等差数列的前n项和练习 含答案
等差数列的前n项和公式同步练习(含解析)
《第二节等差数列》同步练习(等差数列的前n项和公式)一、选择题1.已知等差数列{a n}的前n项和为S n,且S2=10,S5=55,则过点P(n,S nn ),Q(n+2,S n+2n+2)(n∈N*)的直线的斜率为( )A.4B.3C.2D.12.[2022辽宁名校高三上联考]已知数列{a n}是等差数列,前n项和为S n,若a1+a2+a3+a4=3,a17+a18+a19+a20=5,则S20=( )A.10B.15C.20D.403.[2022四川成都七中高一下期中]已知等差数列{a n}的公差d<0,a5a7=35,a4+a8=12,前n 项和为S n,则S n的最大值为( )A.66B.72C.132D.1984.(多选)[2022湖南高三上联考]两个等差数列{a n}与{b n}的前n项和分别为S n与T n,且S2n T n =8n3n+5,则( )A.a3+a8=2b3B.当S n=2n2时,b n=6n+2C.a4+a11b4<2D.∀n∈N*,使得T n>05.(多选)[2022安徽临泉一中高二期末]已知等差数列{a n}的前n项和为S n,若S2 021>0,S2 022<0,则( )A.数列{a n}是递增数列B.|a1 012|>|a1 011|C.当S n取得最大值时,n=1 011D.S1 012<S1 0096.[2022山东潍坊高二调研]在我国古代著名的数学专著《九章算术》里有一段叙述:今有良马与驽马发长安至齐,齐去长安四百二十里,良马初日行九十七里,日增一十五里;驽马初日行九十二里,日减一里;良马先至齐,复还迎驽马,二马相逢.问:几日相逢?( )A.4日B.3日C.5日D.6日7.如果有穷数列a1,a2,…,a n(n∈N*)满足a i=a n-i+1(i=1,2,3,…,n),那么称该数列为“对称数列”.设{a n}是项数为2k-1(k∈N,k≥2)的“对称数列”,其中a k,a k+1,…,a2k-1是首项为50,公差为-4的等差数列,记{a n }的各项之和为S 2k -1,则S 2k -1的最大值为( ) A.622B.624C.626D.6288.(多选)[2022江苏南京高三月考]如图的形状出现在中国南宋数学家杨辉所著的《详解九章算法》中,后人称为“三角垛”.“三角垛”最上层有1个球,第二层有3个球,第三层有6个球,第四层有10个球,…….设第n 层有a n 个球,从上往下n 层球的总数为S n ,则( )A.S 5=35B.a n +1-a n =nC.S n -S n -1=n(n+1)2,n ≥2 D.1a 1+1a 2+1a 3+…+1a 100=200101二、非选择题9.如图所示,八个边长为1的小正方形拼成一个长为4,宽为2的矩形,A ,B ,D ,E 均为小正方形的顶点,在线段DE 上有 2 020个不同的点P 1,P 2,…,P 2 020,且它们等分DE.记M i =AB ⃗⃗⃗⃗⃗ ·AP i ⃗⃗⃗⃗⃗⃗ (i =1,2,…,2 020).则M 1+M 2+…+M 2 020的值为 .10.已知数列{a n }满足2a n +1=a n +a n +2(n ∈N *),它的前n 项和为S n ,且a 3=10,S 6=72,则{a n }的通项公式a n = ;若数列{b n }满足b n =12a n -30,其前n 项和为T n ,则T n 的最小值为 .11.[2022辽宁阜新高二上期末]在等差数列{a n }中,S n 是数列{a n }的前n 项和,已知a 2=4,S 4=20.(1)求数列{a n }的通项公式;(2)若b n =(-1)n·a n ,求数列{b n }的前n 项和T n .12.[2022河北唐山一中高二上月考]记S n是等差数列{a n}的前n项和,若S5=-35,S7=-21.(1)求数列{a n}的通项公式,并求S n的最小值;(2)设b n=|a n|,求数列{b n}的前n项和T n.参考答案一、选择题1.C设d为数列{a n}的公差,则{S nn }是公差为d2的等差数列.2.C由题易知S4,S8-S4,S12-S8,S16-S12,S20-S16成等差数列,又S4=3,S20-S16=5,则S20=(S20-S16)+(S16-S12)+(S12-S8)+(S8-S4)+S4=(5+3)×52=20.3.A因为d<0,a5a7=35,a4+a8=a5+a7=12,所以a5=7,a7=5,则d=-1,所以a n=a7+(n-7)d=-n+12,所以a12=0,所以当n=11或12时,S n取得最大值,最大值为S11=S12=12(a1+a12)2= 12×(11+0)2=66.4.AB由S2nT n =8n3n+5,知S10T5=10(a1+a10)25(b1+b5)2=a1+a10b3=a3+a8b3=4020=2,即a3+a8=2b3,故A正确;同理可得a4+a11b4=S14T7=2813>2,故C错误;当S n=2n2时,有S2n=8n2,则T n=n(3n+5),易得b n=6n+2,故B正确;当S n=-2n2时,有S2n=-8n2,则T n=-n(3n+5)<0,则不存在n∈N*,使得T n>0,故D错误.5.BC因为S2 021=2021(a1+a2021)2=2 021a1 011>0,S2 022=2022(a1+a2022)2=1 011(a1 011+a1 012)<0,所以a1 011>0,a1 011+a1 012<0,所以a1 012<0,且|a1 012|>|a1 011|,所以数列{a n}是递减数列,且当n=1 011时,S n取得最大值,故B,C正确,A错误.又S1 012-S1 009=a1 010+a1 011+a1 012=3a1 011>0,所以S1 012>S1 009,故D错误.故选BC.6.A记良马第n日行程为a n,驽马第n日行程为b n,则由题意知数列{a n}是首项为97,公差为15的等差数列,数列{b n}是首项为92,公差为-1的等差数列,则a n=97+15(n-1)=15n+82,b n=92-(n-1)=93-n.因为数列{a n}的前n项和为n(97+15n+82)2=n(179+15n)2,数列{b n}的前n项和为n(92+93−n)2=n(185−n)2,所以n(179+15n)2+n(185−n)2=420×2,整理得n2+26n-120=0,解得n=4或n=-30(舍去),即4日相逢.7.C易知a k+a k+1+…+a2k-1=50k+k(k−1)×(−4)2=-2k2+52k,S2k-1=a1+…+a k+a k+1+…+a2k-1=2(a k+a k+1+…+a2k-1)-a k=-4k2+104k-50=-4(k-13)2+626,当k=13时,S2k-1取到最大值,且最大值为626.故选C.8.ACD因为a1=1,a2-a1=2,a3-a2=3,……,a n-a n-1=n,以上n个式子相加可得a n=1+2+3+…+n=n(n+1)2,所以S5=a1+a2+a3+a4+a5=1+3+6+10+15=35,故A正确;由递推关系可知a n+1-a n=n+1,故B 不正确;当n ≥2时,S n -S n -1=a n =n(n+1)2,故C 正确;因为1a n =2n(n+1)=2(1n−1n+1),所以1a 1+1a 2+…+1a 100=2[(1-12)+(12−13)+…+(1100−1101)]=2(1-1101)=200101,故D 正确.故选ACD.二、非选择题9.14 140 解析如图,设C 为DE 的中点,则AC =72.因为P 1,P 2,…,P 2 020等分DE ,所以AP i ⃗⃗⃗⃗⃗⃗ +AP 2 021−i ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =2AC ⃗⃗⃗⃗⃗ .又M 1+M 2+…+M 2 020=AB ⃗⃗⃗⃗⃗ ·(AP 1⃗⃗⃗⃗⃗⃗⃗ +AP 2⃗⃗⃗⃗⃗⃗⃗ +…+AP 2 020⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ),令S =M 1+M 2+…+M 2 020,则2S =AB ⃗⃗⃗⃗⃗ ·(AP 1⃗⃗⃗⃗⃗⃗⃗ +AP 2⃗⃗⃗⃗⃗⃗⃗ +…+AP 2 020⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ )+AB ⃗⃗⃗⃗⃗ ·(AP 2 020⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AP 2 019⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ +…+AP 1⃗⃗⃗⃗⃗⃗⃗ )=AB ⃗⃗⃗⃗⃗ ·[(AP 1⃗⃗⃗⃗⃗⃗⃗ +AP 2 020⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ )+(AP 2⃗⃗⃗⃗⃗⃗⃗ +AP 2 019⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ )+…+(AP 2 020⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AP 1⃗⃗⃗⃗⃗⃗⃗ )]=(2×2 020)AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =4 040×√5×72×√5=28 280,所以S =14 140.10.4n -2 -225 解析因为2a n +1=a n +a n +2,所以a n +1-a n =a n +2-a n +1,故数列{a n }为等差数列.设数列{a n }的公差为d.由a 3=10,S 6=72,得{a 1+2d =10,6a 1+15d =72,解得{a 1=2,d =4,所以a n =4n -2,所以b n =12a n -30=2n -31.令{b n ≤0,b n+1≥0,即{2n −31≤0,2(n +1)−31≥0,解得292≤n ≤312.因为n ∈N *,所以数列{b n }的前15项均为负值且第16项为正值,所以T 15最小.因为数列{b n }的首项为-29,公差为2,所以T 15=15(−29+2×15−31)2=-225,所以数列{b n }的前n 项和T n 的最小值为-225.11.(1)设首项为a 1,公差为d ,由题意知 {a 1+d =4,4a 1+4×32d =20,解得{a 1=2,d =2,故a n =2n. (2)由(1)得b n =(-1)n·a n =(-1)n·2n.当n 为偶数时,T n =(-2+4)+(-6+8)+…+[-2(n -1)+2n ]=n2·2=n ;当n 为奇数时,T n =(-2+4)+(-6+8)+…+[-2(n -2)+2(n -1)]-2n =(n -1)-2n =-n -1, 所以T n ={n,n 为偶数,−n −1,n 为奇数.12.(1)设{a n }的公差为d ,则{5a 1+5×42d =−35,7a 1+7×62d =−21,解得{a 1=−15,d =4, 所以a n =-15+4(n -1)=4n -19.由a n=4n-19≥0,得n≥194,所以当n=1,2,3,4时,a n<0,当n≥5时,a n>0,所以S n的最小值为S4=4a1+4×32d=-36.(2)由(1)知,当n≤4时,b n=|a n|=-a n;当n≥5时,b n=|a n|=a n.又S n=na1+n(n−1)2d=2n2-17n,所以当n≤4时,T n=-S n=17n-2n2,当n≥5时,T n=S n-2S4=2n2-17n-2×(-36)=2n2-17n+72,即T n={17n−2n2,n≤4, 2n2−17n+72,n≥5.。
等差等比数列前N项和练习答案
等差数列前N 项和(第一课时)一、选择题1.设S n 为等差数列{a n }的前n 项和,S 8=4a 3,a 7=-2,则a 9=( ) A .-6 B .-4 C .-2 D .2[答案] A[解析] 本题考查数列的基础知识和运算能力.⎩⎪⎨⎪⎧ S 3=4a 3a 7=-2⇒⎩⎪⎨⎪⎧ 3a 1+3d =4a 1+8d a 1+6d =-2⇒⎩⎪⎨⎪⎧a 1=10d =-2. ∴a 9=a 1+8d =-6.2.四个数成等差数列,S 4=32,a 2a 3=13,则公差d 等于( )A .8B .16C .4D .0[答案] A [解析] ∵a 2a 3=13,∴a 1+d a 1+2d =13,∴d =-2a 1. 又S 4=4a 1+4×32d =-8a 1=32,∴a 1=-4,∴d =8.3.等差数列{a n }中,a 3+a 7-a 10=8,a 11-a 4=14.记S n =a 1+a 2+a 3+…+a n ,则S 13=( )A .168B .156C .152D .286[答案] D[解析] ∵⎩⎪⎨⎪⎧ a 3+a 7-a 10=8a 11-a 4=14,∴⎩⎪⎨⎪⎧a 1-d =87d =14,∴⎩⎪⎨⎪⎧d =2a 1=10,∴S 13=13a 1+13×122d =286.4.在等差数列{a n }和{b n }中,a 1=25,b 1=15,a 100+b 100=139,则数列{a n +b n }的前100项的和为( )A .0B .4475C .8950D .10 000[答案] C[解析] 设c n =a n +b n ,则c 1=a 1+b 1=40,c 100=a 100+b 100=139,{c n }是等差数列,∴前100项和S 100=100(c 1+c 100)2=100×(40+139)2=8950.5.已知等差数列共有10项,其中奇数项之和为15,偶数项之和为30,则其公差是( ) A .5 B .4 C .3 D .2[答案] C[解析] 设等差数列为{a n },公差为d ,则⎩⎪⎨⎪⎧a 1+a 3+a 5+a 7+a 9=15a 2+a 4+a 6+a 8+a 10=30, ∴5d =15,∴d =3.6.设S n 是等差数列{a n }的前n 项和,若a 7a 5=913,则S 13S 9=( ) A .1 B .-1 C .2 D .12[答案] A [解析]S 13S 9=13a 79a 5=139×913=1,故选A . 二、填空题7.已知数列{a n }的通项公式a n =-5n +2,则其前n 项和S n =________. [答案] -5n 2+n2[解析] ∵a n =-5n +2, ∴a n -1=-5n +7(n ≥2),∴a n -a n -1=-5n +2-(-5n +7)=-5(n ≥2). ∴数列{a n }是首项为-3,公差为-5的等差数列. ∴S n =n (a 1+a n )2=n (-5n -1)2=-5n 2+n 2.8.设等差数列{a n }的前n 项和为S n ,若S 9=72,则a 2+a 4+a 9=________. [答案] 24[解析] ∵S 9=9·(a 1+a 9)2=72,∴a 1+a 9=16,即a 1+a 1+8d =16, ∴a 1+4d =8,又a 2+a 4+a 9=a 1+d +a 1+3d +a 1+8d=3(a 1+4d )=3×8=24. 三、解答题9.已知等差数列{a n }.(1)a 1=56,a 15=-32,S n =-5,求n 和d ;(2)a 1=4,S 8=172,求a 8和d . [解析] (1)∵a 15=56+(15-1)d =-32,∴d =-16.又S n =na 1+n (n -1)2·d =-5,解得n =15,n =-4(舍).(2)由已知,得S 8=8(a 1+a 8)2=8(4+a 8)2,解得a 8=39,又∵a 8=4+(8-1)d =39,∴d =5.等差数列前N 项和(第二课时) 一、选择题1.记等差数列{a n }的前n 项和为S n .若d =3,S 4=20,则S 6=( ) A .16 B .24 C .36 D .48[答案] D[解析] 由S 4=20,4a 1+6d =20,解得a 1=12⇒S 6=6a 1+6×52×3=48.2.已知{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,S n 是等差数列{a n }的前n 项和,则使得S n 达到最大值的n 是( )A .21B .20C .19D .18 [答案] B[解析] 由题设求得:a 3=35,a 4=33,∴d =-2,a 1=39,∴a n =41-2n ,a 20=1,a 21=-1,所以当n =20时S n 最大.故选B .3.13×5+15×7+17×9+…+113×15=( )A .415B .215C .1415D .715[答案] B[解析] 原式=12(13-15)+12(15-17)+…+12(113-115)=12(13-115)=215,故选B .4.已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列{1a n a n +1}的前100项和为( )A .100101B .99101C .99100D .101100[答案] A[解析] 本小题主要考查等差数列的通项公式和前n 项和公式的运用,以及裂项求和的综合应用.∵a 5=5,S 5=15 ∴5(a 1+5)2=15,∴a 1=1. ∴d =a 5-a 15-1=1,∴a n =n .∴1a n a n +1=1n (n +1)=1n -1n +1. 则数列{1a n a n +1}的前100项的和为:T 100=(1-12)+(12-13)+…+(1100-1101)=1-1101=100101. 故选A .5.设等差数列{a n }的前n 项的和为S n ,若a 1>0,S 4=S 8,则当S n 取得最大值时,n 的值为( )A .5B .6C .7D .8[答案] B[解析] 解法一:∵a 1>0,S 4=S 8,∴d <0,且a 1=112d ,∴a n =-112d +(n -1)d =nd -132d ,由⎩⎪⎨⎪⎧a n ≥0a n +1<0,得⎩⎨⎧nd -132d ≥0(n +1)d -132d <0,∴512<n ≤612,∴n =6,解法二:∵a 1>0,S 4=S 8, ∴d <0且a 5+a 6+a 7+a 8=0, ∴a 6+a 7=0,∴a 6>0,a 7<0, ∴前六项之和S 6取最大值.6.