小学六年级数学圆柱的认识、侧面积及表面积练习题.doc
六年级下册数学一课一练圆柱的认识_人教新课标(2022秋)(含解析)
六年级下册数学一课一练圆柱的认识_人教新课标(2022秋)(含解析)我国古代的读书人,从上学之日起,就日诵不辍,一样在几年内就能识记几千个汉字,熟记几百篇文章,写出的诗文也是字斟句酌,琅琅上口,成为满腹经纶的文人。
什么缘故在现代化教学的今天,我们念了十几年书的高中毕业生甚至大学生,竟提起作文就头疼,写不出像样的文章呢?吕叔湘先生早在19 78年就尖锐地提出:“中小学语文教学成效差,中学语文毕业生语文水平低,……十几年上课总时数是9160课时,语文是2749课时,恰好是30%,十年的时刻,二千七百多课时,用来学本国语文,却是大多数只是关,岂非咄咄怪事!”寻根究底,其要紧缘故确实是腹中无物。
专门是写议论文,初中水平以上的学生都明白议论文的“三要素”是论点、论据、论证,也通晓议论文的差不多结构:提出问题――分析问题――解决问题,但真正动起笔来就犯难了。
明白“是如此”,确实是讲不出“什么缘故”。
全然缘故依旧无“米”下“锅”。
因此便翻开作文集锦之类的书大段抄起来,抄人家的名言警句,抄人家的事例,不参考作文书就专门难写出像样的文章。
因此,词汇贫乏、内容空泛、千篇一律便成了中学生作文的通病。
要解决那个问题,不能单在布局谋篇等写作技方面下功夫,必须认识到“死记硬背”的重要性,让学生积存足够的“米”。
一、单选题我国古代的读书人,从上学之日起,就日诵不辍,一样在几年内就能识记几千个汉字,熟记几百篇文章,写出的诗文也是字斟句酌,琅琅上口,成为满腹经纶的文人。
什么缘故在现代化教学的今天,我们念了十几年书的高中毕业生甚至大学生,竟提起作文就头疼,写不出像样的文章呢?吕叔湘先生早在19 78年就尖锐地提出:“中小学语文教学成效差,中学语文毕业生语文水平低,……十几年上课总时数是9160课时,语文是2749课时,恰好是30%,十年的时刻,二千七百多课时,用来学本国语文,却是大多数只是关,岂非咄咄怪事!”寻根究底,其要紧缘故确实是腹中无物。
冀教版数学六年级下册第四单元《圆柱和圆锥》课时练
4.1 认识圆柱1.下面哪些物体是圆柱?在下面的括号里画“√”。
2.填空题。
(1)把一个棱长6厘米的正方体削成一个最大的圆柱,圆柱的底面直径是( )厘米,高是( )厘米。
(2)一个圆柱的底面直径是3厘米,高也是3厘米,侧面展开的长方形的长是( )厘米,宽是( )厘米。
(3)一个圆柱的底面周长是16分米,高是8分米,侧面积是( )平方分米。
(4)一个圆柱的底面直径是10厘米,高是8厘米,侧面积是( )平方厘米。
(5)一个圆柱的底面半径是0.3米,高是0.5米,侧面积是( )平方米。
3.判断题。
(对的画“√”,错的画“✕”)(1)圆柱的高只有一条。
( )(2)圆柱两个底面的直径相等。
( )(3)圆柱的底面周长和高相等时,展开后的侧面一定是个正方形。
( )(4)圆柱的侧面是一个曲面。
( )(5)圆柱的侧面展开图可能是正方形。
( )4.解决问题。
(1)用一张长15厘米、宽8厘米的长方形纸围一个圆柱,这个圆柱的侧面积是多少平方厘米?(2)一个圆柱,它的底面周长是12.56厘米,高是10厘米,它的侧面积是多少平方厘米?(3)广告公司制作了一个底面直径是1.5米、高是2.5米的圆柱形灯箱。
它的侧面最多可以张贴多大面积的海报?(4)大厅的柱子高3米,底面周长是3.14米。
给5根这样的柱子刷油漆,每平方米用油漆0.5千克,一共要用油漆多少千克?附答案:1. 第2、4个是圆柱。
2. (1)6 6 (2)9.42 3 (3)128 (4)251.2 (5)0.9423. (1)✕(2)√(3)✕(4) √(5) √4. (1)15×8=120(平方厘米)(2)12.56×10=125.6(平方厘米)(3)3.14×1.5×2.5=11.775(平方米)(4)3.14×3×5×0.5=23.55(千克)4.2 圆柱的表面积1.求出下面圆柱的侧面积和表面积。
六年级数学下册试题 一课一练《图形与几何--立体图形的认识与测量(二)》-人教版(含答案).doc
《图形与几何--立体图形的认识与测量(二)》一、计算题1.求如图图形的表面积.(单位:厘米)2.有一个半圆柱如图,已知它的底面直径是20厘米,高是8厘米,求它的表面积.3.仔细观察下面图形的特点,然后用较简便的方法求出这个图形的体积:(单位:厘米)4.图形计算求立体图形的体积。
单位(分米)5.如图,将三个高都是1米,底面半径分别是1.5米、1米、0.5米的3个圆柱体组成一个物体.①求这个物体的体积?②求这个物体的表面积?6.如图这只工具箱的下半部是棱长为20cm的正方体,上半部是圆柱体的一半.算出它的表面积和体积.7.求下列物体的体积.二、解决问题1.用塑料绳捆扎一个圆柱形的蛋糕盒(如图,单位:厘米),打结处正好是底面圆心,打结用去绳长25厘米.扎这个盒子至少用去塑料绳多少厘米?在它的整个侧面贴上商标和说明,这部分的面积是多少平方厘米?2.砌一个圆柱形的水池,底面直径6米,深3米.在池的周围和底面抹上水泥,每平方米用水泥5千克,大约要用水泥多少千克?(得数保留整千克数)3.一根圆柱形水管,横截面的半径是5厘米,长是1.2米,做100节这样的水管要铁皮多少平米?4.把一个长12厘米,宽6厘米的长方形纸板沿长旋转一周,得到一个圆柱体,这个圆柱体的侧面积是多少?5.如图,是用塑料薄膜覆盖的蔬菜大棚,长16米,横截面是一个直径2米的半圆.(1)这个大棚的种植面积是多少平方米?(2)覆盖在这个大棚上的塑料薄膜约有多少平方米?6.在下面两个空容器中,将甲容器注满水,再倒入乙容器,这时乙容器中的水深多少cm?7.如图是一个直角三角形.AC边上的高是多少厘米?(请先在图中画出高,并计算)再算一算,以AC为轴旋转一周形成的立体图形的体积是多少立方厘米?8.如图,ABCD是直角梯形,以AB为轴将梯形旋转一周,得到一个立体图形,这个立体图形的体积是多少立方厘米?9.把一块棱长为8厘米的正方体铁块熔铸成一个底面半径是10厘米的圆锥形铁块,这个圆锥形铁块的高度是多少?10.一个底面半径是6厘米的圆柱形玻璃器皿里装有一部分水,水中浸没着一个高9厘米的圆锥体铅锤.当铅锤从水中取出后,水面下降了0.5厘米.这个圆锥体的底面积是多少平方厘米?( 取3.14)11.如图:在长方体容器内装有水,已知容器内壁底面长为25厘米,宽为20厘米,现把小圆柱体和小圆锥体浸没于水中,水面上升了2厘米.如果圆锥和圆柱的底面积相等高也相等,圆维的体积是多少?12.一个酸奶瓶(如图),它的瓶身呈圆柱形(不包括瓶颈),容积是32.4立方厘米.当瓶子正放时,瓶内酸奶高为8厘米,瓶子倒放时,空余部分高为2厘米.请你算一算,瓶内酸奶体积是多少立方厘米?13.有甲、乙两只圆柱形玻璃杯,其内直径依次是18厘米、12厘米,杯中盛有适量的水.甲杯中沉没着一铁块,当取出此铁块后,甲杯中的水位下降了2厘米;然后将铁块沉没于乙杯,且乙杯中的水未外溢.问:这时乙杯中的水位上升了多少厘米?14.有一个高8厘米,容量为50毫升的圆形容器A,里面装满了水,现把长16厘米的圆柱B 垂直放入,使B的底和A的底面接触,这时一部分水从容器中溢出,当把B从A拿走后,A中的水的高度只有6厘米,求圆柱体B的体积是多少?15.有一种容器,瓶颈以下部分呈圆柱形,内有水550mL.现在容器中装有一些水,正放时水的高度为25cm,倒放时空余部分的高度为5cm.问:容器的容积是多少毫升?在水面上,16.在底面长60厘米、宽40厘米的长方形鱼缸中竖直放入一个圆柱体氧气泵,有16其余被水浸没.此时水位比放入前上升了2厘米,氧气泵的体积是多少立方厘米?17.如图所示,某机器零件中间是一个棱长为2厘米的正方体,两边各是圆柱体的一半,求这个零件的表面积和体积.18.小明把一块橡皮泥揉成圆柱形,切成三块(如图),表面积增加了50.24平方厘米,切成四块(如图),表面积增加了96平方厘米,这块橡皮泥的体积是多少立方厘米?19.将一个圆锥从顶点沿底面直径切开,其表面积比原来增加了60平方厘米,如果圆锥的高是6厘米,则圆锥的体积是多少立方厘米?20.把3个长6厘米,底面积相等的圆柱体拼成一个大圆柱,表面积减少了18.84立方厘米,拼成的大圆柱的体积是多少立方厘米?21.一个底面周长是43.96厘米,高为8厘米的圆柱,沿着高切成两个同样大小的半圆柱体,表面积增加了多少?22.把一个圆柱按如图1沿直径方向切成两个半圆柱,表面积增加240cm,按图2方式切成两个圆柱,表面积就会增加225.12cm,求这个圆柱的体积.23.如图所示,把底面周长18.84厘米,高10厘米的圆柱切成若干等分,拼成一个近似的长方体.这个长方体的底面积、表面积和体积各是多少?24.一段体积是52.8立方分米的圆柱木料,切削成一个最大的圆锥体,削去部分的体积是多少立方分米?25.一个正方体木块棱长为2dm,把它切削成一个最大的圆锥体.求这个圆锥体与原来正方体的体积比是多少?26.一个底面直径是4厘米的圆锥如图,从顶点沿着高将它切成两半后,表面积增加了24平方分米.