砌体结构构件的承载力计算

合集下载

《砌体结构》第3章 无筋砌体构件承载力计算

《砌体结构》第3章  无筋砌体构件承载力计算
式进行:
• 3.3.3 受剪构件计算 • 沿通缝或齿缝受剪构件的承载力,应按下式计
算。
• 3.3.4 计算示例
• 2)在确定影响系数 时,考虑到不同种类砌体 在受力性能上的差异,应先对构件高厚比分别 乘以下列系数:
• ①粘土砖、空心砖、空斗墙砌体和混凝土中型 空心砌块砌体1.0;
• ②混凝土小型空心砌块砌体1.1;
• ③粉煤灰中型实心砌块、硅ห้องสมุดไป่ตู้盐硅、细料石和 半细料石砌体1.2;
• ④粗料石和毛石砌体1.5。
• 图3.7 局部均匀受压
• 根据试验研究,砌体局部受压可能出现以下三 种破坏形式。
• (1)因纵向裂缝的发展而破坏
• [图3.9(a)] • (2)劈裂破坏 • [图3.9(b)]
• 图3.9 砌体局部均匀受压破坏 • (3)局压面积下砌体的压碎破坏
• 3.2.2 砌体局部均匀受压 • (1)局部抗压强度提高系数 • 砌体的抗压强度为f,局部抗压强度可取为γf,
• (3)梁端支承处砌体局部受压承载力计算
• 根据局部受压承载力计算的原理,梁端砌体局 部受压的强度条件为
• 由梁端支座反力N1在局部受压面上引起的平均 应力为σ= ,于是,(3.28)式可表达为:
• 因此可得梁端支承处砌体的局部受压承载力计 算公式为:
• (4)梁端下设有垫块时砌体的局部受压承载力计 算
• ②当0.7y<e≤0.95y时,除按式(3.16)验算受 压构件的承载力外,为了防止受拉区水平裂缝 的过早出现及开展较大,尚应按下式进行正常 使用极限状态验算。
• ③当e>0.95y时,直接采用砌体强度设计 值计算偏心受拉构件的承载力:
• 3.1.6 计算示例 • 3.2 局部受压 • 3.2.1 概述

砌体结构构件的承载力计算

砌体结构构件的承载力计算

3.1
一、局部受压分类
局部受压
1、局部均匀受压 2、局部不均匀受压 3、砌体局部受压的破坏形态: (1)、因纵向裂缝发展而引起的破坏 (2)、劈裂破坏 (3)、与垫板直接接触的砌体局部破坏
套箍强化和应力扩散
二、砌体局部均匀受压
1、砌体的局部抗压强度提高系数
A0 1 0.35 1 Al
(1)、(a)图, (2)、(b)图, (3)、(c)图, (4)、(d)图,
2.5 2.0
1.5
1.25
back
三、梁端局部受压
1、梁端有效支承长度
Nl a0 38 bf tan hc a0 10 f
2、上部荷载对局部抗压强度的影响

A0 3, 0 --上部荷载的折减系数,当 Al
第三章 砌体结构构件承载力的计算
3.1
以概率理论为基础的极限状态设计方法
一、极限状态设计方法的基本概念
1、结构的功能要求 (1)、安全性 (2)、适用性 (3)、耐久性 2、结构的极限状态 整个结构或结构的一部分超过某一特定状态而不能满足设计规定的 某一功能的要求时,此特定状态称为该功能的极限状态。 结构的极限状态分为: 承载能力极限状态和正常使用极限状态。
垫梁是柔性的,当垫梁置于墙上,在屋面梁或楼面梁的作用下,相 当于承受集中荷载的“弹性地基”上的无限长梁。
• 【例3】试验算房屋处纵墙上梁端支承处砌体局 部受压承载力。已知梁截面200mm×400mm,支 承长度为240mm,梁端承受的支承压力设计值 Nl=80kN,上部荷载产生的轴向力设计值 Nu=260kN,窗间墙截面为1200mm ×370mm • (图14.8),采用MU10烧结普通砖及M5混合砂 浆砌筑。 【解】由表查得砌体抗压强度设计值f=1.5N/mm2。 有效支承长度 a0=163.3mm 局部受压面积 Al=a0b=32660mm2

