传热学第八章答案(DOCX页)

合集下载

abfjbx工程传热学课后题答案

abfjbx工程传热学课后题答案

-+懒惰是很奇怪的东西,它使你以为那是安逸,是休息,是福气;但实际上它所给你的是无聊,是倦怠,是消沉;它剥夺你对前途的希望,割断你和别人之间的友情,使你心胸日渐狭窄,对人生也越来越怀疑。

—罗兰第一章作业1-1对于附图所示的两种水平夹层,试分析冷、热表面间热量交换的方式有何不同?如果要通过实验来测定夹层中流体的导热系数,应采用哪一种布置? 解:(a )中热量交换的方式主要有热传导和热辐射。

(b )热量交换的方式主要有热传导,自然对流和热辐射。

所以如果要通过实验来测定夹层中流体的导热系数,应采用(a )布置。

1-7一炉子的炉墙厚13cm ,总面积为20m 2,平均导热系数为1.04w/m ·k ,内外壁温分别是520℃及50℃。

试计算通过炉墙的热损失。

如果所燃用的煤的发热量是2.09×104kJ/kg ,问每天因热损失要用掉多少千克煤?解:根据傅利叶公式kwt A Q 2.7513.0)50520(2004.1=-⨯⨯=∆=δλ每天用煤d kg /9.3101009.22.753600244=⨯⨯⨯1-9在一次测定空气横向流过单根圆管的对流换热实验中,得到下列数据:管壁平均温度t w =69℃,空气温度t f =20℃,管子外径d=14mm ,加热段长80mm ,输入加热段的功率8.5w ,如果全部热量通过对流换热传给空气,试问此时的对流换热表面传热系数多大? 解:根据牛顿冷却公式cm w t A Q ︒∙=-⨯⨯⨯=∆=2/3.49)2069(08.0014.014.35.8α1-14宇宙空间可近似的看作0K 的真空空间。

一航天器在太空中飞行,其外表面平均温度为250K ,表面发射率为0.7,试计算航天器单位表面上的换热量? 解:航天器单位表面上的换热量2484241/155)250(1067.57.0)(m w T T Q =⨯⨯⨯=-=-εσ1-27附图所示的空腔由两个平行黑体表面组成,孔腔内抽成真空,且空腔的厚度远小于其高度与宽度。

北京科技大学传热学第8章习题答案

北京科技大学传热学第8章习题答案

8-9 A horizontal hot water pipe passes through a large room. The rate of heat loss from the pipe by natural convection and radiation is to be determined.Assumptions 1 Steady operating conditions exist. 2 Air is an ideal gas with constant properties. 3 The local atmospheric pressure is I atm. 4 The temperature of the outer surface of the pipe is constant. Properties The properties of air at 1 atm and the film temperature of (T S +T ∞)/2 = (65+22)/2 = 43.5°C = 316.5 K are (Table A-15)k = 0.0272 C m W D ⋅/ 521.7210/m s ν−=× Pr=0.710 100316.0316511−===K KT f β Analysis (a) The characteristic length in this case is the outer diameter of the pipe, δ= D = 0.06 m. Then,32132522()(9.8/)(0.00316)(6522)(0.06)Pr (0.710)690,298(1.7210/)s g T T m s K K m Ra m s βδν−∞−−−===×1.13}])710.0/559.0([!)298,690(387.06.0{}]Pr)/559.0([!387.06.0{227816961227816961=++=++=Ra NuC m W m C m W Nu kh D D ⋅=⋅==2/94.5)1.13(06.0/0272.0δ 251.1)8)(06.0(m m m DL A ===ππW C m C m W T T hA Q s 7.385)2265)(51.1)(/94.5()(22=−⋅=−=∞⋅D D(b) The radiation heat loss from the pipe is44282444()(0.8)(1.51)(5.6710/)[(65273)(22273)]375s surr Q A T T m W m k K K Wεσ⋅−=−=×⋅+−+= 8-108-17 A circuit board is cooled by a fan that blows air upwards. The average temperature on the surface of the circuit board is to be determined for two cases.Assumptions 1 Steady operating conditions exist. 2 Air is an ideal gaswith constant properties. 3 The atmospheric pressure at that location is 1atm.Properties The properties of air at 1 atm and 1 atm and the anticipatedfilm temperature of K C T T s 5.3205.472/)3560(2/)(==+=+∞Dare (Table A-15)k = 0.0275C m W D ⋅/ 521.7710/m s ν−=× Pr = 0.710 100312.05.32011−===K KT f β AnalysisWe assume the surface temperature to be 60°C. We will check this assumption later on andrepeat calculations with a better assumption, if necessary. The characteristic length in this case is the length of the board in the flow (vertical) direction, δ = 0.12 m. Then the Reynolds number becomes 52(0.5/)(0.12)Re 33901.7710/V m s m m sδν∞−===× which is less than critical Reynolds number (5x]05 ). Therefore the flow is laminar and the forced convection Nusselt number and h are determined from5.34)710.0()3390(664.0Pr Re 664.0315.0315.0====L khl Nu C m W m C m W Nu kh D D ⋅=⋅==2/9.7)5.34(12.0/0275.0δ 2024.0)2.0)(12.0(m m m A == Then622103)710.0()024.0)(/9.7()05.0)(100(35)(×=⋅+=+=→−=⋅∞∞⋅m C m W W C hA Q T T T T hA Q s s D D which is sufficiently close to the assumed value in the evaluation of properties. Therefore, there is no need to repeat calculations.(b) The Rayleigh number is321362522()(9.8/)(0.00312)(6035)(0.12)Pr (0.710)310(1.7710/)s g T T m s K K m Ra m s βδν−−∞−−−===×× 5.24)103(59.059.041641=×==−Ra NuThis is an assisting flow and the combined Nusselt number is determined from 2.38)5.245.34()(3133=+=+=n natural n forced combined Nu NuNu Then C m W mC m W Nu kh combined D D ⋅=⋅==2/8.8)2.38(12.0/0275.0δ And C m C m W W C hA Q T T T T hA Q s s D D D 8.58)024.0)(/8.8()05.0)(100(35)(22=⋅+=+=→−=⋅∞∞⋅Therefore, natural convection lowers the surface temperature in this case by about 2°C.。