这个圆锥的体积是多少平方厘米?27.把一个棱长为6dm的正方体铁块放入一个圆柱形容器内,完全浸没后水面上升了4cm,如果把一个圆锥形铅块放入圆柱容器中,完全浸没后水面上升了1.5cm,求这个圆锥形铅块的体积.28.有甲乙两只圆柱形水桶,甲水桶的底面半径是8cm.乙水桶的底面半径是6cm.甲水桶里没有水,乙水桶里有水且高度是25cm,现把乙水桶里的水倒一部分给甲水桶,使两只水桶里的水的高度一样.求这时甲水桶里有水多少立方厘米?29.一个圆柱形水桶里放入一段半径5厘米的圆钢,把它全部放入水中,桶里的水面上升了9厘米,如果把水中的圆钢提起,使它露出水面8厘米,那么桶里的水面就下降4厘米,求圆钢的体积.(π取3.14)30.一个圆柱形水桶,底面半径为20cm,里面盛有80cm深的水,现将一个底面周长为62.8cm的圆锥形铁块完全浸没在水中,水面上升了1.圆锥形铁块的高度是多少?(π取3.14)1631.圆柱的底面半径和高都是2厘米,把它浸入一个均匀水槽内的水中,量得水位上升了1厘米.再把一个底面直径为6厘米的圆锥浸入水中,水位又上升了4.5厘米.求圆锥的高.32.在一个底面积为34平方厘米的圆柱形容器中,放入等底等高的一根圆柱形物体和一个圆露出水面,圆锥完全浸没,圆锥的体积是多少立方厘锥形物体,水面上升10厘米,圆柱有15米?33.一个圆柱形木块按图甲中的方式切成形状、大小相同的四块,表面积增加了296cm;按图乙中的方式切成形状、大小相同的三块,表面积增加了250.24cm.若把它削成一个最大的圆锥,体积减小多少立方厘米?34.如图,在密封的容器中装有一些水,水面距底部的高度是10cm.如果将这个容器倒过来,你能求出这时水面距底部的高度是多少厘米吗?答案一、计算题1.解:23.142015 3.14(202)2 3.141015⨯⨯+⨯÷⨯+⨯⨯942628471=++2041=(平方厘米)答:这个图形的表面积是2041平方厘米.2.解:23.142082 3.14(202)208⨯⨯÷+⨯÷+⨯251.2314160=++725.2=(平方厘米)答:它的表面积是725.2平方厘米.3.解:224143.14()9 3.14()9232⨯⨯+⨯⨯⨯,13.1449 3.14493=⨯⨯+⨯⨯⨯, 113.0437.68=+, 150.72=(立方厘米); 答:这个图形的体积是150.72平方厘米.4.解:223.14[(202)(102)]15⨯÷-÷⨯3.14[10025]15=⨯-⨯3.147515=⨯⨯3532.5=(立方分米), 答:这个立体图形的体积是3532.5立方分米.5.解:(1)2223.14(1.510.5)1⨯++⨯,3.14(2.2510.25)=⨯++,3.14 3.5=⨯,10.99=(立方米), 答:这个物体的体积是10.99立方米.(2)大圆柱的表面积:23.14 1.522 3.14 1.51⨯⨯+⨯⨯⨯,14.139.42=+,=(平方米),23.55中圆柱侧面积:2 3.1411 6.28⨯⨯⨯=(平方米),小圆柱侧面积:2 3.140.51 3.14⨯⨯⨯=(平方米),这个物体的表面积:23.55 6.28 3.1432.97++=(平方米);答:这个物体的表面积是32.97平方米.6.解:表面积:23.1420202 3.141020205⨯⨯÷+⨯+⨯⨯,=÷+⨯+⨯,12562 3.141004005=++,6283142000=(平方厘米);2942体积:2⨯⨯÷+⨯⨯,3.14102022020203.141002028000=⨯⨯÷+,=+,31408000=(立方厘米);11140答:它的表面积是2942平方厘米,体积是11140立方厘米.7.解:2⨯÷⨯+÷3.14(42)(57)2=⨯⨯÷3.144122=⨯3.1424=(立方厘米),75.36答:图中物体的体积是75.36立方厘米.二、解决问题1.解:(1)15850825⨯+⨯+,=++,12040025=(厘米),545面积:3.145015⨯⨯,15715=⨯,=(平方厘米);2355答:扎这个盒子至少用去塑料绳545厘米,在它的整个侧面贴上商标和说明,这部分的面积是2355平方厘米.2.解:需要抹水泥的面积是:2⨯÷+⨯⨯,3.14(62) 3.1463=⨯+,3.14956.52=+,28.2656.52=(平方米),84.78⨯≈(千克),84.785424答:大约要用水泥424千克.3.解:5厘米0.05=米,⨯⨯⨯⨯3.140.052 1.2100=⨯⨯⨯3.140.1 1.2100=⨯0.3768100=(平方米);37.68答:做100节这样的水管至少需要37.68平方米的铁皮.4.解:3.146212⨯⨯⨯,6.28612=⨯⨯,=⨯,37.6812=(平方厘米),452.16答:这个圆柱体的侧面积是452.16平方厘米.5.解:(1)16232⨯=(平方米)答:这个大棚的种植面积是32平方米.(2)2⨯⨯÷+⨯÷3.142162 3.14(22)=+50.24 3.14=(平方米)53.38答:覆盖在这个大棚上的塑料薄膜约有53.38平方米.6.解:1124⨯=(厘米)3答:乙容器中的水深4厘米.7.解:AC边上的高:如图:862210⨯÷⨯÷4810=÷4.8=(厘米)21 3.14 4.8103⨯⨯⨯ 1 3.1423.04103=⨯⨯⨯ 241.152=(立方厘米)答:以AC 为轴旋转一周形成的立体图形的体积是241.152立方厘米.8.解:如下图:2213.1428 3.142(85)3⨯⨯-⨯⨯⨯- 13.1448 3.14433=⨯⨯-⨯⨯⨯ 100.4812.56=-87.92=(立方厘米), 答:这个立体图形的体积是87.92立方厘米.9.解:38512=(立方厘米)23512(3.1410)⨯÷⨯1536314=÷4.89≈(厘米)答:这个圆锥形铁块的高大约是4.89厘米.10.解:容器水下降的体积:23.1460.5⨯⨯3.14360.5=⨯⨯56.52=(立方厘米);圆锥的底面积:1÷⨯56.52(9)3=÷56.523=(平方厘米);18.84答:这个圆锥体的底面积是18.84平方厘米.11.解:圆锥和圆柱的体积和:⨯⨯=(立方厘米);2520210001000(13)÷+=÷10004=(立方厘米),250答:圆锥体的体积是250立方厘米.12.解:8210+=(厘米),8⨯=(立方厘米),32.425.9210答:瓶内酸奶体积是25.92立方厘米.13.解:22⨯÷⨯÷÷÷3.14(182)2 3.14(122)=⨯÷81236=(厘米)4.5答:这时乙杯中的水位上升了4.5厘米.14.解:圆形容器A的底面积:÷=(平方厘米);508 6.25溢出水的体积,即放入容器A的圆柱B的体积:6.25(86)⨯-,=⨯,6.252=(毫升);12.5圆柱体B的体积是:12.5816÷⨯,=⨯,12.52=(立方厘米);25答:圆柱体B 的体积是25立方厘米.15.解:根据题意画示意图如下:解:550[25(255)]÷÷+550[2530]=÷÷55506=÷ 3660()cm =3660660cm =毫升答:容器的容积是多少毫升660毫升.16.解:160402(1)6⨯⨯÷-548006=÷ 648005=⨯ 5760=(立方厘米)答:氧气泵的体积是5760立方厘米.17.解:3.1422224⨯⨯+⨯⨯12.5616=+28.56=(平方厘米);23.14(22)2222⨯÷⨯+⨯⨯3.14128=⨯⨯+6.288=+14.28=(立方厘米); 答:这个零件的表面积是28.56平方厘米,体积是14.28立方厘米.18.解:根据题意得250.24412.56()cm ÷=50.244 3.14÷÷12.56 3.14=÷24()cm =422=⨯所以半径是2厘米.9682÷÷122=÷6=(厘米)12.56675.36⨯=(立方厘米)答:这块橡皮泥的体积是75.36立方厘米.19.解:圆锥的底面直径:6022610÷⨯÷=(厘米); 圆锥的体积:21 3.14(102)63⨯⨯÷⨯ 1 3.142563=⨯⨯⨯ 157=(立方厘米), 答:这个圆锥的体积是157立方厘米.20.解:18.844(63)÷⨯⨯,4.7118=⨯,84.78=(立方厘米), 答:拼成的大圆柱的体积是84.78立方厘米.21.解:底面直径:43.96 3.1414÷=(厘米),1482224⨯⨯=(平方厘米), 答:表面积增加了224平方厘米.22.解:圆柱的底面积:25.12212.56÷=(平方厘米),底面半径的平方:12.56 3.144÷=,因为2的平方是4,所以圆柱的底面半径是2厘米,圆柱的高:402(22)2045÷÷⨯=÷=(厘米),体积:23.1425⨯⨯,3.1445=⨯⨯,62.8=(立方厘米), 答:这个圆柱的体积是62.8立方厘米.23.