设{a n }是等差数列,S n 为其前n 项和,且S 5<S 6,S 6=S 7>S 8,则下列结论错误的是( ) A .d <0 B .a 7=0C .S 9>S 5D .S 6与S 7均为S n 的最大值[答案] C[解析] 由S 5<S 6知a 6>0,由S 6=S 7知a 7=0,由S 7>S 8知a 8<0,C 选项S 9>S 5即a 6+a 7+a 8+a 9>0,∴a 7+a 8>0,显然错误. 二、填空题7.设S n 是等差数列{a n }(n ∈N *)的前n 项和,且a 1=1,a 4=7,则S 5=________. [答案] 25[解析] 由⎩⎪⎨⎪⎧ a 1=1a 4=7得⎩⎪⎨⎪⎧a 1=1d =2,∴S 5=5a 1+5×42×d =25.8.(2014·北京理,12)若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大.[答案] 8[解析] 本题考查了等差数列的性质与前n 项和.由等差数列的性质,a 7+a 8+a 9=3a 8,a 7+a 10=a 8+a 9,于是有a 8>0,a 8+a 9<0,故a 9<0,故S 8>S 7,S 9<S 8,S 8为{a n }的前n 项和S n 中的最大值,等差数列{a n }中首项a 1>0公差d <0,{a n }是一个递减的等差数列,前n 项和有最大值,a 1<0,公差d >0,{a n }是一个递增的等差数列,前n 项和有最小值.三、解答题9.设等差数列{a n }满足a 3=5,a 10=-9. (1)求{a n }的通项公式;(2)求{a n }的前n 项和S n 及使得S n 取最大值的n 的值.[解析] (1)设公差为d ,由已知得⎩⎪⎨⎪⎧ a 1+2d =5a 1+9d =-9,解得⎩⎪⎨⎪⎧a 1=9d =-2.∴a n =a 1+(n -1)d =-2n +11.(2)由(1)知S n =na 1+n (n -1)2d =10n -n 2=-(n -5)2+25,∴当n =5时,S n 取得最大值.等比数列前N 项和综合练习1.(2013·新课标全国Ⅰ)设首项为1,公比为23的等比数列{a n }的前n 项和为S n ,则( )A .S n =2a n -1B .S n =3a n -2C .S n =4-3a nD .S n =3-2a n答案 D解析 S n =a 1(1-q n )1-q =a 1-a n q1-q=1-23a n1-23=3-2a n ,故选D 项. 2.等比数列{a n }各项都是正数,若a 1=81,a 5=16,则它的前5项和是( )A .179B .211C .248D .275答案 B解析 ∵a 5=a 1q 4,∴16=81q 4.∴q =±23.又数列{a n }的各项都是正数,∴q =23. ∴S 5=a 1(1-q 5)1-q=81[1-(23)5]1-23=211. 3.在等比数列{a n }中,S n 表示前n 项和,若a 3=2S 2+1,a 4=2S 3+1,则公比q 等于( )A .3B .-3C .-1D .1答案 A解析 思路一:列方程求出首项和公比,过程略; 思路二:两等式相减得a 4-a 3=2a 3,从而求得a 4a 3=3=q .4.在公比为正数的等比数列中,a 1+a 2=2,a 3+a 4=8,则S 8等于( )A .21B .42C .135D .170答案 D 解析5.设{a n }是由正数组成的等比数列,S n 为其前n 项和.已知a 2a 4=1,S 3=7,则S 5=( )A.152B.314C.334D.172答案 B解析 显然公比q ≠1,由题意,得⎩⎪⎨⎪⎧a 1q ·a 1q 3=1,a 1(1-q 3)1-q =7,解得⎩⎨⎧a 1=4,q =12,∴S 5=a 1(1-q 5)1-q=4(1-125)1-12=314. 6.在14与78之间插入n 个数组成等比数列,若各项总和为778,则此数列的项数( )A .4B .5C .6D .7答案 B解析 ∵q ≠1(14≠78),∴Sn =a 1-anq 1-q.∴778=14-78q 1-q ,解得q =-12,78=14×(-12)n +2-1.∴n =3,故该数列共5项.7.等比数列{an }的首项为1,公比为q ,前n 项和为S ,则数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为( ) A.1S B .S C .Sq 1-n D .S -1q 1-n答案 C解析 q ≠1时,S =1-q n 1-q ,⎩⎨⎧⎭⎬⎫1a n 的前n 项和为1(1-1q n )1-1q =q 1-n ·1-q n 1-q=q 1-n ·S .当q =1时,q 1-n ·S =S .8.在等比数列{a n }中,公比q =-2,S 5=44,则a 1的值为( )A .4B .-4C .-2D .2答案 A 解析9.数列{a n }的前n 项和为S n =4n +b (b 是常数,n ∈N *),若这个数列是等比数列,则b 等于( )A .-1B .0C .1D .4答案 A 解析10.(2013·北京)若等比数列{a n }满足a 2+a 4=20,a 3+a 5=40,则公比q =________;前n 项和S n =________.答案 2 2n +1-2解析 由题意知q =a 3+a 5a 2+a 4=2.由a 2+a 4=a 2(1+q 2)=a 1q (1+q 2)=20,∴a 1=2,∴S n =2(1-2n )1-2=2n +1-2.11.(2012·新课标全国)等比数列{a n }的前n 项和为S n ,若S 3+3S 2=0,则公比q =________.答案 -2解析 由S 3=-2S 2,可得a 1+a 2+a 3=-3(a 1+a 2), 即a 1(1+q +q 2)=-3a 1(1+q ),化简整理得q 2+4q +4=0,解得q =-2.12.若等比数列{a n }中,a 1=1,a n =-512,前n 项和为S n =-341,则n 的值是________.答案 1013.(2012·浙江)设公比为q (q >0)的等比数列{a n }的前n 项和为S n ,若S 2=3a 2+2,S 4=3a 4+2,则q =________.答案 32解析 由已知S 4-S 2=3a 4-3a 2,即a 4+a 3=3a 4-3a 2,即2a 4-a 3-3a 2=0,两边同除以a 2,得2q 2-q -3=0,即q =32或q =-1(舍).答案 3n -1,或(-3)n-14解析答案24解析16.等比数列{a n}的公比q>0,已知a2=1,a n+2+a n+1=6a n,则{a n}的前4项和S4=________.答案 152解析 由条件a n +2+a n +1=a n q 2+a n q =6a n ,q >0,得q =2,又a 2=1,所以a 1=12,S 4=152.17.一个等比数列的首项为1,项数为偶数,其中奇数项的和为85,偶数项的和为170,求该数列的公比和项数.答案 该数列的公比为2,项数为8解析18.设等比数列{a n }的公比q <1,前n 项和为S n ,已知a 3=2,S 4=5S 2,求{a n }的通项公式.解析 由题设知a 1≠0,S n =a 1(1-q n )1-q,则 ⎩⎪⎨⎪⎧ a 1q 2=2,a 1(1-q 4)1-q =5×a 1(1-q 2)1-q , ①②由②得1-q 4=5(1-q 2),(q 2-4)(q 2-1)=0.(q -2)(q +2)(q -1)(q +1)=0, 因为q <1,解得q =-1或q =-2. 当q =-1时,代入①得a 1=2,a n =2×(-1)n -1;当q =-2时,代入①得a 1=12,a n =12×(-2)n -1.综上,当q =-1时,a n =2×(-1)n -1; 当q =-2时,a n =12×(-2)n -1.。
(完整版)等差数列的前n项和练习含答案
课时作业8 等差数列的前n 项和时间:45分钟 满分:100分课堂训练1.已知{a n }为等差数列,a 1=35,d =-2,S n =0,则n 等于( ) A .33 B .34 C .35 D .36【答案】 D【解析】 本题考查等差数列的前n 项和公式.由S n =na 1+n (n -1)2d =35n +n (n -1)2×(-2)=0,可以求出n =36.2.等差数列{a n }中,3(a 3+a 5)+2(a 7+a 10+a 13)=24,则数列前13项的和是( )A .13B .26C .52D .156 【答案】 B【解析】 3(a 3+a 5)+2(a 7+a 10+a 13)=24⇒6a 4+6a 10=24⇒a 4+a 10=4⇒S 13=13(a 1+a 13)2=13(a 4+a 10)2=13×42=26. 3.等差数列的前n 项和为S n ,S 10=20,S 20=50.则S 30=________. 【答案】 90【解析】 等差数列的片断数列和依次成等差数列. ∴S 10,S 20-S 10,S 30-S 20也成等差数列. ∴2(S 20-S 10)=(S 30-S 20)+S 10,解得S 30=90.4.等差数列{a n }的前n 项和为S n ,若S 12=84,S 20=460,求S 28. 【分析】 (1)应用基本量法列出关于a 1和d 的方程组,解出a 1和d ,进而求得S 28;(2)因为数列不是常数列,因此S n 是关于n 的一元二次函数且常数项为零.设S n =an 2+bn ,代入条件S 12=84,S 20=460,可得a 、b ,则可求S 28;(3)由S n =d 2n 2+n (a 1-d 2)得S n n =d 2n +(a 1-d2),故⎩⎨⎧⎭⎬⎫S n n 是一个等差数列,又2×20=12+28,∴2×S 2020=S 1212+S 2828,可求得S 28.【解析】 方法一:设{a n }的公差为d , 则S n =na 1+n (n -1)2d .由已知条件得:⎩⎨⎧12a 1+12×112d =84,20a 1+20×192d =460,整理得⎩⎨⎧2a 1+11d =14,2a 1+19d =46,解得⎩⎨⎧a 1=-15,d =4.所以S n =-15n +n (n -1)2×4=2n 2-17n , 所以S 28=2×282-17×28=1 092.方法二:设数列的前n 项和为S n ,则S n =an 2+bn . 因为S 12=84,S 20=460,所以⎩⎨⎧122a +12b =84,202a +20b =460,整理得⎩⎨⎧12a +b =7,20a +b =23.解之得a =2,b =-17, 所以S n =2n 2-17n ,S 28=1 092. 方法三:∵{a n }为等差数列, 所以S n =na 1+n (n -1)2d ,所以S n n =a 1-d 2+d2n ,所以⎩⎨⎧⎭⎬⎫S n n 是等差数列.因为12,20,28成等差数列, 所以S 1212,S 2020,S 2828成等差数列, 所以2×S 2020=S 1212+S 2828,解得S 28=1 092.【规律方法】 基本量法求出a 1和d 是解决此类问题的基本方法,应熟练掌握.根据等差数列的性质探寻其他解法,可以开阔思路,有时可以简化计算.课后作业一、选择题(每小题5分,共40分)1.已知等差数列{a n }中,a 2=7,a 4=15,则前10项的和S 10等于( )A .100B .210C .380D .400【答案】 B【解析】 d =a 4-a 24-2=15-72=4,则a 1=3,所以S 10=210.2.在等差数列{a n }中,a 2+a 5=19,S 5=40,则a 10=( ) A .27 B .24 C .29 D .48【答案】 C 【解析】由已知⎩⎨⎧2a 1+5d =19,5a 1+10d =40.解得⎩⎨⎧a 1=2,d =3.∴a 10=2+9×3=29.3.数列{a n }的前n 项和为S n =n 2+2n -1,则这个数列一定是( ) A .等差数列 B .非等差数列 C .常数列 D .等差数列或常数列 【答案】 B【解析】 当n ≥2时,a n =S n -S n -1=n 2+2n -1-[(n -1)2+2(n -1)-1]=2n +1,当n =1时a 1=S 1=2.∴a n =⎩⎨⎧2,n =1,2n +1,n ≥2,这不是等差数列.4.设等差数列{a n }的前n 项和为S n .若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n 等于( )C .8D .9【答案】 A 【解析】⎩⎨⎧a 1=-11,a 4+a 6=-6,∴⎩⎨⎧a 1=-11,d =2,∴S n =na 1+n (n -1)2d =-11n +n 2-n =n 2-12n . =(n -6)2-36. 即n =6时,S n 最小.5.一个只有有限项的等差数列,它的前5项的和为34,最后5项的和为146,所有项的和为234,则它的第7项等于( )A .22B .21C .19D .18【答案】 D【解析】 ∵a 1+a 2+a 3+a 4+a 5=34, a n +a n -1+a n -2+a n -3+a n -4=146, ∴5(a 1+a n )=180,a 1+a n =36, S n =n (a 1+a n )2=n ×362=234. ∴n =13,S 13=13a 7=234.∴a 7=18.6.一个有11项的等差数列,奇数项之和为30,则它的中间项为( )A .8B .7【答案】 D【解析】 S 奇=6a 1+6×52×2d =30,a 1+5d =5,S 偶=5a 2+5×42×2d =5(a 1+5d )=25,a 中=S 奇-S 偶=30-25=5.7.若两个等差数列{a n }和{b n }的前n 项和分别是S n ,T n ,已知S n T n=7n n +3,则a 5b 5等于( ) A .7 B.23 C.278 D.214【答案】 D【解析】 a 5b 5=2a 52b 5=a 1+a 9b 1+b 9=92(a 1+a 9)92(b 1+b 9)=S 9T 9=214.8.已知数列{a n }中,a 1=-60,a n +1=a n +3,则|a 1|+|a 2|+|a 3|+…+|a 30|等于( )A .445B .765C .1 080D .1 305 【答案】 B【解析】 a n +1-a n =3,∴{a n }为等差数列. ∴a n =-60+(n -1)×3,即a n =3n -63.∴a n =0时,n =21,a n >0时,n >21,a n <0时,n <21. S ′30=|a 1|+|a 2|+|a 3|+…+|a 30|=-a 1-a 2-a 3-…-a 21+a 22+a 23+…+a 30 =-2(a 1+a 2+…+a 21)+S 30 =-2S 21+S 30 =765.二、填空题(每小题10分,共20分)9.设等差数列{a n }的前n 项和为S n ,若a 6=S 3=12,则数列的通项公式a n =________.【答案】 2n【解析】 设等差数列{a n }的公差d ,则⎩⎨⎧a 1+5d =12a 1+d =4,∴⎩⎨⎧a 1=2d =2,∴a n =2n .10.等差数列共有2n +1项,所有奇数项之和为132,所有偶数项之和为120,则n 等于________.【答案】 10【解析】 ∵等差数列共有2n +1项,∴S 奇-S 偶=a n +1=S 2n +12n +1.即132-120=132+1202n +1,求得n =10.【规律方法】 利用了等差数列前n 项和的性质,比较简捷. 三、解答题(每小题20分,共40分.解答应写出必要的文字说明、证明过程或演算步骤)11.在等差数列{a n }中,(1)已知a 6=10,S 5=5,求a 8和S 8; (2)若a 1=1,a n =-512,S n =-1 022,求d .【分析】 在等差数列中,五个重要的量,只要已知三个量,就可求出其他两个量,其中a 1和d 是两个最基本量,利用通项公式和前n 项和公式,先求出a 1和d ,然后再求前n 项和或特别的项.【解析】 (1)∵a 6=10,S 5=5,∴⎩⎨⎧a 1+5d =10,5a 1+10d =5.解方程组,得a 1=-5,d =3, ∴a 8=a 6+2d =10+2×3=16, S 8=8(a 1+a 8)2=44. (2)由S n =n (a 1+a n )2=n (-512+1)2=-1 022, 解得n =4.又由a n =a 1+(n -1)d , 即-512=1+(4-1)d , 解得d =-171.【规律方法】 一般地,等差数列的五个基本量a 1,a n ,d ,n ,S n ,知道其中任意三个量可建立方程组,求出另外两个量,即“知三求二”.我们求解这类问题的通性通法,是先列方程组求出基本量a 1和d ,然后再用公式求出其他的量.12.已知等差数列{a n },且满足a n =40-4n ,求前多少项的和最大,最大值为多少?【解析】 方法一:(二次函数法)∵a n =40-4n ,∴a 1=40-4=36, ∴S n =(a 1+a n )n 2=36+40-4n2·n =-2n 2+38n =-2[n 2-19n +(192)2]+1922=-2(n -192)2+1922.令n -192=0,则n =192=9.5,且n ∈N +, ∴当n =9或n =10时,S n 最大,∴S n 的最大值为S 9=S 10=-2(10-192)2+1922=180. 方法二:(图象法)∵a n =40-4n ,∴a 1=40-4=36, a 2=40-4×2=32,∴d =32-36=-4,S n =na 1+n (n -1)2d =36n +n (n -1)2·(-4)=-2n 2+38n , 点(n ,S n )在二次函数y =-2x 2+38x 的图象上,S n 有最大值,其对称轴为x =-382×(-2)=192=9.5,∴当n =10或9时,S n 最大.∴S n 的最大值为S 9=S 10=-2×102+38×10=180. 方法三:(通项法)∵a n =40-4n ,∴a 1=40-4=36,a 2=40-4×2=32,∴d =32-36=-4<0,数列{a n }为递减数列.令⎩⎨⎧a n ≥0,a n +1≤0,有⎩⎨⎧40-4n ≥0,40-4(n +1)≤0,∴⎩⎨⎧n ≤10,n ≥9,即9≤n ≤10.当n =9或n =10时,S n 最大.∴S n 的最大值为S 9=S 10=a 1+a 102×10=36+02×10=180. 【规律方法】 对于方法一,一定要强调n ∈N +,也就是说用函数式求最值,不能忽略定义域,另外,三种方法中都得出n =9或n =10,需注意a m =0时,S m -1=S m 同为S n 的最值.。
等差数列的前n项和(作业带答案)