《热工基础(张学学 高教》课后答案 第八章-第九章

《热工基础(张学学 高教》课后答案 第八章-第九章

第八章 习 题8-1. 一大平板,高3m ,宽2m ,厚 0.02m ,导热系数为45 W/(m ·K),两侧表面温度分别为1001=t ℃、502=t ℃,试求该板的热阻、热流量、热流密度。

解:解:由傅立叶导热定律: 热阻 W K A R /407.7452302.0=⨯⨯==λδm 热流量 W t t A Q w w 67500002.050100452321=⨯⨯⨯-=-=δλ热流密度 2/11250023675000m W S Q q =⨯==8-2. 空气在一根内径50mm ,长2.5m 的管子内流动并被加热,已知空气平均温度为80℃,管内对流换热的表面传热系数为70=h W/(m 2 ·K),5000=q W/m 2,试求管壁温度及热流量。

解:由牛顿冷却公式:()f w t t h q -=得到 C t h q t f w 042.15180705000=+=+=W s q Q 53.2405.045.250002=⨯⨯⨯⨯=π=8-3. 一单层玻璃窗,高1.2m ,宽1m ,玻璃厚0.3mm ,玻璃的导热系数为051.=λ W/(m ·K),室内外的空气温度分别为20℃和5℃,室内外空气与玻璃窗之间对流换热的表面传热系数分别为51=h W/(m 2 ·K)和202=h W/(m 2 ·K),试求玻璃窗的散热损失及玻璃的导热热阻、两侧的对流换热热阻。

解:对流换热计算公式: W h h t t s Q f f 9.7120105.10003.05152012.1112121=+⨯⨯++-⨯=+-=λδ导热热阻为:W K R /000286.005.10003.01===λδ 内侧对流换热热阻为:W K h R /2.051112===外侧对流换热热阻为:W K h R /05.0201123===8-4. 如果采用双层玻璃窗,玻璃窗的大小、玻璃的厚度及室内外的对流换热条件与1-3题相同,双层玻璃间的空气夹层厚度为5mm ,夹层中的空气完全静止,空气的导热系数为025.0=λ W/(m ·K)。

传热学第八章答案

传热学第八章答案

第八章1. 什么叫黑体?在热辐射理论中为什么要引入这一概念?2. 温度均匀得空腔壁面上得小孔具有黑体辐射得特性,那么空腔内部壁面得辐射就是否也就是黑体辐射?3. 试说明,为什么在定义物体得辐射力时要加上"半球空间"及"全部波长"得说明?4. 黑体得辐射能按波长就是怎样分布得?光谱吸收力得单位中分母得""代表什么意义?5. 黑体得辐射按空间方向就是怎样分布得?定向辐射强度与空间方向无关就是否意味着黑体得辐射能在半球空间各方向上就是均匀分布得?6. 什么叫光谱吸收比?在不同光源得照耀下,物体常呈现不同得颜色,如何解释?7. 对于一般物体,吸收比等于发射率在什么条件下才成立?8,说明灰体得定义以及引入灰体得简化对工程辐射传热计算得意义.9.黑体得辐射具有漫射特性.如何理解从黑体模型(温度均匀得空腔器壁上得小孔)发出得辐射能也具有漫射特性呢?黑体辐射基本定律81、一电炉得电功率为1KW,炉丝温度为847C,直径为1mm。

电炉得效率为0、96。

试确定所需炉丝得最短长度。

解:5、67 X得L=3 、61m82、直径为1m得铝制球壳内表面维持在均匀得温度500K,试计算置于该球壳内得一个实验表面所得到得投入辐射。

内表面发射率得大小对这一数值有否影响?解:由=35438 W/83、把太阳表面近似地瞧成就是T=5800K 得黑体,试确定太阳发出得辐射能中可光所占得百分数。

解:可见光波长范围就是0、38〜0、76=64200W/可见光所占份额84、一炉膛内火焰得平均温度为1500K,炉墙上有一着火孔。

试计算当着火孔打开时从孔向外辐射得功率。

该辐射能中波长为 2 得光谱辐射力就是多少?哪种波长下得能量最多?解:=287W/T = 1500K 时,85、在一空间飞行物得外壳上有一块向阳得漫射面板。

板背面可以认为就是绝热得,向阳面得到得太阳投入辐射G=1300W/。

该表面得光谱发射率为:时时。

试确定当该板表面温度处于稳态时得温度值。

第四版传热学第五、六,七 八 章习题解答

第四版传热学第五、六,七 八 章习题解答

第五章复习题1、试用简明的语言说明热边界层的概念。

答:在壁面附近的一个薄层内,流体温度在壁面的法线方向上发生剧烈变化,而在此薄层之外,流体的温度梯度几乎为零,固体表面附近流体温度发生剧烈变化的这一薄层称为温度边界层或热边界层。

2、与完全的能量方程相比,边界层能量方程最重要的特点是什么?答:与完全的能量方程相比,它忽略了主流方向温度的次变化率σα22x A ,因此仅适用于边界层内,不适用整个流体。

3、式(5—4)与导热问题的第三类边界条件式(2—17)有什么区别?答:=∂∆∂-=yyt th λ(5—4))()(f w t t h h t-=∂∂-λ (2—11)式(5—4)中的h 是未知量,而式(2—17)中的h 是作为已知的边界条件给出,此外(2—17)中的λ为固体导热系数而此式为流体导热系数,式(5—4)将用来导出一个包括h 的无量纲数,只是局部表面传热系数,而整个换热表面的表面系数应该把牛顿冷却公式应用到整个表面而得出。