解:底面半径是:18.84 3.1423÷÷=(厘米)底面积是:23.14328.26⨯=(平方厘米)表面积是:218.8410 3.14321032⨯+⨯⨯+⨯⨯188.456.5260=++304.92=(平方厘米)体积是:23.14310⨯⨯3.1490=⨯282.6=(立方厘米)答:这个长方体的底面积是28.26平方厘米,表面积是304.92平方厘米,体积是282.6立方厘米.24.解:252.835.23⨯=(立方分米)答:削去部分的体积是35.2立方分米.25.解:21 3.14(22)2:(222)3⨯⨯÷⨯⨯⨯1 3.1412:83=⨯⨯⨯ 6.28:24=628:2400=157:600=. 答:这个圆锥体与原来正方体的体积比是157:600.26.解:24平方分米2400=平方厘米2400224÷⨯÷120024=⨯÷600=(厘米)21 3.14(42)6003⨯⨯÷⨯ 1 3.1446003=⨯⨯⨯ 3.14800=⨯2512=(立方厘米)答:这个圆锥的体积是2512立方厘米.27.解: 1.56664⨯⨯⨯ 1.52164=⨯ 81=(立方分米)答:这个圆锥形铅块的体积是81立方分米. 28.222:86625x x πππ⨯+⨯=⨯⨯64363625x x πππ+=⨯1003625x ππ=⨯1001003625100x ππππ÷=⨯÷9x =23.14891808.64⨯⨯=(立方厘米); 答:这时甲水桶里有水1808.64立方厘米.29.解:设圆钢的高为h 厘米,圆钢体积23.14578.5V h h =⨯⨯=水桶底面积78.59h =÷因为下降的水的体积=水面上圆钢的体积 2(78.59)4 3.1458h ÷⨯=⨯⨯, 478.5 3.142589h ⨯=⨯⨯, 43.14200(78.5)9h =⨯÷⨯, 4628(78.5)9h =÷⨯,18h =,圆钢体积23.14578.5181413V h =⨯⨯=⨯=(立方厘米). 答:这段圆钢的体积是1413立方厘米.30.解:设圆锥形铁块的高是x 厘米 2211(62.8 3.142)20(80)316x ππ⨯÷÷⨯⨯=⨯⨯⨯, 10020003x ππ=, 60x =;答:圆锥形铁块的高是60厘米.31.解:23.14221⨯⨯÷3.14421=⨯⨯÷25.12=(平方厘米)225.12 4.53[3.14(62)]⨯⨯÷⨯÷339.12[3.149]=÷⨯12=(厘米)答:圆锥的高是12厘米.32.解:放入等底等高的一根圆柱形钢材和一个圆锥以后,水面上升10厘米, 增加体积:3410340⨯=(立方厘米),由圆柱体和圆锥体体积公式知:等低等高的圆柱体积是圆锥体积的3倍, 设圆锥体体积为x ,则圆柱体体积为3x ,13(1)3405x x -+=, 173405x =, 100x =;答:圆锥的体积是100立方厘米.33.解:50.24412.56÷=(平方厘米)设圆柱底面半径为r 厘米23.1412.56r ⨯=23.14 3.1412.56 3.14r ⨯÷=÷24r =因为224=所以2r =96826÷÷=(厘米)112.566(1)3⨯⨯- 212.5663=⨯⨯ 50.24=(立方厘米)答:体积减小50.24立方厘米.34.解:高6厘米的圆锥容器中水倒入等底的圆柱容器中高是632÷=(厘米)+-2(106)=+246=(厘米),答:如果将这个容器倒过来,这时水面距底部的高度是6厘米.。
人教版六年级下册《31_圆柱的认识》小学数学-有答案-同步练习卷
人教版六年级下册《3.1 圆柱的认识》小学数学-有答案-同步练习卷1. 如图的图形哪些是圆柱?在它下面的()里画“√”.二、填一填圆柱的上、下两个底面都是________形,它们的面积________.把一个圆柱的侧面展开,得到一个长方形,这个长方形的长等于圆柱底面的________,宽等于圆柱的________.把一个圆柱的侧面展开得到一个正方形,则此圆柱的________和________相等。
指出如图圆柱的底面、侧面和髙。
一、判断题.正确的在横线上画“√”,错误的画“×”.圆柱的高只有一条。
________.(判断对错)同一个圆柱的两个底面的直径相等。
________(判断对错)一个圆柱的底面周长和高相等,沿着它的高剪下后展开的侧面图一定是正方形。
________.(判断对错)一个物体上、下两个面是相等的圆面,那么,它一定是圆柱形物体。
________.(判断对错)一、选一选.将正确答案的序号填在()里.下面的物体中,形状是圆柱的是()A. B. C.下面图形中是圆柱的展开图的是(单位:cm)()A. B.C. D.将圆柱体的侧面展开,将得不到()A.长方形B.正方形C.平行四边形D.梯形三、解决问题.一个圆柱的侧面展开图是一个长是18.84dm、宽是9.42dm的长方形,这个圆柱的底面半径是多少分米?一个圆柱的底面半径是4.5cm,它的侧面展开图是正方形,这个圆柱的高是多少厘米?把一个边长是56.52dm的正方形钢板卷成一个最大的圆柱,给这个圆柱配上一个底面,这个底面的面积是多少平方分米?一、填一填.圆柱的侧面积=________×________;圆柱的表面积=________+底面积×2.计算做一个圆柱形的烟囱要用多少铁皮,要计算圆柱的________.计算做一个易拉罐要用多少铁皮,要计算圆柱的________.填表。
做一个无盖的圆柱形水桶,需要铁皮的面积是()A.侧面积+底面积B.侧面积+底面积×2C.侧面积×2+底面积一个圆柱的底面半径为r,高是ℎ求这个圆柱表面积的式子是()A.2πrℎB.2πr2+rℎC.πr2+2πrℎD.2πr2+2πrℎ一个圆柱的底面直径是10cm,高是4cm,它的侧面积是()A.12.56cm2B.125.6cm2C.1256cm2若一个圆柱的高不变,底面半径扩大到原来的3倍,则底面直径扩大到原来的________倍,底面积扩大到原来的________倍,侧面积扩大到原来的________倍。
圆柱表面积专项练习60题(有答案)ok
圆柱表面积专项练习60题(有答案)ok1.XXX要制作一个直径为2分米、高为9分米的圆柱形通风管,需要至少多少平方分米的铁皮。
2.一个高为30厘米、底面半径为10厘米的圆柱形铁皮水桶,制作这个水桶至少需要多少平方分米的铁皮?(保留整数)3.一台压路机的滚筒长1.2米,直径1米,滚动200圈前进了多少米?压过的路面面积是多少平方米。
4.如果一个圆柱的表面积为50.24平方分米,底面半径为2分米,那么这个圆柱的高是多少分米。
5.将一根水管的内外表面镀上锌,求镀锌的面积(单位:厘米)6.一个压路机的滚筒是一个直径为1米、长为1.5米的圆柱形,每滚动一周可以压多少面积的路面。
7.制作20节直径为40厘米、长度为2.5米的圆柱形铁皮烟囱,需要多少平方米的铁皮。
8.将一张长9.42分米、宽3.14分米的长方形铁皮圈成一个无盖圆柱形,需要配上底面半径多少分米的圆形铁皮。
9.将一根长80厘米、底面半径为15厘米的圆柱形钢材锯成3段,增加了多少平方厘米的表面积。
10.一个高为12分米、底面直径等于高的圆柱形铁皮水桶,制作这个水桶至少需要多少平方分米的铁皮?(保留整数)11.把141.3升水倒入一个底面周长为18.84分米的无盖圆柱形铁皮水桶中,正好能倒满,请计算这个铁皮水桶需要多少平方分米的铁皮。
12.一个底面直径为40米、深为3米的圆柱形水池,需要铺多少面积的方砖在底部和四周。
13.将一个长12厘米、宽6厘米的长方形纸板沿长边旋转一周,得到一个圆柱体,这个圆柱体的侧面积是多少平方厘米。
14.制作一个底面直径为4dm、高为5dm的圆柱形无盖水桶,至少需要多少dm2的木板。
15.一个高为2.5分米、底面半径为3厘米的圆柱形薯片包装盒,如果沿包装盒的一周贴上高度为5厘米的商标纸,那么商标纸的面积应该是多少平方厘米。
16.如果将一个底面半径为2厘米、高为5厘米的圆柱沿直径切成两半,那么表面积会增加多少平方厘米。
17.一个高为20厘米的圆柱,将高增加4厘米后,圆柱表面积增加了25.12平方厘米,那么新的圆柱表面积是多少平方厘米。
2023春人教版六年级数学下册 典中点 第3单元 习题课件
人教版数学六年级下册课件
第6课时 圆柱的体积▶圆柱 体积的实际应用
3 圆柱与圆锥
提示:点击 进入习题
习题链接
1
2
3
4
5
6
基础导学练 知识点1 圆柱形容器容积的计算 1.填一填。 (1)一个棱长是6 dm的正方体容器装满水,如果把该容
器中的水倒入一个底面积是36 dm2的空的圆柱形容 器中(水没有溢出),那么圆柱形容器中水的高度是 ( 6 )dm。(容器厚度忽略不计)
4.一个圆柱的侧面展开图是一个正方形,这个圆柱 的底面半径是20 cm。这个圆柱的底面周长和高各 是多少厘米? 20×2×3.14=125.6(cm) 答:这个圆柱的底面周长和高均为125.6 cm。
应用提升练 提升点1 选择合适的侧面 5.某工厂生产了一种圆柱形茶叶罐,尺寸如下面左 上图。剩下的三幅图是 典典、梦梦、华华设计 的三种茶叶罐侧面的商标 纸,你认为谁设计的商标 纸贴在茶叶罐上比较合适?说明理由。
应用提升练 提升点1 求半圆柱的表面积 4.张大爷家有一个塑料薄膜覆盖的半圆柱形蔬菜大 棚(如下图)。 搭建这个大棚至少需要多少平方米的塑料薄膜?