等差数列的前n 项和一、选择题(5*6=30)1.已知等差数列{a n }满足a 2+a 4=4,a 3+a 5=10,则它的前10项的和S 10=( )A .138B .135C .95D .232.已知S n 是等差数列{a n }的前n 项和,若a 1+a 12=a 7+6,则S 11=( )A .99B .33C .198D .663.在小于100的自然数中,所有被7除余2的数之和为( )A .765B .665C .763D .6634.现有200根相同的钢管,把它们堆成三角形垛,要使剩余的钢管尽可能少,那么剩余钢管的根数为( )A .9B .10C .19D .295.《张丘建算经》卷上第22题为“今有女善织,日益功疾,初日织五尺,今一月日织九匹三丈.”其意思为:现有一善于织布的女子,从第2天开始,每天比前一天多织相同量的布,第1天织了5尺布,现在一月(按30天计算)共织390尺布.记该女子一月中的第n 天所织布的尺数为a n ,则a 14+a 15+a 16+a 17的值为( )A .55B .52C .39D .266.(多选题)设等差数列{a n }的前n 项和为S n 且满足S 2 019>0,S 2 020<0,对任意正整数n ,都有|a n |≥|a k |,则下列判断正确的是( )A .a 1 010>0B .a 1 011>0C .|a 1 010|>|a 1 011|D .k 的值为1 010二、填空题(2*5=10)7.已知在数列{a n }中,a 1=1,a n =a n -1+12(n ≥2),则数列{a n }的前9项和等于________.8.若数列{}a n 的前n 项和为S n =n 2-3n +1()n ∈N *,则该数列的通项公式为a n =________.三、解答题(20*3=60)9.已知等差数列{a n }中,a 10=30,a 20=50.(1)求数列的通项公式;(2)若S n =242,求n .10.已知数列{}a n 的前n 项和为S n ,且满足a 1=12,a n =-2S n S n -1(n ≥2).(1)求证:数列⎩⎨⎧⎭⎬⎫1S n 是等差数列; (2)求S n 和a n .11.已知数列{a n }的前n 项和为S n ,数列{a n }为等差数列,a 1=12,d =-2.(1)求S n ,并画出{S n }(1≤n ≤13)的图象;(2)分别求{S n }单调递增、单调递减的n 的取值范围,并求{S n }的最大(或最小)的项;(3){S n }有多少项大于零?等差数列的前n 项和(答案)一、选择题1.已知等差数列{a n }满足a 2+a 4=4,a 3+a 5=10,则它的前10项的和S 10=( )A .138B .135C .95D .23C [∵⎩⎪⎨⎪⎧ a 2+a 4=4,a 3+a 5=10,∴⎩⎪⎨⎪⎧ a 1+2d =2,a 1+3d =5,∴⎩⎪⎨⎪⎧a 1=-4,d =3,∴S 10=10a 1+10×92×d =-40+135=95.]2.已知S n 是等差数列{a n }的前n 项和,若a 1+a 12=a 7+6,则S 11=( )A .99B .33C .198D .66D [因为a 1+a 12=a 7+6,所以a 6=6,则S 11=11(a 1+a 11)2=11a 6=11×6=66,故选D .] 3.在小于100的自然数中,所有被7除余2的数之和为( )A .765B .665C .763D .663B [由题意得,所有被7除余2的数构成以2为首项,公差为7的等差数列,∴2+(n -1)×7<100,∴n <15,∴n =14,S 14=14×2+12×14×13×7=665.]4.现有200根相同的钢管,把它们堆成三角形垛,要使剩余的钢管尽可能少,那么剩余钢管的根数为( )A .9B .10C .19D .29B [钢管排列方式是从上到下各层钢管数组成了一个等差数列,最上面一层钢管数为1,逐层增加1个.∴钢管总数为:1+2+3+…+n =n (n +1)2.当n =19时,S 19=190.当n =20时,S 20=210>200.∴n =19时,剩余钢管根数最少, 为10根.]5.《张丘建算经》卷上第22题为“今有女善织,日益功疾,初日织五尺,今一月日织九匹三丈.”其意思为:现有一善于织布的女子,从第2天开始,每天比前一天多织相同量的布,第1天织了5尺布,现在一月(按30天计算)共织390尺布.记该女子一月中的第n 天所织布的尺数为a n ,则a 14+a 15+a 16+a 17的值为( )A .55B .52C .39D .26B [由题意可得{a n }为等差数列,a 1=5,∴S 30=30×5+30×292d =390,解得d =1629,∴a 14+a 15+a 16+a 17=a 1+13d +a 1+14d +a 1+15d +a 1+16d =4a 1+58d =4×5+58×1629=52.]6.(多选题)设等差数列{a n }的前n 项和为S n 且满足S 2 019>0,S 2 020<0,对任意正整数n ,都有|a n |≥|a k |,则下列判断正确的是( )A .a 1 010>0B .a 1 011>0C .|a 1 010|>|a 1 011|D .k 的值为1 010AD [由等差数列{a n },可得S 2 019=2 019(a 1+a 2 019)2>0,S 2 020=2 020(a 1+a 2 020)2<0, 即:a 1+a 2 019>0,a 1+a 2 020<0,可得:2a 1 010>0,a 1 010+a 1 011<0,∴a 1 010>0,a 1 011<0,∴A 正确B 错误.又等差数列{a n }为递减数列, 且a 1 010+a 1 011<0,∴|a 1 010|<|a 1 011|,∴C 错误.而对任意正整数n ,都有|a n |≥|a k |,则k 的值为1 010.故D 正确.故选AD .]二、填空题7.已知在数列{a n }中,a 1=1,a n =a n -1+12(n ≥2),则数列{a n }的前9项和等于________.27 [由a 1=1,a n =a n -1+12(n ≥2),可知数列{a n }是首项为1,公差为12的等差数列,故S 9=9a 1+9×(9-1)2×12=9+18=27.] 8.若数列{}a n 的前n 项和为S n =n 2-3n +1()n ∈N *,则该数列的通项公式为a n =________.⎩⎪⎨⎪⎧ -1 ()n =12n -4()n ≥2 [由题意可知,当n =1时,a 1=S 1=12-3×1+1=-1; 当n ≥2时,a n =S n -S n -1=()n 2-3n +1-⎣⎡⎦⎤()n -12-3()n -1+1=2n -4. 又a 1=-1不满足a n =2n -4.因此,a n =⎩⎪⎨⎪⎧ -1()n =1,2n -4()n ≥2.] 三、解答题9.已知等差数列{a n }中,a 10=30,a 20=50.(1)求数列的通项公式;(2)若S n =242,求n .[解] (1)设数列{a n }的首项为a 1,公差为d . 则⎩⎪⎨⎪⎧ a 10=a 1+9d =30,a 20=a 1+19d =50,解得⎩⎪⎨⎪⎧a 1=12,d =2,∴a n =a 1+(n -1)d =12+(n -1)×2=10+2n .(2)由S n =na 1+n (n -1)2d 以及a 1=12,d =2,S n =242,得方程242=12n +n (n -1)2×2,即n 2+11n -242=0,解得n =11或n =-22(舍去).故n =11.10.已知数列{}a n 的前n 项和为S n ,且满足a 1=12,a n =-2S n S n -1(n ≥2).(1)求证:数列⎩⎨⎧⎭⎬⎫1S n 是等差数列; (2)求S n 和a n .[解] (1)证明:当n ≥2时,a n =S n -S n -1=-2S n S n -1,①∵S 1=a 1≠0,由递推关系知S n ≠0(n ∈N *),由①式得1S n -1S n -1=2(n ≥2). ∴⎩⎨⎧⎭⎬⎫1S n 是等差数列,其中首项为1S 1=1a 1=2,公差为2. (2)由(1)知,1S n=2+2(n -1)=2n ,∴S n =12n . 当n ≥2时,a n =S n -S n -1=-12n (n -1), 当n =1时,a 1=S 1=12不适合上式.所以,a n =⎩⎪⎨⎪⎧ 12,n =1,-12n (n -1),n ≥2.11.已知数列{a n }的前n 项和为S n ,数列{a n }为等差数列,a 1=12,d =-2.(1)求S n ,并画出{S n }(1≤n ≤13)的图象;(2)分别求{S n }单调递增、单调递减的n 的取值范围,并求{S n }的最大(或最小)的项;(3){S n }有多少项大于零?[解] (1)S n =na 1+n (n -1)2d =12n +n (n -1)2×(-2)=-n 2+13n .图象如图.(2)S n =-n 2+13n =-⎝ ⎛⎭⎪⎫n -1322+1694,n ∈N *, ∴当n =6或7时,S n 最大;当1≤n ≤6时,{S n }单调递增;当n ≥7时,{S n }单调递减.{S n }有最大值,最大项是S 6,S 7,S 6=S 7=42.(3)由图象得{S n }中有12项大于零.。
人教版高二数学《等差数列的前n项和公式》练习含答案解析
4.2.2 第一课时 等差数列的前n项和公式[A级 基础巩固]1.已知等差数列{a n}的前n项和为S n,若2a6=a8+6,则S7等于( )A.49 B.42C.35 D.28解析:选B 2a6-a8=a4=6,S7=72(a1+a7)=7a4=42.2.已知数列{a n}是等差数列,a4=15,S5=55,则过点P(3,a3),Q(4,a4)的直线斜率为( )A.4 D.1 4C.-4 D.-1 4解析:选A 由S5=5(a1+a5)2=5×2a32=55,解得a3=11.∴P(3,11),Q(4,15),∴k=15-114-3=4.故选A.3.在小于100的自然数中,所有被7除余2的数之和为( ) A.765 B.665 C.763 D.663解析:选B ∵a1=2,d=7,则2+(n-1)×7<100,∴n<15,∴n=14,S14=14×2+12×14×13×7=665.4.设S n是等差数列{a n}的前n项和,若a5a3=59,则S9S5等于( )A.1 B.-1C.2 D.1 2解析:选A S9S5=92(a1+a9)52(a1+a5)=92·2a552·2a3=9a55a3=95·a5a3=1.5.现有200根相同的钢管,把它们堆成一个正三角形垛,要使剩余的钢管尽可能少,那么剩余钢管的根数为( )A.9 B.10C.19 D.29解析:选B 钢管排列方式是从上到下各层钢管数组成了一个等差数列,最上面一层钢管数为1,逐层增加1个.∴钢管总数为:1+2+3+…+n=n(n+1)2.当n=19时,S19=190.当n=20时,S20=210>200.∴n=19时,剩余钢管根数最少,为10根.6.已知{a n}是等差数列,a4+a6=6,其前5项和S5=10,则其公差为d=________.解析:a4+a6=a1+3d+a1+5d=6,①S5=5a1+12×5×(5-1)d=10,②由①②联立解得a1=1,d=1 2 .答案:1 27.已知数列{a n}中,a1=1,a n=a n-1+12(n≥2),则数列{a n}的前9项和等于________.解析:由a1=1,a n=a n-1+12(n≥2),可知数列{a n}是首项为1,公差为12的等差数列,故S9=9a1+9×(9-1)2×12=9+18=27.答案:27n=11.已知命题:“在等差数列{a n}中,若4a2+a10+a( )=24,则S11为定值”为真命题,由于印刷问题,括号处的数模糊不清,可推得括号内的数为( )A.15 B.24C.18 D.28解析:选C 设括号内的数为n,则4a2+a10+a(n)=24,即6a1+(n+12)d=24.又因为S11=11a1+55d=11(a1+5d)为定值,所以a1+5d为定值.所以n+126=5,解得n=18.12.(多选)已知等差数列{a n}的前n项和为S n,若S7=a4,则( ) A.a1+a3=0 B.a3+a5=0 C.S3=S4 D.S4=S5解析:选BC 由S7=7(a1+a7)2=7a4=a4,得a4=0,所以a3+a5=2a4=0,S3=S4,故选B、C.13.在等差数列{a n}中,前m(m为奇数)项和为135,其中偶数项之和为63,且a m-a1=14,则m=________,a100=________.解析:∵在前m项中偶数项之和为S偶=63,∴奇数项之和为S奇=135-63=72,设等差数列{a n}的公差为d,则S奇-S偶=2a1+(m-1)d2=72-63=9.又∵a m=a1+d(m-1),∴a1+a m2=9,∵a m-a1=14,∴a1=2,a m=16.∵m(a1+a m)2=135,∴m=15,∴d=14m-1=1,∴a100=a1+99d=101.答案:15 10114.设S n是数列{a n}的前n项和且n∈N*,所有项a n>0,且S n=14a2n+12a n-34.(1)证明:{a n}是等差数列;(2)求数列{a n}的通项公式.解:(1)证明:当n=1时,a1=S1=14a21+12a1-34,解得a1=3或a1=-1(舍去).当n≥2时,a n=S n-S n-1=14(a2n+2a n-3)-14(a2n-1+2a n-1-3).所以4a n=a2n-a2n-1+2a n-2a n-1,即(a n+a n-1)(a n-a n-1-2)=0,因为a n+a n-1>0,所以a n-a n-1=2(n≥2).所以数列{a n}是以3为首项,2为公差的等差数列.(2)由(1)知a n=3+2(n-1)=2n+1.[C级 拓展探究]15.求等差数列{4n+1}(1≤n≤200)与{6m-3}(1≤m≤200)的公共项之和.解:由4n+1=6m-3(m,n∈N*且1≤m≤200,1≤n≤200),可得Error!(t∈N*且23≤t≤67).则等差数列{4n+1}(1≤n≤200),{6m-3}(1≤m≤200)的公共项按从小到大的顺序组成的数列是等差数列{4(3t-1)+1}(t∈N*且23≤t≤67),即{12t-3}(t∈N*且23≤t≤67),各项之和为67×9+67×662×12=27 135.。
等差数列及其前n项和专题练习(含参考答案)资料
等差数列及其前n项和专题练习(含参考答案)数学27 等差数列及其前n 项和一、选择题1.数列{2n -1}的前10项的和是( C )A .120B .110C .100D .10[解析] ∵数列{2n -1}是以1为首项,2为公差的等差数列, ∴S 10=(a 1+a 10)×102=(1+19)×102=100.故选C . 2.我国古代名著《九章算术》中有这样一段话:“今有金锤,长五尺,斩本一尺,重四斤,斩末一尺,重二斤,中间三尺重几何.”意思是:“现有一根金缍,长5尺,头部1尺,重4斤,尾部1尺,重2斤,且从头到尾,每一尺的重量构成等差数列,问中间三尺共重多少斤?”( D )A .6斤B .7斤C .8斤D .9斤[解析] 设这根金锤从头到尾每一尺的重量构成等差数列{a n },由已知得a 1=4,a 5=2,求a 2+a 3+a 4,∵a 2+a 3+a 4=3a 3=3×a 1+a 52=9,故选D . 3.设等差数列{a n }的公差为d ,且a 1a 2=35,2a 4-a 6=7,则d =( C )A .4B .3C .2D .1[解析] ∵{a n }是等差数列,∴2a 4-a 6=a 4-2d =a 2=7,∵a 1a 2=35,∴a 1=5,∴d =a 2-a 1=2,故选C .4.在等差数列{a n }中,若a 1,a 2015为方程x 2-10x +16=0的两根,则a 2+a 1008+a 2014=( B )A .10B .15C .20D .40[解析] 因为a 1,a 2015为方程x 2-10x +16=0的两根,所以a 1+a 2015=10.由等差数列的性质可知,a 1008=a 1+a 20152=5,a 2+a 2014=a 1+a 2015=10,所以a 2+a 1008+a 2014=10+5=15.故选B .5.已知等差数列{a n }的前n 项和为S n ,且S 5=50,S 10=200,则a 10+a 11的值为( D )A .20B .40C .60D .80[解析] 设等差数列{a n }的公差为d ,由已知得⎩⎨⎧S 5=5a 1+5×42d =50,S 10=10a 1+10×92d =200, 即⎩⎪⎨⎪⎧a 1+2d =10,a 1+92d =20,解得⎩⎪⎨⎪⎧a 1=2,d =4. ∴a 10+a 11=2a 1+19d =80.故选D .6.设数列{a n }的前n 项和为S n ,且a n =-2n +1,则数列{S n n}的前11项和为( D ) A .-45B .-50C .-55D .-66[解析] ∵a n =-2n +1,∴数列{a n }是以-1为首项,-2为公差的等差数列,∴S n =n [-1+(-2n +1)]2=-n 2,∴S n n =-n 2n =-n ,∴数列{S n n}是以-1为首项,-1为公差的等差数列,∴数列{S n n }的前11项和为11×(-1)+11×102×(-1)=-66,故选D . 7.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为( B )A .1升B .6766升C .4744升 D .3733升 [解析] 设该等差数列为{a n },公差为d , 由题意得⎩⎪⎨⎪⎧a 1+a 2+a 3+a 4=3,a 7+a 8+a 9=4,即⎩⎪⎨⎪⎧4a 1+6d =3,3a 1+21d =4, 解得⎩⎨⎧a 1=1322,d =766.∴a 5=1322+4×766=6766.故选B .8.等差数列{a n }的公差为d ,关于x 的不等式dx 2+2a 1x ≥0的解集为[0,9],则使数列{a n }的前n 项和S n 取得最大的正整数n 的值是( B )A .4B .5C .6D .7[解析] 由dx 2+2a 1x ≥0的解集为[0,9]得,d <0且9d +2a 1=0,∴a 1=-92d ,S n =d 2n 2+(a 1-d 2)n =d 2n 2-5dn =d 2(n 2-10n ),当n =5时,S n 取得最大值,故选B . 二、填空题9.中位数为1011的一组数构成等差数列,其末项为2019,则该数列的首项为__3___.[解析] 设首项为a 1,则a 1+2019=2×1011,解得a 1=3.故填3.10.