实数小结与复习 习题精选(一)
实数知识点及典型例题
实数知识点及典型例题一、实数知识点。
(一)实数的分类。
1. 有理数。
- 整数:正整数、0、负整数统称为整数。
例如:5,0,-3。
- 分数:正分数、负分数统称为分数。
分数都可以表示为有限小数或无限循环小数。
例如:(1)/(2)=0.5,(1)/(3)=0.333·s。
- 有理数:整数和分数统称为有理数。
2. 无理数。
- 无理数是无限不循环小数。
例如:√(2),π,0.1010010001·s(每两个1之间依次多一个0)。
3. 实数。
- 有理数和无理数统称为实数。
(二)实数的相关概念。
1. 数轴。
- 规定了原点、正方向和单位长度的直线叫做数轴。
- 实数与数轴上的点是一一对应的关系。
2. 相反数。
- 只有符号不同的两个数叫做互为相反数。
a的相反数是-a,0的相反数是0。
例如:3与-3互为相反数。
- 若a、b互为相反数,则a + b=0。
3. 绝对值。
- 数轴上表示数a的点与原点的距离叫做数a的绝对值,记作| a|。
- 当a≥slant0时,| a|=a;当a < 0时,| a|=-a。
例如:| 5| = 5,| -3|=3。
4. 倒数。
- 乘积为1的两个数互为倒数。
a(a≠0)的倒数是(1)/(a)。
例如:2的倒数是(1)/(2)。
(三)实数的运算。
1. 运算法则。
- 加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0,绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同0相加,仍得这个数。
- 减法法则:减去一个数等于加上这个数的相反数。
- 乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘都得0。
- 除法法则:除以一个数等于乘以这个数的倒数(除数不为0)。
2. 运算律。
- 加法交换律:a + b=b + a。
- 加法结合律:(a + b)+c=a+(b + c)。
- 乘法交换律:ab = ba。
(完整版)实数知识点总结及习题练习,推荐文档
a a a a 2x x 1- x1、平方根实数知识点总结平方根、算数平方根和立方根 (3—10 分)如果一个数的平方等于 a ,那么这个数就叫做 a 的平方根(或二次方跟)。
一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。
正数 a 的平方根记做“ ± ”。
2、算术平方根正数 a 的正的平方根叫做 a 的算术平方根,记作“ ”。
正数和零的算术平方根都只有一个,零的算术平方根是零。
a ( a ≥ 0)≥ 0= a =3、立方根- a ( a <0);注意 的双重非负性:a ≥ 0如果一个数的立方等于 a ,那么这个数就叫做 a 的立方根(或 a 的三次方根)。
一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
注意: 3 - a = -3 a ,这说明三次根号内的负号可以移到根号外面。
实数(平方根)单元习题练习思维启动如图是一块由两个正方形并排放在一起而成的硬纸板,请你用两刀把它裁成四块,然后拼成一个正方形,拼后的正方形边长为多少?综合探究探究一 由平方根和算术平方根的意义确定字母的取值范围 1.中被开方数为,根号下的被开方数必须是 才有意义,因此可列出不等式,x 的取值范围是.2. + 有意义,需要列出不等式组为. x 的取值范围a 2⎩是 .x3.x 的取值范围是 x +1答案:1. 2x ,非负数, 2x ≥ 0 , x ≥ 0 .⎧1- x ≥ 0,2. ⎨x ≥ 0. 3. x > -1 .0 ≤ x ≤ 1. 探究二 根据非负数性质求未知数的值已知 x 、 y 3(y - 2)2= 0 .1 3(y - 2)2+ 3(y - 2)2= 0 ,你能得到什么结论?.2.由 1,你能求出 x - y 的值吗?.答案:1.∵3(y - 2)2= 0 .≥ 0 , 3(y - 2)2≥ 0 , 3(y - 2)2= 0 = 0 ,2.由 1 得, x -1 = 0 , x = 1 ; y - 2 = 0 , y = 2 .∴ x - y = 1- 2 = -1. 探究三 平方根与简单的一元二次方程 1.由 x 2 -196 = 0 可得 , 2.据 1 得, x 是 196 的,所以 x =.3.由 1,2 的启示,请你试着求等式16 (x + 2)2- 81 = 0 中的 x 值..答案:1. x 2 = 196 . 2.平方根, x = ±14 .2 2 81 9 1 173.由16 (x + 2)-81 = 0 ,得(x + 2)=,∴ x + 2 =±16 4,∴x =或-.4 4探究四由平方根的意义确定字母的值3a - 22 和2a - 3 都是m 的平方根,求a 和m 的值.1.当3a - 22 与2a - 3 相等时,求a 和m 的值..2.当3a - 22 与2a - 3 互为相反数时,求a 和m 的值..3.讨论总结:m 的值为.答案:1.3a - 22 = 2a - 3 ,得a = 19 ,3a - 22 = 3⨯19 - 22 = 35 ,2a - 3 = 35 ,m = 352 = 1225 .2.3a - 22 + 2a - 3 = 0 ,得a = 5 ,3a - 22 = 3⨯ 5 - 22 =-7 ,2a-3=2⨯5-3=7,m=(-7)2= 72= 49 .3.m 的值为 1225 或49.探究五利用被开方数非负性求未知数的值已知x 、y 都是有理数,且y =+ 3 ,求y x+1 的平方根.1.表示x - 3 的,则x 的范围是.2.表示x - 3 的,则x 的范围是. 3.由1,2,得x =,y =. 4.讨论总结:y x+1 的平方根是多少?.答案:1.算术平方根,x ≥ 3 .2.算术平方根,x ≤3.3.x = 3 ,y = 3 .4.∵ y x+1 = 34 = 81,∴ y x+1 的平方根为±9 .探究六算术平方根与绝对值相综合题已知2009 -a +=aa - 2010 a - 2010 a - 20092 +15 a - 20092 +15 a - 2010 a - 2010 1. 由式子可以得出 a 的取值范围是什么?.2. 由 1,你能将等式 2009 - a + = a 中的绝对值去掉吗?.3. 由 2,你能求出 a - 20092 的值吗?.4. 讨论总结:求的值..答案:1.∵ a - 2010 ≥ 0 ,∴ a ≥ 2010 .2.原式变形为 a - 2009 + = a = 2009 .3. a - 2010 = 20092 , a - 20092 = 2010 .4. a - 20092 +15 = 2010 +15 = 2025 ,∴ = 45 . 探究七 平方根的实际应用一个开口的长方体盒子,是从一块正方形的马口铁的每个角剪掉一个 36cm 2的正方形后,再把它的边折起来做成的,如图,量得这个盒子的容积是 150cm 2,求原正方形的边长是多少?1. 由题意可知剪掉正方形的边长为cm .2. 设原正方形的边长为 x cm ,请你用x 表示盒子的容积..3. 由 1,2 的分析,请你列出方程,并解答,求原正方形的边长..答案:1.6.2. 6 (x - 6)2.3. 6 (x - 6)2= 150 , (x - 6)2= 25 , x - 6 = ±5 .∴ x = 11 或 x = 1 (舍去).即原25 121 25 121x 2 4 - y 29 - a 29 - a x - 4 a + b a +1 5正方形的边长为 11cm .随堂反馈251.的平方根的数学表达式是( )121A . = ±B .11= - 5 C . 11=5D . ± = ± 511112.9 的算术平方根是( )A . -3B .3C . ±3D .813. 当 x = -5 时,的值是()A .5B . -5C . ±5D .254. 正方形 M 的面积是正方形 N 的面积的 64 倍,那么正方形 M 的边长是正方形 N 的边长的( )A .4 倍B .8 倍C .16 倍D .2 倍5.一个数的算术平方根是它的本身,则这个数是. 6.= - ,则 xy 的算术平方根为.7. 代数式-5的最大值为.8. 已知 a , b+ b - 3a -1 = 0 ,求b 2 - 5a 的平方根.9. 如果 a的最大值及此时 a 的值.10. 已知2a -1 的平方根为±3 , 3a + b -1的平方根为±4 ,求 a + 2b 的平方根.参考答案25 121 25 121a +1 a +1 29 - a 7 79 352(-4)229 - a 9 9 (- 2)2⎩ ⎩1.D 2.B 3.A 4.B 5.0,1 6.4 7. -58.∵ ≥ 0 , b - 3a -1 ≥ 0 ,+ b - 3a -1 = 0 ,∴ 29 - a ≤ 29 , ≤ 5 .因此 的最大值为 5,此时 a 的值为 4.⎧2a -1 = 9,∴ = 0 , a = -1 ;b - 3a -1 = 0 , b - 3a -1 = 0 ,10.由题意,得⎨3a + b -1 = ⎧a = 5,⎨b = 2. 解得16. ∴ b = -2 .∴ b 2 - 5a = 9 , b 2 - 5a 的平方根为±3 . 9.∵ a 为正数,∴ a + 2b = 9 , a + 2b 的平方根为± 3.平方根跟踪练习(一)一、选择题1. 下列各式中无意义的是()A. - B . C. 12. 的算术平方根是()D . -41 111 A.B .C .16823. 下列运算正确的是()D . ±2A . -3 = 3B . -3 = -3C . = ±D . = -3二、填空题4. 若一个正方形的面积为 13,则正方形的边长为.5. 小明房间的面积为 10.8 米 2,房间地面恰好由 120 块相同的正方形地砖铺成,每块地砖的边长是.6. 计算:⑴=;⑵ =;⑶ =;⑷- =;⑸ ( 3)2 = .7. 若下列各式有意义,在后面的横线上写出 x 的取值范围:a +1 - 7(- 7)2x2 4 25 4 25 0.9 b -3 24 25 4 25 179⑴ ⑵8.若 a - 2 + = 0 ,则a 2 -b = .9. 一个正方形的面积扩大为原来的 4 倍,它的边长变为原来的倍,面积扩大为原来的 9 倍,它的边长变为原来的倍,面积扩大为原来的 n 倍,它的边长变为原来的倍.10.的算数平方根是它本身.三、解答题11. 求下列各数的算术平方根:⑴169⑵0.0256⑶124 25⑷ (- 2)212. 要种一块面积为 615.44 m 2 的圆形草地以美化家庭,它的半径应是多少米?(π 取3.14)平方根跟踪练习(二)一、选择题1. 下列说法中不正确的是()A. - 是 2 的平方根B. 是 2 的平方根C.2 的平方根是 12.的平方根是() D.2 的算术平方根是 41 111A.B.C.16 8 2423. “ 的平方根是± ”,用数学式子可以表示为()D. ±225A.= ± 55B. ±= ± 2C. = 25 5D. - = - 2 54. 下列各式中,正确的个数是()= ±42① = 0.3 ; ② ③ - 3 3 ;的平方根是-3; 5 - x222(- 5)216 (-9)21- a a -1 0.0004(- 0.1)20.81 0.04225713④ 的算术平方根是-5; ⑤ ± 是1 的平方根.6 36A.1 个B.2 个C.3 个D.4 个5.若 a 是(- 4)2的平方根,b 的一个平方根是 2,则代数式 a +b 的值为()A.8B.0C.8 或 0D.4 或-4 二、填空题6. 如果某数的一个平方根是-6,那么这个数为.7. 如果正数m 的平方根为 x + 1和x - 3 ,则m 的值是. 8.的算术平方根是, 的平方根是.9. 若b =+ + 4 ,则ab 的平方根是.三、解答题10. 求下列各式的值:⑴ ⑵ - ⑶ ±⑷ - ⑸ - ⑹一、选择题 1.C . 2.C .3.A . 二、填空题4.5.0.96.3;5;2;-4;3跟踪练习一答案7.x≥0;x≤58.19.2;3;10.0 和 1 三、解答题711.13;0.16; ;2512.14跟踪练习二答案12 1 4412 - 40213n一、选择题1.C2.D3.B4.A5.C二、填空题6.367.48.23 或-39.2 或-2三、解答题7 10.⑴15⑵-0.02⑶2⑷-0.1⑸0.7⑹9“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。