砌体结构承重纵墙的承载力验算【精选文档】

砌体结构承重纵墙的承载力验算【精选文档】

【砌体结构承重纵墙的承载力验算】某三层试验楼,采用装配式钢筋混凝土梁板结构,大梁截面尺寸为200mm×500mm,梁端伸入墙内240mm,大梁间距3。

6m。

底层墙厚370mm,二、三层墙厚240mm,均双面抹灰,采用MU10砖和M2。

5混合砂浆砌筑.基本风压为0.35kN/m2.试验算承重纵墙的承载力。

【解】1.确定静力计算方案根据表4-2规定(P43页的规定),由于试验楼为装配式钢筋混凝土楼盖,而横墙间距S=7.2m<24m,故为刚性方案房屋。

2。

墙体的高厚比验算(对照P45页相关规定自己验算一下)3。

荷载分析(1)屋面荷载油毡防水层(六层作法)0.35kN/m220mm厚水泥砂浆找平层0.02×20=0。

40kN/m250mm厚泡沫混凝土保温层0。

05×5=0。

25kN/m2120mm厚空心板(包括灌缝)2。

20kN/m220mm厚板底抹灰0。

02×17=0.34kN/m2屋面恒载标准值 3.54kN/m2屋面活载标准值0。

50kN/m2(2)楼面荷载30mm厚细石混凝土面层0.75kN/m2120mm厚空心板(包括灌缝) 2.20kN/m220mm厚板底抹灰0.34kN/m2楼面恒载标准值 3.29kN/m2楼面活载标准值 2.00kN/m2(3)进深梁自重(包括5。

3mm粉刷)标准值:0。

2×0。

5×25+0.05.3×(2×0。

5+0。

2)×17=2.81kN/m(4)墙体自重及木窗自重双面粉刷的240mm厚砖墙自重(按墙面计)标准值5。

24kN/m2双面粉刷的370mm厚砖墙自重(按墙面计)标准值7。

62kN/m2木窗自重(按窗框面积计)标准值0.30kN/m24.纵墙承载力验算由于房屋的总高小于28m,层高又小于4m,根据相关规定可不考虑风荷载作用。

(1) 计算单元取一个开间宽度的外纵墙为计算单元,其受荷面积为3。

03砌体结构构件的承载力计算

03砌体结构构件的承载力计算

h
0.2

T
0.225 0.49 0.46 0.42 0.39 0.36 0.34 0.31 0.29 0.27 0.26 0.24 0.22 0.21
e h
0.25 0.45 0.42 0.39 0.36 0.34 0.31 0.29 0.27 0.25 0.24 0.22 0.21 0.20 0.275 0.42 0.39 0.36 0.33 0.31 0.29 0.27 0.25 0.24 0.22 0.21 0.19 0.18 0.3 0.38 0.36 0.33 0.31 0.29 0.27 0.25 0.23 0.22 0.21 0.19 0.18 0.17

0.025 0.99 0.95 0.91 0.86 0.82 0.77 0.72 0.67 0.62 0.595 0.53 0.49 0.46 0.42 0.39
0.05 0.97 0.90 0.86 0.81 0.76 0.71 0.66 0.61 0.57 0.53 0.49 0.45 0.42 0.39 0.36
一、短柱的承载力分析 如图3.2所示为承受轴向压力的砌体受压短柱。如果按材 料力学的公式计算,对偏心距较小全截面受压(图3.2(b))和偏 心距略大受拉区未开裂(图3.2(c))的情况,当截面受压边缘的 Nu 应力σ达到砌体抗压强度f 时,砌体受压短柱的承载力为:
N u =

1 ey 1 2 i
h
T
0.1 0.89 0.78 0.73 0.67 0.61 0.56 0.51 0.47 0.43 0.39 0.36 0.33 0.31 0.28 0.26 0.125 0.84 0.73 0.67 0.62 0.56 0.52 0.47 0.43 0.40 0.36 0.33 0.31 0.28 0.26 0.24 0.15 0.79 0.67 0.62 0.57 0.52 0.47 0.43 0.40 0.36 0.33 0.31 0.28 0.26 0.24 0.22

【土木建筑】03砌体结构构件的承载力计算

【土木建筑】03砌体结构构件的承载力计算
结构设计的一般程序是先按承载能力极限状态的要求设计结构 构件,然后再按正常使用极限状态的要求进行验算。考虑砌体结构 的特点,其正常使用极限状态的要求,在一般情况下,可由相应的 结构措施保证。
3.16
第3章 砌体结构构件的承载力计算
以概率理论为基础的极限状态设计方法
3. 承载能力极限状态设计表达式
砌体结构构件的承载能力极限状态设计表达式如下所示。
2.31
2.07
1.83
1.60
0.82
MU10

1.89
1.69
1.50
1.30
0.67
3.20
表3-6 蒸压灰砂砖和粉煤灰砖砌体的抗压强度设计值(MPa)
砖强度
等级
M15
MU25
3.60
砂浆强度等级
M10
M7.5
2.98
2.68
砂浆强度
M5
0
2.37
1.05
MU20
3.22
2.67
2.39
2.12
本条件为:
Z≥0
(3.3)

R≥S
(3.4)
由于结构抗力R和作用效应S是随机变量,所以,结构的功能函数Z
也是随机变量。设μz、μR、和μS分别为Z、R和S的平均值;σZ、σR和σS 分别为Z、R和S的标准差;R和S相互独立。则由概率理论可知:
μz=μR-μS
(3.5)
σZ = R2 S2
(3.6)
3.8
(3.7)
PS= 0 f (Z )dz
(3.8)
结构的失效概率Pf与可靠概率PS的关系为:
PS +Pf =1
(3.9)