已知数列{a n }中,a 1=1且1a n +1=1a n +13(n ∈N *),则a 10= 14 . [解析] 由已知得1a 10=1a 1+(10-1)×13=1+3=4,故a 10=14. 11.记等差数列{a n }的前n 项和为S n ,若a 3=0,a 6+a 7=14,则S 7=__14___.[解析] 解法一:设数列{a n }的公差为d ,则a 6+a 7=2a 3+7d =14,又∵a 3=0,∴d =2,∴a 7=a 3+4d =8,又a 3=a 1+2d ,∴a 1=-4,∴S 7=7(a 1+a 7)2=7×(-4+8)2=14. 解法二:设数列{a n }的公差为d ,则a 6+a 7=2a 3+7d =14,又∵a 3=0,∴d =2,∴a 4=a 3+d =2.∴S 7=a 1+a 2+a 3+a 4+a 5+a 6+a 7=7a 4=14.12.在等差数列{a n }中,若S 4=1,S 8=4,则a 17+a 18+a 19+a 20的值为__9___.[解析] 解法一:∵S 4=1,S 8=4,∴S 4,S 8-S 4,S 12-S 8,S 16-S 12,S 20-S 16成首项为1,公差为2的等差数列,∴a 17+a 18+a 19+a 20=S 20-S 16=1+2×(5-1)=9.解法二:由等差数列的性质知{S n n }是等差数列,且其公差d =S 88-S 448-4=12-144=116 ∴S 2020=S 88+12d =12+34=54,∴S 20=25,同理S 16=16,∴a 17+a 18+a 19+a 20=S 20-S 16=9.三、解答题13.设{a n }是等差数列,且a 1=ln2,a 2+a 3=5ln2.(1)求{a n }的通项公式;(2)求e a 1+e a 2+…+e a n .[解析] (1)设{a n }的公差为d .因为a 2+a 3=5ln2,所以2a 1+3d =5ln2.又a 1=ln2,所以d =ln2.所以a n =a 1+(n -1)d =n ln2.(2)因为e a 1=e ln2=2,e a n e a n -1=e a n -a n -1=e ln2=2, 所以{e a n }是首项为2,公比为2的等比数列.所以e a 1+e a 2+…+e a n =2×(1-2n )1-2=2(2n -1). 14.记S n 为等差数列{a n }的前n 项和,已知a 1=-7,S 3=-15.(1)求{a n }的通项公式;(2)求S n ,并求S n 的最小值.[解析] (1)设{a n }的公差为d ,由题意得3a 1+3d =-15.由a 1=-7得d =2.所以{a n }的通项公式为a n =2n -9.(2)由(1)得S n =n 2-8n =(n -4)2-16.所以当n =4时,S n 取得最小值,最小值为-16.[方法总结] 求等差数列前n 项和S n 的最值的方法:(1)函数法:利用等差数列前n 项和的函数表达式S n =an 2+bn (a ≠0),通过配方或借助图象求二次函数的最值.(2)邻项变号法:①当a1>0,d<0时,满足⎩⎪⎨⎪⎧a m≥0,a m+1≤0的项数m使得S n取得最大值,为S m(当a m+1=0时,S m+1也为最大值);②当a1<0,d>0时,满足⎩⎪⎨⎪⎧a m≤0,a m+1≥0的项数m使得S n取得最小值,为S m(当a m+1=0时,S m+1也为最小值).1.已知{1a n}是等差数列,且a1=1,a4=4,则a10=(A)A.-45B.-54C.413D.134[解析]由题意,得1a1=1,1a4=14,所以等差数列{1a n}的公差为d=1a4-1a13=-14,由此可得1a n=1+(n-1)×(-14)=-n4+54,因此1a10=-54,所以a10=-45.故选A.2.(理)(2018·湖北咸宁联考)等差数列{a n}的前n项和为S n,若S2=3,S5=10,则{a n}的公差为(C)A.23B.12C.13D.14[解析]由题意知a1+a2=3①,S5=5(a1+a5)2=10,即a1+a5=4②,②-①得3d=1,∴d=13,故选C.3.等差数列{a n}的前n项和为S n,若S11=22,则a3+a7+a8=(D)A.18B.12C.9D.6[解析]由题意得S11=11(a1+a11)2=11(2a1+10d)2=22,即a1+5d=2,所以a3+a7+a8=a 1+2d +a 1+6d +a 1+7d =3(a 1+5d )=6,故选D .4.设等差数列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3,则m =( C )A .3B .4C .5D .6[解析] 由S m -1=-2,S m =0,S m +1=3,得a m =S m -S m -1=2,a m +1=S m +1-S m =3,所以等差数列的公差为d =a m +1-a m =3-2=1,由⎩⎪⎨⎪⎧a m =a 1+(m -1)d =2,S m =a 1m +12m (m -1)d =0,得⎩⎪⎨⎪⎧a 1+m -1=2,a 1m +12m (m -1)=0,解得⎩⎪⎨⎪⎧a 1=-2,m =5.故选C . 5. (河南省信阳高中、商丘一中2019届高三上学期第一次联考(1月)数学试题)已知数列{a n }的前n 项和S n =3n 2+8n ,{b n }是等差数列,且a n =b n +b n +1.(1)求数列{b n }的通项公式;(2)令c n =(a n +1)n +1(b n +2)n,求数列{c n }的前n 项和T n . [解析] (1)当n ≥2时,a n =S n -S n -1=6n +5,当n =1时a 1=S 1=11,符合上式,所以a n =6n +5, 则⎩⎪⎨⎪⎧a 1=b 1+b 2a 2=b 2+b 3,得⎩⎪⎨⎪⎧b 1=4d =3, 所以b n =3n +1.(2)由(1)得c n =(a n +1)n +1(b n +2)n =3(n +1)·2n +1, T n =3×[2×22+3×23+…+(n +1)×2n +1]2T n =3×[2×23+3×24+…+(n +1)×2n +2],两式作差T n =3n ·2n +2.。
等差数列的前n项和(精练)(解析版)
4.2.2 等差数列的前n 项和1.(2020·宜宾市叙州区第一中学校高三三模(文))已知等差数列{}n a 的前n 项和为n S ,9445,31n S a -==,若198n S =,则n =( ) A .10 B .11C .12D .13【答案】B【解析】945S =1955945()952a a a a ⇒=+=⇒= ,所以154()()198(531)11222n n n n n nS a a a a n -=+=+∴=+∴= ,选B.2.(2020·东北育才学校高二月考(文))已知等差数列{}n a 的前n 项和为n S ,若74328a a =+,则25S =( ) A .50 B .100C .150D .200【答案】D【解析】设等差数列{a n }首项为1a ,公差为d,∵74328a a =+,∴3(()116)238a d a d +=++,∴1a +12d=8,即138a = 故S 25=()125252a a +=132522a ⨯=25a 13=200故选:D . 3.(2020·四川省泸县第二中学开学考试(文))等差数列{}n a 的前n 项和为n S ,23a =,且936S S =,则{}n a 的公差d =( )A .1B .2C .3D .4【答案】A【解析】由等差数列性质知()()1319329353939,?654922a a a a S a S S a ++=======,则56a =.所以5213a a d -==.故选A. 4.(2020·云南高一期末)《周髀算经》中有这样一个问题:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气其日影长依次成等差数列,冬至、立春、春分日影长之和为31.5尺,前九个节气日影长之和为85.5尺,则小满日影长为( ) A .1.5尺B .2.5尺C .3.5尺D .4.5尺题组一 等差数列的基本量【答案】C【解析】从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气其日影长依次成等差数列{}n a ,冬至、立春、春分日影长之和为31.5尺,前九个节气日影长之和为85.5尺,∴()()111913631.598985.52a a d a d S a d ⎧++++=⎪⎨⨯=+=⎪⎩,解得113.5a =,1d =-,∴小满日影长为1113.510(1) 3.5a =+⨯-=(尺).故选C .5.(2020·陕西省洛南中学高二月考)在等差数列{}n a 中,已知12232,10a a a a +=+=,求通项公式n a 及前n 项和n S .【答案】45n a n =-,223n S n n =- *(1,)n n N ≥∈【解析】令等差数列{}n a 的公差为d ,则由12232,10a a a a +=+=,知:11222310a d a d +=⎧⎨+=⎩,解之得11{4a d =-=; ∴根据等差数列的通项公式及前n 项和公式,有:()()1114145n a a n d n n =+-=-+-=-,21232nn a a S n n n +=⋅=- *(1,)n n N ≥∈;1.(2020·湖北黄州·黄冈中学其他(理))已知数列{}n a 为等差数列,n S 为其前n 项和,6353a a a +-=,则7S =( ) A .42 B .21C .7D .3【答案】B【解析】由等差数列的性质可得6354553a a a a a a +-=+-=,()1747772732122a a a S +⨯∴===⨯=.故选:B.2.(2019·贵州六盘水·高二期末(理))在等差数列{}n a 中,358a a +=,则7S =( )题组二 前n 项和S n 与等差中项A .12B .28C .24D .35【答案】B【解析】等差数列{}n a 中,358a a +=,故17358a a a a +=+=,所以()7717782822S a a +⨯===.故选:B. 3.(2020·湖北荆州·高二期末)已知等差数列{}n a 的前n 项和为n S ,若57942a a a ++=,则13S =( ) A .36 B .72C .91D .182【答案】D【解析】数列{}n a 为等差数列,则5797342a a a a ++==,解得714a = 则()113137131313141822a a S a+=⨯==⨯=故选:D4.(2019·黄梅国际育才高级中学月考)若两个等差数列{}{},n n a b 的前n 项和分别为A n 、B n ,且满足4255n n A n B n +=-,则513513a a b b ++的值为( )A .78B .79C .87D .1920【答案】A【解析】等差数列{}n a 、{}n b 前n 项和分别为n A ,n B ,由4255n n A n B n +=-, 得1131171131751717511177)2)217(4172717(51758a a a a a a Ab b b b b b B +++⨯+=====+++⨯-.故选:A . 5.(2020·赣州市赣县第三中学期中)设等差数列{}n a 前n 项和为n S ,等差数列{}n b 前n 项和为n T ,若20121n n S n T n -=-.则33a b =( ) A .595B .11C .12D .13【答案】B【解析】因为等差数列{}n a 前n 项和为n S ,所以1()2n n n a a S +=, 当n 是奇数时,112()2n n n n a a S na ++==,所以33533555a a Sb b T ==,故选:B6.(2020·广西田阳高中高二月考(理))已知等差数列{}n a ,{}n b 的前n 项和分别为n S 和n T ,且521n n S n T n +=-,则76a b =( ) A .67B .1211C .1825D .1621【答案】A【解析】因为等差数列{}n a ,{}n b 的前n 项和分别为n S 和n T ,且521n n S n T n +=-, 所以可设(5)n S kn n =+,(21)n T kn n =-, 所以77618a S S k =-=,66521b T T k =-=,所以7667a b =.故选:A 7.(2020·商丘市第一高级中学高一期末)等差数列{a n }、{b n }的前n 项和分别为S n 、T n ,且7453n n S n T n +=-,则使得nna b 为整数的正整数n 的个数是( ) A .3 B .4C .5D .6【答案】C【解析】∵等差数列{a n }、{b n },∴121121,22n n n n a a b ba b --++== , ∴()()121211212122n n n n n n n n n a a a na S n b b b nb T ----+===+ ,又7453n n S n T n +=- , ∴()()7214566721324n n n a b n n -+==+--- , 经验证,当n=1,3,5,13,35时,n n a b 为整数,则使得nna b 为整数的正整数的n 的个数是5.本题选择C 选项.1.(2020·榆林市第二中学高二月考)设等差数列{}n a 的前n 项和为n S ,若488,20S S ==,则题组三 前n 项和S n 的性质13141516a a a a +++= ( )A .12B .8C .20D .16【答案】C【解析】∵等差数列{}n a 的前n 项和为n S ,488,20S S ==, 由等差数列的性质得:4841281612,,,S S S S S S S ---成等比数列 又4848,20812,S S S =-=-=∴128122012416,S S S -=-=+=16121314151616420S S a a a a -=+++=+=.故选:C .2.(2020·重庆其他(文))等差数列{}n a 的前n 项和为n S ,已知312S =,651S =,则9S 的值等于( ) A .66 B .90C .117D .127【答案】C【解析】等差数列{}n a 的前n 项和为n S ,由题意可得63963,,S S S S S --成等差数列,故()()363962S S S S S -=+-,代入数据可得()()9251121125S -=+-,解得9117S =故选C3.(2020·江苏徐州·高二期中)已知n S 为等差数列{}n a 的前n 项之和,且315S =,648S =,则9S 的值为( ). A .63 B .81C .99D .108【答案】C【解析】由n S 为等差数列{}n a 的前n 项之和,则3S ,639633(1),,......m m S S S S S S ---- 也成等差数列, 则3S ,6396,S S S S --成等差数列,所以633962()()S S S S S -=+-,由315S =,648S =, 得999S =,故选:C.4.(2020·昆明市官渡区第一中学高二期末(理))等差数列{}n a 的前n 项和为n S ,且1020S =,2015S =,则30S =( ) A .10 B .20C .30-D .15-【答案】D【解析】由等差数列{}n a 的前n 项和的性质可得:10S ,1200S S -,3020S S -也成等差数列,20101030202()()S S S S S ∴-=+-,302(1520)2015S ∴⨯-=+-,解得3015S =-.故选D .5.(2020·朔州市朔城区第一中学校期末(文))设等差数列{}n a 的前n 项和为n S ,若39S =,636S =,则789a a a ++=( ) A .63 B .45 C .36 D .27【答案】B【解析】由等差数列性质知S 3、S 6﹣S 3、S 9﹣S 6成等差数列,即9,27,S 9﹣S 6成等差,∴S 9﹣S 6=45 ∴a 7+a 8+a 9=45故选B .6.(2020·新疆二模(文))在等差数列{}n a 中,12018a =-,其前n 项和为n S ,若101221210S S -=,则2020S =( ) A .-4040 B .-2020 C .2020 D .4040【答案】C【解析】设等差数列{}n a 的前n 项和为2+n S An Bn =,则+nS An B n=, 所以n S n ⎧⎫⎨⎬⎩⎭是等差数列.因为101221210S S -=,所以n S n ⎧⎫⎨⎬⎩⎭的公差为1,又11201811S a ==-,所以n S n ⎧⎫⎨⎬⎩⎭是以2018-为首项,1为公差的等差数列, 所以202020182019112020S =-+⨯=,所以20202020S =故选:C 8.(2020·河北路南·唐山一中)已知n S 是等差数列{}n a 的前n 项和,若12017a =-, 20142008620142008S S -=,则2017S =__________. 【答案】2017- 【解析】n S 是等差数列{}n a 的前n 项和, n S n ⎧⎫∴⎨⎬⎩⎭是等差数列,设其公差为d ,201420086,66,120142008S S d d -=∴==, 112017,20171S a =-∴=-,()()20172017112018,2018201720172017nS n n S n∴=-+-⨯=-+∴=-+⨯=-, 故答案为2017-.9.(2020·湖南怀化·高二期末)已知n S 是等差数列{}n a 的前n 项和,若12a =-,20202018220202018S S -=,则20192019S =________. 【答案】2016 【解析】n S 是等差数列{}n a 的前n 项和,n S n ⎧⎫∴⎨⎬⎩⎭是等差数列,设其公差为d .20202018 220202018S S -=,22d ∴=,1d =.12a =-,1S21∴=-. 2(1)13n S n n n ∴=-+-⨯=-.2019S20162019∴=.故答案为:2016.1.(2020·安徽铜陵·)设n S 是公差不为零的等差数列{}n a 的前n 项和,且10a >,若59S S =,则当n S 最大时,n=( ) A .6 B .7C .10D .9【答案】B【解析】由等差数列中,59S S =,可得,故,其中,可知当时,最大.2.