4、式(5—4)表面,在边界上垂直壁面的热量传递完全依靠导热,那么在对流换热中,流体的流动起什么作用?答:固体表面所形成的边界层的厚度除了与流体的粘性有关外还与主流区的速度有关,流动速度越大,边界层越薄,因此导热的热阻也就越小,因此起到影响传热大小5、对流换热问题完整的数字描述应包括什么内容?既然对大多数实际对流传热问题尚无法求得其精确解,那么建立对流换热问题的数字描述有什么意义?答:对流换热问题完整的数字描述应包括:对流换热微分方程组及定解条件,定解条件包括,(1)初始条件 (2)边界条件 (速度、压力及温度)建立对流换热问题的数字描述目的在于找出影响对流换热中各物理量之间的相互制约关系,每一种关系都必须满足动量,能量和质量守恒关系,避免在研究遗漏某种物理因素。

基本概念与定性分析5-1 、对于流体外标平板的流动,试用数量级分析的方法,从动量方程引出边界层厚度的如下变化关系式:x xRe 1~δ解:对于流体外标平板的流动,其动量方程为:221xy u v dx d y u v x y u ∂+-=∂∂+∂∂ρρ 根据数量级的关系,主流方的数量级为1,y 方线的数量级为δ则有2211111111δρδδv +⨯-=⨯+⨯ 从上式可以看出等式左侧的数量级为1级,那么,等式右侧也是数量级为1级, 为使等式是数量级为1,则v 必须是2δ量级。

热工基础课后答案第八和九章

热工基础课后答案第八和九章

第八章习 题8-1. 一大平板,高3m ,宽2m ,厚 0.02m ,导热系数为45 W/(m ·K),两侧表面温度分别为1001=t ℃、502=t ℃,试求该板的热阻、热流量、热流密度。

解:解:由傅立叶导热定律: 热阻 W K AR /407.7452302.0=⨯⨯==λδm热流量 W t t A Q w w 67500002.050100452321=⨯⨯⨯-=-=δλ热流密度 2/11250023675000m W SQ q =⨯==8-2. 空气在一根内径50mm ,长2.5m 的管子内流动并被加热,已知空气平均温度为80℃,管内对流换热的表面传热系数为70=h W/(m 2·K),热5000=q W/m 2,试求管壁温度及热流量。

解:由牛顿冷却公式:()f w t t h q -=得到 C t h q t f w 042.15180705000=+=+=W s q Q 53.2405.045.250002=⨯⨯⨯⨯=π=8-3. 一单层玻璃窗,高1.2m ,宽1m ,玻璃厚0.3mm ,玻璃的导热系数为051.=λ W/(m ·K),室内外的空气温度分别为20℃和5℃,室内外空气与玻璃窗之间对流换热的表面传热系数分别为51=h W/(m 2 ·K)和202=h W/(m 2 ·K),试求玻璃窗的散热损失及玻璃的导热热阻、两侧的对流换热热阻。

解:对流换热计算公式: W h h t t s Q f f 9.7120105.10003.05152012.1112121=+⨯⨯++-⨯=+-=λδ导热热阻为:W K R /000286.005.10003.01===λδ内侧对流换热热阻为:W K h R /2.051112===外侧对流换热热阻为:W K h R /05.0201123===8-4. 如果采用双层玻璃窗,玻璃窗的大小、玻璃的厚度及室内外的对流换热条件与1-3题相同,双层玻璃间的空气夹层厚度为5mm ,夹层中的空气完全静止,空气的导热系数为025.0=λ W/(m ·K)。

传热学第八章答案

传热学第八章答案

第八章1.什么叫黑体在热辐射理论中为什么要引入这一概念2.温度均匀得空腔壁面上的小孔具有黑体辐射的特性,那么空腔内部壁面的辐射是否也是黑体辐射3.试说明,为什么在定义物体的辐射力时要加上"半球空间"及"全部波长"的说明 4.黑体的辐射能按波长是怎样分布的光谱吸收力λb E 的单位中分母的"3m "代表什么意义5.黑体的辐射按空间方向是怎样分布的定向辐射强度与空间方向无关是否意味着黑体的辐射能在半球空间各方向上是均匀分布的6.什么叫光谱吸收比在不同光源的照耀下,物体常呈现不同的颜色,如何解释 7.对于一般物体,吸收比等于发射率在什么条件下才成立8,说明灰体的定义以及引入灰体的简化对工程辐射传热计算的意义.9.黑体的辐射具有漫射特性.如何理解从黑体模型(温度均匀的空腔器壁上的小孔)发出的辐射能也具有漫射特性呢 黑体辐射基本定律8-1、一电炉的电功率为1KW ,炉丝温度为847℃,直径为1mm 。

电炉的效率为。

试确定所需炉丝的最短长度。

解:×341096.010*******⨯=⎪⎭⎫ ⎝⎛+dL π得L=8-2、直径为1m 的铝制球壳内表面维持在均匀的温度500K ,试计算置于该球壳内的一个实验表面所得到的投入辐射。

内表面发射率的大小对这一数值有否影响解:由40100⎪⎭⎫⎝⎛=T C E b =35438 W/2m 8-3、把太阳表面近似地看成是T=5800K 的黑体,试确定太阳发出的辐射能中可光所占的百分数。

解:可见光波长范围是~m μ40100⎪⎭⎫⎝⎛=T C E b =64200 W/2m可见光所占份额()()()%87.44001212=---=-λλλλb b b F F F8-4、一炉膛内火焰的平均温度为1500K ,炉墙上有一着火孔。

