砌体结构承载力计算

合集下载

《砌体结构》第3章 无筋砌体构件承载力计算

《砌体结构》第3章  无筋砌体构件承载力计算
式进行:
• 3.3.3 受剪构件计算 • 沿通缝或齿缝受剪构件的承载力,应按下式计
算。
• 3.3.4 计算示例
• 2)在确定影响系数 时,考虑到不同种类砌体 在受力性能上的差异,应先对构件高厚比分别 乘以下列系数:
• ①粘土砖、空心砖、空斗墙砌体和混凝土中型 空心砌块砌体1.0;
• ②混凝土小型空心砌块砌体1.1;
• ③粉煤灰中型实心砌块、硅ห้องสมุดไป่ตู้盐硅、细料石和 半细料石砌体1.2;
• ④粗料石和毛石砌体1.5。
• 图3.7 局部均匀受压
• 根据试验研究,砌体局部受压可能出现以下三 种破坏形式。
• (1)因纵向裂缝的发展而破坏
• [图3.9(a)] • (2)劈裂破坏 • [图3.9(b)]
• 图3.9 砌体局部均匀受压破坏 • (3)局压面积下砌体的压碎破坏
• 3.2.2 砌体局部均匀受压 • (1)局部抗压强度提高系数 • 砌体的抗压强度为f,局部抗压强度可取为γf,
• (3)梁端支承处砌体局部受压承载力计算
• 根据局部受压承载力计算的原理,梁端砌体局 部受压的强度条件为
• 由梁端支座反力N1在局部受压面上引起的平均 应力为σ= ,于是,(3.28)式可表达为:
• 因此可得梁端支承处砌体的局部受压承载力计 算公式为:
• (4)梁端下设有垫块时砌体的局部受压承载力计 算
• ②当0.7y<e≤0.95y时,除按式(3.16)验算受 压构件的承载力外,为了防止受拉区水平裂缝 的过早出现及开展较大,尚应按下式进行正常 使用极限状态验算。
• ③当e>0.95y时,直接采用砌体强度设计 值计算偏心受拉构件的承载力:
• 3.1.6 计算示例 • 3.2 局部受压 • 3.2.1 概述

砌体结构--第四章(无筋砌体)

砌体结构--第四章(无筋砌体)

0
1 ei 1 i
2
ei i
ቤተ መጻሕፍቲ ባይዱ
1
0
1
h 对于矩形截面 i 12
代入可推出:

1 e 1 1 1 12 ( 1) 12 0 h
2

1 e 1 1 1 12 ( 1) 12 0 h
2
由上式可以看出: *当e/h=0, 0 1.0时,为轴压短柱; 1.0 *当e/h=0, 0 1.0时,为轴压长柱; 0 (稳定系数) *当e/h≠0, 0 1.0 时,为偏压短柱; e (偏心影响系数) *当e/h≠0, 0 1.0 时,为偏压长柱; (综合影响系数)
2. 计算

1 e 1 1 1 12 ( 1) 12 0 h
2
当偏心受压长柱时,其偏心 距为荷载作用偏心距e和纵向挠曲 引起的附加偏心距ei之和,则影响 系数为 1
e N

e ei 1 i
2
ei
附加偏心距ei可由临界条件确定, 即当e=0时,应有 0 ,则
砌 体 结 构
Masonry Structure
王志云 结构教研室
第4章 砌体结构的承载力计算(无筋)
(Bearing capacity of masonry structure) 学习要点:
√了解无筋砌体受压构件的破坏形态和影响受压承载力 的影响因素; √熟练掌握无筋砌体受压构件的承载力计算方法; √了解无筋砌体局部受压时的受力特点及其破坏形态;
多层房屋:当有门窗洞口时,可取窗间墙宽度;当 无门窗洞口时,每侧翼墙宽度可取壁柱高度的1/3; ※ 单层房屋:可取壁柱宽加2/3墙高,但不大于窗间墙 宽度和相邻壁柱间距离; ※ 计算带壁柱墙的条形基础:可取相邻壁柱间的距离。

砌体结构 砌体局部受压计算

砌体结构 砌体局部受压计算
由各力对截面形心轴取矩的平衡条件,可得
(N 0 N l )e N l el e 110 117.48 62.16mm 207.9
e 62.16 0.168 ab 370
查表4-2, ≤3
=0.747
A0 362600 1 0.35 1 1 0.35 1 1.35 Ab 181300
梁端局部承压面积则为Al=a0b(b为梁截面宽度)。
一般情况下a0小于梁在砌体上的搁置长度a,但也可能等于a。 令

