高考文科导数考点汇总()

合集下载

导数文科高三知识点总结

导数文科高三知识点总结

导数文科高三知识点总结一、导数的概念及几何意义1. 导数的定义导数是函数在某一点的变化率,也可以理解为函数图像在某一点的切线斜率。

若函数y=f(x)在x=a处的导数存在,则称函数在x=a处可导,导数记作f'(a),即f'(a)=lim{h→0}[f(a+h)-f(a)]/h。

2. 导数的几何意义导数的几何意义即为函数图像在某一点的切线斜率,可以用于求解函数图像在某一点的切线方程,从而得出函数图像在该点的局部变化情况。

3. 导数的符号表示在通常情况下,导数的符号表示为f'(a),表示函数y=f(x)在x=a处的导数。

也可以用dy/dx表示函数y=f(x)的导数。

二、导数的计算方法1. 导数的计算公式(1)常数函数的导数若f(x)=c(c为常数),则f'(x)=0。

(2)幂函数的导数若f(x)=x^n(n为常数),则f'(x)=nx^(n-1)。

(3)指数函数的导数若f(x)=a^x(a>0且a≠1),则f'(x)=a^x·lna。

(4)对数函数的导数若f(x)=loga(x)(a>0且a≠1),则f'(x)=1/(x·lna)。

(5)三角函数的导数若f(x)=sinx,则f'(x)=cosx;若f(x)=cosx,则f'(x)=-sinx;若f(x)=tanx,则f'(x)=sec^2 x。

2. 复合函数的导数复合函数的导数计算可以根据链式法则进行,即若y=f(g(x)),则y'=(f'(g(x))·g'(x)。

3. 隐函数的导数若方程F(x,y)=0定义了函数y=f(x),则通过对方程两边求导,并利用隐函数求导公式可以求出y关于x的导数dy/dx。

4. 参数方程的导数若x=x(t)、y=y(t)定义了参数曲线C,可以通过对x(t)和y(t)分别求导来求出参数曲线的切线斜率,从而得出参数曲线的切线方程。

高考文科数学导数专题复习(最新整理)

高考文科数学导数专题复习(最新整理)

考点一 导数的计算
【例 1】 求下列函数的导数:
( ) 1 1
(1)y=exln x;(2)y=x x2+ + ; x x3
( ) 1
1
1
解 (1)y′=(ex)′ln x+ex(ln x)′=exln x+ex = ln x+ ex.(2)因为 y=x3+1+ ,
x
x
x2
( )1
2
所以 y′=(x3)′+(1)′+ ′=3x2- .
【训练 2】(2017·威海质检)已知函数 f(x)=xln x,若直线 l 过点(0,-1),并且与曲线 y=f(x)相切,则直
线 l 的方程为( )A.x+y-1=0 B.x-y-1=0 C.x+y+1=0 D.x-y+1=0
(2)∵点 (0, - 1)不 在 曲 线 f(x)= xln x 上 , ∴设 切 点 为 (x0, y0).又 ∵f′(x)= 1+ ln x, ∴
3
3
9
( )4 16a 8
1
- = - =0,解得 a= .
3 33
2
( ) ( ) ( ) ( ) 1
3
1
15
1
(2)由(1)得 g(x)= x3+x2 ex 故 g′(x)= x2+2x ex+ x3+x2 ex= x3+ x2+2x ex= x(x+1)(x+4)ex.令
2
2
2
22
2
g′(x)<0,得 x(x+1)(x+4)<0.解之得-1<x<0 或 x<-4.所以 g(x)的单调减区间为(-1,0),(-∞,-4).
xx
( ) ( ) 1
1
1
由 f′(x)=0 有 x= ,当 x∈ 0, 时,f′(x)<0,f(x)单调递减;当 x∈ ,+∞ 时,f′(x)>0,

高考文科数学知识点总结归纳(2篇)

高考文科数学知识点总结归纳(2篇)