PS =1-Pf

第四章-无筋砌体构件的承载力计算

第四章-无筋砌体构件的承载力计算

(即以γf代替f)。
5.4.2 局部受压
➢ ④ 砌体均匀局部受压 ➢ 规范公式:
➢ 局部抗压强度:
➢ 局部抗压承载力:
➢ 限制A0/Al比值——避免劈裂破坏。
问题:如何限制 值以避免劈裂破坏发生?
A0
Al
➢ 若Al/A0的比值越小,则套箍作用越强,应力扩散越充分 局部心受压短柱: 偏心受压短柱: 轴心受压长柱: 偏心受压长柱: ➢ 综上所述,各种柱的承载力计算除与f、A有关外,主要
取决于β、e两个影响因素。
➢ 受压构件承载力的计算,最终可归结为与β、e有关的承
载力降低影响系数φe、φ0、φ的计算。
4.1 受压构件
⑤ 短柱的承载力偏心影响系数 (e ) ➢ 《规范》经验公式:
➢ 只作用有梁端传来的Nl; ➢ 作用有梁端传来的Nl和上部结构传来的轴向压力N0。
5.4.2 局部受压
① 梁端有效支承长度(a0) ➢ 砌体边缘的位移:
ymax a0 tan
➢ 相应的最大压应力:
max kymax ka0 tan
➢ 根据平衡条件:
Nl dA
取 k f 0.687mm1
e ——偏心受压短柱的承载力偏心影响系数,e 1.0。
.4.1 受压构件
③ 轴心受压长柱
➢ β>3的轴心受压构件;
➢ 承载力低于轴心受压短柱。
0 ——轴心受压长柱的稳定系数,0 1.0。 ④ 偏心受压长柱 ➢ β>3的偏心受压构件;
➢ β和e的共同影响,其承载力更低于偏心受压短柱。
——偏心受压长柱的承载力影响系数, e或 0。
在实际工程中,当砌体的强度较低,但所 支承的墙梁的高跨比较大时,有可能发生 梁端支承处砌体局部被压碎而破坏。在砌 体局部受压试验中,这种破坏极少发生。

砌体结构—砌体局部受压承载力(建筑构造)

砌体结构—砌体局部受压承载力(建筑构造)

(2)刚性垫块的分类:预制刚性垫块和现浇刚性垫块。
在实际工程中,往往采用预制刚性垫块;为了计算简化起见,规范规定,两者 可采用相同的计算方法。
(3)刚性垫块下的砌体局部受压承载力计算公式
No Nl 1 fAb
N
—垫块面积
o
Ab内上部轴向力设计值;N
o
o Ab ;
Ab—垫块面积,Ab abbb
ao 1
hc f
1 ---刚性垫块的影响系数。
式中 No — 局部受压面积内上部荷载产生的轴向力设计值,
No o Al
—为上部平均压应力设计值(N/mm2);
o
N
—梁端支承压力设计值(N);
l
—梁端底面应力图形的完整系数,一般可取0.7,对于过梁和圈梁可取1.0;
f —砌体的抗压强度设计值(MPa)
3、刚性垫块下砌体局部受压 (1)设置刚性垫块的作用:增大了局部承压面积,改善了砌体受力状态。
Al —局部受压面积。
砌体局部抗压强度提高系数,按下式计算:
1 0.35 Ao 1
Al
式中: Ao—影响砌体局部抗压强度的计算面积,按图10.1.5规定采用。
2、梁端支承处砌体局部受压
(1)梁支承在砌体上的有效支承长度ao
ao 10
hc f
a0 — 梁端有效支承长度(mm),当a0 >a时,取a0 =a; a —为梁端实际支承长度(mm); hc—梁的截面高度(mm); f —砌体的抗压强度设计值(MPa)。
1)刚性垫块的高度不宜小于180mm,自梁边算起的垫块挑出长度不宜大于垫块高度; 2)在带壁柱墙的壁柱内设置刚性垫块时,其计算面积应取壁柱范围内的面积,而不应 计入翼缘部分,同时壁柱上垫块深入翼墙内的长度不应小120mm; 3) 当现浇垫块与梁端整体浇注时,垫块可在梁高范围内设置。