Nl l a0b
为梁端底面压应力图形完整系数;
l 为边缘最大局压应力。
按弹性地基梁理论有: l kymax k 为垫层系数; ymax 为墙体边缘最大变形; 代入上式得:
Al a0b折减系数,当A0/Al大于等于3时,应取 等于0;
N 0 局部受压面积内上部轴压力设计值; N l 梁端支承压力设计值;
0 上部平均压应力设计值(N/mm2);
梁端底面压应力图形完整系数,可取0.7,对于过梁和墙梁可取1.0;
a0 梁端有效支承长度(mm),当a0大于a时,应取a0等于a ;
Ab abbb
N0 0 Ab
垫块上N0和Nl合力的影响系数,不考虑纵向弯曲影 响,取 3的 值。
基本上是偏心受压公式。 1 垫块外砌体面积的有利影响系数, 1 0.8
为砌体局部抗压强度提高系数,以Ab 但不小于1.0, 代替Al;
Ab 垫块面积(mm2);
0 /f=0.54/1.5=0.36, 查表4-5 1=5.94
a 0 1
hc 600 5.94 = 118.8mm f 1.5
N0 0 Ab 0.54 181300 97.90kN

无筋砌体构件的承载力计算

无筋砌体构件的承载力计算
1.局部受压的破坏形态(三种破坏形态)
(1)先裂后坏
A Al 适中时,首先在
加载垫板1~2皮砖以下 的砌体内出现竖向裂缝, 随荷载增加,裂缝数量 增多,最后出现一条主 要裂缝贯穿整个试件, 导致砌体破坏。
A —试件截面面积 Al —局部受压面积 10
(2)劈裂破坏
A Al 较大时,横向拉
应力在一段长度上分布 较均匀,当砌体压力增 大到一定数值,试件将 沿竖向突然发生脆性劈 裂破
' 0
内拱卸荷作用
23
24
' 0
0
试验表明,这种内拱卸荷作用与 A0 有关。当
Al
A0 2 时,卸荷作用十分明显,墙上 主A要l 通过拱作用向梁两侧传递;当 A0
的应力 0 将
2 时,上述
有利影响将逐渐减弱。
Al
上部荷载折减系数: 0.5(3 A0 )
Al
为偏于安全,《规范》规定,当
• 砌体结构构件按受力情况分为受压、受拉、受 弯和受剪;
• 按有无配筋可分为无筋砌体构件和配筋砌体构 件;
• 采用极限状态设计方法; • 一般不进行正常使用极限状态验算,采用构造
措施来保证正常使用要求; • 在进行承载力极限状态计算时,也往往是先选
定截面后进行计算,属于截面校核。
1
一、受压构件的承载力计算 无筋砌体的抗压承载力远远大于它的抗拉、
抗弯、抗剪承载力,因此,在实际工程中,砌体 结构多用于以承受竖向荷载为主的墙、柱等受压 构件,如混合结构中的承重墙体、单层厂房的承 重柱、砖烟囱的筒身等。
2
计算公式
N f A
式中: N ——轴向压力设计值;
——高厚比 和轴向力的偏心距 e 对受压

砌体结构构件的承载力计算

砌体结构构件的承载力计算

3.1
一、局部受压分类
局部受压
1、局部均匀受压 2、局部不均匀受压 3、砌体局部受压的破坏形态: (1)、因纵向裂缝发展而引起的破坏 (2)、劈裂破坏 (3)、与垫板直接接触的砌体局部破坏
套箍强化和应力扩散
二、砌体局部均匀受压
1、砌体的局部抗压强度提高系数
A0 1 0.35 1 Al
(1)、(a)图, (2)、(b)图, (3)、(c)图, (4)、(d)图,
2.5 2.0
1.5
1.25
back
三、梁端局部受压
1、梁端有效支承长度
Nl a0 38 bf tan hc a0 10 f
2、上部荷载对局部抗压强度的影响

