆的上端受到小球的作用力大小为: A .m ω2R B .m g 2+ω4R 2C .m g 2-ω4R 2D .条件不足,不能确定5、世界一级方程式锦标赛新加坡大奖赛赛道单圈长5.067公里,共有23个弯道,如图,赛车在水平路面上转弯时,常常在弯道上冲出跑道,则以下说法正确的是:A .是由于赛车行驶到弯道时,运动员未能及时转动方向盘才造成赛车冲出跑道的B .是由于赛车行驶到弯道时,运动员没有及时加速才造成赛车冲出跑道的C .是由于赛车行驶到弯道时,运动员没有及时减速才造成赛车冲出跑道的D .由公式F =mω2r 可知,弯道半径越大,越容易冲出跑道6、如图,某电视台推出了一款娱乐闯关节目,选手最容易失败落水的地方是第四关“疯狂转盘”和第五关“高空滑索”。
根据所学物理知识,下列选项中表述正确的是:A .选手进入转盘后,在转盘中间比较安全B .选手进入转盘后,在转盘边缘比较安全C .质量越大的选手,越不容易落水D .选手从最后一个转盘的边缘起跳去抓滑索时,起跳方向应正对悬索 7、关于质点做匀速圆周运动的下列说法正确的是:A .由a =v 2r 知,a 与r 成反比 B .由a =ω2r 知,a 与r 成正比C .由ω=vr知,ω与r 成反比 D .由ω=2πn 知,ω与转速n 成正比8、(多选) (2014·广州调研)如图所示,当正方形薄板绕着过其中心O 并与板垂直的转动轴匀速转动时,板上A 、B 两点的:A .角速度之比ωA ∶ωB =1∶1 B .角速度之比ωA ∶ωB =1∶ 2C .线速度之比v A ∶v B =2∶1D .线速度之比v A ∶v B =1∶ 29、(多选)有一水平的转盘在水平面内匀速转动,在转盘上放一质量为m 的物块恰能随转盘一起匀速转动,则下列关于物块的运动正确的是:A .如果将转盘的角速度增大,则物块可能沿切线方向飞出B .如果将转盘的角速度增大,物块将沿曲线逐渐远离圆心C .如果将转盘的角速度减小,物块将沿曲线逐渐靠近圆心D.如果将转盘的角速度减小,物块仍做匀速圆周运动10、(多选)(2015·湖北孝感高三调研)如图,水平的木板B托着木块A一起在竖直平面内做匀速圆周运动,从水平位置a沿逆时针方向运动到最高点b的过程中,下列说法正确的是:A.木块A处于超重状态B.木块A处于失重状态C.B对A的摩擦力越来越小D.B对A的摩擦力越来越大11、如图,内壁光滑的竖直圆桶,绕中心轴做匀速圆周运动,一物块用细绳系着,绳的另一端系于圆桶上表面圆心,且物块贴着圆桶内表面随圆桶一起转动,则:A.绳的张力可能为零B.桶对物块的弹力不可能为零C.随着转动的角速度增大,绳的张力保持不变D.随着转动的角速度增大,绳的张力一定增大第3讲圆周运动临界与模型一、圆周运动知能要点1、圆周运动的临界问题水平面内圆周运动的临界极值问题通常有两类,一类是与摩擦力有关的临界,一类是与弹力有关的临界。