砌体结构 无筋砌体构件承载力的计算

砌体结构 无筋砌体构件承载力的计算

2.偏心影响系数
规定砌体受压时的偏心距影响系数按下式计算
1
1 e
2
i
式中 i——截面的回转半径,i
I A
e——荷载设计值产生的轴向力偏心距, e
M
N
对矩形截面砌体
1 1 12
e
2
h
对于T形或十字形截面砌体
1
1
12
e hT
2
折算厚度,hT =3.5i
i I A
图3-2 砌体的偏心距影响系数
3.1.1 受压短柱的承载力
1.偏心距对承载力的影响
设砌体匀质、线弹性,按材力公式。截面受压边缘的应力:
σ
N A
N
ey
I
N A
1
e y i2
图3-1 砌体受压时截面应力变化
砌体截面破坏时的轴向承载力极限值与偏心距的大小有关。《规范》
采用承载力的影响系数 来反映截面承载力受高厚比和偏心距的影响程度。
偏压短柱的承载力可用下式表示
N fA
3.1.2受压长柱的承载力
1.轴心受压长柱
根据材料力学公式可求得轴心
受压柱的稳定系数为
0
1
1 1
2
2
(3-5)
图3-3 受压构件的纵向弯曲
式中 λ——构件长细比, H0 。
i
当为矩形截面时,有 2 12 2,当为T形或十字形截面 时,也有 2 12 2 。
因此式(3-5)可表示为
0
1
1 12
2
2
1
1
2
式中 α——与砂浆强度等级有关的系数,当砂浆强度 等级大于或等于M5时,α=0.0015;当砂浆强度等级等于 M2.5时,α=0.002;当砂浆强度等级f2等于0时,α=0.009。

砌体结构计算书

砌体结构计算书

砌体结构计算书是为了确保砌体结构的强度、稳定性和安全性而进行的一系列计算过程。

以下是一个简单的砌体结构计算书的示例,仅供参考:一、基本参数1.砌体材料:混凝土砌块,抗压强度为f=10N/mm²2.砌体厚度:t=370mm3.砌体高度:H=3.6m4.承受的均布荷载:q=20kN/m²二、计算步骤1.确定墙段宽度:取每段墙宽为B=1m,考虑偏心的影响,取墙段实际宽度为1.2m。

2.计算砌体轴心受压承载力:N=(αfA)其中,α为承载力调整系数,取1.0;f为砌体的抗压强度,取10N/mm²;A为墙段截面积,取A=0.37×0.1×1=0.037m²。

代入数据计算得:N=3.7×10³N。

3.计算偏心距:e=(N/Nk)×e0其中,Nk为砌体的标准承载力,取Nk=2.4×10³N;e0为砌体的初始偏心距,取e0=0.3m。

代入数据计算得:e=0.46m。

4.计算水平截面上的弯矩:M=(qH²)/8其中,q为均布荷载,取q=20kN/m²;H为砌体高度,取H=3.6m。

代入数据计算得:M=43.2kN·m。

5.计算水平截面上的剪力:V=(qH)/2其中,q为均布荷载,取q=20kN/m²;H为砌体高度,取H=3.6m。

代入数据计算得:V=36kN。

三、结论通过以上计算,我们可以得出砌体结构的承载力和稳定性是否满足要求。

如果计算结果不满足要求,需要对砌体结构进行加固或采取其他措施。

同时,还需要考虑砌体结构的地震作用、风荷载等其他因素的影响。

砌体结构的承载力计算1(论文资料)

砌体结构的承载力计算1(论文资料)
粘土砖需用粘土制造,为占用农田, 影响农业生产。
03 砌体结构的承载力计算理 论
砌体结构的受力特点和破坏机理
受力特点
砌体结构由砌块和砂浆组成,其受力性能取决于砌块和砂浆的强度、变形性能 以及它们之间的粘结力。在受力过程中,砌体结构表现出明显的非线性、弹塑 性和脆性特点。
破坏机理
砌体结构的破坏通常表现为砌块的开裂、压碎和砂浆的剪切破坏。破坏过程伴 随着裂缝的开展和延伸,最终导致结构的整体失稳或承载能力丧失。
房屋的平面形状和立面布置
房屋的平面形状和立面布置对砌体结构的整体刚度、稳定性和承载 力产生影响。
优化措施和提高承载力的建议
采用高强度等级的砖和砂 浆
采用高强度等级的砖和砂浆可 以提高砌体的抗压、抗拉和抗 剪强度,从而提高承载力。
加强施工质量控制
加强施工过程中的质量控制, 包括原材料的质量控制、砌筑 过程的质量控制等,以保证砌 体结构的承载力。
足规范要求。
实例二:某框架结构填充墙的承载力计算
结构概况
荷载分析
该建筑为框架结构,填充墙采用轻质砌块 和专用砂浆砌筑。
考虑恒荷载(墙体、梁、板等自重)和活 荷载(人员、设备、风荷载等)的组合。
计算方法
承载力评估
采用有限元方法进行结构分析,模拟实际 受力情况。
根据计算结果,评估填充墙的抗压、抗拉 、抗剪承载力是否满足规范要求,并考虑 其与框架结构的协同工作性能。
04 砌体结构的承载力计算实 例分析
实例一:某砖混结构房屋的承载力计算
结构概况
该房屋为多层砖混结构,墙体 采用烧结普通砖和水泥砂浆砌
筑。
计算方法
采用弹性力学方法进行结构分 析,考虑材料的非线性特性。
荷载分析

第三节、砌体结构构件的承载力计算

第三节、砌体结构构件的承载力计算

【解】(1)弯矩作用平面内承载力验算
e M 20 0.125m <0.6y=0.6×310=186mm
N 160
满足规范要求。
MU10蒸压灰砂砖及M5水泥砂浆砌筑,查表得
=1.2;