A0 3, 0 --上部荷载的折减系数,当 Al
第三章 砌体结构构件承载力的计算
3.1
以概率理论为基础的极限状态设计方法
一、极限状态设计方法的基本概念
1、结构的功能要求 (1)、安全性 (2)、适用性 (3)、耐久性 2、结构的极限状态 整个结构或结构的一部分超过某一特定状态而不能满足设计规定的 某一功能的要求时,此特定状态称为该功能的极限状态。 结构的极限状态分为: 承载能力极限状态和正常使用极限状态。
垫梁是柔性的,当垫梁置于墙上,在屋面梁或楼面梁的作用下,相 当于承受集中荷载的“弹性地基”上的无限长梁。
• 【例3】试验算房屋处纵墙上梁端支承处砌体局 部受压承载力。已知梁截面200mm×400mm,支 承长度为240mm,梁端承受的支承压力设计值 Nl=80kN,上部荷载产生的轴向力设计值 Nu=260kN,窗间墙截面为1200mm ×370mm • (图14.8),采用MU10烧结普通砖及M5混合砂 浆砌筑。 【解】由表查得砌体抗压强度设计值f=1.5N/mm2。 有效支承长度 a0=163.3mm 局部受压面积 Al=a0b=32660mm2

砌体结构设计局部荷载验算

砌体结构设计局部荷载验算

砌体结构设计局部承载力验算
已知,一厚190mm 的承重内横墙,采用MU5单排孔且孔对孔砌筑的混凝土小型空心砌块和M5水泥砂浆。

已知作用在底层墙顶的荷载设计值为115KN/m ,纵墙间距为6.8m ,横墙间距3.4m ,H=3.5m 。

求:试验算底层截面承载力(墙自重为3.36KN/m )
解:(1)计算底部截面上的轴向压力设计值
取1m 墙长作为计算单元,取永久荷载分项系数为1.35
墙底自重设计值 1.35×3.5×3.35=15.88KN/m
底层墙下部截面上的轴向压力设计值为:
N=118+15.88=133.88kN/m
(2)求&值:查表15-4得γβ=1.1
0 3.51.120.2,00.19H e h ββγ==⨯==
查附表11-12-1得&=0.616(采用线性插值法)
(3)求f 值
查表11-7得 f=1.19MPa
(4)验算受压承载力
&Af=0.616×0.19×1×1.19×10*3=139KN>N=133.88kN
满足要求。

砌体结构房屋墙体承载力验算

砌体结构房屋墙体承载力验算
(1) 墙和柱都是主要承重构件。以柱代替内外墙体,在使用上可获得较大的使用空间。
(2) 由于底部结构形式的变化,其抗侧刚度发生了明显的变化,成为上部刚度较大,底 部刚度较小的上刚下柔结构房屋。
以上是从大量工程实践中概括出来的几种承重方案。设计时,应根据不同的使用要 求,以及地质、材料、施工等条件,按照安全可靠、技术先进、经济合理的原则,正 4.13 确选用比较合理的承重方案。
4.8
第4章 砌体结构房屋的墙体的承载力验算
砌体结构房屋的组成及结构布置
三、纵横墙混合承重方案
当建筑物的功能要求房间的大小变化较多时,为了结构布置的合理性,
通常采用纵横墙混合承重方案(如图4.3所示)。这种方案房屋的竖向荷载
的主要传递路线为:
梁→纵墙
楼(屋)面板→
→基础→地基
横墙或纵墙
纵横墙混合承重方案的特点如下:
第4章 砌体结构房屋的墙体的承载力验算 砌体结构房屋的组成及结构布置
4.14
图4.5 底部框架承重方案
第4章 砌体结构房屋的墙体的承载力验算
砌体结构房屋的静力计算方案
一、房屋的空间工作性能
砌体结构房屋是由屋盖、楼盖、墙、柱、基础等主要承重构件组成的空间受力体系,共同 承担作用在房屋上的各种竖向荷载(结构的自重、屋面、楼面的活荷载)、水平风荷载和地震 作用。砌体结构房屋中仅墙、柱为砌体材料,因此墙、柱设计计算即成为本章的两个主要方 面的内容。墙体计算主要包括内力计算和截面承载力计算(或验算)。 计算墙体内力首先要确定其计算简图,也就是如何确定房屋的静力计算方案的问题。计算 简图既要尽量符合结构实际受力情况,又要使计算尽可能简单。现以单层房屋为例,说明在 竖向荷载(屋盖自重)和水平荷载(风荷载)作用下,房屋的静力计算是如何随房屋空间刚度不同 而变化的。 情况一,如图4.6所示为两端没有设置山墙的单层房屋,外纵墙承重,屋盖为装配式钢筋混 凝土楼盖。该房屋的水平风荷载传递路线是风荷载→纵墙→纵墙基础→地基;竖向荷载的传 递路线是屋面板→屋面梁→纵墙→纵墙基础→地基 假定作用于房屋的荷载是均匀分布的,外纵墙的刚度是相等的,因此在水平荷载作用下整 个房屋墙顶的水平位移是相同的。如果从其中任意取出一单元,则这个单元的受力状态将和 整个房屋的受力状态一样。因此,可以用这个单元的受力状态来代表整个房屋的受力状态, 这个单元称为计算单元。 在这类房屋中,荷载作用下的墙顶位移主要取决于纵墙的刚度,而屋盖结构的刚度只是保 证传递水平荷载时两边纵墙位移相同。如果把计算单元的纵墙看作排架柱、屋盖结构看作横 梁,把基础看作柱的固定支座,屋盖结构和墙的连接点看作铰结点,则计算单元的受力状态 4就.1如5 同一个单跨平面排架,属于平面受力体系,其静力分析可采用结构力学的分析方法。