3.14×4÷2×50+3.14×(4÷2)2=326.56(m2) 答:搭建这个大棚至少需要326.56 m2的塑料薄膜。
提升点2 圆柱表面积的变式应用 5.(易错题)爸爸用铁皮做了一个圆柱形的储物桶,它
V=πd22h 3.14×1202×15=1177.5(cm3)
V=πr2h 3.14×32×12=339.12(cm3)
3.一根圆柱形实心钢材长1 m,底面半径是5 cm。这 根钢材的体积是多少立方厘米?
1 m=100 cm 3.14×52×100=7850(cm3) 答:这根钢材的体积是7850 cm3。
完整)六年级圆柱表面积练习题(附答案)
完整)六年级圆柱表面积练习题(附答案)圆柱表面积练题一、求下列各图侧面积和表面积。
二、应用题1、将一个圆柱体的侧面展开,得到一个长31.4厘米,宽10厘米的长方形,求该圆柱体的侧面积和表面积。
2、一个圆柱体的底面直径和高都是5分米,求该圆柱体的表面积。
3、将一根底面直径为4分米,高为10分米的圆柱形木材沿直径对半锯开,求每块木材的表面积和总表面积增加了多少平方分米。
4、有铁皮30平方米,最多能做底面直径和高都是3分米的无盖水桶多少个?(得数保留整数)5、公园的凉亭有6根圆柱形柱子,每根柱子底面半径为4分米,高为5分米,要油漆这些柱子,每平方米用油漆0.3千克,共需要油漆多少千克?下底面不漆,得数保留两位小数。
6、一个无盖的圆柱形铁皮水桶,底面直径是30厘米,高是45厘米。
做这样一对水桶,至少需用铁皮多少平方厘米?7、一个圆柱,侧面展开后是一个边长9.42分米的正方形。
求该圆柱的底面直径。
8、一个圆柱,它的高增加1厘米,它的侧面积就增加50.24平方厘米,求该圆柱的底面半径。
9、将一根直径为20厘米,长为2米的圆柱形木材锯成同样的3段,求表面积增加了多少平方厘米。
10、一个无盖的圆柱形铁皮水桶,高50厘米,底面直径30厘米,做这个水桶大约需要用多少铁皮?(得数保留整数)11、一个圆柱形蓄水池,底面周长25.12米,高4米,沿着这个蓄水池的四周及底部抹水泥。
如果平方米用水泥20千克,一共需多少千克水泥?12、一节铁皮烟囱长1.5米,直径是0.2米,做这样的烟囱500节,至少要用铁皮多少平方米?13、有一张长方形铁皮,剪下两个圆及一个长方形,正好可以做成一个底面半径为10厘米的圆柱,求原来长方形铁皮的面积。
14、一台压路机的滚筒是一个圆柱体,宽1.2米,直径是0.8米,如果它滚动10周,压路的面积是多少?15、下面是一张长方形纸板,按图示剪下阴影部分刚好能做成一个圆柱体,求做好的圆柱体的表面积。
16、一个圆柱的侧面积是188.4平方分米,底面半径是3分米,求该圆柱体的高。
人教版小学数学六年级下册第二单元圆柱的认识以及表面积(精品4套)
人教版小学数学六年级下册第二单元圆柱的认识以及表面积(精品4套)第二单元圆柱的认识以及表面积1 A:基础题一、填空题1、一个圆柱的底面直径是2分米,高10分米,这个圆柱的底面积是()平方分米,侧面积是()平方分米,表面积是()平方分米。
2、用边长是5分米的正方形围成一个圆柱,这个圆柱的侧面积是()平方分米。
3、一个圆柱底面半径是2分米,侧面积是113.04平方分米,这个圆柱的高是()分米。
4、圆柱的底面半径扩大2倍,高扩大3倍,底面积扩大()倍,侧面积扩大()倍。
5、一个圆柱底面半径和高相等,侧面积是60平方厘米,表面积是()平方厘米。
6、把一根2米长的圆柱垂直截成3段,表面积增加10平方分米,则圆柱的底面积是()平方分米。
二、判断、选择题1、长方形首尾相连卷起来可以围成一个圆柱,平行四边形也可以( )2、两个圆柱的侧面积相等,表面积也相等( )3、一个圆柱的高与它底面圆的半径长度相等,那么圆柱体的侧面积等于两个底面面积的和( )4、一个圆柱侧面积展开后是正方形,这个圆柱体的底面半径和高的比为()A:1:2π B:1:1 C:π:1 D:1:π E:2π:15、计算圆柱形状的汽油桶的用料面积,就是求油桶()面的面积之和。
B:巩固题1、一台压路机的滚筒长1.5米,底面直径是6分米吗,这个压路机滚筒滚动一周,压过的路面是多少平方米?如果一分钟滚10周,10分钟可以滚多远?2、一个圆柱体底面周长和高相等,如果搞缩短2厘米,表面积就减少12.56平方厘米。
求这个圆柱体的表面积?3、下面圆柱沿着箭头方向竖着切开,表面积增加了40平方厘米。
求原圆柱的表面积?4、一个高是20厘米的圆柱,把高增加4厘米后,圆柱表面积比原来增加了25.12平方厘米,那么新的圆柱表面积是多少平方厘米?5、如图,这顶帽子的帽顶部分是圆柱形,用花布做的,帽沿部分是一个圆环,也是用同样花布做的,已知帽顶的半径、高和帽沿宽都是1分米,那么做这顶帽子至少要用多少平方分米的花布?6、已知下面圆柱的直径是6厘米,高8厘米。
六年级数学下册《圆柱的认识》练习题(附答案解析)
六年级数学下册《圆柱的认识》练习题(附答案解析)学校:___________姓名:___________班级:___________一、选择题1.一个圆柱的底面半径是2cm,高是12.56cm,它的侧面沿高剪开是()。
A.长方形B.正方形C.平行四边形2.用一个高9厘米的圆锥形容器盛满水,再将水倒入和它等底等高的圆柱形容器中,水的高度是()厘米。
A.3B.6C.9D.273.压路机滚筒滚动一周能压多少路面是求滚筒的()。
A.表面积B.侧面积C.体积4.用一块长18.84厘米,宽12.56厘米的长方形铁皮,以长方形的宽为高,配上下面()圆形铁片可以做成一个无盖的圆柱形容器。
(单位:厘米)A.B.C.D.5.下面物体中,()的形状是圆柱。
A.B.C.D.6.王大伯挖一个底面直径是3m,深是1.2m的圆柱体水池。
求这个水池占地多少平方米?实际是求这个水池的()。
A.底面积B.容积C.表面积D.体积7.圆柱的高和底面上任意一条半径所组成的角是()。
A.锐角B.直角C.钝角8.()可以立起来,放倒后很容易滚动。
A.长方体B.圆柱体C.球9.圆柱的底面半径扩大2倍,高不变。
它的底面积扩大()倍。
A.2B.4C.8D.1610.一个长方形的长是8cm,宽是4cm。
分别以长和宽为轴旋转一周,得到两个圆柱体,它们的体积相比,()。
A.以长为轴旋转一周得到的圆柱体积大B.以宽为轴旋转一周得到的圆柱体积大C.一样大二、填空题11.小明用一张边长为20cm的正方形彩纸和两张圆形彩纸刚好可以围成一个圆柱,这个圆柱的侧面积是( )2cm。
12.把一块体积是60cm3的正方体木块削成一个最大的圆柱体,圆柱体的体积是( )。
13.圆柱的表面有个________面,圆锥的表面有________个面。
14.下面各图中h表示的是圆柱的高吗?是的在括号里画“√”,不是的画“×”。
( )( )( )( )( )15.把一张长6.28分米、宽3.14分米的长方形纸卷成一个圆柱并把它直立在桌面上,它的容积可能是( )立方分米或( )立方分米。
人教版数学六年级下册第三单元 圆柱与圆锥练习及答案
1.下图中是圆柱的请在括号内画“√”,不是的画“×”。
( ) ( ) ( ) ( )2.指出下列圆柱的底面、侧面、高。
33.转动长方形ABCD ,可以生成( )个圆柱。
说说它们分别是以长方形的哪条边为轴旋转而成的,底面半径和高分别是多少。
A 2cm B1cmC D4.将下面的纸板以一边为轴快速旋转一周,能形成底面直径4厘米,高4厘米的圆柱的是( )A B答案:4cm 4cm 2cm4cm1.×、√、√、×;2.略3.2;以AC为轴旋转,底面半径是2cm,高是1cm;以AB旋转,底面半径是1cm,高是2cm4.B3.2圆柱的表面积1.选一选,并填空。
做一个水桶需要多少铁皮()求圆柱形蓄水池的占地面积()压路机滚筒一周压路的面积()油漆大厅柱子的面积是多少()做一节通风管需多少铁皮()A、求圆柱的2个底面积与侧面积的和B、求圆柱的1个底面积与侧面积的和C、求圆柱的侧面积D、求圆柱的底面积2.一个圆柱的底面直径是8分米,高是3分米,它的侧面积是多少平方分米?2.一个圆柱的底面周长是12.56厘米,高是4厘米,求它的表面积。
3.一个圆柱形蓄水池,底面周长是25.12米,高是4米,将这个蓄水池四周及底部抹上水泥。