(2020·河北运河·沧州市一中月考)等差数列{}n a 中,10a >,201520160a a +>,201520160a a <,则使前n 项和0n S >成立的最大自然数n 是( ) A .2015 B .2016C .4030D .4031【答案】C【解析】由题意知201520160,0a a ><,所以14030201520160a a a a +=+>,而14031201620a a a +=<,则有()140304*********a a S ⨯+=>,而()140314031403102a a S ⨯+=<,所以使前n 项和0n S >成立的最大自然数n 是4030,故选C .3.(2020·河北路南·唐山一中期末)已知等差数列{}n a 的前n 项和为n S ,且856a a -=-,9475S S -=,题组四 前n 项和S n 的最值则n S 取得最大值时n =( ) A .14 B .15C .16D .17【答案】A【解析】设等差数列{}n a 的公差为d ,则11369364675d a d a d =-⎧⎨+--=⎩,解得1227d a =-⎧⎨=⎩,故292n a n =-,故当114n ≤≤时,0n a >;当15n ≥时,0n a <, 所以当14n =时,n S 取最大值.故选:A.4.(2020·广西南宁三中开学考试)已知等差数列{}n a 的通项公式为29n a n =-,则使得前n 项和n S 最小的n 的值为( ) A .3 B .4C .5D .6【答案】B【解析】由290n a n =-≤,解得92n ≤,14n ∴≤≤时,0n a <;5n ≥时,0n a > 则使得前n 项和n S 最小的n 的值为4故选:B5.(2020·四川青羊·石室中学高一期末)在等差数列{}n a 中,其前n 项和是n S ,若90S >,100S <,则在912129,,,S S S a a a ⋯中最大的是( ) A .11S aB .88S aC .55S aD .99S a【答案】C 【解析】由于191109510569()10()9050222a a a a S a S a a ++====+>,()< ,所以可得5600a a >,<. 这样569121256900...0,0,...0S S S S S a a a a a ,,,>>><<,而125125S S S a a a ⋯⋯<<<,>>>>0, , 所以在912129...S S S a a a ,,,中最大的是55S a .故选C .6.(2020·福建宁德·期末)公差为d 的等差数列{}n a ,其前n 项和为n S ,110S >,120S <,下列说法正确的有( ) A .0d < B .70a >C .{}n S 中5S 最大D .49a a <【答案】AD【解析】根据等差数列前n 项和公式得:()111111102a a S +=>,()112121202a a S +=<所以1110a a +>,1120a a +<, 由于11162a a a +=,11267a a a a +=+,所以60a >,760a a <-<,所以0d <,{}n S 中6S 最大,由于11267490a a a a a a +=+=+<,所以49a a <-,即:49a a <.故AD 正确,BC 错误.故选:AD.7.(2020·黑龙江让胡路·大庆一中高一期末)已知等差数列{}n a 的前n 项和为n S ,若780a a +>,790a a +<则n S 取最大值时n 的值是( ) A .4 B .5C .6D .7【答案】D【解析】等差数列{}n a 的前n 项和为n S ,且780a a +>,790a a +<,12130a d ∴+>且12140a d +<,10,0,a d ∴><且780,0a a ><,所以当S n 取最大值时7n =.故选:D8.(2020·浙江其他)已知等差数列{}n a 的前n 项和n S ,且34S =,714S =,则23n n S a +-最小时,n 的值为( ). A .2 B .1或2C .2或3D .3或4【答案】C【解析】设等差数列{}n a 的公差为d ,因为34S =,714S =,所以1132342767142a d a d ⨯⎧+=⎪⎪⎨⨯⎪+=⎪⎩,解得11a =,13d =,所以2223(1)11550[1(2)]23318n n n n n n S an n +----=+⨯-++=, 因为n ∈+N ,所以当2n =或3n =时,其有最小值.选:C1.(2020·山西大同·高三其他(理))若等差数列{}n a 的前n 项和为n S ,已知129,a a Z =∈,且()5*n S S n N ≤∈,则12n a a a +++=________.【答案】2210,51050,5n n n n n n ⎧-≤⎨-+>⎩【解析】∵等差数列{}n a 的前n 项和为n S ,129,a a Z =∈,且5n S S ≤,56940,950a d a d ∴=+≥=+<, 2,2a Z d ∈∴=-,2(1)9(2)102n n n S n n n -∴=+⨯-=-, ∴当5n ≤时,212..10n a a a n n ++⋯+=-;当5n >时,()()21212345210n a a a a a a a a n n++⋯⋯+=++++--()222105510n n =⨯-+-21050n n =-+,212210,5..1050,5n n n n a a a n n n ⎧-≤∴++⋯+=⎨-+>⎩.故答案为:2210,51050,5n n n n n n ⎧-≤⎨-+>⎩. 2.(2020·黑龙江香坊·哈尔滨市第六中学校高三三模(理))已知等差数列{}n a 前三项的和为3-,前三项的积为15,(1)求等差数列{}n a 的通项公式;(2)若公差0d >,求数列{}n a 的前n 项和n T .题组五 含有绝对值的求和【答案】(1)49n a n =-或74n a n =-(2)25,1{2712,2n n T n n n ==-+≥【解析】(1)设等差数列的{}n a 的公差为d 由1233a a a ++=-,得233a =-所以21a =- 又12315a a a =得1315a a =-,即1111(2)15a d a a d +=-⎧⎨+=-⎩所以154a d =-⎧⎨=⎩,或134a d =⎧⎨=-⎩即49n a n =-或74n a n =- (2)当公差0d >时,49n a n =-1)当2n ≤时,490n a n =-<,112125,6T a T a a =-==--= 设数列{}n a 的前项和为n S ,则2(549)272n n S n n n -+-=⨯=-2)当3n ≥时,490n a n =->123123n n n T a a a a a a a a =++++=--+++()()123122n a a a a a a =++++-+2222712n S S n n =-=-+当1n =时,15T =也满足212171127T ≠⨯-⨯+=, 当2n =时,26T =也满足222272126T =⨯-⨯+=,所以数列{}n a 的前n 项和25127122n n T n n n =⎧=⎨-+≥⎩ 3.(2020·全国高三(文))在等差数列{}n a 中,28a =,64a =-. (1)求n a 的通项公式; (2)求12||||||n n T a a a =+++的表达式.【答案】(1)314n a n =-+;(2)2232542232552522n n n n T n n n ⎧-+≤⎪⎪=⎨⎪-+≥⎪⎩. 【解析】(1)设公差为d ,则11854a d a d +=⎧⎨+=-⎩,解得111a =,3d =-,所以314n a n =-+.(2)由314n a n =-+0≥可得4n ≤, 所以当4n ≤时,112()(11314)22n n n n a a n n T a a a +-+=+++===232522n n -+, 当5n ≥时,12345()n n T a a a a a a =+++-++1234122()()n a a a a a a a =+++-+++114()4()222n n a a a a ++=⨯-(253)522n n -=-23255222n n =-+. 所以2232542232552522n n n n T n n n ⎧-+≤⎪⎪=⎨⎪-+≥⎪⎩. 4.(2020·石嘴山市第三中学高三其他(理))已知数列{}n a 满足:313a =-,()141,n n a a n n N -=+>∈. (1)求1a 及通项n a ;(2)设n S 是数列{}n a 的前n 项和,则数列1S ,2S ,3S ,…n S …中哪一项最小?并求出这个最小值. (3)求数列{}n a 的前10项和.【答案】(1)121a =-,425n a n =-;(2)6S 最小,666S =-;(3)前10项和为:102. 【解析】(1)()142n n a a n -=+≥,∴当3n =时,324a a =+,217a =-,214a a =+,121a =-,由14n n a a --=知数列为首项是21-,公差为4的等差数列, 故425n a n =-;(2)425n a n =-,故610a =-<,730a =>,故6S 最小,()6656214662S ⨯=⨯-+⨯=-; (3)当16n ≤≤时,0n a <;当7n ≥时,0n a >,()()10121012678910……T a a a a a a a a a a ∴=+++=-+++++++()()()61061061092102142661022S S S S S ⨯=-+-=-=⨯-+⨯-⨯-=. 5.(2020·湖北武汉)已知数列{}n a 是等差数列,公差为d ,n S 为数列{}n a 的前n 项和,172a a +=-,315S =. (1)求数列{}n a 的通项公式n a ; (2)求数列{}n a 的前n 项和T n .【答案】(1)()*311n a n n N =-+∈;(2)2(193),3231960,42n n n n T n n n -⎧≤⎪⎪=⎨-+⎪≥⎪⎩. 【解析】(1)∵{}n a 是等差数列,公差为d ,且172a a +=-,315S =,∴11262323152a d a d +=-⎧⎪⎨⨯+=⎪⎩,解得18a =,3d =-, ∴()()()11813311n a a n d n n =+-=+--=-+, ∴数列{}n a 的通项公式为:()*311n a n n N=-+∈.(2)令0n a ≥,则3110n -+≥,∴311n ≤,∴233n ≤,*n N ∈. ∴3n ≤时,0n a >;4n ≥时,0n a <, ∵18a =,311n a n =-+,∴3n ≤时,12(8311)2n n n n T a a a -+=++⋅⋅⋅+=()1932n n -=, 当4n ≥时,()121234n n n T a a a a a a a a =++⋅⋅⋅+=+++--⋅⋅⋅-()()12312322n n a a a a a a S S =++-++⋅⋅⋅+=-23(199)(193)319602222n n n n ⨯---+=⨯-=.∴2(193),3231960,42n n n n T n n n -⎧≤⎪⎪=⎨-+⎪≥⎪⎩. 6.(2020·任丘市第一中学)在公差是整数的等差数列{}n a 中,17a =-,且前n 项和4n S S ≥. (1)求数列{}n a 的通项公式n a ;(2)令n n b a =,求数列{}n b 的前n 项和n T .【答案】(1)29n a n =-;(2)()228,4832,5n n n n T n N n n n *⎧-+≤=∈⎨-+≥⎩. 【解析】(1)设等差数列{}n a 的公差为d ,则d Z ∈,由题意知,{}n S 的最小值为4S ,则4500a a ≤⎧⎨≥⎩,17a =-,所以370470d d -≤⎧⎨-≥⎩,解得7743d ≤≤,d Z ∈,2d ∴=,因此,()()1172129n a a n d n n =+-=-+-=-; (2)29n n b a n ==-.当4n ≤时,0n a <,则n n n b a a ==-,()272982n n n n T S n n -+-∴=-=-=-+;当5n ≥时,0n a >,则n n n b a a ==,()22428216832n n T S S n n n n ∴=-=--⨯-=-+.综上所述:()228,4832,5n n n n T n N n n n *⎧-+≤=∈⎨-+≥⎩.。
等差数列前N项和测试训练题(含答案)
等差数列前N项和测试题一、单选题(共11题;共22分)1.(2020高一下·太和期末)一个等差数列共有2n+1项,其奇数项的和为512,偶数项的和为480,则中间项的值为()A. 30B. 31C. 32D. 332.(2020高一下·太和期末)等差数列的前n项和为,且,则()A. 8B. 9C. 10D. 113.(2020高一下·温州期末)等差数列中,,,是数列的前n项和,则()A. B. C. D.4.数列中,已知且则()A. 19B. 21C. 99D. 1015.(2020高一下·七台河期末)等差数列的首项为1,公差不为0,若成等比数列,则的前6项的和为()A. -24B. 3C. 8D. 116.(2020高一下·七台河期末)已知是公差为1的等差数列,为的前n项和.若,则()A. 10B. 12C.D.7.(2020高一下·鹤岗期末)设为等差数列的前n项和,若,,则()A. -12B. -10C. 10D. 128.(2020高一下·鹤岗期末)已知是等差数列的前n项和,,设为数列的前n项和,则()A. 2014B. -2014C. 2015D. -20159.(2020高一下·哈尔滨期末)若一个等差数列的前3项和为24,最后3项的和为126,所有项的和为275,则这个数列共有()A. 13项B. 12项C. 11项D. 10项10.(2020高一下·台州期末)已知等差数列的前n项和为,若,,,则()A. B. C. D.11.(2020高一下·广东月考)等差数列中,若,且,为前n项和,则中最大的是()A. B. C. D.二、填空题(共8题;共10分)12.(2020高一下·湖州期末)设公差为d的等差数列的前n项和为,若,,则________,取最小值时,n=________.13.(2020高一下·上海期末)已知等差数列满足:,,数列的前n项和为,则的取值范围是________.14.(2020高一下·上海期末)等差数列的前项和为,,则________.15.(2020高一下·上海期末)已知为等差数列, , 前n项和取得最大值时n的值为________.16.(2020高一下·南宁期末)已知为等差数列的前n项和,且,,则________.17.(2020高一下·黑龙江期末)已知为等差数列,其公差为2,且是与的等比中项,为前n项和,则的值为________.18.(2020高一下·金华月考)已知数列满足:,其前n项和为,则________,当取得最小值时,n的值为________.19.(2020高一下·尚义期中)设等差数列的前n项和为.若,,则正整数________.三、解答题(共6题;共55分)20.(2020高一下·六安期末)记为等差数列的前n项和,已知.(1)若,求的通项公式;(2)若,求使得的n的取值范围.21.(2020高一下·徐汇期末)设等差数列的前n项和为,若,,. (1)求常数k的值;(2)求的前n项和.22.在公差为d的等差数列中,已知,且成等比数列,为数列的前n 项和.(1)求;(2)若,求的最大值.23.(2020高一下·台州期末)已知等差数列中,为其前n项和,,.(Ⅰ)求数列的通项公式;(Ⅱ)记,,求数列的前n项和.24.(2020高一下·尚义期中)已知等差数列的前n项和为,且,.(1)求数列的通项公式;(2)设,求数列的前n项和.25.(2020高一下·崇礼期中)已知等差数列的前项和为,,,.(1)求数列的通项公式;(2)设,求数列的前n项和.答案解析部分一、单选题1.【答案】C【解析】【解答】中间项为.因为,,所以.故答案为:C.【分析】利用等差数列前n项和公式,对奇数项的和、偶数项的和列式.通过等差数列的性质,都转化为的形式,然后两式相减,可得到的值.2.【答案】B【解析】【解答】∵等差数列的前n项和为,且,解得故答案为:B.【分析】利用已知条件结合等差数列通项公式和前n项和公式,建立关于等差数列首项和公差的方程组,从而求出首项和公差,进而用等差数列通项公式求出等差数列第八项的值。
等差数列的前n项和练习-含答案