HO h
1.2 5 9.68 0.62

e 125 h 620
=0.202
代入公式(10.1.3)得
柱底截面承载力为:
a fA
=0.465×0.9×1.5×490×620×10-3=191kN>150kN。 (2)弯矩作用平面外承载力验算
对较小边长方向,按轴心受压构件验算,此时



HO h
1.2 5 12.2代4入公式(10.1.3)得
0.49

o
1
12
10.0011 512.2420.816
上部荷载折减系数可按下式计算 =1.5-0.5Ao
Al
式中 A l —局部受压面积,Al aob ,b 为梁宽,a o 为
有效支承长度;当 A o 3 时,取 =0。
惯性矩
I 2 0 23 0 4 2 0 0 0 20 4 12 0 0 2 45 9 53 0 40 9 5 0 22
12
12
=296×108mm 回转半径:
i I 296108 202mm A 725000
T型截面的折算厚度 hT3.5i3.5×202=707mm 偏心距
10.35 Ao 1
Al
(11-21)
式中:
Ao—影响砌体局部抗压强度的计算面积,按图10.1.5 规定采用。
【例10.1.4】一钢筋混凝土柱截面尺寸为250mm×250mm, 支承在厚为370mm的砖墙上,作用位置如图10.1.9◆所示, 砖墙用MU10烧结普通砖和M5水泥砂浆砌筑,柱传到墙上 的荷载设计值为120KN。试验算柱下砌体的局部受压承载力。

配筋砌体结构构件承载力计算

配筋砌体结构构件承载力计算

配筋砌体结构构件承载力计算
配筋砌体结构是一种常见的建筑结构形式,其主要是通过在砌体构件中加入钢筋以提高承载力和抗震性能。

在进行配筋砌体结构构件的承载力计算时,需要考虑砌体的强度、钢筋的强度以及构件的几何形状等因素。

下面将详细介绍配筋砌体结构构件承载力计算的相关内容。

首先,需要了解几个关键概念:
1.配筋率:指构件中钢筋的截面积与构件截面积之比。

2.强度增长系数:砌体受压构件由于受到钢筋的约束,其承载能力较无钢筋构件有较大的增长。

为了考虑这个增长的影响,会引入一个强度增长系数。

1.确定构件的几何形状和配筋形式。

2.根据设计要求和材料属性,选取砌体和钢筋的强度等级。

3.根据构件要求和受力情况,做出假设和约束条件。

4.计算构件的自重和附加荷载,包括垂直荷载和水平荷载。

5.根据荷载的大小和分布情况,计算构件的等效荷载。

6.计算构件的抗震强度,包括承载力和剪切强度等。

7.检查构件的外观尺寸和配筋率是否满足规范要求。

8.进行构件的强度校核,包括构件的受拉强度和受压强度等。

9.根据校核结果进行构件设计调整和优化。

在实际计算中,可以通过软件进行计算和分析,如有限元分析软件或钢筋混凝土结构设计软件等,以提高计算效率和准确性。

同时,需要遵循相关规范和标准的要求,确保结构的安全性和可靠性。

总之,配筋砌体结构构件的承载力计算是一个复杂的过程,需要考虑多个因素的综合影响。

通过合理的假设和准确的计算,可以为砌体结构的设计和施工提供科学的依据,从而确保建筑结构的安全性和稳定性。

砌体结构1第4章砌体结构的承载力计算要点

砌体结构1第4章砌体结构的承载力计算要点
H0=10.5m ,墙用MU10烧结多孔砖及 M2.5水泥砂浆砌筑, 承受轴向力设计值N=360kN ,荷载设计值产生的偏心距 e=120mm ,且偏向翼缘。
例题5 假定截面同上,采用材料亦相同,但荷载作用点位于肋部,偏心距
从 而 得 到 :0
1
1
1
2
2
矩 形 截 面 :2=12 2,0
1
1
12
2
2
1
1 2
H0 h 构件高厚比;
与砂浆强度有关系数:
12
2
M M 5, 0.0015;
M M 2.5, 0.002;
砂 浆 强 度f2 0时 , 0.009。
4.1 受压构件
砌体结构
4.1.3 稳定系数
心距)来确定的。
3时 ,0=1, 影 响 系 数就 是 偏 心 影 响 系 数;
1
1 e
2
i
当 长 柱 时 , 偏 心 距 为 :e' e ei
4.1 受压构件
砌体结构
4.1.4 基本公式
新 规范GB50003 2001规 定轴 向 力的 偏 心距e按 内力 设 计值 计 算: 而 且要 求e 0.6 y; y- 截 面重 心 到轴 向 力所在 偏心 方 向截 面 边缘 的距 离。
弹 性 模 量 计 算 公 式 :E
d d
fm 1
fm
4.1 受压构件
砌体结构
4.1.3 稳定系数
cri
2
E
'
i H
0
2
2fm 1 cri 2
fm
E
d d
fm 1
fm
E' 达到临界应力时砌体的弹性模量。