试计算当着火孔打开时从孔向外辐射的功率。

该辐射能中波长为2m μ的光谱辐射力是多少哪种波长下的能量最多解:40100⎪⎭⎫⎝⎛=T C E b =287W/2m ()310/51/1074.912m W e c E T c b ⨯=-=-λλλT =1500K 时,m m 121093.1-⨯=λ8-5、在一空间飞行物的外壳上有一块向阳的漫射面板。

传热学课后答案(完整版)

传热学课后答案(完整版)

绪论思考题与习题(89P -)答案:1.冰雹落体后溶化所需热量主要是由以下途径得到: Q λ—— 与地面的导热量 f Q ——与空气的对流换热热量注:若直接暴露于阳光下可考虑辐射换热,否则可忽略不计。

2.略 3.略 4.略 5.略6.夏季:在维持20℃的室内,人体通过与空气的对流换热失去热量,但同时又与外界和内墙面通过辐射换热得到热量,最终的总失热量减少。

(T T 〉外内)冬季:在与夏季相似的条件下,一方面人体通过对流换热失去部分热量,另一方面又与外界和内墙通过辐射换热失去部分热量,最终的总失热量增加。

(T T 〈外内)挂上窗帘布阻断了与外界的辐射换热,减少了人体的失热量。

7.热对流不等于对流换热,对流换热 = 热对流 + 热传导 热对流为基本传热方式,对流换热为非基本传热方式 8.门窗、墙壁、楼板等等。

以热传导和热对流的方式。

9.因内、外两间为真空,故其间无导热和对流传热,热量仅能通过胆壁传到外界,但夹层两侧均镀锌,其间的系统辐射系数降低,故能较长时间地保持热水的温度。

当真空被破坏掉后,1、2两侧将存在对流换热,使其保温性能变得很差。

10.t R R A λλ=⇒ 1t R R A λλ==2218.331012m --=⨯11.q t λσ=∆ const λ=→直线 const λ≠ 而为λλ=(t )时→曲线 12、略13.解:1211t q h h σλ∆=++=18(10)45.9210.361870.61124--=++2W m111()f w q h t t =-⇒ 11137.541817.5787w f q t t h =-=-=℃ 222()w f q h t t =-⇒ 22237.54109.7124w f q t t h =+=-+=-℃ 45.92 2.83385.73q A W φ=⨯=⨯⨯= 14. 解:40.27.407104532t K R W A HL λσσλλ-====⨯⨯⨯30.24.4441045t R λσλ-===⨯2m K W • 3232851501030.44.44410t KW q m R λ--∆-==⨯=⨯ 3428515010182.37.40710t t KW R λφ--∆-==⨯=⨯ 15.()i w f q h t h t t =∆=-⇒i w f qt t h=+51108515573=+=℃0.05 2.551102006.7i Aq d lq W φππ===⨯⨯=16.解:12441.2 1.2()()100100w w t t q c ⎡⎤=-⎢⎥⎣⎦44227350273203.96()()139.2100100W m ++⎡⎤=⨯-=⎢⎥⎣⎦12''441.21.2()()100100w w t t qc ⎡⎤=-⎢⎥⎢⎥⎣⎦442273200273203.96()()1690.3100100W m ++⎡⎤=⨯-=⎢⎥⎣⎦'21.2 1.2 1.21690.3139.21551.1Wq q q m ∆=-=-=17.已知:224A m =、215000()Wh m K =•、2285()Wh m K =•、145t =℃2500t =℃、'2285()Wk h m K ==•、1mm σ=、398λ=()W m K •求:k 、φ、∆解:由于管壁相对直径而言较小,故可将此圆管壁近似为平壁 即:12111k h h σλ=++=3183.5611101500039085-=⨯++2()W m k • 383.5624(50045)10912.5kA t KW φ-=∆=⨯⨯-⨯= 若k ≈2h'100k k k -∆=⨯%8583.561.7283.56-==% 因为:1211h h ,21h σλ 即:水侧对流换热热阻及管壁导热热阻远小于燃气侧对流换热热阻,此时前两个热阻均可以忽略不记。

传热学课后答案【第五版】

传热学课后答案【第五版】

绪论思考题与习题(89P -)答案:1. 冰雹落体后溶化所需热量主要是由以下途径得到:Q λ—— 与地面的导热量 f Q ——与空气的对流换热热量注:若直接暴露于阳光下可考虑辐射换热,否则可忽略不计。

6. 夏季:在维持20℃的室内,人体通过与空气的对流换热失去热量,但同时又与外界和内墙面通过辐射换热得到热量,最终的总失热量减少。

(T T 〉外内)冬季:在与夏季相似的条件下,一方面人体通过对流换热失去部分热量,另一方面又与外界和内墙通过辐射换热失去部分热量,最终的总失热量增加。

(T T 〈外内)挂上窗帘布阻断了与外界的辐射换热,减少了人体的失热量。

7.热对流不等于对流换热,对流换热 = 热对流 + 热传导 热对流为基本传热方式,对流换热为非基本传热方式 8.门窗、墙壁、楼板等等。

以热传导和热对流的方式。

9.因内、外两间为真空,故其间无导热和对流传热,热量仅能通过胆壁传到外界,但夹层 两侧均镀锌,其间的系统辐射系数降低,故能较长时间地保持热水的温度。

当真空被破坏掉后,1、2两侧将存在对流换热,使其保温性能变得很差。

10.t R R A λλ= ⇒ 1t R R Aλλ==2218.331012m --=⨯ 11.q t λσ=∆ c o n s t λ=→直线 c o n s t λ≠ 而为λλ=(t )时→曲线12. i R α 1R λ 3R λ 0R α 1f t −−→ q首先通过对流换热使炉子内壁温度升高,炉子内壁通过热传导,使内壁温度生高,内壁与空气夹层通过对流换热继续传递热量,空气夹层与外壁间再通过热传导,这样使热量通过空气夹层。