如果每平方米要用水泥20千克,一共要用多少千克水泥?答案:1.B D C C C2.3.14×8×3=75.36(dm2)3.12.56÷3.14÷2=2(cm)3.14×22×2+12.56×4=75.36(cm2)4.25.12÷3.14÷2=4(m2)3.14×42 +25.12×4=150.72(m2)150.72×20=3014.4(kg)3.3圆柱的体积1.一个酸奶瓶,它的瓶身呈圆柱形(不包括瓶颈),底面半径4厘米,当瓶子正放时,瓶内酸奶高为8厘米,瓶子倒放时,空余部分高为2厘米.请你算一算,瓶内酸奶体积是多少立方厘米?2..一瓶装满的矿泉水,小明喝了一些,把瓶盖拧紧后倒置放平,无水部分高10厘米,内直径是6厘米。
【一课一练】人教版小学数学六年级下册第三单元《圆柱与圆锥)》-第1课时圆柱的认识-附答案
第1课时圆柱的认识1.圆柱有条高,圆锥有高.【答案】无数;一条2.用手摸一摸,圆柱上下两个面,它们的大小.【答案】相等3.一个长为6厘米,宽为4厘米的长方形,以长为轴旋转一周,将会得到一个底面直径是厘米,高为厘米的体。
【答案】8;6;圆柱;4.圆柱的两个底面是两个大小的圆,如果一个圆柱的底面周长和高相等,那么它的侧面展开是一个。
【答案】相等;正方形5.圆柱的上、下底面是两个面积相等的形.圆柱的侧面是一个,沿着高展开后可能是一个形,也可能是一个形.【答案】圆;曲面;长方;正方6.一个圆柱形油桶,侧面展开是一个正方形,已知这个油桶的底面半径是5分米,那么油桶的高是分米.【答案】31.47.如图是的表面展开图,它的高是厘米,侧面积是平方厘米,表面积是平方厘米,体积是立方厘米。
【答案】圆柱;3;18.84;25.12;9.428.如果将圆柱形蛋糕平行于底面进行切割,切面是两个完全相同的,它与圆柱的面完全相同;如果将蛋糕沿底面直径垂直于底面进行切割,切面是两个完全相同的形或形,长方形的长和宽(或正方形的边长)分别是圆◆基础知识达标柱的和。
【答案】圆;底;长方;正方;底面直径;高9.如下图,以这个长方形的宽为轴,旋转一周,得到体,它的底面半径是cm,高是cm。
【答案】圆柱;6;310.一水桶底面周长是47.1cm,底面半径有cm。
【答案】7.511.圆柱体的上下两个圆形底面()A.一样大B.不一样大C.不确定【答案】A12.下面四组图形的关系中,错误的一组是()。
A.B.C.D.【答案】C13.如下图:长方形的铁片与()搭配起来能做成圆柱(单位:厘米)。
◆课后能力提升A.B.C.D.【答案】C14.一个长方形的长是8厘米,宽是5厘米,以它的长为轴旋转一周,能够形成一个()。
A.长方体B.正方体C.圆锥D.圆柱【答案】D15.()滚得快,而且它的两个相对的面是平平的.A.球体B.长方体C.圆柱体D.正方体【答案】C16.圆柱的高有条,圆锥的高有条。
仁美小学六年级数学第二单元圆柱圆锥专项练习题
仁美小学(Xue)六年级数学第二单元圆柱圆锥专项练习题一(Yi)、填空1.把圆柱的侧面(Mian)沿高展开,得到一个长方形,它的长等于圆柱的(),宽等于圆柱(Zhu)的()。
2. 当圆柱的底面周长和(He)高相等时,沿着高剪开,把圆柱的侧面展开得到的是()。
3.一个圆柱形铁盒底面半径和高都是4cm,它的侧(Ce)面积是()cm²,表面积(Ji)是()平方厘米。
4.用一张长方形纸卷成一个底面直径是10cm,高20cm的(De)圆柱体(接头不计),这张长方形纸的长是()cm,宽是()cm。
5.一个圆柱侧面展开后是一个边长6.28cm的正方形,这个圆柱的高是()cm,底面半径是()cm。
6.一根圆木的底面周长是12.56dm,高是10dm,把它横截成三个大小不等的小圆柱,其表面积增加了()dm²。
7.做一节底面直径10cm,高0.5m的圆柱形铁皮烟囱,需铁皮()平方分米。
(得数保留整数)8. 3.25m²=()m²()dm² 0.75m²=()dm²=()cm²9.一个圆柱的侧面积是188.4dm²,底面半径是2dm,它的高是()dm。
10.圆柱的底面直径是2cm,高是5cm,沿高把侧面展开,它的侧面展开图的周长是()cm,侧面积是()dm²。
二、选择1.求圆柱形通风管所用铁皮材料就是求它的()A 底面积 B侧面积 C容积2.用一块长28.26cm,宽15.7cm的长方形铁皮做一个圆柱形容器,配()当底更能节省铁皮材料。
A 底面半径4.5cm B底面直径6cm C 底面直径5cm3.一个圆柱的侧面展开得不到()A 长方形 B正方形 C平行四边形 D梯形4.一个圆柱侧面展开是正方形,它的高是底面直径的()倍A πB 2πC 2三、判(Pan)断题1.如果两个圆柱的侧面(Mian)相等,那么底面周长也相等。
人教版六年级数学下册第2讲圆柱的表面积专题精讲练习试题及答案
【专题讲义】人教版六年级数学下册第2讲圆柱的表面积专题精讲(学生版)知识要点梳理页12.会归纳出侧面展开图是正方形的圆柱的侧面积及表面积的计算方法。
(讲解,比较,练习。
)(一)圆柱的基本特征(1)圆柱的底面圆柱的上、下两个面叫做圆柱的底面。
圆柱的底面是两个完全相同的圆形。
(2)圆柱的侧面围成圆柱的曲面叫做圆柱的侧面。
(3)圆柱的高圆柱两个底面之间的距离叫做圆柱的高。
圆柱有无数条高,每条高都相等。
(4)圆柱的透视图如果把圆柱形实物画在平面上,它的透视图如上图。
(二)圆柱侧面展开图示页2页 3注意:把圆柱的侧面打开,得到一个长方形,这个长方形的长就是圆柱的底周长。
(三)圆柱的侧面积与底面积公式(1)圆柱的侧面积=底面的周长×高 S C 2h r h π==圆侧(2)圆柱的底面积2221S 24d r d πππ⎛⎫=== ⎪⎝⎭圆(3)圆柱的表面积=侧面积+两个底面积 22=22S S S r h r ππ=++圆侧表归纳:1.上、下两个面都是面积相等的圆圆柱从上到下粗细相同2.侧面展开一般是一个长方形。
这个长方形的长等于圆柱体底面的周长,宽等于圆柱体的高。
长方形注意:沿高剪斜着剪:平行四边形正方形3.圆柱的侧面积。
圆柱的侧面积=底面周长×高页44.圆柱表面积的含义。
圆柱的表面积=圆柱侧面积+两个底面的面积指出:使用的材料要比计算得到的结果多一些。
因此,这里不能用四舍五入法取近似值。
如果一道题结果要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1。
这种取近似值的方法叫做进一法。
在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积。
如计算烟筒用铁皮只求一个侧面积,水桶用铁皮是侧面积加上一个底面积,油桶用铁皮是侧面积加上两个底面积,求用料多少,一般采用进一法取值,以保证原材料够用。
1、圆柱的侧面积和表面积的计算,必需先理解圆柱的侧面展开是长方形,其中长为底面周长,宽为圆柱的高;2、探索出圆柱表面积的计算方法,能根据实际情况正确计算,解决简单的实际问题。
(完整版)六年级圆柱表面积的练习题及答案
(完整版)六年级圆柱表面积的练习题及答案六年级圆柱表面积的练习题及答案1、.6米 = 厘米分米 = 米7.5平方分米 = 平方厘米9300平方厘米 = 平方米2、填空:圆柱的面积加上的面积,就是圆柱的表面积。
把一个底面积是15.7平方厘米的圆柱,切成两个同样大小的圆柱,表面积增加了平方厘米。
计算做一个圆柱形的茶叶筒要用多少铁皮,要计算圆柱的。
计算做一个圆柱形的烟囱要用多少铁皮,要计算圆柱的。
计算做一个没有盖的圆柱形水桶要用多少铁皮,要计算圆柱的。
一个圆柱,它的高是8厘米,侧面积是200.96平方厘米,它的底面积是。
3、求下面各圆柱的表面积。
底面半径是2分米,高是7.3分米。
底面周长是18.84米,高是5米。
4、选择正确答案的序号填在括号里。
圆柱的侧面积等于乘以高。
A、底面积B、底面周长C、底面半径把一个直径为4厘米,高为5厘米的圆柱,沿底面直径切割成两个半圆柱,表面积增加了多少平方厘米?算式是A、3.14×4×5×B、4×C、4×5×25、一个圆柱形无盖的水桶,底面的直径是0.6米,高是40厘米,做这样一个水桶,需要多少平方米的铁皮?6、一个圆柱形水池,底面内半径是2米,高是1.5米,在池内周围和底面抹上水泥,抹水泥的面积是多少?圆柱的表面积1、填空。