高考文科数学知识点总结归纳第一,函数与导数主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。

第二,平面向量与三角函数、三角变换及其应用这一部分是高考的重点但不是难点,主要出一些基础题或中档题。

第三,数列及其应用这部分是高考的重点而且是难点,主要出一些综合题。

第四,不等式主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。

是高考的重点和难点。

第五,概率和统计这部分和我们的生活联系比较大,属应用题。

第六,空间位置关系的定性与定量分析主要是证明平行或垂直,求角和距离。

主要考察对定理的熟悉程度、运用程度。

第七,解析几何高考的难点,运算量大,一般含参数。

文科数学高频必考考点第一部分:选择与填空1.集合的基本运算(含新定集合中的运算,强调集合中元素的互异性);2.常用逻辑用语(充要条件,全称量词与存在量词的判定);3.函数的概念与性质(奇偶性、对称性、单调性、周期性、值域最大值最小值);4.幂、指、对函数式运算及图像和性质5.函数的零点、函数与方程的迁移变化(通常用反客为主法及数形结合思想);6.空间体的三视图及其还原图的表面积和体积;7.空间中点、线、面之间的位置关系、空间角的计算、球与多面体外接或内切相关问题;8.直线的斜率、倾斜角的确定;直线与圆的位置关系,点线距离公式的应用;9.算法初步(认知框图及其功能,根据所给信息,几何数列相关知识处理问题);10.古典概型,几何概型理科:排列与组合、二项式定理、正态分布、统计案例、回归直线方程、独立性检验;文科:总体估计、茎叶图、频率分布直方图;11.三角恒等变形(切化弦、升降幂、辅助角公式);三角求值、三角函数图像与性质;12.向量数量积、坐标运算、向量的几何意义的应用;13.正余弦定理应用及解三角形;14.等差、等比数列的性质应用、能应用简单的地推公式求其通项、求项数、求和;15.线性规划的应用;会求目标函数;16.圆锥曲线的性质应用(特别是会求离心率);17.导数的几何意义及运算、定积分简单求法18.复数的概念、四则运算及几何意义;19.抽象函数的识别与应用;第二部分:解答题第17题:向量与三角交汇问题,解三角形,正余弦定理的实际应用;第18题:(文)概率与统计(概率与统计相结合型)(理)离散型随机变量的概率分布列及其数字特征;第19题:立体几何①证线面平行垂直;面与面平行垂直②求空间中角(理科特别是二面角的求法)③求距离(理科:动态性)空间体体积;第20题:解析几何(注重思维能力与技巧,减少计算量)①求曲线轨迹方程(用定义或待定系数法)②直线与圆锥曲线的关系(灵活运用点差法和弦长公式)③求定点、定值、最值,求参数取值的问题;第21题:函数与导数的综合应用这是一道典型应用知识网络的交汇点设计的试题,是考查考生解题能力和文科数学素质为目标的压轴题。

高考复习文科函数与导数知识点总结

高考复习文科函数与导数知识点总结

函数与导数知识点复习测试卷(文)一、映射与函数1、映射 f:A→B 概念(1)A中元素必须都有________且唯一;(2)B 中元素不一定都有原象,且原象不一定唯一。

2、函数 f:A→B 是特殊的映射(1)、特殊在定义域 A 和值域 B都是非空数集。

函数 y=f(x)是“y是x 的函数”这句话的数学表示,其中 x是自变量,y是自变量 x的函数,f 是表示对应法则,它可以是一个解析式,也可以是表格或图象,也有只能用文字语言叙述.由此可知函数图像与垂直x轴的直线________公共点,但与垂直y轴的直线公共点可能没有,也可能是任意个。

(即一个x只能对应一个y,但一个y可以对应多个x。

)(2)、函数三要素是________,________和________,而定义域和对应法则是起决定作用的要素,因为这二者确定后,值域也就相应得到确定,因此只有定义域和对应法则二者完全相同的函数才是同一函数.二、函数的单调性在函数f(x)的定义域内的一个________上,如果对于任意两数x1,x2∈A。