无筋砌体结构构件承载力计算

无筋砌体结构构件承载力计算

2
(10)
式(8)、式(9)及式(10)也适用于T形
截面,只需以折算厚度hT代替h。
可编辑版
28
3.1.5无筋砌体受压构件承载力计算 《砌体规范》对无筋砌体受压构件,不论是
轴心受压或偏心受压,也不论是短柱或长柱, 统一的承载力设计计算公式为
N fA
式中:N ——轴向压力设计值; f ——砌体抗压强度设计值(按表 采用);
表时,高厚比 应乘以调整系数 ,以考 虑不同类型砌体受压性能的差异。即
对矩形截面
H0 h
对T形截面
H0 hT
(8) (9)
可编辑版
31
式中:
― ―不同砌体材料的高厚比修整系数 (按表采用);
H0――受压构件的计算高度(按表采 用);
h ――矩形截面在轴向力偏心方向的边 长,当轴心受压时截面较小边长;
—— 不同砌体材料的高厚比修正系 数
H0— 受压构件的计算高度,按《砌 — 体结构设计规范》表5.1.3采用
h — 矩形截面轴向力偏心方向的边长, — 当轴心受压时为截面较小边长
可编辑版
38
(二)对矩形截面构件,当轴向力偏心方向的截面边长大于另一方 向的边长时,除按偏心受压计算外,还应对较小边长方向按轴心
hT ――T形截面的折算厚度(可近似按hT =3.5 i计算,I为截面回转半径)。
可编辑版
32
表 高厚比调整系数
砌体材料类别 烧结普通砖、烧结多孔砖 混凝土及轻骨料混凝土砌块 蒸压灰砂砖、蒸压粉煤灰砖、细料石、半细料石
粗料石、毛石
1.0 1.1 1.2 1.5
注:对灌孔混凝土砌块, 取1.0。
可编辑版
(6) (7)
可编辑版

第四章-无筋砌体构件的承载力计算

第四章-无筋砌体构件的承载力计算

(即以γf代替f)。
5.4.2 局部受压
➢ ④ 砌体均匀局部受压 ➢ 规范公式:
➢ 局部抗压强度:
➢ 局部抗压承载力:
➢ 限制A0/Al比值——避免劈裂破坏。
问题:如何限制 值以避免劈裂破坏发生?
A0
Al
➢ 若Al/A0的比值越小,则套箍作用越强,应力扩散越充分 局部心受压短柱: 偏心受压短柱: 轴心受压长柱: 偏心受压长柱: ➢ 综上所述,各种柱的承载力计算除与f、A有关外,主要
取决于β、e两个影响因素。
➢ 受压构件承载力的计算,最终可归结为与β、e有关的承
载力降低影响系数φe、φ0、φ的计算。
4.1 受压构件
⑤ 短柱的承载力偏心影响系数 (e ) ➢ 《规范》经验公式:
➢ 只作用有梁端传来的Nl; ➢ 作用有梁端传来的Nl和上部结构传来的轴向压力N0。
5.4.2 局部受压
① 梁端有效支承长度(a0) ➢ 砌体边缘的位移:
ymax a0 tan
➢ 相应的最大压应力:
max kymax ka0 tan
➢ 根据平衡条件:
Nl dA
取 k f 0.687mm1
e ——偏心受压短柱的承载力偏心影响系数,e 1.0。
.4.1 受压构件
③ 轴心受压长柱
➢ β>3的轴心受压构件;
➢ 承载力低于轴心受压短柱。
0 ——轴心受压长柱的稳定系数,0 1.0。 ④ 偏心受压长柱 ➢ β>3的偏心受压构件;
➢ β和e的共同影响,其承载力更低于偏心受压短柱。
——偏心受压长柱的承载力影响系数, e或 0。
在实际工程中,当砌体的强度较低,但所 支承的墙梁的高跨比较大时,有可能发生 梁端支承处砌体局部被压碎而破坏。在砌 体局部受压试验中,这种破坏极少发生。