一个圆柱体,底面周长是125.6厘米,高是12厘米,它的侧面积是平方厘米。
一个圆柱体,底面半径是3厘米,高是5厘米,它的侧面积是平方厘米,表面积是平方厘米。
把一张长8分米,宽5分米的白纸,围成一个圆柱形纸筒,这个纸筒的侧面积是平方分米。
一个圆柱体,底面半径是3厘米,高是15厘米,它的表面积是平方厘米。
2、判断。
圆柱体的表面积=底面积×2+底面积×高。
圆柱体的表面积一定比它的侧面积大。
圆柱体的底面积越大,它的表面积就越大。
3、选择。
做一个无盖的圆柱体的水桶,需要的铁皮的面积是A.侧面积+一个底面积 B.侧面积+两个底面积C.×2一个圆柱的底面直径是10厘米,高是4分米,它的侧面积是平方厘米。
六年级下册数学试题-圆柱的认识及圆柱的侧面积和表面积(无答案)人教版
圆柱的认识及圆柱的侧面积和表面积____________________________________________________________________________________________________________________________________________________________________1、在初步认识圆柱的基础上理解圆柱的侧面积和表面积的含义,掌握圆柱侧面积和表面积的计算方法,会正确计算圆柱的侧面积和表面积,能解决一些有关实际生活的问题。
2、培养良好的空间观念和解决简单的实际问题的能力。
3、通过实践操作,在理解圆柱侧面积和表面的含义的同时,培养学生的理解能力和探索意识。
考点1:圆柱的形成圆柱是以长方形的一边为轴旋转而得到的。
考点2:圆柱的相关概念圆柱上、下两个面叫做圆柱的底面,它们是完全相同的两个圆。
形成圆柱的面还有一个曲面,叫做圆柱的侧面。
圆柱两个底面之间的距离叫做圆柱的高。
考点3:圆柱的侧面展开图a 沿着高展开,展开图形是长方形,长方形的长等于圆柱底面的周长,长方形的宽等于圆柱的高,当底面周长和高相等时(h=2πR),侧面沿高展开后是一个正方形,展开图形为正方形。
b. 不沿着高展开,展开图形是平行四边形或不规则图形。
C.无论如何展开都得不到梯形侧面积=底面周长×高 S侧=Ch=πd×h =2πr×h考点4:圆柱的表面积圆柱体表面的面积,叫做这个圆柱的表面积.圆柱的表面积=2×底面积+侧面积即S表=S侧+S底×2=2πr×h + 2×πr2侧面积=底面周长×高 S侧=Ch=πd×h =2πr×hA.梯形B.正方形C.长方形【规范解答】【分析】根据圆柱的特征,圆柱的侧面是一个曲面,侧面沿高展开是一个长方形,这个长方形的长等于圆柱的底面周长,宽等于圆柱的高,特殊情况当圆柱的底面周长和高相等时,侧面沿高展开是一个正方形,如果沿斜线展开,得到的是一个平行四边形.侧面无论怎样展开绝对不是梯形.由此做出选择.解:圆柱的侧面沿高展开是长方形或正方形,如果沿斜线展开得到的图形是一个平行四边形,侧面无论怎样展开绝对不是梯形;故选:A.例2圆柱的侧面可以展开成平行四边形,也可以展开成长方形,平行四边形与长方形相【规范解答】【分析】因为侧面积一定,所以无论展开成什么形状,面积都是一样的;可由长方形展成平行四边形后,上下边长没变,左右两边由垂直底边变成倾斜的,所以周长变长了;从而问题得解.解:因为侧面积一定,所以无论展开成什么形状,面积都是一样的;可由长方形展成平行四边形后,上下边长没变,左右两边由垂直底边变成倾斜的,所以周长变长了;故选:D.)【规范解答】【分析】由圆柱体的侧面展开图是一个正方形可知,圆柱体的高和底面周长相等,由此写出圆柱底面直径与高的比并化简即可.解:底面周长即圆柱的高=πd;圆柱底面直径与高的比是:d:πd=1:π;故选:A.例4 把一个圆柱的底面平均分成若干个扇形,然后切开拼成一个近似的长方体,表面积比原来增加了100cm2,已知圆柱的高是10cm,圆柱的侧面积是()cm2.【规范解答】【分析】根据题意可知:把一个圆柱体的底面平均分成若干个扇形,然后切开拼成一个近似的长方体,表面积比原来增加了100cm2,表面积比原来增加了两个长方形的面积.这个长方形长是圆柱的高,宽是圆的底面半径.因此,圆柱的底面半径是100÷2÷10=5厘米,圆柱体的侧面积=底面周长×高;由此列式解答.解:圆柱的底面半径是:100÷2÷10=50÷10=5(厘米);圆柱的侧面积是:2×3.14×5×10=31.4×10=314(平方厘米);答:圆柱的侧面积是314平方厘米.故选:A.)平方米.【规范解答】【分析】要求圆柱的侧面积,根据“圆柱的侧面积=底面周长×高”,代入数字,进行解答,即可解决问题.解:3.14×0.5×1.8,=1.57×1.8,=2.826,≈2.83(平方米);故选:C.例6 把一个棱长是2分米的正方体木块削成一个最大的圆柱体,圆柱体的表面积是A.12.56 B.6.28 C.18.84 D.25.12利用圆柱的表面积公式即可解答.解:3.14×(2÷2)2×2+3.14×2×2=6.28+12.56=18.84(平方分米)答:这个圆柱体的表面积是18.84平方分米.故选:C.例7 计算一个圆柱形无盖水桶要用多少铁皮,应该是求()A.侧面积 B.侧面积十1个底面积C.侧面积十2个底面积 D.体积【规范解答】【分析】根据圆柱的特征,圆柱的上、下底面是完全相同的两个圆,侧面是一个曲面,侧面展开是一个长方形,这个长方形的长等于圆柱的底面周长,宽等于圆柱的高.根据题意可知,因为铁皮水桶无盖,因此计算做一个无盖的圆柱形铁皮水桶需要多少铁皮,其实就是计算水桶的侧面积和一个底面积的和.解:因为铁皮水桶无盖,因此计算做一个无盖的圆柱形铁皮水桶需要多少铁皮,其实就是计算水桶的侧面积和一个底面积的和.故选:B.例8 要包装100个圆柱形状易拉罐的侧面,至少需要()平方分米的广告纸.(用进一法取近似值,得数保留整平方分米)A.340 B.339 C.227 D.226【规范解答】【分析】根据题干分析可得,这个广告纸的面积,就是这个圆柱形易拉罐的侧面积,据此利用圆柱的侧面积=底面周长×高,计算即可解答.解:3.14×6×12×100=22608(平方厘米)≈227平方分米,答:至少需要227平方分米的广告纸.故选:C.基础演练一、填空1、把圆柱体的侧面展开,得到一个(),它的()等于圆柱底面周长,()等于圆柱的高.2、一个圆柱体,底面周长是94.2厘米,高是25厘米,它的侧面积是()平方厘米.3、一个圆柱体,底面半径是2厘米,高是6厘米,它的侧面积是()平方厘米.4、一个圆柱体的侧面积是12.56平方厘米,底面半径是2分米,它的高是()厘米.5、把一张长8分米,宽5分米的白纸,围成一个圆柱形纸筒,这个纸筒的侧面积是()平方分米.6、把一张边长为5.5厘米的正方形白纸,围成一个圆柱形纸筒,这个纸筒的侧面积是()平方分米.二、判断1、圆柱的侧面展开后一定是长方形.()2、6立方厘米比5平方厘米显然要大.()3、一个物体上、下两个面是相等的圆面,那么,它一定是圆柱形物体.()4、把两张相同的长方形纸,分别卷成两个形状不同的圆柱筒,并装上两个底面,那么制的圆柱的高、侧面积、表面积一定相等.()5、圆柱体的表面积=底面积×2+底面积×高.()6、圆柱体的表面积一定比它的侧面积大.()7、圆柱体的高越长,它的侧面积就越大.()三、解决问题(1)有一个圆柱,底面直径是5厘米,高是12厘米。
六年级数学下第3周小卷及答案(圆柱的认识及表面积)
六年级第3周一级监测卷监测内容:圆柱的认识、圆柱的表面积时间:30分钟满分100分一、填一填。
(每空3分,共27分)1、把圆柱的侧面展开,得到一个长方形,这个长方形的长相当于圆柱的(),宽相当于圆柱的();所以圆柱的侧面积=()2、下面各图是圆柱的展开图的是()。
3、如右图,用这张长方形纸围成一个圆柱,圆柱的底面半径最大是()厘米。
4、下面这些生活中的实际问题求的是什么?把字母填在相应的括号里。
(1)压路机滚筒滚一周的压路面积。
()(2)圆形水池的占地面积。
()(3)做一个无盖铁皮水桶需多少铁皮? ()(4)做一个油桶需多少铁皮? ()A.求底面积B.求侧面积C.求1个底面积与侧面积的和D.求2个底面积与侧面积的和二、填表。
(每题5分,共15分)圆柱底面高表面积周长314cm5cm直径6m10m半径8dm20dm三、解决问题。