砌体结构房屋墙体承载力验算

砌体结构房屋墙体承载力验算
(1) 墙和柱都是主要承重构件。以柱代替内外墙体,在使用上可获得较大的使用空间。
(2) 由于底部结构形式的变化,其抗侧刚度发生了明显的变化,成为上部刚度较大,底 部刚度较小的上刚下柔结构房屋。
以上是从大量工程实践中概括出来的几种承重方案。设计时,应根据不同的使用要 求,以及地质、材料、施工等条件,按照安全可靠、技术先进、经济合理的原则,正 4.13 确选用比较合理的承重方案。
4.8
第4章 砌体结构房屋的墙体的承载力验算
砌体结构房屋的组成及结构布置
三、纵横墙混合承重方案
当建筑物的功能要求房间的大小变化较多时,为了结构布置的合理性,
通常采用纵横墙混合承重方案(如图4.3所示)。这种方案房屋的竖向荷载
的主要传递路线为:
梁→纵墙
楼(屋)面板→
→基础→地基
横墙或纵墙
纵横墙混合承重方案的特点如下:
第4章 砌体结构房屋的墙体的承载力验算 砌体结构房屋的组成及结构布置
4.14
图4.5 底部框架承重方案
第4章 砌体结构房屋的墙体的承载力验算
砌体结构房屋的静力计算方案
一、房屋的空间工作性能
砌体结构房屋是由屋盖、楼盖、墙、柱、基础等主要承重构件组成的空间受力体系,共同 承担作用在房屋上的各种竖向荷载(结构的自重、屋面、楼面的活荷载)、水平风荷载和地震 作用。砌体结构房屋中仅墙、柱为砌体材料,因此墙、柱设计计算即成为本章的两个主要方 面的内容。墙体计算主要包括内力计算和截面承载力计算(或验算)。 计算墙体内力首先要确定其计算简图,也就是如何确定房屋的静力计算方案的问题。计算 简图既要尽量符合结构实际受力情况,又要使计算尽可能简单。现以单层房屋为例,说明在 竖向荷载(屋盖自重)和水平荷载(风荷载)作用下,房屋的静力计算是如何随房屋空间刚度不同 而变化的。 情况一,如图4.6所示为两端没有设置山墙的单层房屋,外纵墙承重,屋盖为装配式钢筋混 凝土楼盖。该房屋的水平风荷载传递路线是风荷载→纵墙→纵墙基础→地基;竖向荷载的传 递路线是屋面板→屋面梁→纵墙→纵墙基础→地基 假定作用于房屋的荷载是均匀分布的,外纵墙的刚度是相等的,因此在水平荷载作用下整 个房屋墙顶的水平位移是相同的。如果从其中任意取出一单元,则这个单元的受力状态将和 整个房屋的受力状态一样。因此,可以用这个单元的受力状态来代表整个房屋的受力状态, 这个单元称为计算单元。 在这类房屋中,荷载作用下的墙顶位移主要取决于纵墙的刚度,而屋盖结构的刚度只是保 证传递水平荷载时两边纵墙位移相同。如果把计算单元的纵墙看作排架柱、屋盖结构看作横 梁,把基础看作柱的固定支座,屋盖结构和墙的连接点看作铰结点,则计算单元的受力状态 4就.1如5 同一个单跨平面排架,属于平面受力体系,其静力分析可采用结构力学的分析方法。

无筋砌体结构构件承载力计算

无筋砌体结构构件承载力计算

2
(10)
式(8)、式(9)及式(10)也适用于T形
截面,只需以折算厚度hT代替h。
可编辑版
28
3.1.5无筋砌体受压构件承载力计算 《砌体规范》对无筋砌体受压构件,不论是
轴心受压或偏心受压,也不论是短柱或长柱, 统一的承载力设计计算公式为
N fA
式中:N ——轴向压力设计值; f ——砌体抗压强度设计值(按表 采用);
表时,高厚比 应乘以调整系数 ,以考 虑不同类型砌体受压性能的差异。即
对矩形截面
H0 h
对T形截面
H0 hT
(8) (9)
可编辑版
31
式中:
― ―不同砌体材料的高厚比修整系数 (按表采用);
H0――受压构件的计算高度(按表采 用);
h ――矩形截面在轴向力偏心方向的边 长,当轴心受压时截面较小边长;
—— 不同砌体材料的高厚比修正系 数
H0— 受压构件的计算高度,按《砌 — 体结构设计规范》表5.1.3采用
h — 矩形截面轴向力偏心方向的边长, — 当轴心受压时为截面较小边长
可编辑版
38
(二)对矩形截面构件,当轴向力偏心方向的截面边长大于另一方 向的边长时,除按偏心受压计算外,还应对较小边长方向按轴心
hT ――T形截面的折算厚度(可近似按hT =3.5 i计算,I为截面回转半径)。
可编辑版
32
表 高厚比调整系数
砌体材料类别 烧结普通砖、烧结多孔砖 混凝土及轻骨料混凝土砌块 蒸压灰砂砖、蒸压粉煤灰砖、细料石、半细料石
粗料石、毛石
1.0 1.1 1.2 1.5
注:对灌孔混凝土砌块, 取1.0。
可编辑版
(6) (7)
可编辑版
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