初中数学第六章 实数知识归纳总结含答案
初中数学第六章 实数知识归纳总结含答案一、选择题1.下列说法错误的是( ) A .﹣4是16的平方根 B .16的算术平方根是2 C .116的平方根是14D .25=52.计算:122019(1)(1)(1)-+-++-的值是( )A .1-B .1C .2019D .2019- 3.如果一个自然数的算术平方根是n ,则下一个自然数的算术平方根是( )A .n +1B .21n +C .1n +D .21n 4.2-是( ) A .负有理数B .正有理数C .自然数D .无理数5.如图,在数轴上表示实数15的点可能是( )A .点PB .点QC .点MD .点N6.有四个有理数1,2,3,﹣5,把它们平均分成两组,假设1,3分为一组,2,﹣5分为另一组,规定:A =|1+3|+|2﹣5|,已知,数轴上原点右侧从左到右有两个有理数m 、n ,再取这两个数的相反数,那么,所有A 的和为( ) A .4mB .4m +4nC .4nD .4m ﹣4n7.25的算术平方根是( ) A .5±B .5C .52±D .58.下列实数中的无理数是( ) A . 1.21B .38-C .33-D .2279.如图,数轴上表示实数3的点可能是( )A .点PB .点QC .点RD .点S 10.已知(﹣25)2的平方根是a ,﹣125的立方根是b ,则a ﹣b 的值是( ) A .0或10B .0或﹣10C .±10D .0二、填空题11.用“☆”定义一种新运算:对于任意有理数a 和b ,规定a ☆b=.例如:(-3)☆2=32322-++-- = 2.从﹣8,﹣7,﹣6,﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,5,6,7,8,中任选两个有理数做a ,b(a≠b)的值,并计算a ☆b ,那么所有运算结果中的最大值是_____. 12.a 是不为2的有理数,我们把2称为a 的“文峰数”如:3的“文峰数”是2223=--,-2的“文峰数”是()21222=--,已知a 1=3,a 2是a 1的“文峰数”, a 3是a 2的“文峰数”, a 4是a 3的“文峰数”,……,以此类推,则a 2020=______ 13.估计512-与0.5的大小关系是:512-_____0.5.(填“>”、“=”、“<”) 14.规定:[x]表示不大于x 的最大整数,(x )表示不小于x 的最小整数,[x )表示最接近x 的整数(x≠n+0.5,n 为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.当﹣1<x <1时,化简[x]+(x )+[x )的结果是_____.15.按一定规律排列的一列数依次为:2-,5,10-,17,26-,,按此规律排列下去,这列数中第9个数及第n 个数(n 为正整数)分别是__________.16.有若干个数,第1个数记作1a ,第2个数记为2a ,第3个数记为3a ,……,第n 个数记为n a ,若1a =13,从第2个数起,每个数都等于1与前面的那个数的差的倒数,则2019a =_____.17.规定用符号[]x 表示一个实数的整数部分,如[3.65]3,31⎡⎤==⎣⎦,按此规定113⎡⎤-=⎣⎦_____.18.对于实数a ,我们规定:用符号[]a 表示不大于[]a 的最大整数,称为a 的根整数,例如:,如果我们对a 连续求根整数,直到结果为1为止.例如:对10连续求根整数2次: [10]3[3]1=→=这时候结果为1.则只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是__________.19.如图,直径为1个单位长度的半圆,从原点沿数轴向右滚动一周,圆上的一点由原点O 到达点'O ,则点'O 对应的数是_______.20.11133+=112344+=113455+=,……请你将发现的规律用含自然数n (n≥1)的等式表示出来__________________.三、解答题21.(阅读材料)数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根.华罗庚脱口而出:“39”.邻座的乘客十分惊奇,忙间其中计算的奥妙.你知道怎样迅速准确的计算出结果吗?请你按下面的步骤试一试:10=100=,1000593191000000<<,∴10100<<.∴能确定59319的立方根是个两位数. 第二步:∵59319的个位数是9,39729= ∴能确定59319的立方根的个位数是9.第三步:如果划去59319后面的三位319得到数59,<<34<<,可得3040<<,由此能确定59319的立方根的十位数是3,因此59319的立方根是39. (解答问题)根据上面材料,解答下面的问题 (1)求110592的立方根,写出步骤.(2=__________. 22.(1)观察下列式子: ①100222112-=-==; ②211224222-=-==; ③322228442-=-==; ……根据上述等式的规律,试写出第n 个等式,并说明第n 个等式成立;(2)求01220192222++++的个位数字. 23.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯ , 将以上三个等式两边分别相加得:11111111112233422334++=-+-+-⨯⨯⨯=13144-= (1)猜想并写出:1n(n 1)+ = .(2)直接写出下列各式的计算结果: ①1111 (12233420152016)++++⨯⨯⨯⨯= ; ②1111...122334(1)n n ++++⨯⨯⨯⨯+= ; (3)探究并计算:1111 (24466820142016)++++⨯⨯⨯⨯.24.(1的一系列不足近似值和过剩近似值来估计它的大小的过程因为2211,24==,所以12,<<因为21.4 1.96=,21.5 2.25=,所以1.4 1.5,<<因为221.41 1.9881,1.422.0164==,所以1.41 1.42<<因为221.414 1.999396,1.415 2.002225==,所以1.414 1.415,<<1.41≈(精确到百分位),(精确到百分位).(2)我们规定用符号[]x 表示数x 的整数部分,例如[]0,2.42,34=⎤⎢⎥⎦=⎡⎣①按此规定2⎤⎦= ;a ,b 求a b -的值.25.z 是64的方根,求x y z -+的平方根 26.规律探究计算:123499100++++⋅⋅⋅++如果一个个顺次相加显然太繁杂,我们仔细观察这个式子的特点,发现运用加法的的运算律,可简化计算, 提高计算速度.()()()12349910011002995051101505050++++⋅⋅⋅++=++++⋅⋅⋅++=⨯=计算:(1)246898100++++⋅⋅⋅++(2)()()()()22334100101a m a m a m a m ++++++⋅⋅⋅++【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】分别根据平方根的定义,算术平方根的定义判断即可得出正确选项.A .﹣4是16的平方根,说法正确;B .2,说法正确;C .116的平方根是±14,故原说法错误;D .,说法正确. 故选:C . 【点睛】此题考查了平方根以及算术平方根的定义,熟记相关定义是解题的关键.2.A解析:A 【分析】根据题意,1-的奇数次幂等于1-,1-的偶数次幂等于1,然后两个加数作为一组和为0,即可得到答案. 【详解】解:∵1-的奇数次幂等于1-,1-的偶数次幂等于1, ∴122019(1)(1)(1)-+-++-=1234201720182019[(1)(1)][(1)(1)][(1)(1)](1)-+-+-+-++-+-+-=2019(1)- =1-; 故选:A. 【点睛】本题考查了数字规律性问题,有理数的混合运算,解题的关键是熟练掌握1-的奇数次幂等于1-,1-的偶数次幂等于1.3.D解析:D 【分析】根据算术平方根的平方等于这个这个自然数,得出下一个自然数,可得答案. 【详解】解:这个自然数是2n ,则和这个自然数相邻的下一个自然数是21n +,. 故选:D . 【点睛】本题考查了算术平方根,掌握一个数算术平方根的平方等于这个数是解题关键.4.A解析:A 【解析】由于开不尽方才是无理数,无限不循环小数为无理数,根据有理数和无理数的定义及分类作答.【详解】∵2-是整数,整数是有理数,∴D错误;∵2-小于0,正有理数大于0,自然数不小于0,∴B、C错误;∴2-是负有理数,A正确.故选:A.【点睛】本题考查了有理数和实数的定义及分类,其中开不尽方才是无理数,无限不循环小数为无理数.5.C解析:C【分析】.【详解】<<,∵91516<<<<,即:343与4之间,故数轴上的点为点M,故选:C.【点睛】本题主要考查了二次根式的估算,熟练掌握相关方法是解题关键.6.C解析:C【分析】根据题意得到m,n的相反数,分成三种情况⑴m,n;-m,-n ⑵m,-m;n,-n⑶m,-n;n,-m 分别计算,最后相加即可.【详解】解:依题意,m,n(m<n)的相反数为﹣m,﹣n,则有如下情况:m,n为一组,﹣m,﹣n为一组,有A=|m+n|+|(﹣m)+(﹣n)|=2m+2nm,﹣m为一组,n,﹣n为一组,有A=|m+(﹣m)|+|n+(﹣n)|=0m,﹣n为一组,n,﹣m为一组,有A=|m+(﹣n)|+|n+(﹣m)|=2n﹣2m所以,所有A的和为2m+2n+0+2n﹣2m=4n故选:C.本题主要考查了新定义的理解,注意分类讨论是解题的关键.7.B解析:B【分析】直接根据算术平方根的定义计算即可.【详解】,∴5故选B.【点睛】此题主要考查了算术平方根,关键是掌握算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.8.C解析:C【分析】无限不循环小数是无理数,根据定义解答.【详解】=1.1是有理数;,是有理数;是无理数;D. 227是分数,属于有理数,故选:C.【点睛】此题考查无理数的定义,熟记定义是解题的关键.9.A解析:A【分析】的点可能是哪个.【详解】∵12,的点可能是点P.故选A.此题主要考查了在数轴上表示数的方法,以及数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,要熟练掌握.10.A解析:A 【分析】根据立方根与平方根的定义即可求出答案. 