(共58分)1、一个圆柱形茶叶筒,高16cm,底面半径是4cm,在这个茶叶筒的侧面贴商标纸,商标纸的面积是多少平方厘米?(8分)2、一个底面半径是3cm的水杯,高1dm。
现往杯中加入6cm高的水。
水与水杯接触部分的面积是多少?(10分)3、一个圆柱形铁皮礼品盒,高12cm,底面直径8cm。
用塑料绳扎成如下图的形状,打花结处用去绳子18cm。
请问:(1)共用去塑料绳多少厘米?(10分)(2)做这个礼品盒至少需要铁皮多少平方厘米?(10分)4、一台压路机的前轮是圆柱形的,轮宽2.5米,直径是1.2米,每分钟滚动8周。
这台压路机前进1分钟压过的路面是多少平方米?(10分)5、如图是一个机器零件,上面小圆柱的底面半径是4dm,高是6dm,下面大圆柱的底面半径是6dm,高是10dm。
如果要在这个零件的表面涂上一层漆,涂漆的面积是多少平方分米?(10分)六年级第3周二级监测卷监测内容:圆柱的认识、圆柱的表面积时间:30分钟满分100分一、下面是圆柱体的展开图。
(单位:cm)(每空5分,共20分)AB=();6cm表示圆柱的();这个圆柱的侧面积是()cm2, 表面积是()cm2。
小学数学六年级下册必考题专题讲解(含例题)
六年级数学下册必考题专题讲解(一)【主要内容】圆柱和圆锥的认识、圆柱的表面积【学习目标】1、使学生在观察、操作、交流等活动中感知和发现圆柱、圆锥的特征,知道圆柱和圆锥的底面、侧面和高。
2、使学生理解圆柱侧面积和圆柱表面积的含义,掌握圆柱侧面积和表面积的计算方法。
3、使学生在活动中进一步积累认识立体图形的学习经验,增强空间观念,发展数学思考。
4、使学生进一步体验立体图形与生活的关系,感受立体图形的学习价值,提高学习数学的兴趣和学好数学的信心。
【考点分析】1、圆柱上、下两个面叫做圆柱的底面,它们是完全相同的两个圆。
形成圆柱的面还有一个曲面,叫做圆柱的侧面。
圆柱两个底面之间的距离叫做圆柱的高。
2、圆锥的底面是个圆,圆锥的侧面是一个曲面。
从圆锥的顶点到底面圆心的距离是圆锥的高。
3、把圆柱的侧面展开得到一个长方形,这个长方形的长等于圆柱底面的周长,宽等于圆柱的高。
4、圆柱的侧面积 = 底面周长×高5、圆柱的表面积 = 侧面积 + 底面积× 2【典型例题】例1、(圆柱和圆锥的特征)圆柱和圆锥分别有什么特点?[分析与解]长方体和正方体的六个面都是平面图形(长方形或正方形),而圆柱和圆锥除了底面是平面图形(圆)外,都有一个曲面。
圆柱和圆锥的特征见下表。
例2、求下面立体图形的底面周长和底面积。
半径3厘米直径10米[分析与解]根据圆的面积和周长计算公式计算圆柱和圆锥的底面周长和底面积。
圆柱:底面周长 3.14 × 3 × 2 = 18.84(厘米)底面积 3.14 × 3 ² = 28.26(平方厘米)圆锥:底面周长 3.14 × 10 = 31.4(米)底面积 3.14 ×(10÷2)² = 78.5(平方米)【点评】圆柱和圆锥的底面都是圆,在计算它们的周长和面积时只要按照圆的周长和面积计算公式进行计算。
例3、判断:圆柱和圆锥都有无数条高。
苏教版六年级数学下册第二单元圆柱和圆锥全套专项练习
第1课时圆柱和圆锥的认识一、指出下面图形中哪些是圆柱,并指出圆柱的底面、侧面和高。
二、读出下面各圆柱的有关数据。
(图中单位:厘米)三、判断:对的打“√”,错的打“×”。
①圆柱体的高只有一条。
()②上下两个底面相等的圆形物体一定是圆柱体。
()③圆柱体底面周长和高相等时,沿着它的一条高剪开,侧面是一个正方形。
()四、根据圆锥的特征,判断下面图形中哪些是圆锥?五、说出下面各圆锥的高:六、下面图形以红色线为轴旋转后会得到圆锥吗,如果是说出圆锥的高和底面半径。
第2课时圆柱的表面积一、填空1.把圆柱体的侧面展开,得到一个(),它的()等于圆柱底面周长,()于圆柱的高。
2.一个圆柱体,底面周长是94.2厘米,高是25厘米,它的侧面积是()平方厘米。
3.一个圆柱体,底面半径是2厘米,高是6厘米,它的侧面积是()平方厘米。
4.一个圆柱体的侧面积是12.56平方厘米,底面半径是2分米,它的高是()厘米。
5.把一张长8分米,宽5分米的白纸,围成一个圆柱形纸筒,这个纸筒的侧面积是()平方分米。
6.把一张边长为5.5厘米的正方形白纸,围成一个圆柱形纸筒,这个纸筒的侧面积是()平方分米。
二、判断1.圆柱的侧面展开后一定是长方形。
()2.6立方厘米比5平方厘米显然要大。
()3.一个物体上、下两个面是相等的圆面,那么,它一定是圆柱形物体。
()4.把两张相同的长方形纸,分别卷成两个形状不同的圆柱筒,并装上两个底面,那么制的圆柱的高、侧面积、表面积一定相等。
()三、求下面各圆柱体的侧面积1.底面半径是3厘米,高是15厘米。
2.底面直径是2.5分米,高是4分米。
3.底面周长是6分米,高是3.5分米。
四、应用题1.一个圆柱体的高是12厘米,底面半径是3厘米。
它的侧面积是多少?它的表面积是多少?2.一个圆柱的侧面积是188.4平方分米,底面半径是2分米,它的高是多少分米?3.一个圆柱体,高减少2厘米,表面积就减少18.84平方厘米,这个圆柱的上、下两个底面和是多少平方厘米?4.把一段长20分米的圆柱形木头沿着底面直径劈开,表面积增加80平方分米,原来这段圆柱形木头的表面积是多少?第3课时练习课一、填空题。
六年级下册数学试题-第二单元圆柱圆锥的认识 圆柱表面积 苏教版(无答案)
【第1课时:圆柱、圆锥的认识】一、填空1.下面的物体是圆柱的画“⚪”,是圆锥的画“√”2. 圆柱.上、下两个面叫作( ) ,它们是 ( )的两个圆,围成圆柱的曲面叫作( ),圆柱的两个底面之间的距离叫作圆柱的(),圆柱有()条高。
3.圆锥的底面是一个( ), 圆锥的侧面是一个( ) 面。
从圆锥的顶点到底面圆心的距离是圆锥的( )。
圆锥有( )条高。
4.把圆柱的侧面沿它的一条高剪展开,可能得到一个( )形或( )形,若展开后是长方形,长等于圆柱的( ),宽等于圆柱的( ),圆锥的侧面展开是一个()形。
5.如果把一个圆柱的侧面展开得到一个正方形,那么这个圆柱的高等于()。
6.将一个圆柱沿着它的高平均切成两半,会增加()个截面,所得截面是一个( )形或()。
将一个圆锥沿着它的高平均切成两半,截面是一个( )形。
7.如图以竖线为轴旋转一周,会得到一个(),它的底面半径是()厘米,高是()厘米。
二、我是小法官,对错我会判。
(1) 圆柱和圆锥都只有一条高。
( )(2)圆柱的侧面展开可以得到一个长方形、正方形或平行四边形( )(3)圆柱是立体图形。
( )(4) 圆柱有3个面。
( ) 三、连一连四、小芳给爷爷买了一盒生日蛋糕(如图),捆扎这个蛋糕盒所用的彩带至少有多长?(打结处大约用20厘米)【第2课时:圆柱的侧面积】一、填空1. 圆柱的侧面积等于( )乘高。
2.把圆柱的侧面沿高展开,得到一个长方形,它的()等于圆柱的底面周长,( )等于圆柱的高。
3.一个圆柱体,底面周长是94.2厘米,高是25厘米,它的侧面积是( )平方厘米。
3.一个圆柱的底面半径是5cm,高是10cm,它的侧面积是( )cm²6.把一张长8分米,宽5分米的白纸,围成一个圆柱形纸筒,这个纸筒的侧面积是( ) 平方分米。
圆的相关计算公式:给直径求圆的周长: c=πd给半径求圆的周长: c=2πr给周长求圆的直径: d=c÷π 给周长求圆的半径: r=c÷π÷2圆的面积: s=πr²【如果已知条件是直径或圆的周长先求出半径】7.一个圆柱的侧面展开图是一个正方形,这个圆柱的底面直径与高的比是( )。
六下 第三单元圆柱与圆锥提高题和奥数题(附答案)
六下第三单元圆柱与圆锥提高题和奥数题(附答案)板块一圆柱的认识例题1.选择哪些材料恰好能做成一个圆柱形的盒子?d=2cm d=3cm d=4cmA B C练习1.在下面的材料中,选择()能做成圆柱。
3号4号 5号A.1号、2号和3号B.1号、4号和5号C.1号、2号和4号例题2.一个圆柱的底面直径是6.28cm,高是4.5cm.如果沿底面直径垂直于底面把这个圆柱切成完全相同的两半,那么切面的面积是多少?练习2.(1)一个底面周长是9.42厘米,商是5厘米的圆柱,沿底面直径垂直于底面把它切割成两个半圆柱后,切面的面积一共是多少平方厘米?(2)把一个圆柱的侧面沿高展开后得到一个正方形,这个圆柱的商与底面直径的比是多少?例题3.一个圆柱形蛋糕盒的底面直径是20厘米,高是15厘米,用彩绳将它捆扎(如右图),打结处在圆心,打结部分长30厘米。