值——高厚比β和轴向力偏心距e对受压构件承载力的影响系
按《砌体结构设计 规范》D.0.1条查表

f —— 砌体抗压强度设计值按《砌体结构设计规范》表3.2.1-1~表3.2.1-7采
A用—— 截面面积,对各类砌体均应按毛截面计
算(一)考虑β的影响
矩形截面
H0 h
T 形截面
H0 hT
—— 不同砌体材料的高厚比修正系 数
当砂浆强度等级为M2.5时,α=0.002 当砂浆强度为零时,α=0.009
α——与砂浆强度等级有关的系数
规和偏范心中距考影虑响纵的向系弯数曲:112h e
1
11(2101)2
1
112h e1 22
3、受压构件承载力计算公式
N fA
1
1
2
112h e 11(2101)
112h e1 22
N—— 轴向力设计
惯性矩
I 2 0 23 0 4 2 0 0 0 20 4 12 0 0 2 45 9 53 0 40 9 5 0 22
12
12
=296×108mm 回转半径:
i I 296108 202mm A 725000
T型截面的折算厚度 hT3.5i3.5×202=707mm 偏心距
e M 3 0 0 .2 m 2 0 0 m m 0 .6 y2 9 7 m m N 1 5 0
12
1
0.877
10.00159.682
代入公式(10.1.2)得
1
2
112he
11 (
12 o
1)
=0.465
查表得,MU10蒸压灰砂砖与M5水泥砂浆砌筑的砖砌体
抗压强度设计值f=1.5MPa。由于采用水泥砂浆,因此砌体抗
压强度设计值应乘以调整系数 a =0.9。
柱底截面承载力为:
a fA
12 o
2 1)
=0.388
查表得,MU10烧结粘土砖与M5水泥砂浆砌筑的砖砌
体的抗压强度设计值f=1.5MPa。由于采用水泥砂浆,因此
砌体抗压强度设计值应乘以调整系数 a =0.9。
窗间墙承载力为
a fA=0.388×0.9×1.5×725000×10-3=380kN
>150kN。
承载力满足要求。
=0.465×0.9×1.5×490×620×10-3=191kN>150kN。 (2)弯矩作用平面外承载力验算
对较小边长方向,按轴心受压构件验算,此时

HO h
1.2 5 12.2代4入公式(10.1.3)得
0.49
o
1
12
1
0.816
10.001512.242
则柱底截面的承载力为
a fA =0.816×0.9×1.5×490×620×10
▪ 一、设计表达式
▪ 砌体结构按承载能力极限状态设计的表达式为:
0S R
▪ 式中 —结构重要性系数,对安全等级为一级、二级、三级的 砌体结构构件,可分别取1.1、1.0、0.9;
▪ S—内力设计值,分别表示为轴向力设计值N、弯矩设计值M和 剪力设计值V等;
▪ R()—结构构件抗力(材料设计强度、构件截面面积等)。
【解】 (1) 计算截面几何参数 截面面积 A=2000×240+490×500=725000mm2 截面形心至截面边缘的距离
y 120 2 0 4 0 1 70 2 2 40 5 9 5 0 0 0 0 40 0 9 2 04 mm5
y 2 7 4 0 y 1 7 4 0 2 4 5 4 9 5 m m
中心局压 边缘局压 中部局压 端部局压 角部局压
(二)破坏形态
1)、竖向裂缝发展而破 坏
常见,靠计算
2)、劈裂破 坏
3)、与垫板直接接触的砌体局部破坏
少见,靠构造措施
(三)局部抗压强度γf
γf > f
γ > 1.0
局部抗压强度提高系数 (四)局部抗压强度提高系数γ
套箍效应 力的扩散原理
10.35 A0 1
Nu 1 Af
A —— 砌体截面面
积f —— 砌体抗压强度设计

1 ——
偏心影响系

1
1 1 (e/ i)2
e —— 轴向力偏心
矩i —— 截面的回转半径,i
I A
I ——截面沿偏心方向的惯性 矩A ——截面面 积
矩形截面:
1
11
1 2(e/
h)2
hT代替h
T形或其他形状截面:
1
1
112(e/hT)2
1、分类
受压构件承载力计算的分类
轴心受压
Ny
x
x
y
受 压 构 件
偏心受压
Ny
x
x
y
Ny
x
x
y
2、截面形式 3、计算类型
墙、柱 矩形 T形
单向偏心受压
全截面受压计算
局部受压计算
双向偏心受压
二、无筋砌体受压构件承载力计算
1、受压短柱的承载力分析
随着偏心距的增大.构件所 能承担的纵向压力明显下降
引进偏心 影响系数
【解】(1)弯矩作用平面内承载力验算
e M 20 0.125m <0.6y=0.6×310=186mm
N 160
满足规范要求。
MU10蒸压灰砂砖及M5水泥砂浆砌筑,查表得
=1.2;