【详解】2=25, ∴25的平方根是±5, ﹣125的立方根是﹣5, ∴a =±5,b =﹣5, 当a =5时,原式=5﹣(﹣5)=10, 当a =﹣5时,原式=﹣5﹣(﹣5)=0, 故选:A . 【点睛】本题考查平方根与立方根,解题的关键是熟练运用平方根与立方根的定义,本题属于基础题型.二、填空题 11.8 【解析】解:当a >b 时,a☆b= =a,a 最大为8;当a <b 时,a☆b==b,b 最大为8,故答案为:8.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.解析:8 【解析】解:当a >b 时,a ☆b =2a b a b++- =a ,a 最大为8;当a <b 时,a ☆b =2a b a b++-=b ,b 最大为8,故答案为:8.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.12.. 【分析】先根据题意求得、、、,发现规律即可求解.解:∵a1=3 ∴,,,,∴该数列为每4个数为一周期循环, ∵∴a2020=. 故答案为:. 【点睛】此题主要考查规律的探索,解析:43. 【分析】先根据题意求得2a 、3a 、4a 、5a ,发现规律即可求解. 【详解】 解:∵a 1=3∴22223a ==--,()321222a ==--,4241322a ==-,523423a ==-, ∴该数列为每4个数为一周期循环, ∵20204505÷= ∴a 2020=443a =. 故答案为:43. 【点睛】此题主要考查规律的探索,解题的关键是根据题意发现规律.13.> 【解析】∵ . , ∴ , ∴ ,故答案为>.解析:> 【解析】∵10.52-=-=20-> ,∴0> ,∴0.5> ,故答案为>.14.﹣2或﹣1或0或1或2. 【分析】 有三种情况:①当时,[x]=-1,(x )=0,[x )=-1或0, ∴[x]+(x )+[x )=-2或-1;②当时,[x]=0,(x )=0,[x )=0, ∴[x]解析:﹣2或﹣1或0或1或2. 【分析】 有三种情况:①当10x -<<时,[x ]=-1,(x )=0,[x )=-1或0, ∴[x ]+(x )+[x )=-2或-1;②当0x =时,[x ]=0,(x )=0,[x )=0, ∴[x ]+(x )+[x )=0;③当01x <<时,[x ]=0,(x )=1,[x )=0或1, ∴[x ]+(x )+[x )=1或2;综上所述,化简[x ]+(x )+[x )的结果是-2或﹣1或0或1或2. 故答案为-2或﹣1或0或1或2.点睛:本题是一道阅读理解题.读懂题意并进行分类讨论是解题的关键. 【详解】 请在此输入详解!15.; 【解析】观察这一列数,各项的符号规律是奇数项为负,偶数项为正,故有, 又因为,,,,,所以第n 个数的绝对值是, 所以第个数是,第n 个数是,故答案为-82,. 点睛:本题主要考查了有理数的混合运解析:82-;2(1)(1)n n -⋅+ 【解析】观察这一列数,各项的符号规律是奇数项为负,偶数项为正,故有(1)n-,又因为2211=+,2521=+,21031=+,21741=+,,所以第n 个数的绝对值是21n +,所以第9个数是92(1)(91)82-⋅+=-,第n 个数是2(1)(1)nn -⋅+,故答案为-82,2(1)(1)n n -⋅+.点睛:本题主要考查了有理数的混合运算,规律探索问题通常是按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律,揭示的式子的变化规律,常常把变量和序列号放在一起加以比较,就比较容易发现其中的规律.16.-2 【分析】根据1与它前面的那个数的差的倒数,即,即可求得、、……,然后根据得到结果出现的规律,即可确定.【详解】解:=……所以数列以,,三个数循环,所以==故答案为:.【解析:-2【分析】根据1与它前面的那个数的差的倒数,即111n n a a +=-,即可求得2a 、3a 、4a ……,然后根据得到结果出现的规律,即可确定2019a .【详解】解:1a =13 2131213a ==-312312a ==--411123a ==+ …… 所以数列以13,32,2-三个数循环, 20193673÷=所以2019a =3a =2-故答案为:2-.【点睛】通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.17.-3【分析】先确定的范围,再确定的范围,然后根据题意解答即可.【详解】解:∵3<<4∴-3<<-2∴-3故答案为-3.【点睛】本题考查了无理数整数部分的有关计算,确定的范围是解答本解析:-3【分析】1⎡⎣的范围,然后根据题意解答即可.【详解】解:∵34∴-3<1--2∴1⎡=⎣-3故答案为-3.【点睛】18.255【分析】根据材料的操作过程,以及常见的平方数,可知分别求出255和256进行几次操作,即可得出答案.【详解】解:∴对255只需要进行3次操作后变成1,∴对256需要进行4次操作解析:255【分析】根据材料的操作过程,以及常见的平方数,可知分别求出255和256进行几次操作,即可得出答案.【详解】解:25515,3,1,⎡⎤===⎣⎦ ∴对255只需要进行3次操作后变成1,25616,4,2,1,⎡⎤====⎣⎦ ∴对256需要进行4次操作后变成1,∴只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是255; 故答案为:255.【点睛】本题考查了估算无理数的大小应用,主要考查学生的阅读能力和猜想能力,同时也要考了一个数的平方数的计算能力.19.【分析】点对应的数为该半圆的周长.【详解】解:半圆周长为直径半圆弧周长即故答案为:.【点睛】本题考查数轴上的点与实数的关系.明确的长即为半圆周长是解答的关键. 解析:12π+【分析】点O '对应的数为该半圆的周长.【详解】解:半圆周长为直径+半圆弧周长即12π+故答案为:12π+.【点睛】 本题考查数轴上的点与实数的关系.明确OO '的长即为半圆周长是解答的关键.20.【分析】观察分析可得,,,则将此规律用含自然数n(n≥1)的等式表示出来是【详解】由分析可知,发现的规律用含自然数n(n≥1)的等式表示出来是故答案为:【点睛】本题主要考查二次根式,找(1)n n =+≥ 【分析】=(2=+(3=+n(n ≥1)的等式表示出来是(1)n n =+≥ 【详解】由分析可知,发现的规律用含自然数n(n ≥1)的等式表示出来是(1)n n =+≥(1)n n =+≥ 【点睛】本题主要考查二次根式,找出题中的规律是解题的关键,观察各式,归纳总结得到一般性规律,写出用n 表示的等式即可.三、解答题21.(1)48;(2)28【分析】(1)根据题中所给的分析方法先求出这几个数的立方根都是两位数,然后根据第二和第三步求出个位数和十位数即可.(2)根据题中所给的分析方法先求出这几个数的立方根都是两位数,然后根据第二和第三步求出个位数和十位数即可.【详解】解:(1)第一步:10=100=,11059210100000000<<,10100∴<,∴能确定110592的立方根是个两位数.第二步:110592的个位数是2,38512=,∴能确定110592的立方根的个位数是8.第三步:如果划去110592后面的三位592得到数110,,则45<<,可得4050<,由此能确定110592的立方根的十位数是4,因此110592的立方根是48;(2)第一步:10=100=,1000219521000000<<,10100∴<,∴能确定21952的立方根是个两位数.第二步:21952的个位数是2,38512=,∴能确定21952的立方根的个位数是8.第三步:如果划去21952后面的三位952得到数21,23<,可得2030,由此能确定21952的立方根的十位数是2,因此21952的立方根是28.28=,故答案为:28.【点睛】本题主要考查了数的立方,理解一个数的立方的个位数就是这个数的个位数的立方的个位数是解题的关键,有一定难度.22.(1)11222n n n ---=,理由见解析;(2)01220192222++++的个位数字为5.【分析】(1)找规律,发现等式满足11222n n n ---=,证明,即可.(2)利用公式11222n n n ---=,分别表示每个项,利用相消法,计算结果,即可.【详解】(1)11222n n n ---=理由是:122n n -- 11122n n +--=-11222n n --=⨯-()1212n -=-⨯12n -=(2)原式=()()()()1021322020201922222222-+-+-++-2020022=-()505421=-505161=-因为6的任何整数次幂的个位数字为6.所以505161-的个位数字为5,即01220192222++++的个位数字为5. 【点睛】本题考查了与数字运算有关的规律题,仔细观察发现规律是解题的关键.23.(1)111n n -+;(2)①20152016;②1n n +;(3)10074032. 【分析】(1)观察所给的算式可得:分子为1,分母为两个相邻整数的分数可化为这两个整数的倒数之差,由此即可解答;(2)根据所得的规律把各分数进行转化,再进行分数的加减运算即可解答;(3)先提取14,类比(2)的运算方法解答即可. 【详解】(1)()11n n + =111n n -+; (2)①1111...12233420152016++++⨯⨯⨯⨯=11111122334-+-+-+…+1120152016-=112016-=20152016; ②()1111...1223341n n ++++⨯⨯⨯⨯+=11111122334-+-+-+…+111n n -+=111n -+=1n n +; (3)1111 (24466820142016)++++⨯⨯⨯⨯ =14(1111 (12233410071008)++++⨯⨯⨯⨯), =14(11111122334-+-+-+…+1110071008-), =14(111008-), =14×10071008 =10074032. 【点睛】本题考查了有理数的运算,根据题意找出规律是解决问题的关键.24.(1)2.24;(2)①5,②3-【分析】(1近似值的方法解答即可;(22的范围,再根据规定解答即可;的整数部分a b 的值,再代入所求式子化简计算即可.【详解】解:(1)因为2224,39==,所以23,<<因为222.2 4.84,2.3 5.29==,所以2.2 2.3<<,因为222.23 4.9729,2.24 5.0176==,所以2.23 2.24,<< 因为222.236 4.999696,2.237 5.004169==,所以2.236 2.237<<,2.24≈.(2)①因为3.12=9.61,3.22=10.24,所以3.1 3.2<<,所以5.12 5.2<<,所以2⎤⎦=5;故答案为:5;②因为12,23<<<,所以1,2a b ==,所以原式12=)12123=-== 【点睛】本题考查了利用夹逼法求算术平方根的近似值、对算术平方根的整数和小数部分的认识以及实数的简单计算,属于常考题型,正确理解题意、熟练掌握算术平方根的相关知识是解题关键.25.【分析】根据互为相反数的两个数的和等于0列出方程,再根据非负数的性质列方程求出x 、y 的值,然后求出z 的值,再根据平方根的定义解答.【详解】,∴x+1=0,2-y=0,解得x=-1,y=2,∵z 是64的方根,∴z=8所以,x y z -+=-1-2+8=5,所以,x y z -+的平方根是【点睛】此题考查非负数的性质,相反数,平方根的定义,解题关键在于掌握几个非负数的和为0时,这几个非负数都为0.26.(1)2550;(2)50505150a m +【分析】(1)利用所给规律计算求解即可;(2)先去括号,再分组利用所给规律计算.【详解】解:(1)原式()()()21004985052=++++⋅⋅⋅++102252550=⨯=(2)原式()()23100234101a a a a m m m m =+++⋅⋅⋅+++++⋅⋅⋅+50505150a m =+【点睛】本题考查的知识点是去括号与添括号、有理数的加法、合并同类项,灵活运用加法的运算律是解此题的关键.。