(空气夹层的厚度对壁炉的保温性能有影响,影响a α的大小。

) 13.已知:360mm σ=、0.61()Wm K λ=∙ 118f t =℃ 2187()Wh m K =∙210f t =-℃ 22124()Wh m K =∙ 墙高2.8m ,宽3m求:q 、1w t 、2w t 、φ 解:1211t q h h σλ∆=++=18(10)45.9210.361870.61124--=++2W m111()f w q h t t =-⇒ 11137.541817.5787w f q t t h =-=-=℃222()w f q h t t =-⇒ 22237.54109.7124w f q t t h =+=-+=-℃ 45.92 2.83385.73q A W φ=⨯=⨯⨯=14.已知:3H m =、0.2m σ=、2L m =、45λ=()W m K ∙ 1150w t =℃、2285w t =℃求:t R λ、R λ、q 、φ解:40.27.407104532t K R W A HL λσσλλ-====⨯⨯⨯30.24.4441045t R λσλ-===⨯2m K W ∙ 3232851501030.44.44410t KW q m R λ--∆-==⨯=⨯ 3428515010182.37.40710t t KW R λφ--∆-==⨯=⨯ 15.已知:50i d mm =、 2.5l m =、85f t =℃、273()Wh m K =∙、25110Wq m =求:i w t 、φ()i w f q h t h t t =∆=-⇒iw f qt t h =+51108515573=+=℃0.05 2.551102006.7i Aq d lq Wφππ===⨯⨯=16.已知:150w t =℃、220w t =℃、241.2 3.96()W c m K =∙、1'200w t =℃求: 1.2q 、'1.2q 、 1.2q ∆ 解:12441.2 1.2()()100100w w t t q c ⎡⎤=-⎢⎥⎣⎦44227350273203.96()()139.2100100W m ++⎡⎤=⨯-=⎢⎥⎣⎦12''441.21.2()()100100w w t t qc ⎡⎤=-⎢⎥⎢⎥⎣⎦442273200273203.96()()1690.3100100W m ++⎡⎤=⨯-=⎢⎥⎣⎦'21.2 1.2 1.21690.3139.21551.1Wq q q m ∆=-=-=17.已知:224A m =、215000()Wh m K =∙、2285()Wh m K =∙、145t =℃2500t =℃、'2285()Wk h m K ==∙、1mm σ=、398λ=()Wm K ∙求:k 、φ、∆解:由于管壁相对直径而言较小,故可将此圆管壁近似为平壁 即:12111k h h σλ=++=3183.5611101500039085-=⨯++2()W m k ∙ 383.5624(50045)10912.5kA t KW φ-=∆=⨯⨯-⨯=若k ≈2h'100k kk-∆=⨯%8583.56 1.7283.56-==% 因为:1211h h,21h σλ 即:水侧对流换热热阻及管壁导热热阻远小于燃气侧对流换热热阻,此时前两个热阻均可以忽略不记。

传热学课后标记题目答案1-9

传热学课后标记题目答案1-9

第一章1-8 热水瓶胆剖面的示意图如附图所示。

瓶胆的两层玻璃之间抽成真空,内胆外壁及外胆内壁涂了反射率很低的银。

试分析热水瓶具有保温作用的原因。

如果不小心破坏了瓶胆上抽气口处的密闭性,这会影响保温效果吗?解:保温作用的原因:内胆外壁外胆内壁涂了反射率很低的银,则通过内外胆向外辐射的热量很少,抽真空是为了减少内外胆之间的气体介质,以减少其对流换热的作用。

如果密闭性破坏,空气进入两层夹缝中形成了内外胆之间的对流传热,从而保温瓶的保温效果降低。

1-10 一炉子的炉墙厚13cm ,总面积为202m ,平均导热系数为1.04w/m.k ,内外壁温分别是520℃及50℃。

试计算通过炉墙的热损失。

如果所燃用的煤的发热量是2.09×104kJ/kg ,问每天因热损失要用掉多少千克煤? 解:根据傅利叶公式 每天用煤1-16为了说明冬天空气的温度以及风速对人体冷暖感觉的影响,欧美国家的天气预报中普遍采用风冷温度的概念(wind-chill temperature )。

风冷温度是一个当量的环境温度,当人处于静止空气的风冷温度下时其散热量与人处于实际气温、实际风速下的散热量相同。

从散热计算的角度可以将人体简化为直径为25cm 、高175cm 、表面温度为30℃的圆柱体,试计算当表面传热系数为()K m W 2/15时人体在温度为20℃的静止空气中的散热量。

如果在一个有风的日子,表面传热系数增加到()K m W 2/50,人体的散热量又是多少?此时风冷温度是多少?1-19 在1-14题目中,如果把芯片及底板置于一个封闭的机壳内,机壳的平均温度为20℃,芯片的表面黑度为0.9,其余条件不变,试确定芯片的最大允许功率。

解:()00014.0])27320()27385[(1067.59.04484241⨯+-+⨯⨯-=Φ-=辐射T T A σε P 辐射对流+ΦΦ=1.657W1-21 有一台气体冷却器,气侧表面传热系数1h =95W/(m2.K),壁面厚δ=2.5mm ,)./(5.46K m W =λ水侧表面传热系数58002=h W/(m 2.K)。

传热学课后答案(完整版)

传热学课后答案(完整版)

绪论思考题与习题(89P -)答案:1.冰雹落体后溶化所需热量主要是由以下途径得到: Q λ—— 与地面的导热量 f Q ——与空气的对流换热热量注:若直接暴露于阳光下可考虑辐射换热,否则可忽略不计。