19-模块10 砌体结构 - 承载力计算

19-模块10 砌体结构 - 承载力计算
• 作用在局部受压面积 AL上的轴向力设计
值 NL,应当满足:
NL fAL
h b h1
h
h a c≤h
A0
Al
a) A0=(a+c+h)h γ≤2.5
h1
A0
Al ha
c) A0=(a+h)h+(b+h1-h)h1 γ≤1.5
b h
h
h bh
Al A0 b) A0=(2h+b)h
γ≤2.0
ah
Al A0 d) A0=(a+h)h
排架 方向
垂直排 架方向
s>2H 2H≥ s>H
s≤ H
弹性方案
有吊车 的单层 房屋
变截面柱 上段
刚性方案、刚弹 性方案
变截面柱下段
无吊车 的单层 或多层 房屋
单跨 多跨
弹性方案 刚弹性方案 弹性方案 刚弹性方案
2.5Hu
2.0Hu
1.0Hl 1.5H 1.2H 1.25H 1.10H
1.25Hu
1.25Hu
0.8Hl 1.0H 1.0H 1.0H 1.0H
2.5Hu
2.0Hu
1.0Hl 1.5H 1.2H 1.25H 1.10H
刚性方案
1.0H 1.0H 1.0H 0.4 s+0.2H 0.6 s
注:1、表中Hu为变截面柱的上段高度,Hl 为变截面柱的下段高度。 2、对于上端为自由端的构件, H0 =2H; 3、独立砖柱,无柱间支撑时,柱在垂直排架方向的H0应按表中数值乘以1.25后采用。 4、s---房屋横墙间距。
N0 0bbh0 2
范围内设置,尺寸要求同预制垫块. • (3)刚性垫块下的砌体局部受压承载力计算 • 考虑到垫块以外砌体面积对局部受压是有利的,

砌体结构 无筋砌体构件承载力的计算

砌体结构 无筋砌体构件承载力的计算

2.偏心影响系数
规定砌体受压时的偏心距影响系数按下式计算
1
1 e
2
i
式中 i——截面的回转半径,i
I A
e——荷载设计值产生的轴向力偏心距, e
M
N
对矩形截面砌体
1 1 12
e
2
h
对于T形或十字形截面砌体
1
1
12
e hT
2
折算厚度,hT =3.5i
i I A
图3-2 砌体的偏心距影响系数
3.1.1 受压短柱的承载力
1.偏心距对承载力的影响
设砌体匀质、线弹性,按材力公式。截面受压边缘的应力:
σ
N A
N
ey
I
N A
1
e y i2
图3-1 砌体受压时截面应力变化
砌体截面破坏时的轴向承载力极限值与偏心距的大小有关。《规范》
采用承载力的影响系数 来反映截面承载力受高厚比和偏心距的影响程度。
偏压短柱的承载力可用下式表示
N fA
3.1.2受压长柱的承载力
1.轴心受压长柱
根据材料力学公式可求得轴心
受压柱的稳定系数为
0
1
1 1
2
2
(3-5)
图3-3 受压构件的纵向弯曲
式中 λ——构件长细比, H0 。
i
当为矩形截面时,有 2 12 2,当为T形或十字形截面 时,也有 2 12 2 。
因此式(3-5)可表示为
0
1
1 12
2
2
1
1
2
式中 α——与砂浆强度等级有关的系数,当砂浆强度 等级大于或等于M5时,α=0.0015;当砂浆强度等级等于 M2.5时,α=0.002;当砂浆强度等级f2等于0时,α=0.009。