实数知识点总结及练习题
)(无限不循环小数负有理数正有理数无理数⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧--⎩⎨⎧---)()32,21()32,21()()3,2,1()3,2,1,0(无限循环小数有限小数整数负分数正分数小数分数负整数自然数整数有理数、、 ⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧实数第一章 勾股定理姓名 座号 班级一、勾股定理:直角三角形两直角边的平方和等于斜边c 的平方,即222c b a =+二、勾股定理的逆定理:如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。
三、勾股数:满足222c b a =+的三个正整数,称为勾股数。
常见的勾股数组有:(3,4,5);(5,12,13);(8,15,17);(7,24,25);(6,8,10);(9,12,15);(这些勾股数组的倍数仍是勾股数)第二章 实数一、实数的概念及分类1、实数的分类2、无理数:无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类: (1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等;二、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 就叫做a 的算术平方根。
特别地,0的算术平方根是0。
表示方法:记作“a ”,读作根号a 。
性质:正数和零的算术平方根都只有一个,零的算术平方根是零。
2、平方根:一般地,如果一个数x 的平方等于a ,即x 2=a ,那么这个数x 就叫做a 的平方根(或二次方根)。
表示方法:正数a 的平方根记做“a ±”,读作“正、负根号a ”。
性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。
开平方:求一个数a 的平方根的运算,叫做开平方。
0≥a注意a 的双重非负性:a ≥03、立方根一般地,如果一个数x 的立方等于a ,即x 3=a 那么这个数x 就叫做a 的立方根(或三次方根)。
七年级下册实数重点总结及常见习题
七年级下册实数重点总结及常见习题本文档将对七年级下册实数的重点知识进行总结,并提供一些常见题供练。
内容概述1. 实数的概念和分类:- 说明实数的概念及其包含的数的种类(自然数、整数、有理数、无理数)。
- 举例说明每个数的特点和应用。
2. 实数的运算性质:- 解释加法、减法、乘法、除法的运算规则。
- 强调实数运算的封闭性和交换律、结合律、分配律等性质。
3. 实数的比较和大小关系:- 论述实数之间的大小关系,如大于、小于、等于。
- 介绍不等式的表示方法和解不等式的基本思路。
4. 实数的绝对值:- 定义实数的绝对值及其性质。
- 通过具体示例演示绝对值的应用。
5. 实数的乘方和开方:- 介绍乘方与开方的概念,以及它们在实数范围内的计算规则。
常见题示例1. 判断题:1. 自然数是实数。
2. 无理数是整数。
3. 有理数是整数的子集。
4. 加法满足交换律。
5. 减法满足结合律。
2. 选择题:1. 下列数中是无理数的是(A)。
- A. √2- B. 0- C. 3/4- D. -52. 若 a 是有理数,b 是无理数,则 a + b 一定是(B)。
- A. 整数- B. 无理数- C. 有理数- D. 自然数3. 对于任意正整数 n,下列哪个不是整数(D)。
- A. n + 1- B. n - 1- C. -n- D. √n以上题仅为示例,以帮助学生复和巩固所学的实数知识。
参考资料。
实数知识点总结及练习题
复习:实数知识点总结一、平方根:如果a x =2,那么x 叫做a 的平方根(或二次方根)。
记作a x ±=性质:(1)平方根号里的数是非负数,即0≥a(2)正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根。
例 1、36的平方根是 ;16的算术平方根是 .2、如果102=x ,则x 是一个 数,x 的整数部分是 .3、=22 ,()23-= ,213= ,()=-225 ,20= , 综上所述,=2a .4、()=29 ,()=236 ,()=⎪⎭⎫ ⎝⎛-227 ,()=20 , 综上所述,()=2a .二、立方根:如果a x =3,那么x 叫做a 的立方根(或三次方根)。
记作3a x =性质:(1)立方根号里的数是任意实数(2)任意实数的立方根只有一个,且符号相同例 1、8的立方根是 ;327-= .2、=-3343 ,=-3343 ,则33433a3、37-的相反数是 .4、=33a ,()=33a .三、实数分类⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧ 0无限不循环小数负无理数正无理数无理数无限不循环小数有限小数或负分数正分数分数负整数正整数整数有理数实数说明:(1)实数与数轴上的点一一对应。
(2)相反数:a ,b 是实数且互为相反数b a b a -==+⇔,0(3)绝对值:设a 表示一个实数,则⎪⎩⎪⎨⎧<-=>=时当时当时当0 000 a a a a a a例 1、把下列各数分别填入相应的集合里:()2,2,3.0,1010010001.0,125,722,0,123-----•π 有理数集合:{ };无理数集合:{ };负实数集合:{ };2、2-的绝对值是,11-的绝对值是 .3+的相反数是,-的相反数的绝对值是 .4、计算:22322+-测试题:一、选择题:1、实数38 2π 34 310 25 其中无理数有()A 、 1个B 、 2个C 、 3个D 、 4个2、如果162=x ,则的值是()A 、 4B 、 -4C 、 4±D 、 2±3、下列说法正确的是()A 、 25的平方根是5B 、22-的算术平方根是2C 、 8.0的立方根是2.0D 、65是3625的一个平方根 4、下列说法其中错误的有( )个⑴无限小数都是无理数 ⑵无理数都是无限小数 ⑶带根号的数都是无理数⑷两个无理数的和还是无理数 (5)两个无理数的积还是无理数A 、 3B 、 1C 、 4D 、 25、如果x x -=2成立的条件是()A 、0≥xB 、0≤xC 、0>xD 、0<x6、下列说法错误的是()A 、2a 与2)(a -相等 B 、a 与a -互为相反数C 、3a 与3a -是互为相反数D 、a 与a -相等 7、b a ,的位置如图所示,则下列各式中有意义的是( ).A 、b a +B 、b a -C 、abD 、a b - 8、16的平方根是( ) A. 4 B. -4 C. 4± D. 2±9、下列说法:① 任意一个数都有两个平方根; ② 3的平方根是3的算术平方根 ; ③ -125的立方根是5±; ④23是一个分数; ⑤ 32-无意义。
(完整版)实数知识点和典型例题练习题总结(超全面)
(4)《实数》知识点总结及典型例题练习题第一节、平方根1.平方根与算数平方根的含义平方根:如果一个数的平方等于,那么数x 就叫做的平方根。
即,记作x=a a a x =2a±算数平方根:如果一个正数x 的平方等于a ,那么正数x 叫做a 的算术平方根,即x 2=a ,记作x=a 。
2.平方根的性质与表示 ⑴表示:正数的平方根用表示,叫做正平方根,也称为算术平方根,a a ±a 叫做的负平方根。
a -a ⑵一个正数有两个平方根:(根指数2省略)a ±0有一个平方根,为0,记作00=负数没有平方根⑶平方与开平方互为逆运算 开平方:求一个数的平方根的运算。
a == ()a a =2⎩⎨⎧-a a 00<≥a a ()a a =20≥a ⑷的双重非负性:且 (应用较广)a 0≥a 0≥a 例: 得知y x x =-+-440,4==y x ⑸如果正数的小数点向右或者向左移动两位,它的正的平方根的小数点就相应地向右或向左移动一位。
区分:4的平方根为 的平方根为 4开平方后,得____4________4=____(6)若,则0>>b a ba >(7)))0,0(0,0>≥=≥≥=⨯b a b a ba b a ab b a 典型习题:(1)求算数平方根与平方根1:求下列数的平方根36 0.09 (-4)² 0 102:求eg1中各数的平方根(2)解简单的二次方程3:281250x -= 4 :4(x+1)2=8(3)被开方数的意义5:若a 为实数,下列代数式中,一定是负数的是( )A. -a 2B. -( a +1)2C.-2aD.-(a -+1)6:实数a 在数轴上的位置如图所示,化简:2)2(1-+-a a (4):有关x 的取值范围目前中考的所有考点考点:例题:求使得下列各式成立的x 的取值范围7:53-x 8: 当______m 时,m -3有意义;当______m 时,33-m 有意义9:x-1110.等式1112-=+⋅-x x x 成立的条件是( ).A 、1≥xB 、1-≥x C 、11≤≤-x D 、11≥-≤或x(5)非负性知识点:总结:若几个非负数的和为零,则每个非负数都为零,这个性质在代数式求值中经常被使用.10.已知b a ,是实数,且有0)2(132=+++-b a ,求b a ,的值.11: .已知实数a 、b 、c 满足,+ =0,,求a+b+c 的值.2)21(-c 13.若,求x ,y 的值。
最新初中数学实数知识点总复习含解析