2.略 3.略 4.略 5.略6.夏季:在维持20℃的室内,人体通过与空气的对流换热失去热量,但同时又与外界和内墙面通过辐射换热得到热量,最终的总失热量减少。

(T T 〉外内)冬季:在与夏季相似的条件下,一方面人体通过对流换热失去部分热量,另一方面又与外界和内墙通过辐射换热失去部分热量,最终的总失热量增加。

(T T 〈外内)挂上窗帘布阻断了与外界的辐射换热,减少了人体的失热量。

7.热对流不等于对流换热,对流换热 = 热对流 + 热传导 热对流为基本传热方式,对流换热为非基本传热方式 8.门窗、墙壁、楼板等等。

以热传导和热对流的方式。

9.因内、外两间为真空,故其间无导热和对流传热,热量仅能通过胆壁传到外界,但夹层两侧均镀锌,其间的系统辐射系数降低,故能较长时间地保持热水的温度。

当真空被破坏掉后,1、2两侧将存在对流换热,使其保温性能变得很差。

10.t R R A λλ= ⇒ 1t R R A λλ== 2218.331012m --=⨯11.q t λσ=∆ const λ=→直线 const λ≠ 而为λλ=(t )时→曲线12、略13.解:1211t q h h σλ∆=++=18(10)45.9210.361870.61124--=++2W m111()f w q h t t =-⇒ 11137.541817.5787w f q t t h =-=-=℃222()w f q h t t =-⇒ 22237.54109.7124w f q t t h =+=-+=-℃ 45.92 2.83385.73q A W φ=⨯=⨯⨯= 14. 解:40.27.407104532t K R W A HL λσσλλ-====⨯⨯⨯30.2 4.4441045t R λσλ-===⨯2m K W • 3232851501030.44.44410t KW q m R λ--∆-==⨯=⨯ 3428515010182.37.40710t t KW R λφ--∆-==⨯=⨯ 15.()i w f q h t h t t =∆=-⇒i w f qt t h=+51108515573=+=℃0.05 2.551102006.7i Aq d lq W φππ===⨯⨯=16.解:12441.2 1.2()()100100w w t t q c ⎡⎤=-⎢⎥⎣⎦ 44227350273203.96()()139.2100100W m ++⎡⎤=⨯-=⎢⎥⎣⎦12''441.21.2()()100100w w t t qc ⎡⎤=-⎢⎥⎢⎥⎣⎦442273200273203.96()()1690.3100100W m ++⎡⎤=⨯-=⎢⎥⎣⎦'21.2 1.2 1.21690.3139.21551.1Wq q q m ∆=-=-=17.已知:224A m =、215000()Wh m K =•、2285()Wh m K =•、145t =℃2500t =℃、'2285()Wk h m K ==•、1mm σ=、398λ=()W m K •求:k 、φ、∆解:由于管壁相对直径而言较小,故可将此圆管壁近似为平壁即:12111k h h σλ=++=3183.5611101500039085-=⨯++2()W m k • 383.5624(50045)10912.5kA t KW φ-=∆=⨯⨯-⨯= 若k ≈2h'100k k k -∆=⨯%8583.561.7283.56-==% 因为:1211h h =,21h σλ= 即:水侧对流换热热阻及管壁导热热阻远小于燃气侧对流换热热阻,此时前两个热阻均可以忽略不记。

第四版传热学第六,七八章习题解答

第四版传热学第六,七八章习题解答

第五章复习题1、试用简明的语言说明热边界层的概念。

答:在壁面附近的一个薄层内,流体温度在壁面的法线方向上发生剧烈变化,而在此薄层之外,流体的温度梯度几乎为零,固体表面附近流体温度发生剧烈变化的这一薄层称为温度边界层或热边界层。

2、与完全的能量方程相比,边界层能量方程最重要的特点是什么?答:与完全的能量方程相比,它忽略了主流方向温度的次变化率σα22x A,因此仅适用于边界层内,不适用整个流体。

3、式(5—4)与导热问题的第三类边界条件式(2—17)有什么区别?答:=∂∆∂-=yyt th λ(5—4))()(f w t t h h t-=∂∂-λ (2—11)式(5—4)中的h 是未知量,而式(2—17)中的h 是作为已知的边界条件给出,此外(2—17)中的λ为固体导热系数而此式为流体导热系数,式(5—4)将用来导出一个包括h 的无量纲数,只是局部表面传热系数,而整个换热表面的表面系数应该把牛顿冷却公式应用到整个表面而得出。

4、式(5—4)表面,在边界上垂直壁面的热量传递完全依靠导热,那么在对流换热中,流体的流动起什么作用?答:固体表面所形成的边界层的厚度除了与流体的粘性有关外还与主流区的速度有关,流动速度越大,边界层越薄,因此导热的热阻也就越小,因此起到影响传热大小5、对流换热问题完整的数字描述应包括什么内容?既然对大多数实际对流传热问题尚无法求得其精确解,那么建立对流换热问题的数字描述有什么意义?答:对流换热问题完整的数字描述应包括:对流换热微分方程组及定解条件,定解条件包括,(1)初始条件 (2)边界条件 (速度、压力及温度)建立对流换热问题的数字描述目的在于找出影响对流换热中各物理量之间的相互制约关系,每一种关系都必须满足动量,能量和质量守恒关系,避免在研究遗漏某种物理因素。

基本概念与定性分析5-1 、对于流体外标平板的流动,试用数量级分析的方法,从动量方程引出边界层厚度的如下变化关系式:x xRe 1~δ解:对于流体外标平板的流动,其动量方程为:221xy u v dx d y u v xy u ∂+-=∂∂+∂∂ρρ 根据数量级的关系,主流方的数量级为1,y 方线的数量级为δ则有2211111111δρδδv +⨯-=⨯+⨯ 从上式可以看出等式左侧的数量级为1级,那么,等式右侧也是数量级为1级, 为使等式是数量级为1,则v 必须是2δ量级。