课时作业8 等差数列的前n 项和时间:45分钟 满分:100分课堂训练1.已知{a n }为等差数列,a 1=35,d =-2,S n =0,则n 等于( ) A .33 B .34 C .35 D .36【答案】 D【解析】 本题考查等差数列的前n 项和公式.由S n =na 1+n (n -1)2d =35n +n (n -1)2×(-2)=0,可以求出n =36.2.等差数列{a n }中,3(a 3+a 5)+2(a 7+a 10+a 13)=24,则数列前13项的和是( )A .13B .26C .52D .156【答案】 B【解析】 3(a 3+a 5)+2(a 7+a 10+a 13)=24⇒6a 4+6a 10=24⇒a 4+a 10=4⇒S 13=13(a 1+a 13)2=13(a 4+a 10)2=13×42=26.3.等差数列的前n 项和为S n ,S 10=20,S 20=50.则S 30=________. 【答案】 90【解析】 等差数列的片断数列和依次成等差数列. ∴S 10,S 20-S 10,S 30-S 20也成等差数列. ∴2(S 20-S 10)=(S 30-S 20)+S 10,解得S 30=90.4.等差数列{a n }的前n 项和为S n ,若S 12=84,S 20=460,求S 28. 【分析】 (1)应用基本量法列出关于a 1和d 的方程组,解出a 1和d ,进而求得S 28;(2)因为数列不是常数列,因此S n 是关于n 的一元二次函数且常数项为零.设S n =an 2+bn ,代入条件S 12=84,S 20=460,可得a 、b ,则可求S 28;(3)由S n =d 2n 2+n (a 1-d 2)得S n n =d 2n +(a 1-d2),故⎩⎨⎧⎭⎬⎫S n n 是一个等差数列,又2×20=12+28,∴2×S 2020=S 1212+S 2828,可求得S 28.【解析】 方法一:设{a n }的公差为d ,则S n =na 1+n (n -1)2d .由已知条件得:⎩⎪⎨⎪⎧12a 1+12×112d =84,20a 1+20×192d =460,整理得⎩⎪⎨⎪⎧2a 1+11d =14,2a 1+19d =46,解得⎩⎪⎨⎪⎧a 1=-15,d =4.所以S n =-15n +n (n -1)2×4=2n 2-17n ,所以S 28=2×282-17×28=1 092.方法二:设数列的前n 项和为S n ,则S n =an 2+bn . 因为S 12=84,S 20=460,所以⎩⎪⎨⎪⎧122a +12b =84,202a +20b =460,整理得⎩⎪⎨⎪⎧12a +b =7,20a +b =23.解之得a =2,b =-17,所以S n =2n 2-17n ,S 28=1 092. 方法三:∵{a n }为等差数列,所以S n =na 1+n (n -1)2d ,所以S n n =a 1-d 2+d2n ,所以⎩⎨⎧⎭⎬⎫S n n 是等差数列.因为12,20,28成等差数列, 所以S 1212,S 2020,S 2828成等差数列, 所以2×S 2020=S 1212+S 2828,解得S 28=1 092.【规律方法】 基本量法求出a 1和d 是解决此类问题的基本方法,应熟练掌握.根据等差数列的性质探寻其他解法,可以开阔思路,有时可以简化计算.课后作业一、选择题(每小题5分,共40分)1.已知等差数列{a n }中,a 2=7,a 4=15,则前10项的和S 10等于( )A .100B .210C .380D .400【答案】 B 【解析】 d =a 4-a 24-2=15-72=4,则a 1=3,所以S 10=210.2.在等差数列{a n }中,a 2+a 5=19,S 5=40,则a 10=( ) A .27 B .24 C .29 D .48【答案】 C【解析】 由已知⎩⎪⎨⎪⎧2a 1+5d =19,5a 1+10d =40.解得⎩⎪⎨⎪⎧a 1=2,d =3.∴a 10=2+9×3=29.3.数列{a n }的前n 项和为S n =n 2+2n -1,则这个数列一定是( )A .等差数列B .非等差数列C .常数列D .等差数列或常数列 【答案】 B【解析】 当n ≥2时,a n =S n -S n -1=n 2+2n -1-[(n -1)2+2(n -1)-1]=2n +1,当n =1时a 1=S 1=2.∴a n =⎩⎪⎨⎪⎧2,n =1,2n +1,n ≥2,这不是等差数列.4.设等差数列{a n }的前n 项和为S n .若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n 等于( )A .6B .7C .8D .9【答案】 A【解析】 ⎩⎪⎨⎪⎧a 1=-11,a 4+a 6=-6,∴⎩⎪⎨⎪⎧a 1=-11,d =2,∴S n =na 1+n (n -1)2d =-11n +n 2-n =n 2-12n .=(n -6)2-36. 即n =6时,S n 最小.5.一个只有有限项的等差数列,它的前5项的和为34,最后5项的和为146,所有项的和为234,则它的第7项等于( )A .22B .21C .19D .18【答案】 D【解析】 ∵a 1+a 2+a 3+a 4+a 5=34,a n +a n -1+a n -2+a n -3+a n -4=146,∴5(a 1+a n )=180,a 1+a n =36,S n =n (a 1+a n )2=n ×362=234.∴n =13,S 13=13a 7=234.∴a 7=18.6.一个有11项的等差数列,奇数项之和为30,则它的中间项为( )A .8B .7C .6D .5【答案】 D 【解析】 S 奇=6a 1+6×52×2d =30,a 1+5d =5,S 偶=5a 2+5×42×2d =5(a 1+5d )=25,a 中=S 奇-S 偶=30-25=5.7.若两个等差数列{a n }和{b n }的前n 项和分别是S n ,T n ,已知S nT n=7n n +3,则a 5b 5等于( ) A .7 B.23 C.278 D.214【答案】 D【解析】 a 5b 5=2a 52b 5=a 1+a 9b 1+b 9=92(a 1+a 9)92(b 1+b 9)=S 9T 9=214.8.已知数列{a n }中,a 1=-60,a n +1=a n +3,则|a 1|+|a 2|+|a 3|+…+|a 30|等于( )A .445B .765C .1 080D .1 305【答案】 B【解析】 a n +1-a n =3,∴{a n }为等差数列. ∴a n =-60+(n -1)×3,即a n =3n -63.∴a n =0时,n =21,a n >0时,n >21,a n <0时,n <21.S ′30=|a 1|+|a 2|+|a 3|+…+|a 30|=-a 1-a 2-a 3-…-a 21+a 22+a 23+…+a 30 =-2(a 1+a 2+…+a 21)+S 30 =-2S 21+S 30 =765.二、填空题(每小题10分,共20分)9.设等差数列{a n }的前n 项和为S n ,若a 6=S 3=12,则数列的通项公式a n =________.【答案】 2n【解析】 设等差数列{a n }的公差d ,则⎩⎪⎨⎪⎧a 1+5d =12a 1+d =4,∴⎩⎪⎨⎪⎧a 1=2d =2,∴a n =2n .10.等差数列共有2n +1项,所有奇数项之和为132,所有偶数项之和为120,则n 等于________.【答案】 10【解析】 ∵等差数列共有2n +1项,∴S 奇-S 偶=a n +1=S 2n +12n +1.即132-120=132+1202n +1,求得n =10.【规律方法】 利用了等差数列前n 项和的性质,比较简捷. 三、解答题(每小题20分,共40分.解答应写出必要的文字说明、证明过程或演算步骤)11.在等差数列{a n }中,(1)已知a 6=10,S 5=5,求a 8和S 8; (2)若a 1=1,a n =-512,S n =-1 022,求d .【分析】 在等差数列中,五个重要的量,只要已知三个量,就可求出其他两个量,其中a 1和d 是两个最基本量,利用通项公式和前n 项和公式,先求出a 1和d ,然后再求前n 项和或特别的项.【解析】 (1)∵a 6=10,S 5=5,∴⎩⎪⎨⎪⎧a 1+5d =10,5a 1+10d =5.解方程组,得a 1=-5,d =3, ∴a 8=a 6+2d =10+2×3=16, S 8=8(a 1+a 8)2=44.(2)由S n =n (a 1+a n )2=n (-512+1)2=-1 022,解得n =4.又由a n =a 1+(n -1)d , 即-512=1+(4-1)d , 解得d =-171.【规律方法】 一般地,等差数列的五个基本量a 1,a n ,d ,n ,S n ,知道其中任意三个量可建立方程组,求出另外两个量,即“知三求二”.我们求解这类问题的通性通法,是先列方程组求出基本量a 1和d ,然后再用公式求出其他的量.12.已知等差数列{a n },且满足a n =40-4n ,求前多少项的和最大,最大值为多少?【解析】 方法一:(二次函数法)∵a n =40-4n ,∴a 1=40-4=36,∴S n =(a 1+a n )n 2=36+40-4n 2·n =-2n 2+38n=-2[n 2-19n +(192)2]+1922=-2(n -192)2+1922.令n -192=0,则n =192=9.5,且n ∈N +,∴当n =9或n =10时,S n 最大,∴S n 的最大值为S 9=S 10=-2(10-192)2+1922=180.方法二:(图象法)∵a n =40-4n ,∴a 1=40-4=36,a 2=40-4×2=32,∴d =32-36=-4,S n =na 1+n (n -1)2d =36n +n (n -1)2·(-4)=-2n 2+38n ,点(n ,S n )在二次函数y =-2x 2+38x 的图象上,S n 有最大值,其对称轴为x =-382×(-2)=192=9.5,∴当n =10或9时,S n 最大.∴S n 的最大值为S 9=S 10=-2×102+38×10=180.方法三:(通项法)∵a n =40-4n ,∴a 1=40-4=36,a 2=40-4×2=32,∴d =32-36=-4<0,数列{a n }为递减数列.令⎩⎪⎨⎪⎧ a n ≥0,a n +1≤0,有⎩⎪⎨⎪⎧40-4n ≥0,40-4(n +1)≤0,∴⎩⎪⎨⎪⎧n ≤10,n ≥9,即9≤n ≤10.当n =9或n =10时,S n 最大. ∴S n 的最大值为S 9=S 10=a 1+a 102×10=36+02×10=180.【规律方法】 对于方法一,一定要强调n ∈N +,也就是说用函数式求最值,不能忽略定义域,另外,三种方法中都得出n =9或n =10,需注意a m =0时,S m -1=S m 同为S n 的最值.欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习课件等等打造全网一站式需求。
等差数列的前n项和习题(含答案)
[A 基础达标]1.记等差数列{a n }的前n 项和为S n ,若S 4=20,S 2=4,则公差d 为( )A .2B .3C .6D .7解析:选B.由⎩⎪⎨⎪⎧S 2=4,S 4=20得⎩⎪⎨⎪⎧2a 1+d =4,4a 1+6d =20,解得⎩⎪⎨⎪⎧a 1=12,d =3.2.已知数列{a n }为等差数列,a 10=10,数列前10项和S 10=70,则公差d =( )A .-23B .-13 C.13 D .23解析:选D.由S 10=10(a 1+a 10)2,得70=5(a 1+10),解得a 1=4,所以d =a 10-a 110-1=10-49=23,故选D. 3.在等差数列{a n }中,a 1+a 2+a 3=-24,a 18+a 19+a 20=78,则此数列前20项和等于( )A .160B .180C .200D .220解析:选B.(a 1+a 2+a 3)+(a 18+a 19+a 20)=(-24)+78=54,又a 1+a 20=a 2+a 19=a 3+a 18,则3(a 1+a 20)=54,所以a 1+a 20=18.则S 20=20(a 1+a 20)2=10×18=180. 4.已知数列{a n }的前n 项和公式是S n =2n 2+3n ,则⎩⎨⎧⎭⎬⎫S n n ( ) A .是公差为2的等差数列B .是公差为3的等差数列C .是公差为4的等差数列D .不是等差数列解析:选A.因为S n =2n 2+3n ,所以S n n=2n +3, 当n ≥2时,S n n -S n -1n -1=2n +3-2(n -1)-3=2, 故⎩⎨⎧⎭⎬⎫S n n 是公差为2的等差数列. 5.等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若a n b n =2n 3n +1,则S 21T 21的值为( ) A.1315B .2335 C.1117 D .49解析:选C.S 21T 21=21(a 1+a 21)221(b 1+b 21)2=a 1+a 21b 1+b 21=a 11b 11=2×113×11+1=1117. 6.若等差数列{a n }的前n 项和为S n =An 2+Bn ,则该数列的公差为________.解析:数列{a n }的前n 项和为S n =An 2+Bn ,所以当n ≥2时,a n =S n -S n -1=An 2+Bn -A (n -1)2-B (n -1)=2An +B -A ,当n =1时满足,所以d =2A .答案:2A7.等差数列{a n }的前n 项和为S n ,且6S 5-5S 3=5,则a 4=________.解析:设等差数列的首项为a 1,公差为d ,则由6S 5-5S 3=5知,6×(5a 1+10d )-5(3a 1+3d )=5,得3(a 1+3d )=1,所以a 4=13. 答案:138.若等差数列{a n }满足3a 8=5a 13,且a 1>0,S n 为其前n 项和,则S n 最大时n =________.解析:因为3a 8=5a 13,所以3(a 1+7d )=5(a 1+12d ),所以d =-2a 139,故a n =a 1+(n -1)d =a 1-2a 139(n -1)=a 139(41-2n ).由a 1>0可得当n ≤20时,a n >0,当n >20时,a n <0,所以S n 最大时n =20.答案:209.已知在等差数列{a n }中,a 1=1,a 3=-3.(1)求数列{a n }的通项公式;(2)若数列{a n }的前k 项和S k =-35,求k 的值.解:(1)设等差数列{a n }的公差为d .由a 1=1,a 3=-3,可得1+2d =-3,解得d =-2.所以a n =1+(n -1)×(-2)=3-2n .(2)由a 1=1,d =-2,得S n =2n -n 2.又S k =-35,则2k -k 2=-35,即k 2-2k -35=0,解得k =7或k =-5.又k ∈N +,故k =7.10.某仓库有同一型号的圆钢600根,堆放成如图所示的形状,从第二层开始,每一层比下面一层少放一根,而第一层至少要比第二层少一根,要使堆垛的占地面积最小(即最下面一层根数最少),则最下面一层放几根?共堆了多少层?解:设最下面一层放n 根,则最多可堆n 层,则1+2+3+…+n =n (n +1)2≥600, 所以n 2+n -1 200≥0,记f (n )=n 2+n -1 200,因为当n ∈N +时,f (n )单调递增,而f (35)=60>0,f (34)=-10<0,所以n ≥35,因此最下面一层最少放35根.因为1+2+3+…+35=630,所以最多可堆放630根,必须去掉上面30根,去掉顶上7层,共1+2+3+…+7=28根,再去掉顶上第8层的2根,剩下的600根共堆了28层.[B 能力提升]11.等差数列{a n }的前四项之和为124,后四项之和为156,各项和为210,则此数列的项数为( )A .5B .6C .7D .8解析:选B.由题意知a 1+a 2+a 3+a 4=124,a n +a n -1+a n -2+a n -3=156,所以4(a 1+a n )=280,所以a 1+a n =70.又S n =n (a 1+a n )2=n 2×70=210,所以n =6. 12.若两个等差数列的前n 项和之比是(7n +1)∶(4n +27),则它们的第11项之比为____________.解析:设等差数列{a n }的前n 项和为S n ,等差数列{b n }的前n 项和为T n ,则a 11=a 1+a 212,b 11=b 1+b 212, 所以a 11b 11=12(a 1+a 21)12(b 1+b 21)=12(a 1+a 21)·2112(b 1+b 21)·21=S 21T 21=7×21+14×21+27=43. 答案:4∶313.已知数列{a n }中,a 1=1,当n ≥2时,其前n 项和S n 满足S 2n =a n ⎝⎛⎭⎫S n -12. (1)证明:数列⎩⎨⎧⎭⎬⎫1S n 为等差数列,并求S n 的表达式; (2)设b n =S n 2n +1,求{b n }的前n 项和T n . 解:(1)由题意S 2n =a n ⎝⎛⎭⎫S n -12,结合a n =S n -S n -1(n ≥2)得S 2n =(S n -S n -1)⎝⎛⎭⎫S n -12(n ≥2),化简整理得1S n -1S n -1=2(n ≥2),知数列⎩⎨⎧⎭⎬⎫1S n 为公差为2的等差数列,所以1S n =1S 1+(n -1)×2=1+(n -1)×2=2n -1,所以S n =12n -1. (2)b n =S n 2n +1=12×⎝⎛⎭⎫12n -1-12n +1, 所以T n =b 1+b 2+…+b n=12⎝⎛1-13+13-15+…+12n -1- ⎭⎫12n +1=12⎝⎛⎭⎫1-12n +1=n 2n +1.14.(选做题)已知公差大于零的等差数列{a n }的前n 项和为S n ,且满足a 3·a 4=117,a 2+a 5=22.(1)求数列{a n }的通项公式;(2)求S n 的最小值;(3)若数列{b n }是等差数列,且b n =S n n +c,求非零常数c 的值. 解:(1)因为数列{a n }为等差数列,所以a 3+a 4=a 2+a 5=22.又a 3·a 4=117,所以a 3,a 4是方程x 2-22x +117=0的两实根,又公差d >0,所以a 3<a 4,所以a 3=9,a 4=13,从而可得a 1=1,d =4,所以a n =4n -3.(2)由(1)知a 1=1,d =4,所以S n =na 1+n (n -1)2·d =2n 2-n =2⎝⎛⎭⎫n -142-18,所以当n =1时,S n 最小,最小值为S 1=a 1=1.(3)由(2)知S n =2n 2-n ,所以b n =S n n +c =2n 2-n n +c , 所以b 1=11+c ,b 2=62+c ,b 3=153+c .因为数列{b n }是等差数列,所以2b 2=b 1+b 3,即62+c ×2=11+c +153+c ,得2c 2+c =0,所以c =-12或c =0(舍去),所以c =-12.。
等差数列前n项和公式基础训练题(含详解)
④ ;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.
11.
【解析】
【分析】
根据 得到 , ,计算得到答案.
【详解】
; ,解得
故答案为:
【点睛】
本题考查了等差数列的通项公式和前 项和,意在考查学生对于等差数列公式的灵活运用.
12.
【解析】
【分析】
利用 来求 的通项.
A.18B.36C.45D.60
7.设 为等差数列, , 为其前n项和,若 ,则公差 ()
A. B. C.1D.2
8.等差数列 的前 项和为 ,已知 , ,则当 取最大值时 的值是()
A.5B.6C.7D.8
9.已知 是数列 的前 项和,且 ,则 ().
A.72B.88C.92D.98
10.设 为等差数列 的前 项的和 , ,则数列 的前2017项和为( )
所以 ,所以 .
故答案为: .
【点睛】
本题考查等差数列公差的计算,难度较易.已知等差数列中的两个等量关系,可通过构造方程组求解等差数列的公差,还可以通过等差数列的下标和性质求解公差.
20.已知数列{an}的前n项和为Sn=n2+3n+5,则an=______.
参考答案
1.A
【解析】
设 ,根据 是一个首项为a,公差为a的等差数列,各项分别为a,2a,3a,4a. .
2.B
【解析】
【分析】
根据等差数列的性质,求出 ,再由前n项和公式,即可求解.
【详解】
∵ ,
∴ ,∴
∴由 得 ,∴ .
故选:B.
【点睛】
本题考查等差数列性质的灵活应用,以及等差数列的前n项和公式,属于中档题.