当x1<x2时,都有________,那么,就称函数f(x)在区间A上是增加的,当x1<x2时,都有________,那么,就称函数f(x)在区间A上是减少的判断方法如下:1、作差(商)法(定义法)2、导数法3、复合函数单调性判别方法(同增异减)函数的最值函数y=f(x)的定义域为D,(1)存在x0∈D,使得f(x0)=M;(2)对于任意x∈D,都有________. M为最大值(3)存在x0∈D,使得f(x0)=M;(4)对于任意x∈D,都有________. M为最小值求函数最值的常用方法:(1)单调性法:先确定函数的单调性,再由单调性求最值;(2)图像法:先作出函数的图像,再观察其最高点、最低点,求出最值;(3)换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值.三.函数的奇偶性⑴偶函数:)()(x f x f =-设(b a ,)为偶函数上一点,则________也是图象上一点.偶函数的判定:两个条件同时满足①定义域一定要关于y 轴对称,例如:12+=x y 在)1,1[-上不是偶函数. ②满足________,或0)()(=--x f x f ,若0)(≠x f 时,1)()(=-x f x f . ⑵奇函数:)()(x f x f -=-设(b a ,)为奇函数上一点,则________也是图象上一点.奇函数的判定:两个条件同时满足①定义域一定要关于原点对称,例如:3x y =在)1,1[-上不是奇函数. ②满足________,或0)()(=+-x f x f ,若0)(≠x f 时,1)()(-=-x f x f 周期性(1)周期函数:对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有________, 那么就称函数y =f (x )为周期函数,称T 为这个函数的周期.(2)最小正周期:如果在周期函数f (x )的所有周期中________的正数,那么这个最小正数就叫做f (x )的最小正周期.※(1)函数的周期性反映了函数在整个定义域上的性质.对函数周期性的考查,主要涉及函数周期性的判断,利用函数周期性求值. (2)函数周期性的三个常用结论:①若f (x +a )=-f (x ),则T =2a ,②若f (x +a )=1f ?x ?,则T =2a ,③若f (x +a )=-1f ?x ?,则T =2a (a >0).※(1)关于奇偶性、单调性、周期性的综合性问题,关键是利用奇偶性和周期性将未知区间上的问题转化为已知区间上的问题.(2)掌握以下两个结论,会给解题带来方便:①f (x )为偶函数?f (x )=f (|x |).②若奇函数在x=0处有意义,则f(0)=0.四.二次函数幂函数1.二次函数(1)二次函数解析式的三种形式①一般式:f(x)=ax2+bx+c(a≠0).②顶点式:f(x)=________________③零点式:f(x)=________________(2)二次函数的图像和性质解析式f(x)=ax2+bx+c(a>0)f(x)=ax2+bx+c(a<0)图像定义域(-∞,+∞)(-∞,+∞)值域________单调性在________________上单调递减;在_______________上单调递增在________________上单调递增;在________________上单调递减对称性函数的图像关于x=-b2a对称2.幂函数(1)定义:形如_______(α∈R)的函数称为幂函数,其中x是自变量,α是常数.(2)幂函数的性质①幂函数在_______上都有定义;②幂函数的图像过定点_______;③当α>0时,幂函数的图像都过点(1,1)和(0,0),且在(0,+∞)上单调_______;④当α<0时,幂函数的图像都过点(1,1),且在(0,+∞)上单调_______.※(1)二次函数最值问题解法:抓住“三点一轴”数形结合,三点是指区间两个端点和中点,一轴指的是对称轴,结合配方法,根据函数的单调性及分类讨论的思想即可完成.(2)由不等式恒成立求参数取值范围的思路及关键①一般有两个解题思路:一是分离参数;二是不分离参数.②两种思路都是将问题归结为求函数的最值,至于用哪种方法,关键是看参数是否已分离.这两个思路的依据是:a≥f(x)恒成立?a≥f(x)max,a≤f(x)恒成立?a≤f(x)min.(3)幂函数的形式是y=xα(α∈R),其中只有一个参数α,因此只需一个条件即可确定其解析式.(4)在区间(0,1)上,幂函数中指数越大,函数图像越靠近x轴(简记为“指大图低”),在区间(1,+∞)上,幂函数中指数越大,函数图像越远离x轴.五.函数的变换①()()y f x y f x=⇒=-:将函数()y f x=的图象关于y轴对称得到的新的图像就是()y f x=-的图像;②()()y f x y f x=⇒=-:将函数()y f x=的图象关于x轴对称得到的新的图像就是()y f x=-的图像;③()|()|y f x y f x=⇒=:将函数()y f x=的图象在x轴下方的部分对称到x轴的上方,连同函数()y f x=的图象在x轴上方的部分得到的新的图像就是|()|y f x=的图像;④()(||)y f x y f x=⇒=:将函数()y f x=的图象在y轴左侧的部分去掉,函数()y f x=的图象在y轴右侧的部分对称到y轴的左侧,连同函数()y f x=的图象在y轴右侧的部分得到的新的图像就是(||)y f x=的图像.函数y=f(x)y=f(x+ a)a>0时,向左平移a个单位;a<0时,向右平移|a|个单位.y=f(x)a>0时,向上平移a个单位;a<0时,向下平移|a|+a 个单位.y=f(-x)y=f(-x)与y=f(x)的图象关于y轴对称.y=-f(x)y=-f(x)与y=f(x)的图象关于x轴对称.y=-f(-x)y=-f(-x)与y=f(x)的图象关于原点轴对称.y=f(|x |)y=f(|x|)的图象关于y轴对称,x≥0时函数即y=f(x),所以x<0时的图象与x≥0时y=f(x)的图象关于y轴对称.y=|f(x )|∵⎩⎨⎧<-≥==.0)(),()(),()(xfxfxfxfxfy;,∴y=|f(x)|的图象是y=f(x)≥0与y=f(x)<0图象的组合.y=)(1xf-y=)(1xf-与y=f(x)的图象关于直线y=x对称.注:(1)若对任意实数x,都有f(a+x)=f(a-x)成立,则x=a是函数f(x)的对称轴;(2)若对任意实数x,都有f(a+x)=f(b-x)成立,则x=2ba+是f(x)的对称轴.※(1)利用函数的图像研究函数的性质对于已知或易画出其在给定区间上图像的函数,其性质(单调性、奇偶性、周期性、最值(值域)、零点)常借助于图像研究,但一定要注意性质与图像特征的对应关系.(2)利用函数的图像可解决某些方程和不等式的求解问题,方程f(x)=g(x)的根就是函数f(x)与g(x)图像交点的横坐标;不等式f(x)<g(x)的解集是函数f(x)的图像位于g(x)图像下方的点的横坐标的集合,体现了数形结合思想.六、指数函数与对数函数的图像和性质一.指数函数(一) 指数与指数幂的运算1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N *.负数没有偶次方根;0的任何次方根都是0,记作00=n。