第四版传热学第五、六,七 八 章习题解答

第四版传热学第五、六,七 八 章习题解答

第五章复习题1、试用简明的语言说明热边界层的概念。

答:在壁面附近的一个薄层内,流体温度在壁面的法线方向上发生剧烈变化,而在此薄层之外,流体的温度梯度几乎为零,固体表面附近流体温度发生剧烈变化的这一薄层称为温度边界层或热边界层。

2、与完全的能量方程相比,边界层能量方程最重要的特点是什么?答:与完全的能量方程相比,它忽略了主流方向温度的次变化率σα22x A ,因此仅适用于边界层内,不适用整个流体。

3、式(5—4)与导热问题的第三类边界条件式(2—17)有什么区别?答:=∂∆∂-=yyt th λ(5—4))()(f w t t h h t-=∂∂-λ (2—11)式(5—4)中的h 是未知量,而式(2—17)中的h 是作为已知的边界条件给出,此外(2—17)中的λ为固体导热系数而此式为流体导热系数,式(5—4)将用来导出一个包括h 的无量纲数,只是局部表面传热系数,而整个换热表面的表面系数应该把牛顿冷却公式应用到整个表面而得出。

4、式(5—4)表面,在边界上垂直壁面的热量传递完全依靠导热,那么在对流换热中,流体的流动起什么作用?答:固体表面所形成的边界层的厚度除了与流体的粘性有关外还与主流区的速度有关,流动速度越大,边界层越薄,因此导热的热阻也就越小,因此起到影响传热大小5、对流换热问题完整的数字描述应包括什么内容?既然对大多数实际对流传热问题尚无法求得其精确解,那么建立对流换热问题的数字描述有什么意义?答:对流换热问题完整的数字描述应包括:对流换热微分方程组及定解条件,定解条件包括,(1)初始条件 (2)边界条件 (速度、压力及温度)建立对流换热问题的数字描述目的在于找出影响对流换热中各物理量之间的相互制约关系,每一种关系都必须满足动量,能量和质量守恒关系,避免在研究遗漏某种物理因素。

基本概念与定性分析5-1 、对于流体外标平板的流动,试用数量级分析的方法,从动量方程引出边界层厚度的如下变化关系式:x xRe 1~δ解:对于流体外标平板的流动,其动量方程为:221xy u v dx d y u v x y u ∂+-=∂∂+∂∂ρρ 根据数量级的关系,主流方的数量级为1,y 方线的数量级为δ则有2211111111δρδδv +⨯-=⨯+⨯ 从上式可以看出等式左侧的数量级为1级,那么,等式右侧也是数量级为1级, 为使等式是数量级为1,则v 必须是2δ量级。

传热学8-10章总结问答题及答案

传热学8-10章总结问答题及答案

第八章 热辐射基本定律和辐射特性一、名词解释黑体:指能吸收投入到其表面上的所有热辐射能量的物体。

其吸收比1=α灰体:在热辐射分析中,把光谱吸收比与波长无关的物体称为灰体漫射体:辐射能按空间分布满足兰贝特定律的物体投入辐射:单位时间内投入到单位表面积上的总辐射能吸收比:投入辐射中被吸收能量的百分比。

穿透比:投入辐射中穿透过物体能量的百分比。

反射比:投入辐射中被反射能量的百分比。

发射率: 物体的辐射力与同温度下黑体辐射力之比,为ε辐射力:单位辐射面积向半球空间辐射出去的各种波长能量的总和,E ,单位是2/m W 。

光谱辐射力:单位辐射面积向半球空间辐射出去的包括波长λ在内的单位波长间隔内的辐射能λE 定向辐射强度:单位可见辐射面积向半球空间θ方向的单位立体角中辐射出去的各种波长能量的总和。

二、解答题和分析题1、四次方定律、普朗克定律、兰贝特定律及维恩位移定律和基尔霍夫定律分别描述了什么内容? 答案: 看书362页公式8-16下面有详细的总结。

2、影响实际物体吸收比和发射率的因素各有哪些?答:实际物体的吸收比取决于两方面的因素:1)吸收物体本身的情况。

系指物质的种类、物体的温度以及表面状况。

2)投入辐射的特性。

实际物体表面的发射率取决于物质的种类、表面温度和表面状况。

只与发射辐射的物体本身有关,而不涉及外界条件第九章 辐射传热的计算一、名词解释角系数:表面1发出的辐射能中落到表面2的百分数称为表面1对表面2 的角系数,记为2,1X 。

有效辐射:是指单位时间内离开表面单位面积的总辐射能。

二、解答题和分析题1、简述角系数的定义及其性质。

答:表面1发出的辐射能中落到表面2的百分数称为表面1对表面2 的角系数,记为X。

2,11)角系数的相对性 2)角系数的完整性 3)角系数的可加性2、分析气体辐射的基本特点?(1) 气体辐射对波长具有选择性。

它只在某些波长区段内具有发射和吸收辐射的本领,而对于其他光带则呈现透明状态。

传热学习题答案

传热学习题答案

第一章 导热理论基础1. 按20℃时,铜、碳钢(1.5%C )、铝和黄铜导热系数的大小,排列它们的顺序;隔热保温材料导热系数的数值最大为多少?列举膨胀珍珠岩散料、矿渣棉和软泡沫塑料导热系数的数值。

答:铜>铝>黄铜>碳钢;隔热保温材料导热系数最大值为0.12W/(m •K )膨胀珍珠岩散料:25℃ 60-300Kg/m 3 0.021-0.062 W/(m •K ) 矿渣棉: 30℃ 207 Kg/m 3 0.058 W/(m •K )软泡沫塑料: 30℃ 41-162 Kg/m 3 0.043-0.056 W/(m •K ) 2. 推导导热微分方程式的已知前提条件是什么? 答:导热物体为各向同性材料。