求所用彩绳的全长是多少厘米?练习3.一个圆柱形蛋糕用彩绳捆扎,如果打结部分用了35厘米,打结处在圆心,一共用了多长彩绳?板块二圆柱的表面积例题1.一块长方形的钢板,利用图中阴影部分刚好能做成一个圆柱形的带盖水桶(接头处忽略不计),求这个水桶的表面积。
练习 1.(1)如下图,有一张长方形铁皮,剪下两个圆及一个长方形,正好可以做成一个圆柱,这个圆柱的底面半径为10厘米,原来这张长方形铁皮的面积是多少平方厘米?(2)有一张长方形铁皮(尺寸如图所示),剪下阴影部分正好能围成一个圆柱,求圆柱的表面积是多少。
例题2.工人师傅要在一个零件(如右图)的表面涂一层防锈材料。
这个零件是由两个圆柱构成的,小圆柱的直径是4厘米,高是2厘米;大圆柱的直径是6厘米,高是5厘米。
这个零件涂防锈材料的面积是多少?练习2.用3个高都是2分米,底面半径分别为2分米、1分米和0.5分米的圆柱组成一个物体(如图),求该物体的表面积。
例题3.如图,是长为8,宽为4的长方形,以长方形的长为轴旋转一周。
求所形成的立体图形的表面积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学六年级数学圆柱的认识、侧面积及表面积练习题 考试时间:120分钟 考试总分:100分 题号 一 二 三 四 五 总分 分数 2014年小学六年级数学圆柱的认识、侧面积及表面积练习题 一、填空题: 1.圆柱的上、下两个面叫做( ),是两个( )的圆形。
2.圆柱的侧面是一个( ),侧面展开是一个( ),这个图形的长相当于圆柱( ),宽相当于圆柱的( )。
3.圆柱两个底面之间的距离叫做( ).圆柱有( )条高。
4.圆柱的侧面积等于( ),表面积等于( ). 5.用一张长15cm ,宽8cm 的长方形纸围成一个圆柱,这个圆柱的侧面积是( )cm2。
6.一个圆柱的底面积是24cm2,高是12cm ,这个圆柱的表面积是( )cm2。
7.做一节底面直径是20厘米,长60厘米的通风管,至少需要铁皮( )平方厘米. 二、应用题: 1.一个圆柱,底面直径是50厘米,高是18分米,侧面积是多少平方分米? 2.一个圆柱,高是10厘米,底面直径是2厘米,它的表面积是多少? 3. 求做无盖铁皮水桶要用多少cm2铁皮? 4.用塑料板制作一个无盖的圆柱米桶,桶的底面直径是6分米,高是8分米.做这个桶至少需用塑料板多少平方米? 5.圆柱的底面半径扩大到原来的2倍,高不变,侧面积扩大到原来的两倍。
为什么? 6.一个圆柱的侧面展开图是正方形,这个圆柱的的高是底面直径的π倍。
为什
姓名:________________ 班级:________________ 学号:________________
--------------------密----------------------------------封 ----------------------------------------------线----------------------
么?
7.求下列圆柱体的表面积:
⑴底面半径是5分米,高20厘米;
⑵底面圆的直径是16厘米,高3厘米;
⑶底面圆的周长是12.56分米,高20厘米;
⑷求下列圆柱体的侧面积:
①底面半径是4分米,高21厘米;
②底面直径是16厘米,高3厘米;
8.挖一个圆柱体形的蓄水池,从里面量底面周长31.4米,深2.4米。
在它的内壁与底面抹上水泥,抹水泥部分的面积是多少平方米?
9.一个圆柱体的表面积比侧面积大12.56平方米,这个圆柱体的底面半径是多少?
10.一个会议大厅有6根同样的圆柱形木柱,每根高4米,底面周长是1.5分米.如果每千克油漆可以漆4.5平方米,漆这些木柱需要多少千克?
11.做一个圆柱形的无盖铁皮水桶,底面周长18.84分米,高8分米,至少需要多少平方分米的铁皮?
12.一个圆柱,底面直径是0.5米,高是1.8米,求它的侧面积。
(得数保留两位小数)
13.一个圆柱的高是15厘米,底面半径是5厘米,它的表面积是多少?
14.一个圆柱的侧面积是188.4平方分米,底面半径是2分米,它的高是多少分米?
15.一个圆柱,底面周长是94.2厘米,高是25厘米,求它的侧面积?
16.一个圆柱,底面直径是2分米,高是45分米,求它的表面积?
17.砌一个圆柱形的沼气池,底面直径是3米,深是2米,在池的周围与底面抹上水泥,抹水泥部分的面积是多少平方米?
18.一个没有盖的圆柱形铁皮水桶,高是24厘米,底面直径是20厘米,做这个水桶要用铁皮多少平方厘米?(用进一法,得数保留整百平方厘米)
19.一个没有盖的圆柱形铁皮水桶,高是12分米,底面直径是高的,做这个铁皮水桶大约用铁皮多少平方分米?(用进一法,得数保留整十平方分米)20.一个圆柱形蓄水池,直径10米,深2米。
这个蓄水池的占地面积是多少?在池的一周及池底抹上水泥,抹水泥的面积是多少?
20.做十节长2米,直径8厘米的圆柱形铁皮烟囱,需要铁皮多少平方米?
21.压路机的滚筒是圆柱体,它的长是2米,滚筒横截面的半径是0.6米。
如果每分转动5周,每分可以压多大的路面?
22.大厅里有10根圆柱,圆柱底面直径1米,高8米。
在这些圆柱的表面涂油漆,平均每平方米用油漆0.8千克,共需油漆多少千克?
23.一个圆柱的侧面积是25.12平方厘米,底面半径是2厘米,它的表面积是多少?
24.把两个底面直径都是4厘米、长都是3分米圆柱形钢材焊接成一个大的圆柱形钢材,焊接成的圆柱形钢材的表面积比原来两个小圆柱形钢材的表面积之和减少了多少?
25.将高都是1米,底面半径分别为1.5米、1米和0.5米的三个圆柱组成一个物体.这个物体的表面积是多少平方米?
26.把一段长20分米的圆柱形木头沿着底面直径劈开,表面积增加80平方分米,原来这段圆柱形木头的表面积是多少?
27.砌一个圆柱形水池,底面周长是25.12米,深2米,要在它的底面和四周抹上水泥,如果每平方米用水泥10千克,共需水泥多少千克?
28.一节铁皮烟囱长1.5米,直径是0.2米,做这样的烟囱500节,至少要用铁皮多少平方米?
29.一个没有盖的圆柱形铁皮桶,底面周长是18.84分米,高是12分米,做这个水桶大约需要多少平方分米的铁皮?(用进一法保留整十数)
30.一个圆柱,侧面展开后是一个边长9.42分米的正方形。
这个圆柱的底面直径是多少分米?
31.把一根6分米,横截面直径4厘米的圆柱形钢柴材平均锯成4段,表面积增加了多少?
32.一种圆柱形罐头的底面直径是20厘米,高50厘米,给500个这样的罐头贴标签纸,需要多少米长的纸?这些标签纸的面积有多少平方米?
33.一辆压路机的前轮是个圆柱形,轮宽1.6米,直径是0.8米,如果每分钟转动5周,1小时能前进多少米?1小时能压路面多少平方米?
34.做一只底面直径是8分米,高1.2米的汽油桶,至少需要多少平方分米的铁皮?
35.把一个底面半径是5厘米,高是6厘米的圆柱沿直径切割成若干等份后拼成
一个近似的长方体,表面积增加了多少?
36、一个圆拄体的底面周长是12.56厘米,高为4厘米。
(1)如果高增加2厘米,表面积增加多少平方厘米;
(2)如果把它切割成3节小圆柱,表面积增加多少;
(3)如果把5个原来的圆柱焊接成一个,表面积减少多少?
37.一个圆柱,如果它的高增加2米,它的表面积就增加50.24平方米,这个圆柱的底面积是多少平方米?
38.一个圆柱体的侧面展开图是一个边长3.14cm的正方形,求这个圆柱体的表面积。
39.一个圆柱高9分米,侧面积是226.08平方分米,它的底面积是多少平方分米?
40.一个用塑料薄膜覆盖的蔬菜大棚,长15米,横截面是一半径2米的半圆。
覆盖在这个大棚上的塑料薄膜约有多少平方米?大棚内的空间大约有多大?(覆膜部分包括上面和左右面)
41.明明做一个直径20cm,高30cm的圆柱形灯笼,(如下图)。
上下底面中间分别留出了直径是10cm的圆形口,他用了多少彩纸?
42.某工厂给一个钢制零件的表面涂油漆,零件形状如图所示。
请你帮助计算一下涂漆部分的面积。
(单位:cm)。