导数文科高三知识点汇总

导数文科高三知识点汇总

导数文科高三知识点汇总导数是高中数学中的重要概念,对于文科高三学生来说,熟练掌握导数的相关知识点,不仅可以为数学考试打下坚实的基础,还能在其他学科中发挥重要作用。

本文将对导数的相关知识点进行汇总整理,帮助文科高三学生系统地学习和应用导数。

一、导数的定义及基本概念(字数增加,不要求出现小标题)导数是函数在某一点上的变化率,是对函数的局部变化进行描述的工具。

设函数y=f(x),如果函数在点x处的导数存在,那么该导数表示函数在x处的切线斜率,并用f'(x)表示。

导数的基本概念包括导数的定义、导数的几何意义、导数的物理意义和导数的代数运算法则。

导数的定义是通过极限的概念来给出的,即f'(x)=limΔx→0[f(x+Δx)-f(x)]/Δx。

导数的几何意义是函数在某一点的斜率,可以表示函数曲线在该点的切线的斜率。

导数的物理意义是变化率,例如,速度可以看作是位移对时间的导数。

导数的代数运算法则包括常数因子、和差、乘法、除法以及复合函数等运算法则。

二、导数的计算方法(字数增加,不要求出现小标题)导数的计算方法可以根据函数的具体形式来进行推导和应用。

常见的导数计算方法包括基本初等函数的导数、幂函数的导数、指数函数的导数、对数函数的导数、三角函数和反三角函数的导数、复合函数的导数等。

基本初等函数的导数是指常数函数、恒等函数、多项式函数、有理函数、开方函数等的导数,这些函数都有对应的导数表达式。

幂函数的导数可以通过对数函数求导得到,指数函数的导数是指a^x的导数一定是a^xlna,其中a为底数,lna为自然对数。

对数函数的导数可以通过指数函数求导得到,三角函数和反三角函数的导数可以通过基本关系式和导数的定义进行推导。

复合函数的导数可以通过链式法则进行计算。

三、导数的应用(字数增加,不要求出现小标题)导数作为数学中的一项重要工具,具有广泛的应用场景。

在文科高三学习中,导数的应用不仅仅局限于数学学科,在其他学科中也能够发挥重要作用。

高考数学导数题型归纳(文科)

高考数学导数题型归纳(文科)

文科导数题型归纳请同学们高度重视:首先,关于二次函数的不等式恒成立的主要解法:1、分离变量;2变更主元;3根分布;4判别式法5、二次函数区间最值求法:(1)对称轴(重视单调区间)与定义域的关系(2)端点处和顶点是最值所在其次,分析每种题型的本质,你会发现大部分都在解决―不等式恒成立问题‖以及―充分应用数形结合思想‖,创建不等关系求出取值范围。