等差数列的前n项和公式 练习 含答案
2.3.1 等差数列的前n 项和公式一、 选择题1、设数列{}n a 的前n 项和2n S n =,则8a 的值为( )A 、15B 、16C 、49D 、642、等差数列{}n a 的前n 项和为n S ,若244,20S S ==,则数列{}n a 的公差d 等于( )A 、2B 、3C 、6D 、73、在等差数列{}n a 中,,35,11,2===n n S a d 则1a 等于( )A 、5或7B 、3或5C 、7或 1-D 、3或1-4、设{},200100,,7|*<<∈==m N n n m m M 且则集合M 中所有元素的和为( )A 、2100B 、2101C 、2105D 、2107 5、若数列{}n a 为等差数列,公差为21,且,145100=S 则10042...a a a +++的值为( ) A 、60 B 、85 C 、2145 D 、其他值6、设等差数列{}n a 的前n 项和为n S ,若14611,6a a a =-+=-,则当n S 取最小值时,n 等于( )A 、6 B 、7 C 、8 D 、97、已知等差数列{}n a 中22383829a a a a ++=,且0,n a <则10S 为( )A 、9-B 、11-C 、13-D 、-158、已知数列{}n a 是公差为d 的等差数列,n S 是前n 项和,且有987S S S <=,则下列说法不正确的是( )A 、910S S <B 、0d <C 、7S 与8S 均有n S 的最大值D 、80a =9、已知数列{}n a 的前n 项和29n S n n =-,第k 项满足58k a <<,则k 等于( )A 、9 B 、8 C 、7 D 、610、设n S 为等差数列{}n a 的前n 项和,若11,a =公差22,24k k d S S +=-=,则k 等于( )A 、8 B 、7 C 、6 D 、二、填空题11、等差数列{}n a 中,365,1a a =-=,此数列的通项公式为_______________,设n S 是数列{}n a 的前n 和,则8S 等于________________12、设数列{}n a 的首项17a =-,且满足()*12n n a a n N+=+∈,则1217...a a a +++=____________13、已知数列{}n a 的前n 项和()211,2,3,...n S n n =+=,则其通项公式n a =____________14、已知数列{}n a ,其前n 项和21n S n n =++,则89101112a a a a a ++++=_____________15、设n S 是数列{}n a 的前n 和,若363,24S S ==,则9a =_____________16、在项数为21n +的等差数列中,所有的奇数项的和为165,所有的偶数项的和为150,则n 的值为______________三、简答题17、已知等差数列{}n a 中,(1)已知3,20,65,;n n d a S n ===求(2)已知111a =-,求21;S(3)已知113,n a n =-求n S .18、已知等差数列{}n a 中,374616,0a a a a =-+=,求{}n a 的前n 项和n S .19、有一等差数列共有偶数项,它的奇数项之和与偶数项之和分别是24和30,若最后一项与第一项之差为212,试求此数列的首项、公差和项数.四、探究与拓展20、已知公差大于零的等差数列{}n a 的前n 项和n S ,且满足:3425117,22.a a a a =+=(1)求数列{}n a 的通项公式;n a(2)若数列{}n b 是等差数列,且,n n S b n c=+求非零常数c .第五课时 等差数列的前n 项和公式1-5 AADCB 6-10 ADABD 11、211n a n =- 816S =- 12、153 13、2,121,1n n a n n =⎧=⎨->⎩ 14、100 15、15 16、108、(1)11n = (2)2121S =- (3)()()11n n S n n S n n =-=--或9、首项为32,公差为32,项数为8 10、(1)43n a n =- (2)12-。
等差等比数列及其前n项和作业及答案
等差等比数列及其前n 项和作业及答案一、选择题:1.设命题甲为“a ,b ,c 成等差数列”,命题乙为“a b +c b=2”,那么 ( ) A .甲是乙的充分不必要条件 B .甲是乙的必要不充分条件C .甲是乙的充要条件D .甲是乙的既不充分也不必要条件解析:由a b +c b=2,可得a +c =2b ,但a 、b 、c 均为零时,a 、b 、c 成等差数列, 但a b +c b≠2. 答案:B 2.(2009·福建高考)等差数列{a n }的前n 项和为S n ,且S 3=6,a 3=4,则公差d 等于 ( )A .1 B.53C .2D .3 解析:∵S 3=(a 1+a 3)×32=6,而a 3=4,∴a 1=0, ∴d =a 3-a 12=2. 答案:C 3.(2010·广州模拟)已知数列{a n }的前n 项和S n =n 2-9n ,第k 项满足5<a k <8,则k等于 ( )A .9B .8C .7D .6解析:a n =⎩⎪⎨⎪⎧ S 1 (n =1)S n -S n -1 (n ≥2)=⎩⎪⎨⎪⎧-8 (n =1)-10+2n (n ≥2)=2n -10, ∵5<a k <8,∴5<2k -10<8, ∴152<k <9,又∵k ∈N *,∴k =8. 答案:B 4.设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9等于 ( )A .63B .45C .36D .27解析:由{a n }是等差数列,则S 3,S 6-S 3,S 9-S 6成等差数列.由2(S 6-S 3)=S 3+(S 9-S 6)得到S 9-S 6=2S 6-3S 3=45,即a 7+a 8+a 9=45. 答案:B5.设数列{a n }是等差数列,且a 4=-4,a 9=4,S n 是数列{a n }的前n 项和,则 ( )A .S 5<S 6B .S 5=S 6C .S 7=S 5D .S 7=S 6解析:因为a 4=-4,a 9=4,所以a 4+a 9=0,即a 6+a 7=0,所以S 7=S 5+a 6+a 7=S 5. 答案:C6.各项都是正数的等比数列{}a n 中,a 2,123,a 1成等差数列,则a 3+a 4a 4+a 5的值为 ( ) A.5-12 B.5+12 C.1-52 D.5+12或5-12解析:设{a n }的公比为q ,∵a 1+a 2=a 3, ∴a 1+a 1q =a 1q 2,即q 2-q -1=0, ∴q =1±52,又∵a n >0,∴q >0,∴q =1+52,a 3+a 4a 4+a 5=1q =5-12. 答案:A 7.(2009·广东高考)已知等比数列{a n }的公比为正数,且a 3·a 9=2a 25,a 2=1,则a 1=( )A.12B.22C.2 D .2 解析:∵a 3·a 9=2a 25=a 26,∴a 6a 5= 2. 又a 2=1=a 1·2,∴a 1=22. 答案:B 8.设等比数列{a n }的前n 项和为S n ,若S 6∶S 3=1∶2,则S 9∶S 3等于 ( )A .1∶2B .2∶3C .3∶4D .1∶3解析:∵{a n }为等比数列, ∴S 3,S 6-S 3,S 9-S 6成等比数列,即(S 6-S 3)2=S 3·(S 9-S 6), 又∵S 6∶S 3=1∶2,∴14S 23=S 3(S 9-12S 3),即34S 3=S 9, ∴S 9∶S 3=3∶4. 答案:C 9.若数列{a n }满足a 2n +1a 2np (p 为正常数,n ∈N *),则称{a n }为“等方比数列”. 甲:数列{a n }是等方比数列;乙:数列{a n }是等比数列,则 ( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件解析:数列{a n }是等比数列则a n +1a n =q ,可得a 2n +1a 2n=q 2,则{a n }为“等方比数列”.当{a n }为“等方比数列”时,则a 2n +1a 2n=p (p 为正常数,n ∈N *),当n ≥1时a n +1a n =±p ,所以此数列{a n }并不一定是等比数列. 答案:B10.已知{a n }是等比数列,a 2=2,a 5=14,则a 1a 2+a 2a 3+…+a n a n +1= ( ) A .16(1-4-n ) B .16(1-2-n ) C.323(1-4-n ) D.323(1-2-n ) 解析:∵q 3=a 5a 2=18∴q =12,a 1=4,数列{a n ·a n +1}是以8为首项,14为公比的等比数列,不难得出答案为C. 答案:C11. 在等差数列{a n }中,若a 1<0,S 9=S 12,则当S n 取得最小值时,n 等于A .10B .11C .9或10D .10或11解析:设数列{a n }的公差为d ,则由题意得9a 1+12×9×(9-1)d =12a 1+12×12×(12-1)d , 即3a 1=-30d ,∴a 1=-10d . ∵a 1<0,∴d >0. ∴S n =na 1+12n (n -1)d =12dn 2-212dn =d 2⎝⎛⎭⎫n -2122-441d 8∴S n 有最小值,又n ∈N *, ∴n =10,或n =11时,S n 取最小值. 答案:D12.在等比数列{a n }中,a n >0(n ∈N +),公比q ∈(0,1),且a 1a 5+2a 3a 5+a 2a 8=25,又a 3与a 5的等比中项为2,b n =log 2a n ,数列{b n }的前n 项和为S n ,则当S 11+S 22+…+S n n 最大时,n 的值等于 ( )A .8B .9C .8或9D .17解析:∵a 1a 5+2a 3a 5+a 2a 8=25, ∴a 23+2a 3a 5+a 25=25,又a n >0,∴a 3+a 5=5, 又q ∈(0,1),∴a 3>a 5,而a 3a 5=4,∴a 3=4,a 5=1, ∴q =12,a 1=16,a n =16×(12)n -1=25-n , b n =log 2a n =5-n ,b n +1-b n =-1,∴{b n }是以b 1=4为首项,-1为公差的等差数列, ∴S n =n (9-n )2∴S n n =9-n 2, ∴当n ≤8时,S n n >0;当n =9时,S n n =0;当n >9时,S n n<0, ∴当n =8或9时,S 11+S 22+…+S n n 最大. 答案:C 二、填空题:13.在等差数列{a n }中,已知log 2(a 5+a 9)=3,则等差数列{a n }的前13项的和S 13=________.解析:∵log 2(a 5+a 9)=3,∴a 5+a 9=23=8.∴S 13=13×(a 1+a 13)2=13×(a 5+a 9)2=13×82=52. 答案:52 14.(2009·辽宁高考)等差数列{a n }的前n 项和为S n ,且6S 5-5S 3=5,则a 4=________. 解析:设等差数列{a n }的首项为a 1,公差为d ,则由6S 5-5S 3=5,得6(a 1+3d )=2,所以a 4=13. 答案:1315.(2009·浙江高考)设等比数列{a n }的公比q =12,前n 项和为S n ,则S 4a 4=________. 解析:a 4=a 1(12)3=181,S 4=a 1(1-124)1-12=158a 1, ∴S 4a 4=15. 答案:15 16.(2009·宁夏、海南高考)等比数列{a n }的公比q >0.已知a 2=1,a n +2+a n +1=6a n ,则{a n }的前4项和S 4=________.解析:∵a n +2+a n +1=6a n ,∴a n ·q 2+a n ·q =6a n (a n ≠0), ∴q 2+q -6=0,∴q =-3或q =2. ∵q >0,∴q =2,∴a 1=12,a 3=2,a 4=4, ∴S 4=12+1+2+4=152. 答案:152三、解答题:17.在数列{a n }中,a 1=1,a n +1=2a n +2n .(1)设b n =a n 2-,证明:数列{b n }是等差数列; (2)求数列{a n }的前n 项和S n . 解:(1)证明:由已知a n +1=2a n +2n 得 b n +1=a n +12n =2a n +2n 2n =a n 2n -1+1=b n +1. 又b 1=a 1=1, 因此{b n }是首项为1,公差为1的等差数列.(2)由(1)知a n 2-=n ,即a n =n ·2n -1. S n =1+2×21+3×22+…+n ×2n -1, 两边乘以2得,2S n =2+2×22+…+n ×2n . 两式相减得S n =-1-21-22-…-2n -1+n ·2n =-(2n -1)+n ·2n =(n -1)2n+1. 18.设数列{a n }的前n 项和为S n ,已知a 1+2a 2+3a 3+…+na n =(n -1)S n +2n (n ∈N *).(1)求a 2,a 3的值; (2)求证:数列{S n +2}是等比数列.解:(1)∵a 1+2a 2+3a 3+…+na n =(n -1)S n +2n (n ∈N *),∴当n =1时,a 1=2×1=2; 当n =2时,a 1+2a 2=(a 1+a 2)+4,∴a 2=4;当n =3时,a 1+2a 2+3a 3=2(a 1+a 2+a 3)+6,∴a 3=8.(2)∵a 1+2a 2+3a 3+…+na n =(n -1)S n +2n (n ∈N *),①∴当n ≥2时,a 1+2a 2+3a 3+…+(n -1)a n -1=(n -2)S n -1+2(n -1).②①-②得na n =(n -1)S n -(n -2)S n -1+2=n (S n -S n -1)-S n +2S n -1+2=na n -S n +2S n -1+2. ∴-S n +2S n -1+2=0,即S n =2S n -1+2,∴S n +2=2(S n -1+2). ∵S 1+2=4≠0, ∴S n -1+2≠0, ∴S n +2S n -1+22, 故{S n +2}是以4为首项,2为公比的等比数列. 19.已知数列{a n }满足2a n +1=a n +a n +2(n ∈N *),它的前n 项和为S n ,且a 3=5,S 6=36.(1)求数列{a n }的通项公式;(2)设b n =6n +(-1)n -1λ·2a n (λ为正整数,n ∈N *),试确定λ的值,使得对任意n ∈N *,都有b n +1>b n 成立.解:(1)∵2a n +1=a n +a n +2,∴{a n }是等差数列,设{a n }的首项为a 1,公差为d , 由a 3=5,S 6=36得⎩⎪⎨⎪⎧ a 1+2d =56a 1+15d =36,解得a 1=1,d =2. ∴a n =2n -1.(2)由(1)知b n =6n +(-1)n -1·λ·22n -1,要使得对任意n ∈N *都有b n +1>b n 恒成立, ∴b n +1-b n =6n +1+(-1)n ·λ·22n +1-6n -(-1)n -1·λ·22n -1=5·6n -5λ·(-1)n -1·22n -1>0恒成立, 即12λ·(-1)n -1<(32)n . 当n 为奇数时, 即λ<2·(32)n ,而(32)n 的最小值为32, ∴λ<3. 当n 为偶数时,λ>-2(32)n , 而-2(32)n 的最大值为-92,∴λ>-92.由上式可得-92<λ<3,而λ为正整数, ∴λ=1或λ=2. 20.(2010·株州模拟)已知二次函数f (x )=ax 2+bx +c (x ∈R),满足f (0)=f (12)=0,且f (x )的最小值是-18.设数列{a n }的前n 项和为S n ,对一切n ∈N *,点(n ,S n )在函数f (x )的图象上.(1)求数列{a n }的通项公式;(2)通过b n =S n n +c 构造一个新的数列{b n },是否存在非零常数c ,使得{b n }为等差数列; (3)令c n =S n +n n,设数列{c n ·2c n }的前n 项和为T n ,求T n . 解:(1)因为f (0)=f (12)=0,所以f (x )的对称轴为x =0+122=14,又因为f (x )的最小值是-18,由二次函数图象的对称性可设f (x )=a (x -14)2-18. 又f (0)=0,所以a =2,所以f (x )=2(x -14)2-18=2x 2-x . 因为点(n ,S n )在函数f (x )的图象上,所以S n =2n 2-n .当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=4n -3(n =1时也成立),所以a n =4n -3(n ∈N *).(2)因为b n =S n n +c =2n 2-n n +c =2n (n -12)n +c c =-12(c ≠0),即得b n =2n ,此时数列{b n }为等差数列,所以存在非零常数c =-12{b n }为等差数列. (3)c n =S n +n n =2n 2-n +n n=2n ,则c n ·2c n =2n ×22n =n ×22n +1. 所以T n =1×23+2×25+…+(n -1)22n -1+n ×22n +1,4T n =1×25+2×27+…+(n -1)22n +1+n ×22n +3,两式相减得:-3T n =23+25+…+22n +1-n ×22n +3=23(1-4n )1-4n ·22n +3, T n =23(1-4n )9+n ·22n +33=(3n -1)22n +3+89. 21.已知数列{a n }的前三项与数列{b n }的前三项对应相同,且a 1+2a 2+22a 3+…+2n -1a n=8n 对任意的n ∈N *都成立,数列{b n +1-b n }是等差数列.(1)求数列{a n }与{b n }的通项公式;(2)问是否存在k ∈N *,使得(b k -a k )∈(0,1)?请说明理由.解:(1)已知a 1+2a 2+22a 3+…+2n -1a n =8n (n ∈N *)①当n ≥2时,a 1+2a 2+22a 3+…+2n -2a n -1=8(n -1)(n ∈N *)②①-②得2n -1a n =8,求得a n =24-n , 在①中令n =1,可得a 1=8=24-1, ∴a n =24-n (n ∈N *). 由题意知b 1=8,b 2=4,b 3=2, ∴b 2-b 1=-4,b 3-b 2=-2, ∴数列{b n +1-b n }的公差为-2-(-4)=2, ∴b n +1-b n =-4+(n -1)×2=2n -6, 法一:迭代法得:b n =b 1+(b 2-b 1)+(b 3-b 2)+…+(b n -b n -1) =8+(-4)+(-2)+…+(2n -8)=n 2-7n +14(n ∈N *).法二:可用累加法,即b n -b n -1=2n -8, b n -1-b n -2=2n -10, … b 3-b 2=-2, b 2-b 1=-4, b 1=8,相加得b n =8+(-4)+(-2)+…+(2n -8)=8+(n -1)(-4+2n -8)2=n 2-7n +14(n ∈N *). (2)∵b k -a k =k 2-7k +14-24-k , 设f (k )=k 2-7k +14-24-k .当k ≥4时,f (k )=(k -72)2+74-24-k 单调递增. 且f (4)=1, ∴当k ≥4时,f (k )=k 2-7k +14-24-k ≥1. 又f (1)=f (2)=f (3)=0, ∴不存在k ∈N *,使得(b k -a k )∈(0,1).22.等差数列{a n }的前n 项和为S n ,S 4=24,a 2=5,对每一个k ∈N *,在a k 与a k +1之间插入2k -1个1,得到新数列{b n },其前n 项和为T n .(1)求数列{a n }的通项公式; (2)试问a 11是数列{b n }的第几项;(3)是否存在正整数m ,使T m =2010?若存在,求出m 的值;若不存在,请说明理由. 解:(1)设{a n }的公差为d ,∵S 4=4a 1+4×32d =24,a 2=a 1+d =5, ∴a 1=3,d =2,a n =3+(n -1)×2=2n +1.(2)依题意,在a 11之前插入的1的总个数为1+2+22+…+29=1-2101-2=1023, 1023+11=1034,故a 11是数列{b n }的第1034项.(3)依题意,S n =na 1+n (n -1)2d =n 2+2n , a n 之前插入的1的总个数为1+2+22+…+2n -2=1-2n -11-2=2n -1-1, 故数列{b n }中,a n 及前面的所有项的和为n 2+2n +2n -1-1,∴数列{b n }中,a 11及前面的所有项的和为112+22+210-1=1166<2010, 而2010-1166=844,a 11与a 12之间的1的个数为210=1024个, 即在a 11后加844个1,其和为2010,故存在m =1034+844=1878,使T 1878=2010.。
等差数列前n项和基础练习题(附答案)