砌体结构1第4章砌体结构的承载力计算要点

砌体结构1第4章砌体结构的承载力计算要点
H0=10.5m ,墙用MU10烧结多孔砖及 M2.5水泥砂浆砌筑, 承受轴向力设计值N=360kN ,荷载设计值产生的偏心距 e=120mm ,且偏向翼缘。
例题5 假定截面同上,采用材料亦相同,但荷载作用点位于肋部,偏心距
从 而 得 到 :0
1
1
1
2
2
矩 形 截 面 :2=12 2,0
1
1
12
2
2
1
1 2
H0 h 构件高厚比;
与砂浆强度有关系数:
12
2
M M 5, 0.0015;
M M 2.5, 0.002;
砂 浆 强 度f2 0时 , 0.009。
4.1 受压构件
砌体结构
4.1.3 稳定系数
心距)来确定的。
3时 ,0=1, 影 响 系 数就 是 偏 心 影 响 系 数;
1
1 e
2
i
当 长 柱 时 , 偏 心 距 为 :e' e ei
4.1 受压构件
砌体结构
4.1.4 基本公式
新 规范GB50003 2001规 定轴 向 力的 偏 心距e按 内力 设 计值 计 算: 而 且要 求e 0.6 y; y- 截 面重 心 到轴 向 力所在 偏心 方 向截 面 边缘 的距 离。
弹 性 模 量 计 算 公 式 :E
d d
fm 1
fm
4.1 受压构件
砌体结构
4.1.3 稳定系数
cri
2
E
'
i H
0
2
2fm 1 cri 2
fm
E
d d
fm 1
fm
E' 达到临界应力时砌体的弹性模量。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

f —— 砌体抗压强度设计值按《砌体结构设计规范》表3.2.1-1~表3.2.1-7采用 A —— 截面面积,对各类砌体均应按毛截面计算
(一)考虑β的影响
矩形截面
H0 h
—— 不同砌体材料的高厚比修正系数
T 形截面
H0 hT
H0—— 受压构件的计算高度,按《砌 体结构设计规范》表5.1.3采用
h —— 矩形截面轴向力偏心方向的边长, 当轴心受压时为截面较小边长
满足要求
(2)沿截面短边方向按轴心受压验算: β=γβH0/b=1.0×7000/490=14.29, 查表得 =0.763 则 fA=0.763×1.5×0.3038×106=347.7kN>N=270kN 满足要求
第三节 砌体结构构件承载力计算
四、例题
§3-1 受压构件承载力计算
【例2-1】截面为b×h=490mm×620mm的砖柱,采用MUl0砖及M5混合 砂浆砌筑,施工质量控制等级为B级,柱的计算长度H0=7m;柱顶截 面 承 受 轴 向 压 力 设 计 值 N=270kN , 沿 截 面 长 边 方 向 的 弯 矩 设 计 值 M=8.4kN·m;柱底截面按轴心受压计算。试验算该砖柱的承载力是 否满足要求?
=0.352
(2)施工质量控制等级为C级 砌体抗压强度设计值应予降低 f=1.98×1.6/1.8=1.76N/mm2 fA=0.352×1.76×0.19×106=117.7kN<N=125kN,不满足要求
第三节 砌体结构构件承载力计算 §3-1 受压构件承载力计算
【例2-3】如图2-4所示带壁柱砖墙,采用 MU10 砖 、 M7.5 混 合 砂 浆 砌 筑 , 施 工 质 量控制等级为B级,计算高度H0=5m,试 计算当轴向力作用于该墙截面重心O点 及A点时的承载力。 【解】 (1)截面几何特征值计算 截面面积:A=1×0.24+0.24×0.25=0.3m2, 取γa=1.0 截面重心位置:y1=(1×0.24×0.12+0.24×0.25×0.365)/0.3=0.169m=169mm
【解】 1、柱顶截面验算
从《规范》表3.2.1-1查得ƒ=1.50MPa
A=0.49×0.62=0.3038m2>0.3m2,取γa=1.0 (1)沿截面长边方向按偏心受压验算:
e=M/N=8.4/270=0.031m=31mm<0.6y=0.6×620/2=186mm
e/h=31/620=0.05 β=γβH0/h=1.0×7000/620=11.29,查表得 =0.728 则 fA=0.728×1.50×0.3038×106=331.7×103N=331.7kN>N=270kN
I A
I ——截面沿偏心方向的惯性矩
A ——截面面积
矩形截面:
1
1 1 12(e / h)2
hT代替h
T形或其他形状截面:
1
1 1 12(e /
hT
)2
h —— 截面长边 hT —— 折算厚度,
hT 3.5i
第三节 砌体结构构件承载力计算
§3-1 受压构件承载力计算
(二)受压长柱的受力分析
纵向弯曲的影响
当轴向力的偏心距超过规定限值( e 0.6 y )时,可采取以下措施:

1、修改构件截面尺寸和形状 (如;增加梁高或增加墙垛)
2、设置具有中心装 置的垫块或缺口垫块
第三节 砌体结构构件承载力计算
四、例题
§3-1 受压构件承载力计算
【例2-1】截面为b×h=490mm×620mm的砖柱,采用MUl0砖及M5混合砂浆砌 筑,施工质量控制等级为B级,柱的计算长度H0=7m;柱顶截面承受轴向压力设 计值N=270kN,沿截面长边方向的弯矩设计值M=8.4kN·m;柱底截面按轴心受 压计算。试验算该砖柱的承载力是否满足要求?
第三节 砌体结构构件承载力计算 §3-1 受压构件承载力计算
三、受压构件承载力计算公式
(二)对矩形截面构件,当轴向力偏心方向的截面边长大于另一方向的边长时, 除按偏心受压计算外,还应对较小边长方向按轴心受压进行验算,即:
(三)e的限值
e 0.6y
y —— 截面重心到轴向力所在偏心方向截面边缘的距离
【解】 2、柱底截面验算
砖砌体的重力密度ρ=18kN/m3,则柱底轴心压力设计值
N=270kN+1.35×18×0.49×0.62×7kN=321.7kN
(采用以承受自重为主的内力组合)
β=γβH0/b=1.0×7000/490=14.29,查表得 =0.763
fA=347.7kN>N=321.7kN
可见柱底截面承载力满足要求
第三节 砌体结构构件承载力计算 §3-1 受压构件承载力计算
【例2-2】截面尺寸为1000mm×l90mm的窗间墙,计算高度H0=3.6m,采用MUl0 单 排 孔 混 凝 土 小 型 空 心 砌 块 对 孔 砌 筑 , M5 混 合 砂 浆 , 承 受 轴 向 力 设 计 值 N=125kN,偏心距e=30mm,施工质量控制等级为B级,试验算该窗间墙的承载 力。若施工质量控制等级降为C级,该窗间墙的承载力是否还能满足要求?
第三节 砌体结构构件承载力计算 §3-1 受压构件承载力计算
二、受力分析 (一)受压短柱的承载力分析 随着偏心距的增大.构件所 能承担的纵向压力明显下降
引进偏心 影响系数
1
A —— 砌体截面面积
f —— 砌体抗压强度设计值
1
—— 偏心影响系数
1
1
1 (e
/
i)
2
e —— 轴向力偏心矩
i —— 截面的回转半径,i
【解】 (1)施工质量控制等级为B级
A=1.0×0.19=0.19m2
γa=0.7+0.19=0.89
f=0.89×2.22=1.98N/mm2
β=γβH0/h=1.1×3600/190=20.84, e/h=30/190=0.158 e=30mm<0.6y=0.6×190/2=57mm
查表得
fA=0.352×1.98×0.19×106=132.4kN>N=125kN,满足要求
1
12
e h
2
12
第三节 砌体结构构件承载力计算
§3-1 受压构件承载力计算
三、受压构件承载力计算公式
N fA
1
12
e h
1
2
1
1 12
1 ( 0
1)
1
12
e h
2
12
N—— 轴向力设计值
——高厚比β和轴向力偏心距e对受压构件承载力的影响系数
按《砌体结构设计 规范》D.0.1条查表
+ 偏心距 e
附加偏心距 ei
e=0
0
纵向弯曲系数
矩形截面
当砂浆强度等级≥M5时,α=0.0015
当砂浆强度等级为M2.5时,α=0.002 当砂浆强度为零时,α=0.009
α——与砂浆强度等级有关的系数
规范中考虑纵向弯曲 和偏心距影响的系数:
1
12
e h
1
1
2
11
( 12 0
1)
相关文档
最新文档