最新初中数学实数知识点总复习含解析最新初中数学实数知识点总复习含解析一、选择题 1.若320,a b -++=则+a b 的值是() A .2 B 、1 C 、0 D 、1-【答案】B【解析】试题分析:由题意得,3﹣a=0,2+b=0,解得,a=3,b=﹣2,a+b=1,故选B .考点:1.非负数的性质:算术平方根;2.非负数的性质:绝对值.2.如图,M 、N 、P 、Q 是数轴上的四个点,这四个点中最适合表示15﹣1的点是()A .点MB .点NC .点PD .点Q【答案】D【解析】【分析】15151的范围,即可得出答案.【详解】解:∵3.5154<<,∴2.51513<<,151的点是Q 点,故选D .【点睛】本题考查估算无理数的大小,实数与数轴.一般用夹逼法估算无理数.3.下列说法:①实数和数轴上的点是一一对应的;②无理数是开方开不尽的数;③负数没有立方根;④16的平方根是±416;⑤某数的绝对值,相反数,算术平方根都是它本身,则这个数是0,其中错误的是()A .0个B .1个C .2个D .3个【答案】D【解析】【详解】①实数和数轴上的点是一一对应的,正确;②无理数是开方开不尽的数,错误;③负数没有立方根,错误;④16的平方根是±4,用式子表示是,错误;⑤某数的绝对值,相反数,算术平方根都是它本身,则这个数是0,正确.错误的一共有3个,故选D .4.下列各数中比3大比4小的无理数是()A B C .3.1 D .103【答案】A【解析】【分析】由于带根号的且开不尽方是无理数,无限不循环小数为无理数,根据无理数的定义即可求解.【详解】>4,3<4∴选项中比3大比4.故选A .【点睛】此题主要考查了无理数的定义,解题时注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.5.下列说法:①任何数都有算术平方根;②一个数的算术平方根一定是正数;③2a 的算术平方根是a ;④算术平方根不可能是负数;⑤()24π-的算术平方根是4π-,其中不正确的个数是()A .2个B .3个C .4个D .5个【答案】B【解析】【分析】根据算术平方根的定义判断即可.【详解】负数没有算术平方根,①错误;0的算术平方根是0,②错误;2a 的算术平方根是a ,③错误;算术平方根不可能是负数,④正确;()24π-的算术平方根是4-π,⑤正确.所以不正确的个数为3个,选B .【点睛】掌握算术平方根的定义.注意:0的算术平方根是0、负数没有算术平方根.6.给出下列说法:①﹣0.064的立方根是±0.4;②﹣9的平方根是±3;=﹣3a;④0.01的立方根是0.00001,其中正确的个数是()A.1个B.2个C.3个D.4个【答案】A【解析】【分析】利用平方根和立方根的定义解答即可.【详解】①﹣0.064的立方根是﹣0.4,故原说法错误;②﹣9没有平方根,故原说法错误;③3a-=﹣3a,故原说法正确;④0.000001的立方根是0.01,故原说法错误,其中正确的个数是1个,故选:A.【点睛】此题考查平方根和立方根的定义,熟记定义是解题的关键.7.如图所示,数轴上表示3、13的对应点分别为C、B,点C是AB的中点,则点A表示的数是()A.13B.13C.13D13【答案】C【解析】=-,解得:13C.点C是AB的中点,设A表示的数是c1333c点睛:本题考查了实数与数轴的对应关系,注意利用“数形结合”的数学思想解决问题.8.下列说法正确的是()A.任何数的平方根有两个B.只有正数才有平方根C.负数既没有平方根,也没有立方根D.一个非负数的平方根的平方就是它本身【答案】D【解析】A、O的平方根只有一个即0,故A错误;B、0也有平方根,故B错误;C、负数是有立方根的,比如-1的立方根为-1,故C错误;D、非负数的平方根的平方即为本身,故D正确;故选D.9.一个自然数的算术平方根是x ,则它后面一个自然数的算术平方根是( ).A .x +1B .x 2+1C 1 D【答案】D【解析】一个自然数的算术平方根是x ,则这个自然数是2,x 则它后面一个数的算术平方根是.故选D.10.下列式子中,计算正确的是( )A 0.6B 13C ±6D 3【答案】D【解析】A 选项中,因为2(0.6)0.36-=,所以0.6-=A 中计算错误;B 13==,所以B 中计算错误;C 6=,所以C 中计算错误;D 选项中,因为3=-,所以D 中计算正确;故选D.11.1是0.01的算术平方根,③错误;在同一平面内,过定点有且只有一条直线与已知直线垂直,④错误故选:A【点睛】本题考查概念的理解,解题关键是注意概念的限定性,如④中,必须有限定条件:在同一平面内,过定点,才有且只有一条直线与已知直线垂直.12.下列五个命题:①如果两个数的绝对值相等,那么这两个数的平方相等;②内错角相等;③在同一平面内,垂直于同一条直线的两条直线互相平行;④两个无理数的和一定是无理数;⑤坐标平面内的点与有序数对是一一对应的.其中真命题的个数是()A .2个B .3个C .4个D .5个【答案】B【解析】【分析】根据平面直角坐标系的概念,在两直线平行的条件下,内错角相等,两个无理数的和可以是无理数也可以是有理数,进行判断即可.【详解】①正确;②在两直线平行的条件下,内错角相等,②错误;③正确;④反例:两个无理数π和-π,和是0,④错误;⑤坐标平面内的点与有序数对是一一对应的,正确;故选:B.【点睛】本题考查实数,平面内直线的位置;牢记概念和性质,能够灵活理解概念性质是解题的关键.13.已知点P的坐标为(a,b)(a>0),点Q的坐标为(c,3),且|a﹣,将线段PQ向右平移a个单位长度,其扫过的面积为20,那么a+b+c的值为()A.12 B.15 C.17 D.20【答案】C【解析】【分析】由非负数的性质得到a=c,b=7,P(a,7),故有PQ∥y轴,PQ=7-3=4,由于其扫过的图形是矩形可求得a,代入即可求得结论.【详解】∵且|a-c=0,∴a=c,b=7,∴P(a,7),PQ∥y轴,∴PQ=7-3=4,∴将线段PQ向右平移a个单位长度,其扫过的图形是边长为a和4的矩形,∴4a=20,∴a=5,∴c=5,∴a+b+c=5+7+5=17,故选C.【点睛】本题主要考查了非负数的性质,坐标的平移,矩形的性质,能根据点的坐标判断出PQ∥y 轴,进而求得PQ是解题的关键.14.在-1.414,0,π,227,3.14,3.212212221…,这些数中,无理数的个数为( )A .5B .2C .3D .4【答案】C【解析】【分析】根据无理数的概念解答即可.【详解】-1.414,0,π,227,3.14,3.212212221…,这些数中,无理数有:π,3.212212221…,无理数的个数为:3个故选:C【点睛】本题考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.15.用“☆”定义一种新运算:对于任意有理数x 和y ,21x y a x ay =++☆(a 为常数),如:2223231231a a a a =?+?+=++☆.若123=☆,则48☆的值为()A .7B .8C .9D .10 【答案】C【解析】【分析】先根据123=☆计算出a 的值,进而再计算48☆的值即可.【详解】因为212a 2a 13=++=☆,所以2a 2a 2+=,则()224a 8a 14a 2a 1421948=++=++=?+=☆,故选:C .【点睛】此题考查了定义新运算以及代数式求值.熟练运用整体代入思想是解本题的关键.16.计算2|=()A . 1B .1﹣C .﹣1D .3 【答案】D【解析】【分析】根据绝对值的性质去掉绝对值的符号后进行合并即可.【详解】原式=1+3+2﹣3=3,故选D .【点睛】本题考查了实数的运算,熟练掌握绝对值的性质是解本题的关键.17.如图,数轴的单位长度为1,如果点A 表示的数是-1,那么点B 表示的数是( ).A .0B .1C .2D .3【答案】D【解析】【分析】直接利用数轴结合,A B 点位置进而得出答案.【详解】解:∵数轴的单位长度为1,如果点A 表示的数是-1,∴点B 表示的数是:2故选:D .【点睛】此题主要考查了实数轴,正确应用数形结合分析是解题关键.18.10最接近的整数是( ).A .3B .4C .5D .6【答案】A【解析】【分析】由于91016<<91016<10与9的距离小于16与10的距离,可得答案.【详解】由于91016<<91016<10与9的距离小于16与10的距离,可得答案.解:∵2239,416==,∴3104<<,10与9的距离小于16与10的距离,10最接近的是3.故选:A .【点睛】本题考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题.19.实数,a b 在数轴上对应点的位置如图所示,则下列结论正确的是()A .a b <B .a b <C .0a b +>D .0a b -> 【答案】A【解析】【分析】根据数轴得a<0,再根据实数的加法法则,减法法则依次判断即可.【详解】由数轴得a<0,∴a+b<0,a-b<0,故A 正确,B 、C 、D 错误,故选:A.【点睛】此题考查数轴,实数的大小比较,实数的绝对值的性质,加法法则,减法法则.20.如图,数轴上表示实数3的点可能是( )A .点PB .点QC .点RD .点S【答案】A【解析】【分析】33的点可能是哪个.【详解】∵132,3的点可能是点P .故选A .【点睛】此题主要考查了在数轴上表示数的方法,以及数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,要熟练掌握.。
实数的运算 习题精选及答案一
精品文档实数的运算习题精选(一)知识与技能1.选择:(1)下列各式是最简二次根式的是 ( )1 2.17502C..D.B. A321??2????221?x,9x?1,?a?1,b?2,b?0中,计算结果一定是二次(2)在??2??根式的有 ( )A.2个 B.3个 C.4个 D.5个2.计算:??2;0.02 (1)??22??;?2.1 (2)??2;?5?7 (3)2??3?4.(4)????4??3.化简下列各式:25?16; (1)4???7;3? (2)729; (3)7; (4)16????;?16??125?25 (5)精品文档.精品文档4?121. (6)0.09.化简下列各式:47;1 (1)25;(2321;3 (3)51;(4)45 1.6.?(5) 数学思考2不是最简二次根式要求被开方数是整数,且这个整数不含能开得尽方的因数.对于5 ?有下列两种化简方法:最简二次根式,如何化简22______.???_____ (1)555?22_____.??_____?(2) 5?5573.;试着用上述的方法化简下列各式:87解决问题2RtQ?I是电阻,;RI是热量,单位:J;物理学中的焦耳定律:是电流,单位:A(Q??。
1A)0(I,t=51 R=5001J已知s)是时间,单位:;t单位:.Q=1 ,,s求.结果精确到.开阔视野精品文档.精品文档实数范围内的因式分解有些在有理数范围内不能分解的多项式,在实数范围内能继续分解.????2.??x?77x?x7如:在实数范围内分解下列因式:23;?x (1)44;y? (2)23;3x?x?2 (3)????2240;1?x??x2 (4)21.?2xx? (5)答案知识与技能B)(2(1)C1.35(4) 12 3)-2)4.41(2.(1)0.02(12205797(6100 3.(1)20 (2))( (3)27 (4)5)431021441?5225)(3(4.(1))(35 (2))558515数学思考1432171010105?2..,?;?,)(1)(2255778455?5精品文档.精品文档解决问题??22.AI?I2.0?5?51,Q?I1001Rt,即?开阔视野????3xx?(1)??????222?yy?2y?(2)??23x? 3)(??????26xx?7?x6?)4(????2?21x??1x? 5()精品文档.。
《实数》知识点归纳与练习
10、实数:有理数和无理数统称为实数。实数与数轴上的点一一对应。
练习:
1、易错点:求下列各数的算术平方根。 (-4)2
的立方根=
2、比较大小 8与 4与 与 与 (作差法)
3、(解题关键:1、在平方根和算术平方根中,被开方数≧0;
2、算术平方根、绝对值、完全平方的非负性,几个非负数的和为0,则每一个非负数为0.)
2.(10分)用48米长的篱笆在空地上围成一个绿化场地,现有两种设计方案:一种是围成正方形的场地,一种是围成圆形的场地,试问选用哪一种方案围成的面积较大?
《实数》必背知识点:
1、平方:指数是2的乘方。
2、相反数:只有符号不同的两个数,如a的相反数是-a,0的相反数仍是0。
若a与b互为相反数,则a+b=0.
3、绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.
任何实数的绝对值都是非负数, ≧0.
互为相反数的两个数的绝对值相等, = 。
4、倒数:0没有倒数。正数的倒数是正数,负数的倒数是负数。
若a与b互为倒数,则ab=1.