最后,同学们在看例题时,请注意寻找关键的等价变形和回归的基础一、基础题型:函数的单调区间、极值、最值;不等式恒成立;1、此类问题提倡按以下三个步骤进行解决:第一步:令f(x)0得到两个根;第二步:画两图或列表;第三步:由图表可知;其中不等式恒成立问题的实质是函数的最值问题,2、常见处理方法有三种:‘第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(&gt;0,=0,&lt;0)第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元);(请同学们参看2010省统测2)例1:设函数y f(x)在区间D上的导数为f(x),f(x)在区间D上的导数为g(x),若在区间D上,g(x)0恒成立,则称函数y f(x)在区间D上为―凸函数‖,已知实数m是常数,x4mx33x2f(x) 1262(1)若y f(x)在区间0,3上为―凸函数‖,求m的取值范围;(2)若对满足m2的任何一个实数m,函数f(x)在区间a,b上都为―凸函数‖,求b a的最大值.x4mx33x2x3mx23x 解:由函数f(x)得f(x)126232g(x)x2mx 3(1)y f(x)在区间0,3上为―凸函数‖,则g(x)x mx30 在区间[0,3]上恒成立解法一:从二次函数的区间最值入手:等价于gmax(x)02030g(0)m 2 09m330g(3)解法二:分离变量法:∵当x0时, g(x)x mx330恒成立,当0x3时, g(x)x mx30恒成立22x233等价于m x的最大值(0x3)恒成立,xx3而h(x)x(0x3)是增函数,则hmax(x)h(3) 2 xm 2(2)∵当m2时f(x)在区间a,b上都为―凸函数‖2则等价于当m2时g(x)x mx30 恒成立变更主元法2 再等价于F(m)mx x30在m2恒成立(视为关于m的一次函数最值问题)20F(2)x2x301x 12F(2)02x x30b a 2请同学们参看2010第三次周考:例2:设函数f(x)13x2ax23a2x b(0a1,b R) 3(Ⅰ)求函数f(x)的单调区间和极值;(Ⅱ)若对任意的x[a1,a2],不等式f(x)a恒成立,求a的取值范围. (二次函数区间最值的例子)解:(Ⅰ)f(x)x4ax3a x3a x a 220a 1令f(x)0,得f(x)令f(x)0,得f(x)的单调递减区间为(-,a)和(3a,+)∴当x=a时,f(x)极小值=233a b; 当x=3a时,f(x)极大值=b. 42 (Ⅱ)由|f(x)|≤a,得:对任意的x[a1,a2],a x4ax3a a恒成立①gmax(x)a22则等价于g(x)这个二次函数g(x)x4ax3a的对称轴x2a gmin(x) aa1a a2a(放缩法)0a1,即定义域在对称轴的右边,g(x)这个二次函数的最值问题:单调增函数的最值问题。

高考文科数学重要考点大全

高考文科数学重要考点大全

高考文科数学重要考点大全高考文科数学相对比理科数学而言会简单许多,想必很多人都想知道高考文科数学的核心知识点。

接下来是小编为大家整理的高考文科数学重要考点大全,希望大家喜欢!高考文科数学重要考点大全一考点一:集合与简易逻辑集合部分一般以选择题出现,属容易题。

重点考查集合间关系的理解和认识。

近年的试题加强了对集合计算化简能力的考查,并向无限集发展,考查抽象思维能力。

在解决这些问题时,要注意利用几何的直观性,并注重集合表示方法的转换与化简。

简易逻辑考查有两种形式:一是在选择题和填空题中直接考查命题及其关系、逻辑联结词、“充要关系”、命题真伪的判断、全称命题和特称命题的否定等,二是在解答题中深层次考查常用逻辑用语表达数学解题过程和逻辑推理。

考点二:函数与导数函数是高考的重点内容,以选择题和填空题的为载体针对性考查函数的定义域与值域、函数的性质、函数与方程、基本初等函数(一次和二次函数、指数、对数、幂函数)的应用等,分值约为10分,解答题与导数交汇在一起考查函数的性质。

导数部分一方面考查导数的运算与导数的几何意义,另一方面考查导数的简单应用,如求函数的单调区间、极值与最值等,通常以客观题的形式出现,属于容易题和中档题,三是导数的综合应用,主要是和函数、不等式、方程等联系在一起以解答题的形式出现,如一些不等式恒成立问题、参数的取值范围问题、方程根的个数问题、不等式的证明等问题。

考点三:三角函数与平面向量一般是2道小题,1道综合解答题。

小题一道考查平面向量有关概念及运算等,另一道对三角知识点的补充。

大题中如果没有涉及正弦定理、余弦定理的应用,可能就是一道和解答题相互补充的三角函数的图像、性质或三角恒等变换的题目,也可能是考查平面向量为主的试题,要注意数形结合思想在解题中的应用。