3.(1)mk xt /2000=∂∂ , q=-2×105(w/m 2). (2) mk xt /2000-=∂∂, q=2×105(w/m 2).4. (1),00==x q3109⨯==δx q w/m 2(2) 5108.1⨯=νqw/m 35. 已知物体的热物性参数是λ、ρ和c ,无内热源,试推导圆柱坐标系的导热微分方程式。

答:2222211[()]t t t t a r r rr rzτφ∂∂∂∂∂=++∂∂∂∂∂6. 已知物体的热物性参数是λ、ρ和c ,无内热源,试推导球坐标系的导热微分方程式。

答:2222222111[()(s in )]s in s in t t t ta rrrrr r θτθθθθϕ∂∂∂∂∂∂=++∂∂∂∂∂∂7. 一半径为R的实心球,初始温度均匀并等于t 0,突然将其放入一温度恒定并等于t f 的液体槽内冷却。

已知球的热物性参数是λ、ρ和c ,球壁表面的表面传热系数为h ,试写出描写球体冷却过程的完整数学描述。

答:2201[()],0,00,0,0,,()f r Rr Rt t rr Rc rrrr R t t t r R h tt rλττρττλ==∂∂∂=><<∂∂∂=≤≤=∂>=-=-∂0,d t r d r==8. 从宇宙飞船伸出一根细长散热棒,以辐射换热将热量散发到外部空间去,已知棒的发射率(黑度)为ε,导热系数为λ,棒的长度为l ,横截面面积为f ,截面周长为U,棒根部温度为T0。

[精品文档]热工基础课后答案第八和九章

[精品文档]热工基础课后答案第八和九章

第八章习 题8-1. 一大平板,高3m ,宽2m ,厚 0.02m ,导热系数为45 W/(m ·K),两侧表面温度分别为1001=t ℃、502=t ℃,试求该板的热阻、热流量、热流密度。

解:解:由傅立叶导热定律: 热阻 W K A R /407.7452302.0=⨯⨯==λδm 热流量 W t t A Q w w 67500002.050100452321=⨯⨯⨯-=-=δλ热流密度 2/11250023675000m W S Q q =⨯==8-2. 空气在一根内径50mm ,长2.5m 的管子内流动并被加热,已知空气平均温度为80℃,管内对流换热的表面传热系数为70=h W/(m 2·K) ,热流密度为5000=q W/m 2,试求管壁温度及热流量。

解:由牛顿冷却公式:()f w t t h q -=得到 C t h q t f w 042.15180705000=+=+=W s q Q 53.2405.045.250002=⨯⨯⨯⨯=π=8-3. 一单层玻璃窗,高1.2m ,宽1m ,玻璃厚0.3mm ,玻璃的导热系数为051.=λ W/(m ·K),室内外的空气温度分别为20℃和5℃,室内外空气与玻璃窗之间对流换热的表面传热系数分别为51=h W/(m 2 ·K)和202=h W/(m 2 ·K),试求玻璃窗的散热损失及玻璃的导热热阻、两侧的对流换热热阻。

解:对流换热计算公式: W h h t t s Q f f 9.7120105.10003.05152012.1112121=+⨯⨯++-⨯=+-=λδ导热热阻为:W K R /000286.005.10003.01===λδ 内侧对流换热热阻为:W K h R /2.051112===外侧对流换热热阻为:W K h R /05.0201123===8-4. 如果采用双层玻璃窗,玻璃窗的大小、玻璃的厚度及室内外的对流换热条件与1-3题相同,双层玻璃间的空气夹层厚度为5mm ,夹层中的空气完全静止,空气的导热系数为025.0=λ W/(m ·K)。

热工基础课后答案第八和九章

热工基础课后答案第八和九章

第八章 习 题8-1. 一大平板,高3m ,宽2m ,厚 0.02m ,导热系数为45 W/(m ·K),两侧表面温度分别为1001=t ℃、502=t ℃,试求该板的热阻、热流量、热流密度。

解:解:由傅立叶导热定律: 热阻 W K A R /407.7452302.0=⨯⨯==λδm 热流量 W t t A Q w w 67500002.050100452321=⨯⨯⨯-=-=δλ热流密度 2/11250023675000m W S Q q =⨯==8-2. 空气在一根内径50mm ,长2.5m 的管子内流动并被加热,已知空气平均温度为80℃,管内对流换热的表面传热系数为70=h W/(m 2 ·K) ,热流密度为5000=q W/m 2,试求管壁温度及热流量。

解:由牛顿冷却公式:()f w t t h q -=得到 C t h q t f w 042.15180705000=+=+=W s q Q 53.2405.045.250002=⨯⨯⨯⨯=π=8-3. 一单层玻璃窗,高1.2m ,宽1m ,玻璃厚0.3mm ,玻璃的导热系数为051.=λ W/(m ·K),室内外的空气温度分别为20℃和5℃,室内外空气与玻璃窗之间对流换热的表面传热系数分别为51=h W/(m 2 ·K)和202=h W/(m 2 ·K),试求玻璃窗的散热损失及玻璃的导热热阻、两侧的对流换热热阻。

解:对流换热计算公式: W h h t t s Q f f 9.7120105.10003.05152012.1112121=+⨯⨯++-⨯=+-=λδ导热热阻为:W K R /000286.005.10003.01===λδ 内侧对流换热热阻为:W K h R /2.051112===外侧对流换热热阻为:W K h R /05.0201123===8-4. 如果采用双层玻璃窗,玻璃窗的大小、玻璃的厚度及室内外的对流换热条件与1-3题相同,双层玻璃间的空气夹层厚度为5mm ,夹层中的空气完全静止,空气的导热系数为025.0=λ W/(m ·K)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档