5、平方根:如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根,0的平方根是0,负数没有平方根。
a的平方根记为 (a≧0),读作“正负根号a”,a叫做被开方数。
6、算术平方根:如果一个正数的平方等于a,那么这个正数叫做a的算术平方根,0的算术平方根为0。
10.下列说法中正确的是[ ]
A.在数轴上表示 的点在表示2与3的两点之间 B. 的相反数是
C.距离原点 个单位的点所表示的数是 D.一个实数,它不是正实数就是负实数
11.下列说法正确的是( )
实数知识点与经典例题
七年级下实数知识点总结及经典例题讲解第一部分 知识点总结考点一、实数的概念及分类 3分1、实数的分类正有理数有理数 零 有限小数和无限循环小数实数 负有理数正无理数无理数 无限不循环小数负无理数整数包括正整数、零、负整数;正整数又叫自然数;正整数、零、负整数、正分数、负分数统称为有理数;2、无理数无理数有三个条件:1是小数;2是无限小数;3不循环.在理解无理数时,要抓住“无限不循环”这一点,归纳起来有四类: 1开方开不尽的数,如32,7等;2有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; 3有特定结构的数,如…等;考点二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数是一对数只有符号不同的两个数叫做互为相反数,零的相反数是零,从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=-b,反之亦成立;2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0;零的绝对值是它本身,若|a|=a,则a ≥0;若|a|=-a,则a ≤0;正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小;3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立;倒数等于本身的数是1和-1;零没有倒数;考点三、平方根、算数平方根和立方根1、平方根如果一个数的平方等于a,那么这个数就叫做a 的平方根或二次方跟;一个数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根; 正数a 的平方根记做“a ”;2、算术平方根正数a 的正的平方根叫做a 的算术平方根,记作“a ”;正数和零的算术平方根都只有一个,零的算术平方根是零;a a ≥00≥a==a a 2 -a a <0 ;注意a 的双重非负性: a ≥03、立方根如果一个数的立方等于a,那么这个数就叫做a 的立方根或a 的三次方根; 一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零;注意:33a a -=-,这说明三次根号内的负号可以移到根号外面;4、n 次方根若一个数的n 次方等于a ,那么这个数叫做a 的n 次方根,表示a 的n 次方根, 读作“n 次根号a ”,a 叫做被开方数,n 叫做根指数;求一个数的n 次方根的运算叫做开 n 次方;要点:① 正数的偶次方根有两个,它们互为相反数,正数的奇次方根只有一个;② 零的任何次方根是零;③ 负数没有偶次方根,只有奇次方根,且只有一个;考点四、科学记数法和近似数1、有效数字一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字;2、科学记数法把一个数写做n a 10⨯±的形式,其中101<≤a ,n 是整数,这种记数法叫做科学记数法;考点五、实数大小的比较1、数轴规定了原点、正方向和单位长度的直线叫做数轴画数轴时,要注意上述规定的三要素缺一不可;解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用;在数轴上,如果点A 、点B 所对应的数分别是a 、b ,那么A 、B 两点的距离为: AB =||b a -;2、实数大小比较的几种常用方法1数轴比较:在数轴上表示的两个数,右边的数总比左边的数大;2求差比较:设a 、b 是实数,,0b a b a >⇔>-,0b a b a =⇔=-b a b a <⇔<-03求商比较法:设a 、b 是两正实数,;1;1;1b a ba b a b a b a b a <⇔<=⇔=>⇔> 4绝对值比较法:设a 、b 是两负实数,则b a b a <⇔>;5平方法:设a 、b 是两负实数,则b a b a <⇔>22;考点六、实数的运算 做题的基础,分值相当大1、加法交换律 a b b a +=+2、加法结合律 )()(c b a c b a ++=++3、乘法交换律 ba ab =4、乘法结合律 )()(bc a c ab =5、乘法对加法的分配律 ac ab c b a +=+)(6、实数混合运算时,对于运算顺序规定实数混合运算时,将运算分为三级,加减为一级运算,乘除为二级运算,乘方为三级运算;同级运算时,从左到右依次进行;不是同级的混合运算,先算乘方,再算乘除,而后才算加减;运算中如有括号时,先做括号内的运算,按小括号、中括号、大括号的顺序进行;7、有理数除法运算法则除以一个不等于零的数,等于乘以这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;零除以任何一个不为零的数,商都是零;8、什么叫有理数的乘方幂底数指数相同因数相乘的积的运算叫乘方,乘方的结果叫幂,相同因数的个数叫指数,这个因数叫底数;记作: a n9、有理数乘方运算的法则是什么负数的奇次幂是负数,负数的偶次幂是正数;正数的任何次幂都是正数;零的任何正整数幂都是零;10、分数指数幂()()00m m n na a a a -=≥=>几点说明:1上式中m 、n 为正整数,n>12当m 与n 互素时,如果n 为奇数,那么分数指数幂中的底数a 可为负数 3整数指数幂和分数指数幂统称为有理数指数幂有理数指数幂运算性质:设为0,0.,a b p q >>有理数,那么1;p q p q p q p q a a a a a a +-=÷=; ,2()p q pq a a =; 3();()p p p p p p a a ab a b b b == 第二部分 经典题型 例1 填空: 1254的平方根是 ,81的算术平方根是 ; 2 的平方等于169,169的算术平方根是 . 3若||a a =-,则a ;若||1a a =-,则a ;若|5|5a a -=-,则a ; 4若2x >,则2____x -= 35-的绝对值等于 . 3.14____-=π.5把20492用四舍五入法保留两个有效数字的近似值为A20000 B 42.010⨯ C 42.110⨯ D 42.0510⨯例2 已知16)2(2=x ,y 是2)5(-的正的平方根,求代数式yx x y x x-++的值.例3 将下列实数按从小到大的顺序排列,并用“<”连接.π,5-,52-,0,12-π.例4 数a 、b 在数轴上的位置如图所示:化简:222)()1()1(b a b a ---++例7 已知a 是7的整数部分,b 是7的小数部分,求b -7a 的值例8 在实数中,绝对值等于它本身的数有 .个 个 个 D.无数个例9 一组数22,16,27,2,14.3,31--π 这几个数中,无理数的个数是 A. 2 B. 3 C. 4 D. 5例10 下列说法中,不正确的是 .A. 3是2)3(-的算术平方根B. ±3是2)3(-的平方根C. -3是2)3(-的算术平方根D.-3是3)3(-的立方根例11 下列运算正确的是 ; A 、任何数都有平方根 ; B 、-9的立方根是-3 ;C 、0的算术平方根是0 ;D 、8的立方根是±3;例12 16的平方根是 ; A 、4 ; B 、±4 ; C 、2 ; D 、±2 例13 2是___的平方根;1-2的相反数是 ;若x 的立方根是41-,则x = 例14 计算: _____________)4()3(22=-+-ππ例15 将下列各数由小到大重新排成一列,并用“<”号连接起来:-π, 0, 23, -,例16 计算 14×25 ; 2 3064.0- 3 22513-例17 化简 1 25863--- 297125.01692163-+÷⨯-3 ⎪⎪⎭⎫ ⎝⎛-÷⎪⎪⎭⎫ ⎝⎛6561213232b a b a4 )3()6)(2(656131212132b a b a b a -÷-例18 设y x ,为实数,且已知021=-++y x ,求yx .例19 实数,a b 在数轴上对应的点如图,化简:||||||||||a b b a b a a ++-+--实数的整数部分与小数部分在化简与计算中,常常出现确定一个实数的整数部分与小数部分问题,应先判断已知实数的取值范围,从而确定其整数部分,然后再确定其小数部分.实数小数部分一定要为正数,所以正、负实数的整数部分与小数部分确定方法存在区别: ⑴对于正实数,即实数>0时,整数部分直接取与其最接近的两个整数中最小的正整数,小数部分=原数-整数部分.如实数,在整数9—10之间,则整数部分为9,小数部分为=.⑵对于负实数,即实数<0时,整数部分则取与其最接近的两个整数中最小的负整数,小数部分=原数-整数部分.如实数,在整数-10—-9之间,则整数部分为-10,小数部分为-10=.例1.已知+1的整数部分为a ,小数部分为b ,求a 、b 的值. 解:∵2<<3 ∴3<+1<4 ∴a=3,b=+1-3=-2例2.若x 、y 分别是8-的整数部分与小数部分,求2xy -y 2的值. 解:∵3<<4 ∴4<8-<5 ∴x=4,y=8--4=4- 2xy -y 2=y2x -y=4-4+=5 例3.已知的整数部分为a ,小数部分为b ,求a 2+b 2的值. 解:∵==+1 又2<<3 ∴3<+1<4 ∴a=3,b=+1-3=-2∴a 2+b 2=32+-22=18-4例4.设x=, a 是x 的小数部分,b 是-x 的小数部分.则a 3+b 3+3ab= . 解:由x==+1 而1<<2 ∴2<+1<3 ∴x 的整数部分为2,小数部分a=+1-2=-1 又∵-x=--1 ∴-3<--1<-2∴-x的整数部分为-3,小数部分b=--1――3=2-∴a+b=1 ∴a3+b3+3ab=a+ba2-ab+b2+3ab= a2+2ab+b2=a+b2=1。
(完整word版)初一年级实数所有知识点总结及常考题提高难题压轴题练习[含答案及解析]
初一实数所有知识点总结和常考题知识点:一、实数的概念及分类1、实数的分类 正有理数 有理数 零 有限小数和无限循环小数实数 负有理数正无理数无理数 无限不循环小数负无理数整数包括正整数、零、负整数。
正整数又叫自然数。
正整数、零、负整数、正分数、负分数统称为有理数。
2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等;二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。
2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。
零的绝对值时它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。
正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
4. 实数与数轴上点的关系:每一个无理数都可以用数轴上的一个点表示出来,数轴上的点有些表示有理数,有些表示无理数,实数与数轴上的点就是一一对应的,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都是表示一个实数。
三、平方根、算数平方根和立方根1、平方根(1)平方根的定义:如果一个数x 的平方等于a ,那么这个数x 就叫做a 的平方根.即:如果a x =2,那么x 叫做a 的平方根.(2)开平方的定义:求一个数的平方根的运算,叫做开平方.开平方运算的被开方数必须是非负数才有意义。
(3)平方与开平方互为逆运算:±3的平方等于9,9的平方根是±3(4)一个正数有两个平方根,即正数进行开平方运算有两个结果;一个负数没有平方根,即负数不能进行开平方运算(5)符号:正数a 的正的平方根可用a 表示,a 也是a 的算术平方根;正数a 的负的平方根可用-a 表示.(6)a x =2 <—> a x ±=a 是x 的平方 x 的平方是ax 是a 的平方根 a 的平方根是x2、算术平方根(1)算术平方根的定义: 一般地,如果一个正数x 的平方等于a ,即a x =2,那么这个正数x 叫做a 的算术平方根.a 号a”,a 叫做被开方数.规定:0的算术平方根是0.也就是,在等式a x =2 (x ≥0)中,规定a x =。