等差数列的前n 项和基础练习题一、选择题1.设S n 是等差数列{a n }的前n 项和,已知a 2=3,a 6=11,则S 7等于( )A .13B .35C .49D .632.等差数列{a n }中,S 10=4S 5,则a 1d等于( ) A.12B .2 C.14 D .43.已知等差数列{a n }中,a 23+a 28+2a 3a 8=9,且a n <0,则S 10为( ) A .-9B .-11C .-13D .-154.设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36.则a 7+a 8+a 9等于( )A .63B .45C .36D .275.在小于100的自然数中,所有被7除余2的数之和为( )A .765B .665C .763D .6636.一个等差数列的项数为2n ,若a 1+a 3+…+a 2n -1=90,a 2+a 4+…+a 2n =72,且a 1-a 2n =33,则该数列的公差是( )A .3B .-3C .-2D .-17.已知数列{a n }的前n 项和S n =n 2,则a n 等于( )A .nB .n 2C .2n +1D .2n -18.数列{a n }为等差数列,它的前n 项和为S n ,若S n =(n +1)2+λ,则λ的值是( )A .-2B .-1C .0D .19.已知数列{a n }的前n 项和S n =n 2-9n ,第k 项满足5<a k <8,则k 为( )A .9B .8C .7D .610.设S n 是等差数列{a n }的前n 项和,若S 3S 6=13,则S 6S 12等于( ) 311111.设S n 是等差数列{a n }的前n 项和,若a 5a 3=59,则S 9S 5等于( ) A .1B .-1C .2 D.1212.设{a n }是等差数列,S n 是其前n 项和,且S 5<S 6,S 6=S 7>S 8,则下列结论错误的是( )A .d <0B .a 7=0C .S 9>S 5D .S 6与S 7均为S n 的最大值二、填空题13.设S n 为等差数列{a n }的前n 项和,若S 3=3,S 6=24,则a 9=________.14.两个等差数列{a n },{b n }的前n 项和分别为S n 和T n ,已知S n T n =7n +2n +3,则a 5b 5的值是________.15.在项数为2n +1的等差数列中,所有奇数项的和为165,所有偶数项的和为150,则n 的值为________.16.等差数列{a n }的前m 项和为30,前2m 项和为100,则数列{a n }的前3m 项的和S 3m 的值是________.三、解答题17.在等差数列{a n }中,已知d =2,a n =11,S n =35,求a 1和n .18.设{a n }为等差数列,S n 为数列{a n }的前n 项和,已知S 7=7,S 15=75,T n 为数列⎩⎨⎧⎭⎬⎫S n n 的前n 项和,求T n .19.已知两个等差数列{a n }与{b n }的前n 项和分别为A n 和B n ,且A n B n =7n +45n +3,则使得a n b n为整数的正整数n 的个数为?20.设等差数列{a n }满足a 3=5,a 10=-9.(1)求{a n }的通项公式;(2)求{a n }的前n 项和S n 及使得S n 最大的序号n 的值.21.已知等差数列{a n}中,记S n是它的前n项和,若S2=16,S4=24,求数列{|a n|}的前n项和T n. 22.设等差数列{a n}的前n项和为S n,已知a3=12,且S12>0,S13<0.(1)求公差d的范围;(2)问前几项的和最大,并说明理由.参考答案与解析一、选择题1.C解析 S 7=7(a 1+a 7)2=7(a 2+a 6)2=49. 2.A解析 由题意得:10a 1+12×10×9d =4(5a 1+12×5×4d ), ∴10a 1+45d =20a 1+40d ,∴10a 1=5d ,∴a 1d =12. 3.D解析 由a 23+a 28+2a 3a 8=9得(a 3+a 8)2=9,∵a n <0,∴a 3+a 8=-3,∴S 10=10(a 1+a 10)2=10(a 3+a 8)2=10×(-3)2=-15. 4.B解析 数列{a n }为等差数列,则S 3,S 6-S 3,S 9-S 6为等差数列,即2(S 6-S 3)=S 3+(S 9-S 6), ∵S 3=9,S 6-S 3=27,则S 9-S 6=45.∴a 7+a 8+a 9=S 9-S 6=45.5.B解析 ∵a 1=2,d =7,2+(n -1)×7<100,∴n <15,∴n =14,S 14=14×2+12×14×13×7=665. 6.B解析 由⎩⎨⎧a 1+a 3+…+a 2n -1=na 1+n (n -1)2×(2d )=90,a 2+a 4+…+a 2n =na 2+n (n -1)2×(2d )=72,得nd =-18.又a 1-a 2n =-(2n -1)d =33,所以d =-3.7. D8. B解析 等差数列前n 项和S n 的形式为:S n =an 2+bn ,∴λ=-1.解析 由a n =⎩⎪⎨⎪⎧S 1, n =1S n -S n -1, n ≥2,∴a n =2n -10;由5<2k -10<8,得7.5<k <9,∴k =8.10.A解析 方法一S 3S 6=3a 1+3d 6a 1+15d =13⇒a 1=2d , S 6S 12=6a 1+15d 12a 1+66d =12d +15d 24d +66d =310. 方法二 由S 3S 6=13,得S 6=3S 3.S 3,S 6-S 3,S 9-S 6,S 12-S 9仍然是等差数列,公差为(S 6-S 3)-S 3=S 3,从而S 9-S 6=S 3+2S 3=3S 3⇒S 9=6S 3,S 12-S 9=S 3+3S 3=4S 3⇒S 12=10S 3,所以S 6S 12=310.11.A解析 由等差数列的性质,a 5a 3=2a 52a 3=a 1+a 9a 1+a 5=59,∴S 9S 5=92(a 1+a 9)52(a 1+a 5)=95×59=1. 12.C解析 由S 5<S 6,得a 6=S 6-S 5>0.又S 6=S 7⇒a 7=0,所以d <0.由S 7>S 8⇒a 8<0,因此,S 9-S 5=a 6+a 7+a 8+a 9=2(a 7+a 8)<0即S 9<S 5. 二、填空题13.15解析 设等差数列的公差为d ,则S 3=3a 1+3×22d =3a 1+3d =3,即a 1+d =1, S 6=6a 1+6×52d =6a 1+15d =24,即2a 1+5d =8. 由⎩⎪⎨⎪⎧ a 1+d =1,2a 1+5d =8,解得⎩⎪⎨⎪⎧a 1=-1,d =2.故a 9=a 1+8d =-1+8×2=15.14.6512解析a 5b 5=9(a 1+a 9)9(b 1+b 9)=S 9T 9=6512.15.10解析 S 奇=(n +1)(a 1+a 2n +1)2=165, S 偶=n (a 2+a 2n )2=150. ∵a 1+a 2n +1=a 2+a 2n ,∴n +1n =165150=1110,∴n =10.解析 方法一 在等差数列中,S m ,S 2m -S m ,S 3m -S 2m 成等差数列.∴30,70,S 3m -100成等差数列.∴2×70=30+(S 3m -100),∴S 3m =210.方法二 在等差数列中,S m m ,S 2m 2m ,S 3m 3m 成等差数列,∴2S 2m 2m =S m m +S 3m 3m. 即S 3m =3(S 2m -S m )=3×(100-30)=210.三、解答题17.解 由⎩⎪⎨⎪⎧ a n =a 1+(n -1)d ,S n =na 1+n (n -1)2d ,得⎩⎪⎨⎪⎧ a 1+2(n -1)=11,na 1+n (n -1)2×2=35, 解方程组得⎩⎪⎨⎪⎧ n =5a 1=3或⎩⎪⎨⎪⎧n =7,a 1=-1.18.解 设等差数列{a n }的公差为d ,则S n =na 1+12n (n -1)d , ∵S 7=7,S 15=75,∴⎩⎪⎨⎪⎧ 7a 1+21d =715a 1+105d =75, 即⎩⎪⎨⎪⎧ a 1+3d =1a 1+7d =5,解得⎩⎪⎨⎪⎧a 1=-2d =1, ∴S n n =a 1+12(n -1)d =-2+12(n -1), ∵S n +1n +1-S n n =12, ∴数列⎩⎨⎧⎭⎬⎫S n n 是等差数列,其首项为-2,公差为12, ∴T n =n ×(-2)+n (n -1)2×12=14n 2-94n .19.解析a nb n =A 2n -1B 2n -1=14n +382n +2=7n +19n +1 =7(n +1)+12n +1=7+12n +1, ∴n =1,2,3,5,11.20.解 (1)由a n =a 1+(n -1)d 及a 3=5,a 10=-9得⎩⎪⎨⎪⎧ a 1+2d =5,a 1+9d =-9,可解得⎩⎪⎨⎪⎧a 1=9,d =-2, 所以数列{a n }的通项公式为a n =11-2n .(2)由(1)知,S n =na 1+n (n -1)2d =10n -n 2. 因为S n =-(n -5)2+25,所以当n =5时,S n 取得最大值.21.解 由S 2=16,S 4=24,得⎩⎨⎧ 2a 1+2×12d =16,4a 1+4×32d =24.即⎩⎪⎨⎪⎧ 2a 1+d =16,2a 1+3d =12. 解得⎩⎪⎨⎪⎧a 1=9,d =-2. 所以等差数列{a n }的通项公式为a n =11-2n (n ∈N *).(1)当n ≤5时,T n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a n =S n =-n 2+10n .(2)当n ≥6时,T n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a 5-a 6-a 7-…-a n =2S 5-S n =2×(-52+10×5)-(-n 2+10n )=n 2-10n +50,故T n =⎩⎪⎨⎪⎧-n 2+10n (n ≤5),n 2-10n +50 (n ≥6).22.解 (1)根据题意,有:⎩⎨⎧12a 1+12×112d >0,13a 1+13×122d <0,a 1+2d =12,整理得:⎩⎪⎨⎪⎧ 2a 1+11d >0,a 1+6d <0,a 1+2d =12.解之得:-247<d <-3. (2)∵d <0,而S 13=13(a 1+a 13)2=13a 7<0,∴a 7<0. 又S 12=12(a 1+a 12)2=6(a 1+a 12)=6(a 6+a 7)>0, ∴a 6>0.∴数列{a n }的前6项和S 6最大.。
等差数列的前n项和
四、解答题(每小题 10 分,共 20 分)
11.记 Sn 为公差不为零的等差数列{an} 的前 n 项和,已知 a21 =a29 ,S6=18. (1)求{an} 的通项公式;
(2)求 Sn 的最大值及对应 n 的大小.
【解析】(1)设{an} 的公差为 d,且 d≠0.
由 a21 =a29 ,得 a1+4d=0,
(2)|an |
-2n+5,n≤2 =
2n-5,n≥3
,记数列{|an|}
的前 n 项和为 Sn,当 n≤2 时,Sn=n3+52-2n
=-n2+4n;
当 n≥3 时,Sn=4+n-212+2n-5 =n2-4n+8,
-n2+4n,n≤2 综上,Sn=n2-4n+8,n≥3.
an=-5+(n-1)×2=2n=16.
答案:2n-7 16
10.设等差数列{an}的前 n 项和为 Sn,若 S3=9,S6=36,则 a7+a8+a9 等于________.
【解析】因为 a7+a8+a9=S9-S6,而由等差数列的性质可知,S3,S6-S3,S9-S6 构成等差数列,所以 S3+(S9-S6)=2(S6-S3),即 a7+a8+a9=S9-S6=2S6-3S3=2×36 -3×9=45. 答案:45
【解析】选 A.由数列{an}为等差数列,且 a1<a2<0,得 d=a2-a1>0,故数列{an}为递 增数列,且 a1<0,所以 Sn 有最小值,无最大值.
2.设 Sn 为等差数列{an} 的前 n 项和,已知 a1=1,S66 -S33 =3,则 a5=(
)
A.9 B.7 C.5 D.3
【解析】选 A.设等差数列{an} 的公差为 d,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等差数列的前n项和练习-含答案.项和等差数列的前n课时作业8分满分:100时间:45分钟课堂训练) (2,S=0,则n等于a1.已知{}为等差数列,a=35,d=-nn1B.34 A.3336. DC.35D【答案】+naS=n【解析】本题考查等差数列的前项和公式.由1n?1n-n?n -1??n36. ,可以求出n=0d=35n+×(-2)=22,则数列前24=+3(aa)+2(a+a+a).等差数列2{a}中,133710n5)13项的和是(26 .A.13 B156 .D52 C.B【答案】++)2()+a+a+a=24?6a6a=24?aa3(【解析】a +41013375410?+a13?a?13?a+a413×10131426.====?a=4S1310222________. 50.=则SS=S.3等差数列的前n项和为,S20,=30n201090【答案】等差数列的片断数列和依次成等差数列.【解析】S∴,S也成等差数列.-,-SSS2020101030S∴2(90.()S-=SS+)S-S,解得=301020301020.. S=460,求S,4.等差数列{a}的前n项和为S,若S=8428n20n12a 应用基本量法列出关于a和的方程组,解出d【分析】(1)11;d,进而求得S和28的一元二次函数且常n因为数列不是常数列,因此S 是关于(2)n2,、b数项为零.设S=anS+bn,代入条件S=84,=460,可得a20n12 S;则可求28SdSddd??nn2是一个等差),故(a-S(3)由=n++n(a-得??1n1nn2222??SSS282012. =+2812+,∴2×,可求得列,又2×20=28281220 a}的公差为d,方法一:设【解析】{n?n?n -1S则.d=na+1n21112×?,84+d=a1212?由已知条件得: 19×20?,=460+20ad12??,=-d11=14,15a2a+11解得整理得????4.=d+19d=46,a21?-1?nn所以S-17n,2n15n +×4=2=-n2所以S-17×28=1 092.228×=228方法二:设数列的前n 项和为S +bn. 2an ,则S =nn 因为S =84,S ,460=2012.?2,1212a +b =84所以? ?2,=460+2020ba?,b =712a+整理得??23.=20a +b ,b =-17解之得a =2,Sn ,17所以S -21 092.n ==228n a 方法三:∵{ 为等差数列,}n ?1n ?n -S 所以 ,=nad 1n 2SddS ??nn 所以=a +是等差数列.,所n ??1nn22?? 12,20,28成等差数列,因为SSS 281220 成等差数列,所,282012SSS 281220,解得S所以2×=1 092. 28201228【规律方法】基本量法求出a和d是解决此类问题的基本方法,1应熟练掌握.根据等差数列的性质探寻其他解法,可以开阔思路,有时可以简化计算.课后作业一、选择题(每小题5分,共40分)1.已知等差数列{a}中,a=7,a=15,则前10项的和S等于104n2) (210 B. A.100D.400.380 CB【答案】7-a15a-24a==4,则210.3,所以=d=S=【解析】10122-4) =(19,S=40,则aa2.在等差数列{a}中,+a=105n2524 B.A.2748 C.29 D.C 【答案】?,195d=+2a1?【解析】由已知?40.10d=5a+1?,2a=1∴a解得?=2+9×3=29.10?3.d=2+2n-=n1,则这个数列一定是.数列3{a}的前n项和为S nn)(A.等差数列 B.非等差数列D .等差数列或常数列 C.常数列B【答案】+2n-1-[(n-1)+2(n22n=S=n≥2时,aS-【解析】当1nn-n -1)-1]=2n+1,当n=1时a=S=2.11?,1,2n=这不是等差数列.∴a?=n?,n1,≥2n2+4.设等差数列{a}的前n项和为S.若a=-11,a+a,6=-641nn)n等于(则当S取最小值时,n7 B.A.69DC.8 .A 【答案】??,=-a =-11,11a 11∴?? 【解析】??,26,d =a +a=-64?n -1n ?.-12nS ∴-n =n 22n +11d =-n =na +1n 236. -6)-=(n 2S6时,n 即= 最小.n 534,最后5.一个只有有限项的等差数列,它的前5项的和为),则它的第7项等于(146项的和为,所有项的和为234B .21 .22 A18 .D .C19D【答案】,+a=34a【解析】∵a+a++a53124,=++a+aaa +a14642nn-n3n-1-n-a5(∴ 18036,a,a+=)+a=n11n?an?a+36×n n1234.===S n22S,n∴=1318.∴234.a==a=137713,则它的中间项为.一个有611项的等差数列,奇数项之和为30)(7 .B8 A.5.6 C. DD【答案】4××556a=6a5=+S=×2d30,a【解析】S+5d=5,偶奇211225.25==S-S=30-a255(d=a+5d)=,×2偶中奇1S n,已知S7.若两个等差数列{a}和{b}的前n项和分别是,T nnnn T n an75)(,则等于b3+n5 B.A.7 32127D. C 48D【答案】9?a?a+aa+91221aSa291955==.【解析】42bT9bbb+955?b?b91912+…a|||a=-a60,a=+3,则|a+|a|+}已知数列8.{a中,311nn12n+)|+|a等于(30765 .A445 B.1 305 . C.1 080 DB 【答案】=-【解析】aa3,∴}a为等差数列.{n+n1n a∴63.,即3a-3=n×-(60=-+n1)nn a∴<21.0=时,>21n>0时,a21=n,na,时,<0nnn|a+…+|+|a|+|a|S′=|a|3031302a=- a+…+…-a+a+a -a-a-30221323221a2(=- )+S++a…+a301221S=-2 +S3021765.=)分,共20分二、填空题(每小题10则数列的通12,若a=S=a9.设等差数列{}的前n项和为S,3nn6________.a=项公式n 2n【答案】,则a}的公差d{【解析】设等差数列n??2a=a+5d=1211a,∴,∴??.=2n n??2+ad=4=d1,所有偶数项,所有奇数项之和为132+10.等差数列共有2n1 ________.项之和为120,则n等于10【答案】S1+n2aS=-.S项,∴=n【解析】∵等差数列共有2+1偶奇1n+12n+120132+10. ==即132-120,求得n12n+【规律方法】项和的性质,比较简捷.利用了等差数列前n解答应写出必要的文字说明、20(三、解答题每小题分,分.共40)证明过程或演算步骤.{a}中,11.在等差数列n和S;10,S=5,求a已知(1)a=8568. ,求d=-a=-512,S1 022(2)若a=1,n1n在等差数列中,五个重要的量,只要已知三个量,就【分析】利用通项公式和前d是两个最基本量,可求出其他两个量,其中a 和1n项和或特别的项.项和公式,先求出a和d,然后再求前n1,10,S=5=【解析】(1)∵a56?,+5d=10a1∴??5.=10d5a +1a解方程组,得 d=3,=-5,1a∴=16,d=10+2×3+=a268?a +a8?8144.==S82?1512?+n?-+n?aa n1=-1 022,=S(2)由n22解得n =4.又由a=a+(n-1)d,1n即-512=1+(4-1)d,解得d=-171.【规律方法】一般地,等差数列的五个基本量a,a,d,n,n1S,知道其中任意三个量可建立方程组,求出另外两个量,即“知三n求二”.我们求解这类问题的通性通法,是先列方程组求出基本量a1.,然后再用公式求出其他的量.和d,求前多少项的和最=40-4n}12.已知等差数列{a,且满足a nn大,最大值为多少?=36,40(【解析】方法一:二次函数法)∵a=40-4n,∴a=-41n n440-?a+a?n36+n1=n+38∴S2n2n==-·n2221919(-19n +n=-2[2+)]2221919+-=-2(n2.)221919 9.5,且n∈N,令n-=0,则=+22S10时,或n=∴当n=9 最大,n21919180.+∴=2)=-2(10-的最大值为S=S10n922a方法二:(图象法)∵ 4=36,40=-4n,∴a=40-1n 4=-,=32,∴d=32-36=a40-4×22?n-n-1?1n?n? n,+382n2=-=S=na+d36n+·(-4)1n22S的图象上,+,S38x点(n2有最大值,其2x=-)在二次函数y nn1938 ,x对称轴为=-==9.52?-22×?∴当n=10或9时,S最大.n∴S180.=10×38+210的最大值为S×S=2=-109na通项法)∵方法三:( =36,a=40-44=40-n,∴1n 32,-4×2=40a=2a,数列{32-36=-4<0∴d= }为递减数列.n??,n≥0a≥0,40-4n有令????,0?n+1?≤a0,≤40-41+n?,10n≤10.∴n≤≤即9??,n≥9S10时,=9或n=当n 最大.n036a+a+101∴S的最大值为S=S×10×10=180.10n922,也就是说用函Nn∈对于方法一,一定要强调【规律方法】+数式求最值,不能忽略定义域,另外,三种方法中都得出n=9或n =10,需注意a=0时,S=S同为S的最值.n-mm1m。