HO h
1.2 5 9.68 0.62

e 125 =0.202 代入公式(10.1.3)得
h 620
o
1
对于过梁和圈梁可取1.0;
f —砌体的抗压强度设计值(MPa)
4.刚性垫块下的砌体局部受压承载力应按下式计算
(1)设置刚性垫块的作用:增大了局部承压面积,改善 了砌体受力状态。
(2)刚性垫块的分类:预制刚性垫块和现浇刚性垫块。
在实际工程中,往往采用预制刚性垫块;为了计算简 化起见,规范规定,两者可采用相同的计算方法。
有效支承长度;当 A o 3 时,取 =0。
Al
(3)梁端支承处砌体的局部受压承载力计算公式
N0Nl fA l (11-23)
式中 N o — 局部受压面积内上部荷载产生的轴向力设计值,
No oAl
o —为上部平均压应力设计值(N/mm2);
N
—梁端支承压力设计值(N);
l
—梁端底面应力图形的完整系数,一般可取0.7,
0
1
1
2
10.0011513.52 0.785
则柱底截面的承载力为:
a fA=0.782×0.88×1.5×490×370×10-3
=187kN>150kN
柱底截面安全。
【 例 11.1.2】 一 偏 心 受 压 柱 , 截 面 尺 寸 为 490×620mm,柱计算高度 Ho H5m ,采用强度等 级为MU10蒸压灰砂砖及M5水泥砂浆砌筑,柱底承受轴 向 压 力 设 计 值 为 N=160kN, 弯矩 设 计值 M= 20kN.m (沿长边方向),结构的安全等级为二级,施工质量控 制等极为B级。试验算该柱底截面是否安全。
AL
AL——局部受压面积 A0 — 影响局部抗压强度的计 — 算面积,可按右图确定。
γ≤2.5
γ≤1.5
γ≤2.0
γ≤ 1. 25
注:对多孔砖砌体和按《规范》第6.2.13条的要求灌孔的砌块砌体,在(a)、 (b)、(c)款的情况下,尚应符合γ≤1.5。未灌孔混凝土砌块砌体,γ=1.0。
2.砌体局部均匀受压时的承载力计算 砌体受局部均匀压力作用时的承载力应按下式计算:
第三节、砌体结构构件的承载力计算
第一讲
受压计算
本节教学目标:
1. 了解无筋砌体受压构件的破坏特征; 2. 掌握无筋砌体受压构件计算公式和计算方法。 3、掌握砌体局压承载力计算 4、了解受拉、受弯、受剪构件的承载力计算 5、了解配筋砌体承载力计算
重点
掌握无筋砌体受压构件及局压承载力计算公式的 适用条件和承载力计算。
ao a
a—为梁端实际支承长度(mm);
h c —梁的截面高度(mm);
f —砌体的抗压强度设计值(MPa)。
(2)上部荷载对局部受压承载力的影响 l 梁端砌体的压应力
l 梁端上部砌体的
式中 A l —局部受压面积,Al aob ,b 为梁宽,a o 为
局部受压影响面积 Ao(b2h)h
=(250+2×370)×370=366300mm2 砌体局部抗压强度提高系数
10.35 Ao 1
Al
10.35 36630011.772 62500
查表得MU10烧结普通砖和M5水泥砂浆砌筑的砌体
的抗压强度设计值为 f =1.5MPa,采用水泥砂浆应乘
以调整系数 a =0.9;
第三节、砌体结构构件的承载力计算
第 二 讲 局压验算 本讲教学目标:
1. 了解理解砖砌体局部受压的三种破坏形态; 2. 掌握砌体局部受压时的承载力计算方法。
重点
砌体局部受压承载力计算。
难点
砌体局部受压承载力计算。
三 砌体局部受压承载力计算
1、砌体局部受压的特点
(一)分类
局部均匀受压
局部受压 局部不均匀受压
H0— 受压构件的计算高度,按《砌 — 体结构设计规范》表5.1.3采用
h — 矩形截面轴向力偏心方向的边长, — 当轴心受压时为截面较小边长
(二)对矩形截面构件,当轴向力偏心方向的截面边长大于另一方 向的边长时,除按偏心受压计算外,还应对较小边长方向按轴心 受压进行验算,即:
(三)e的限值
N0 fA
【例10.1.4】一钢筋混凝土柱截面尺寸为250mm×250mm, 支承在厚为370mm的砖墙上,作用位置如图10.1.9◆所示, 砖墙用MU10烧结普通砖和M5水泥砂浆砌筑,柱传到墙上 的荷载设计值为120KN。试验算柱下砌体的局部受压承载力。
相关文档
最新文档