最新实数的运算--习题精选及答案(一)
实数的运算习题精选(一)知识与技能1.选择:(1)下列各式是最简二次根式的是 ( )AC.(2))0b>根式的有 ( )A.2个 B.3个 C.4个 D.5个2.计算:(1)2 ;(2)2 ;(3)2; -(4)2.⎛-⎝3.化简下列各式:4.化简下列各式:(5)数学思考最简二次根式要求被开方数是整数,且这个整数不含能开得尽方的因数.最简二次根式,如何化简?有下列两种化简方法:___________.===__________.===解决问题物理学中的焦耳定律:2Q I Rt =(Q 是热量,单位:J ;I 是电流,单位:A ;R 是电阻,单位:Ω;t 是时间,单位:s).已知Q=1 001J ,R=5Ω ,t=51 s ,求I .(结果精确到0.1A)。
开阔视野实数范围内的因式分解有些在有理数范围内不能分解的多项式,在实数范围内能继续分解.如:(27.x x x -=+在实数范围内分解下列因式:(1)23;x -(2)44;y -(3)23;x -+(4)()()221240;x x -+- (5)22 1.x x --答案知识与技能1.(1)C (2)B2.(1)0.02(2)4.41(3)-35(4) 123.(1)20 (2)(5)(6)22034.(1(2(3(3(5) 数学思考(1 (2==解决问题()22,1001551, 2.0.Q I Rt I I A ==⨯⨯≈即开阔视野(1)(x x +(2)()(22y y y ++(3)(2x(4)()(27x x x ++(5)(11x x --。
七年级下册实数基础知识总结及常见练习
七年级下册实数基础知识总结及常见练习一、实数的概念和性质1. 实数的定义实数是包括有理数和无理数在内的数的集合。
2. 实数的分类实数可以分为有理数和无理数两类。
有理数是可以表示为两个整数之比的数,无理数是不能表示为两个整数之比的数。
3. 实数的性质- 实数满足传递性,即若a < b且b < c,则a < c。
- 实数满足加法和乘法的结合律、交换律和分配律。
- 实数满足相反数存在性,即对于任意实数a,都存在一个实数-b,使得a + (-b) = 0。
- 实数满足乘法逆元存在性,即对于任意非零实数a,都存在一个实数1/a,使得a × (1/a) = 1。
二、实数的运算1. 实数的加法和减法实数的加法满足交换律和结合律。
两个实数相加得到的实数称为它们的和。
减法可以看作是加法的逆运算。
2. 实数的乘法和除法实数的乘法满足交换律和结合律。
两个实数相乘得到的实数称为它们的积。
除法可以看作是乘法的逆运算。
三、实数的比较与排序1. 实数的大小比较实数可以通过比较大小来确定它们的相对大小关系。
常用的比较符号有小于号(<)、大于号(>)、小于等于号(≤)和大于等于号(≥)。
2. 实数的排序实数可以通过大小比较来进行排序。
从小到大排列实数可以用升序表示,从大到小排列实数可以用降序表示。
四、实数的常见练1. 给出下列实数的有理数和无理数表示形式:π,√5,-3,0.25。
2. 计算下列实数的和:-2.5 +3.7。
3. 计算下列实数的差:4.2 - (-1.8)。
4. 计算下列实数的积:0.6 × (-2.5)。
5. 计算下列实数的商:-1.5 ÷ 0.5。
五、总结本文总结了七年级下册实数基础知识,包括实数的定义和分类、实数的性质、实数的运算、实数的比较与排序,并提供了常见练习题供练习。
掌握实数的基础知识对于数学的学习和应用具有重要意义。
初中数学实数知识点总复习含答案解析(1)
初中数学实数知识点总复习含答案解析(1) 一、选择题1.1?0,?-,?,?0.10100100013π⋅⋅⋅(相邻两个1之间依次多一个0),其中无理数是()个.A.1 B.2 C.3 D.4【答案】B【解析】【分析】根据无理数的定义(无理数是指无限不循环小数)判断即可.无理数就是无限不循环小数,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,因此,【详解】4==,013是有理数.∴无理数有:﹣π,0.1010010001….共有2个.故选B.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…等有这样规律的数.2.把-( )A B.C.D【答案】A【解析】【分析】由二次根式-a是负数,根据平方根的定义将a移到根号内是2a,再化简根号内的因式即可.【详解】∵1a-≥,且0a≠,∴a<0,∴-,∴-=故选:A.【点睛】此题考查平方根的定义,二次根式的化简,正确理解二次根式的被开方数大于等于0得到a 的取值范围是解题的关键.3.若a 、b 分别是6-13的整数部分和小数部分,那么2a-b 的值是( ) A .3-3 B .4-13 C .13 D .4+13【答案】C【解析】根据无理数的估算,可知3<13<4,因此可知-4<-13<-3,即2<6-13<3,所以可得a 为2,b 为6-13-2=4-13,因此可得2a-b=4-(4-13)=13.故选C.4.已知,x y 为实数且110x y ++-=,则2012x y ⎛⎫ ⎪⎝⎭的值为( ) A .0B .1C .-1D .2012 【答案】B【解析】【分析】利用非负数的性质求出x 、y ,然后代入所求式子进行计算即可.【详解】由题意,得x+1=0,y-1=0,解得:x=-1,y=1,所以2012x y ⎛⎫ ⎪⎝⎭=(-1)2012=1, 故选B.【点睛】本题考查了非负数的性质,熟知几个非负数的和为0,那么每个非负数都为0是解题的关键.5.实数a 、b 在数轴上的位置如图所示,且|a|>|b|,则化简2a a b -+的结果为( )A .2a+bB .-2a+bC .bD .2a-b【答案】C【解析】试题分析:利用数轴得出a+b 的符号,进而利用绝对值和二次根式的性质得出即可:∵由数轴可知,b >0>a ,且 |a|>|b|, ∴()2a a b a a b b -+=-++=.故选C .考点:1.绝对值;2.二次根式的性质与化简;3.实数与数轴.6.实数,,a b c 在数轴上的对应点的位置如图所示,若||||a b <,则下列结论中一定成立的是( )A .0b c +>B .2a c +>C .1b a <D .0abc ≥【答案】A【解析】【分析】利用特殊值法即可判断.【详解】∵a<c<b ,||||a b <,∴0b c +>,故A 正确;若a<c<0,则2a c +>错误,故B 不成立; 若0<a<b ,且||||a b <,则1b a>,故C 不成立; 若a<c<0<b ,则abc<0,故D 不成立,故选:A.【点睛】 此题考查数轴上点的正负,实数的加减乘除法法则,熟记计算法则是解题的关键.7.如图,已知x 2=3,那么在数轴上与实数x 对应的点可能是( )A .P 1B .P 4C .P 2或P 3D .P 1或P 4【答案】D【解析】试题解析:∵x 2=3,∴3根据实数在数轴上表示的方法可得对应的点为P 1或P 4.故选D .8.若30,a -=则+a b 的值是( )A .2B 、1C 、0D 、1-【答案】B【解析】试题分析:由题意得,3﹣a=0,2+b=0,解得,a=3,b=﹣2,a+b=1,故选B . 考点:1.非负数的性质:算术平方根;2.非负数的性质:绝对值.9.的值应在( ) A .2.5和3之间B .3和3.5之间C .3.5和4之间D .4和4.5之间 【答案】C【解析】【分析】直接利用二次根式乘法运算法则化简,进而估算无理数的大小即可.【详解】== ∵3.52=12.25,42=16,12.25<13.5<16,∴3.5 4.故选:C.【点睛】本题考查了估算无理数的大小,正确进行二次根式的运算是解题的关键.10.下列五个命题:①如果两个数的绝对值相等,那么这两个数的平方相等;②内错角相等;③在同一平面内,垂直于同一条直线的两条直线互相平行;④两个无理数的和一定是无理数;⑤坐标平面内的点与有序数对是一一对应的.其中真命题的个数是( )A .2个B .3个C .4个D .5个【答案】B【解析】【分析】根据平面直角坐标系的概念,在两直线平行的条件下,内错角相等,两个无理数的和可以是无理数也可以是有理数, 进行判断即可.【详解】①正确;②在两直线平行的条件下,内错角相等,②错误;③正确;④反例:两个无理数π和-π,和是0,④错误;⑤坐标平面内的点与有序数对是一一对应的,正确;故选:B .【点睛】本题考查实数,平面内直线的位置;牢记概念和性质,能够灵活理解概念性质是解题的关键.11.设2a =.则a 在两个相邻整数之间,那么这两个整数是( ) A .1和2B .2和3C .3和4D .4和5 【答案】C【解析】【分析】<<56<<,进而可得出a 的范围,即可求得答案.【详解】<<∴56<<∴52262-<<-,即324<<,∴a 在3和4之间,故选:C .【点睛】此题主要考查了估算无理数的大小,利用完全平方数和算术平方根对无理数的大小进行估算是解题的关键.12.已知点P 的坐标为(a ,b )(a >0),点Q 的坐标为(c ,3),且|a ﹣,将线段PQ 向右平移a 个单位长度,其扫过的面积为20,那么a+b+c 的值为( )A .12B .15C .17D .20【答案】C【解析】【分析】由非负数的性质得到a =c ,b =7,P (a ,7),故有PQ ∥y 轴,PQ =7-3=4,由于其扫过的图形是矩形可求得a ,代入即可求得结论.【详解】∵且|a -c =0,∴a=c,b=7,∴P(a,7),PQ∥y轴,∴PQ=7-3=4,∴将线段PQ向右平移a个单位长度,其扫过的图形是边长为a和4的矩形,∴4a=20,∴a=5,∴c=5,∴a+b+c=5+7+5=17,故选C.【点睛】本题主要考查了非负数的性质,坐标的平移,矩形的性质,能根据点的坐标判断出PQ∥y 轴,进而求得PQ是解题的关键.13.若x使(x﹣1)2=4成立,则x的值是( )A.3 B.﹣1 C.3或﹣1 D.±2【答案】C【解析】试题解析:∵(x-1)2=4成立,∴x-1=±2,解得:x1=3,x2=-1.故选C.14.计算|1+3|+|3﹣2|=()A.23﹣1 B.1﹣23C.﹣1 D.3【答案】D【解析】【分析】根据绝对值的性质去掉绝对值的符号后进行合并即可.【详解】原式=1+3+2﹣3=3,故选D.【点睛】本题考查了实数的运算,熟练掌握绝对值的性质是解本题的关键.15.在数轴上标注了四段范围,如图,则表示8的点落在()A.段①B.段②C.段③D.段④【答案】C【解析】试题分析:2.62=6.76;2.72=7.29;2.82=7.84;2.92=8.41.∵ 7.84<8<8.41,∴2.82<8<2.92,∴2.8<2.9,③段上.故选C考点:实数与数轴的关系16.下列说法正确的是()A.无限小数都是无理数B.1125-没有立方根C.正数的两个平方根互为相反数D.(13)--没有平方根【答案】C【解析】【分析】根据无理数、立方根、平方根的定义解答即可.【详解】A、无限循环小数是有理数,故不符合题意;B、1125-有立方根是15-,故不符合题意;C、正数的两个平方根互为相反数,正确,故符合题意;D、﹣(﹣13)=13有平方根,故不符合题意,故选:C.【点睛】本题考查了无理数、立方根、平方根,掌握无理数、立方根、平方根的定义是解题的关键.17.)A.4和5之间B.5和6之间C.6和7之间D.7和8之间【答案】C【解析】【详解】解:由36<38<49,即可得67,故选C.18.估计值应在()A.3到4之间B.4到5之间C.5到6之间D.6到7之间【答案】A【解析】【分析】先根据二次根式乘法法则进行计算,得到一个二次根式后再利用夹逼法对二次根式进行估算即可得解.【详解】解:=<<∵91216<<∴34<<∴估计值应在3到4之间.故选:A【点睛】本题考查了二次根式的乘法、无理数的估算,熟练掌握相关知识点是解决问题的关键.19.下列命题中,真命题的个数有()①带根号的数都是无理数;②立方根等于它本身的数有两个,是0和1;③0.01是0.1的算术平方根;④有且只有一条直线与已知直线垂直A.0个B.1个C.2个D.3个【答案】A【解析】【分析】开方开不尽的数为无理数;立方根等于本身的有±1和0;算术平方根指的是正数;在同一平面内,过定点有且只有一条直线与已知直线垂直.【详解】仅当开方开不尽时,这个数才是无理数,①错误;立方根等于本身的有:±1和0,②错误;20.2在哪两个整数之间()A.4和5 B.5和6 C.6和7 D.7和8【答案】C【解析】【分析】222== 1.414≈,即可解答.【详解】222== 1.414≈,∴2 6.242≈,即介于6和7,故选:C .【点睛】本题考查了二次根式的运算以及无理数的估算,解题的关键是掌握二次根式的运算法则以及 1.414≈.。
第三章《实数》复习与小结(湘教版)
第三章《实数》复习与小结姓名班级分数一、选择题(本大题共21小题,共63.0分)1.下列说法中,其中不正确的有()①任何数都有算术平方根;②一个数的算术平方根一定是正数;③a2的算术平方根是a;④算术平方根不可能是负数.A.0个B.1个C.2个D.3个2.=()A.±2B.2C.±4D.43.的算术平方根是()A.-4B.4C.2D.-24.已知正方形的边长为a,面积为S,则()A.a=B.a=C.S=D.S=±5.25的平方根是()A.±5B.-5C.5D.256.如图将1、、、按下列方式排列.若规定(m,n)表示第m排从左向右第n个数,则(5,4)与(15,8)表示的两数之积是()A.1B.C.D.37.一个正数的平方根是2m+3和m+1,则这个数为()A.-B.C.D.1或8.已知≈1.414,不用计算器可直接求值的式子是()A. B. C. D.9.下列运算中,错误的有( )①,②,③,④.A.4个B.3个C.2个D.1个10.下列各式中,一定能成立的是( )A. B.C. D.11.下列各式中,正确的是( )A.=±4B.=-5C.-=D.-=12.已知x,y是实数,+y2-6y+9=0,则xy的值是()A.4B.-4C.D.-13.在不大于100的自然数中,既不是完全平方数(平方根是整数)也不是完全立方数(立方根是整数)的数的概率有( )A. B. C. D.14.已知实数a满足|2008-a|+=a,那么a-20082值是( )A.2009B.2008C.2007D.200615.下列三个说法或式子:①a2+a2=a4;②的平方根是±4;③若x<1,则.其中( )A.①②都正确B.②③正确C.只有③正确D.三个都错误16.下列语句正确的有( )个①-1是1的平方根②带根号的都是无理数③-1的立方根是-1 ④4的算术平方根是2.A.1B.2C.3D.417.下列计算正确的是( )A.=±2B.2x2+3x3=5x3C.3x•5x=15xD.(x2y)2=x4y218.下列说法:①平方等于64的数是8;②若a、b互为相反数,则=-1:③若|-a|=a,则(-a)3的值为负数;④若ab≠0,则+的取值在0,1,2,-2这四个数中,不可取的值是0.其中正确的个数为( )A.0个B.1个C.2个D.3个19.下列说法中,正确的个数是( )①实数包括有理数、无理数和零;②三角形的三边之比为,则三角形为等腰直角三角形;③幂的乘方,底数不变,指数相加;④平方根与立方根都等于它本身的数为0和1.A.4个B.3个C.2个D.1个20.下列说法正确的是( )A.6的平方根是B.对角线相等的四边形是矩形C.两个底角相等的梯形一定是等腰梯形D.近似数0.270有3个有效数字21.己知等腰三角形的两边a、b满足=0,则此等腰三角形的周长为( )A.7或8B.6或10C.6或7D.7或10二、填空题(本大题共13小题,共39.0分)22.若+=0,则的值为 ______ .23.已知一块长方形地的长与宽的比为3:2,面积为3174平方米,则这块地的长为______ 米.24.下面是一个某种规律排列的数阵:根据数阵的规律,第n行倒数第二个数是 ______ .(用含n的代数式表示)25.一个正整数m的两个平方根是2x-3和5-x,则这个正整数m的值是 ______ .26.若x2=4,y2=9,则|x+y|= ______ .27.研究下列算式:==2;==3;==4;==5;…请你找出规律,并用正整数n表示为:____________.28.的算术平方根是.29.如果的平方根是±3,则a=____________.30.x-2的平方根为±2,3x+y+1的立方根为3,则x2+y2的平方根为____________.31.若2x+1的平方根是±5,则=____________.32.已知+(y-2013)2=0,则x y=____________.33.已知x,y为实数,且,求5x+6y的值_________.34.的算术平方根是____________,(-5)0的立方根是____________;34030保留三个有效数字是____________,近似数3.06×105精确到____________位.三、解答题(本大题共6小题,共48.0分)35.观察图,每个小正方形的边长均为1.(1)图中阴影部分的面积是多少边长是多少?(2)估计边长的值在哪两个整数之间.(3)把边长在数轴上表示出来.36.若x,y均为实数,且满足等式,求a的值.37.若,求的值.38.(1)计算.;(2)若x、y是实数,,求的值.39.计算:(1)|| (2)(3)求x的值:①x2-24=25 ②(x-0.7)3=0.027.40.(1)计算:|-1|--(5-π)0+(2)已知,求的值.。
实数知识点和典型例题练习题总结(超全面)
实数知识点和典型例题练习题总结(超全面).doc实数知识点和典型例题练习题总结(超全面)引言实数是数学中最基本的数的概念之一,它包括有理数和无理数。
掌握实数的知识点对于解决各种数学问题至关重要。
本文档旨在全面总结实数的知识点和典型例题,以帮助学生深入理解和掌握实数的概念、性质和运算。
实数的定义与分类实数的定义实数是可以在数轴上表示的数,它包括有理数和无理数。
有理数有理数是可以表示为两个整数的比的数,即形式为 ( \frac{p}{q} ) 的数,其中 ( p ) 和 ( q ) 是整数,且 ( q \neq 0 )。
无理数无理数是不能表示为两个整数比的实数,例如圆周率 ( \pi ) 和黄金分割比 ( \phi )。
实数的性质有序性实数具有有序性,即对于任意两个实数 ( a ) 和 ( b ),要么 ( a < b ),要么 ( a > b ),或者 ( a = b )。
完备性实数的完备性指的是,任意实数的上界和下界都存在极限点。
稠密性实数具有稠密性,即在任意两个不同的实数之间,都存在无穷多个实数。
实数的运算加法实数的加法满足交换律和结合律。
减法实数的减法是加法的逆运算。
乘法实数的乘法同样满足交换律、结合律和分配律。
除法实数的除法是乘法的逆运算,但除数不能为零。
乘方实数的乘方表示将一个数自乘若干次。
开方实数的开方是乘方的逆运算,表示求一个数的 ( n ) 次根。
典型例题例题1:实数的比较给定两个实数 ( a = \sqrt{2} ) 和 ( b = \sqrt{3} ),比较它们的大小。
解答:由于 ( 2 < 3 ),因此 ( \sqrt{2} < \sqrt{3} ),即 ( a < b )。
例题2:实数的运算计算 ( (-3)^2 + \pi - \frac{1}{2} ) 的值。
解答:根据实数的运算法则,我们有 ( (-3)^2 = 9 ),所以 ( 9 + \pi - \frac{1}{2} )。
初一实数所有知识点总结和常考题提高难题压轴题练习(含答案解析)精编版
最新资料推荐初一实数所有知识点总结和常考题知识点:、实数的概念及分类1、实数的分类| 整数包括正整数、零、负整数。
| 正整数又叫自然数。
正整数、零、负整数、正分数、负分数统称为有理数2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类: (1)开方开不尽的数,女口 ,7,3 2等;(2) 有特定意义的数,如圆周率 n,或化简后含有n 的数,如n +8等;3(3) 有特定结构的数,如 0.1010010001…等; 二、 实数的倒数、相反数和绝对值1、 相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的 相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如 果a 与b 互为相反数,则有a+b=0,a=— b ,反之亦成立。
2、 绝对值一个数的绝对值就是表示这个数的点与原点的距离, |a|为。
零的绝对值时 它本身,也可看成它的相反数,若|a|=a ,则a^0;若|a|=-a ,贝U a ^)。
正数大于 零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
3、 倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
4、 实数与数轴上点的关系:每一个无理数都可以用数轴上的一个点表示出来, 数轴上的点有些表示有理数,有些表示无理数,实数与数轴上的点就是一一对应的,即每一个实数都可以用数轴上的一个点 来表示;反过来,数轴上的每一个点都是表示一个实数。
三、 平方根、算数平方根和立方根1、平方根(1) 平方根的定义:如果一个数x 的平方等于a ,那么这个数x 就叫做a 的平方根.即:厂正有理数有理数-零L 负有理数 无理数.正无理数-负无理数-有限小数和无限循环小数-无限不循环小数如果x2二a,那么x叫做a的平方根.(2) 开平方的定义:求一个数的 平方根的运算,叫做开平方•开平方 运算的被开方数必须是非负数才有意义。
实数知识点汇总及经典练习题(20211112205044)
第二章实数知识点汇总及经典练习题一,知识点概括1.实数的分类( 1)按实数的定义分类:自然数(0, 1,2,3)整数2,3)负整数 ( 1,有理数12整数、有限小数、无穷循环小数)正分数( ,3) (实数分数小数2()1 ,2)负分数 (23无理数正有理数负有理数( 无穷不循环小数)( 2)按实数的正负分类:正整数正有理数正实数正分数正无理数实数零(既不是正数也不是负数)负整数负有理数负实数负分数负无理数2.实数与数轴的关系每一个实数都能够用数轴上的一个点表示;反之,数轴上每一个点都表示一个实数,即数轴上的点与实数是一一对应关系.实数的运算(1)有理数的运算定律在实数范围内都合用,此中常用的运算定律有加法互换律、乘法互换律、加法联合律、乘法分派律、乘法联合律。
(2)在实数范围内进行运算的次序:先算乘方、开方,再算乘除,最后算加减。
运算中有括号的,先算括号内的,同一级运算从左到右挨次进行。
3、实数的大小比较常用方法:数轴表示法、作差法、平方法、估值法。
(1)在数轴上表示两个数的点,右侧的点表示的数大,左侧的点表示的数小。
(2)正数大于零,负数小于零;两个正数,绝对值大的较大;两个负数,绝对值大的较小。
(3)设 a,b 是随意两实数,若 a-b>0,则 a>b;若 a-b=0,则 a=b;若 a-b<0,则 a<b。
二、数轴(1)规定了原点、正方向和单位长度的直线叫做数轴。
(2)数轴的三因素为原点、正方向和单位长度。
数轴上的点与实数一一对应,全部的有理数都能够用数轴上的点表示,但数轴上的点所表示的不都是有理数。
三、相反数、倒数、绝对值1、只有符号不一样的两个实数,此中一个叫做另一个的相反数。
零的相反数是零。
若实数b 互为相反数,则a+b=0。
2、1 除以一个非零实数的商叫这个实数的倒数。
零没有倒数。
若实数a、b互为倒数,则a、ab=1。
3、从数轴上看,一个实数的绝对值是表示这个数的点走开原点距离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实数小结与复习习题精选(一)(一)判断题(对的在括号里打“√”,错的打“×”)
1.设a是实数,则3a>2a ()
2.设a是实数,则|a|=a ()
3.设a是实数,则阿a与1
a互为倒数()
4、.设a是实数,则(-a)2=-a2,(-a)3=-a3()
5.设a
()
6.无理数没有平方根()
7.数轴上的所有点都对应着有理数()。
(二)填空题
1.和数轴上的点一一对应的数集是______。
2.0.09的平方根是______,算术平方根是______。
4.如果一个正数的一个平方根是-a,那么这个数的另一个平方根是______,这个数的算术平方根是______。
(三)求下列各数的立方根
4.(-1)2n(n为整数)
5.(-5)3n(n为整数)
6.(-a)6n(n为整数)
(四)化简下列各式
(五)解下列各题
1.现有六块同样大小的正方形木板,面积之和为43350平方厘米,试求每块木板的边长。
2.已知:a=0.3,b=0.027,试求a、b的比例中项c。
3.已知:正方体的体积为400立方厘米,试求它的全面积(精确到0.01)。
4.一个圆形钢板,面积是250平方厘米,试求它的直径.(π取3.14,结果精确到0.01)。
习题答案
(一)
1.×
2.×
3.×
4.×
5.×
6.×
7.×
(二)
1.实数集
2.±0.3,0.3
3.±17,-5
4.a,|a|
(三)
(四)
(五)
1.85厘米
2.c=±0.09 3.325.72平方厘米4.17.85厘米。