向量重点考查平面向量数量积的概念及应用,向量与直线、圆锥曲线、数列、不等式、三角函数等结合,解决角度、垂直、共线等问题是“新热点”题型.考点四:数列与不等式不等式主要考查一元二次不等式的解法、一元二次不等式组和简单线性规划问题、基本不等式的应用等,通常会在小题中设置1到2道题。

高考导数文科知识点

高考导数文科知识点

高考导数文科知识点导数是高中数学中的重要概念,也是文科生在高考中常遇到的知识点之一。

掌握导数的基本概念、计算方法以及应用是文科生成功应对高考数学考试的关键。

下面将为大家介绍高考导数文科知识点。

一、导数的基本概念导数是函数在某一点的瞬时变化率,也可以理解为函数图像上某一点处的切线斜率。

记函数f(x)的导数为f'(x),它表示函数在x处的导数值。

二、导数的计算方法1. 基本导数公式常函数:f(x) = c,其中c为常数,则其导数为0,即f'(x) = 0。

幂函数:f(x) = x^n,其中n为自然数,则其导数为f'(x) = nx^(n-1)。

指数函数:f(x) = a^x,其中a为大于0且不等于1的常数,则其导数为f'(x) = a^x * ln(a)。

对数函数:f(x) = log_a(x),其中a为大于0且不等于1的常数,则其导数为f'(x) = 1 / (x * ln(a))。

三角函数:f(x) = sin(x),f(x) = cos(x),f(x) = tan(x)等三角函数的导数可以通过求导法则得到。

2. 导数的基本运算法则常数乘法法则:[cf(x)]' = cf'(x),其中c为常数。

和差法则:[f(x) ± g(x)]' = f'(x) ± g'(x)。

积法则:[f(x)g(x)]' = f'(x)g(x) + f(x)g'(x)。

商法则:[f(x)/g(x)]' = (f'(x)g(x) - f(x)g'(x)) / g^2(x),其中分母g(x)不等于0。

三、导数的应用1. 切线方程给定函数f(x),求其在点(x0, f(x0))处的切线方程。

切线方程的斜率即为函数在该点的导数值,切线方程可以确定切线的斜率和截距。

2. 函数的单调性与极值通过导数的正负来判断函数的单调性。

高考复习文科导数知识点总结

高考复习文科导数知识点总结

高考复习文科导数知识点总结考纲要求知识点1.导数的几何意义:函数)(x f y =在点0x 处的导数的几何意义就是曲线)(x f y =在点))(,(0x f x 处的切线的斜率,也就是说,曲线)(x f y =在点P ))(,(0x f x 处的切线的斜率是)(0'x f ,切线方程为).)((0'0x x x f y y -=- 2.、几种常见函数的导数①'C 0=;②1')(-=n n nx x ; ③x x cos )(sin '=;④x x sin )(cos '-=;⑤a a a x x ln )('=;⑥xx e e =')(; ⑦a x x a ln 1)(log '=;⑧xx 1)(ln '= 3.导数的运算法则(1)'''()u v u v ±=±. (2)'''()uv u v uv =+. (3)'''2()(0)u u v uv v v v -=≠. 4. 极值的判别方法:(极值是在0x 附近所有的点,都有)(x f <)(0x f ,则)(0x f 是函数)(x f 的极大值,极小值同理)当函数)(x f 在点0x 处连续时,①如果在0x 附近的左侧)('x f >0,右侧)('x f <0,那么)(0x f 是极大值; ②如果在0x 附近的左侧)('x f <0,右侧)('x f >0,那么)(0x f 是极小值.也就是说0x 是极值点的充分条件是0x 点两侧导数异号,而不是)('x f =0①. 此外,函数不可导的点也可能是函数的极值点②. 当然,极值是一个局部概念,极值点的大小关系是不确定的,即有可能极大值比极小值小(函数在某一点附近的点不同).注①: 若点0x 是可导函数)(x f 的极值点,则)('x f =0. 但反过来不一定成立. 对于可导函数,其一点0x 是极值点的必要条件是若函数在该点可导,则导数值为零. 例如:函数3)(x x f y ==,0=x 使)('x f =0,但0=x 不是极值点.②例如:函数||)(x x f y ==,在点0=x 处不可导,但点0=x 是函数的极小值点.极值与最值区别:极值是在局部对函数值进行比较,最值是在整体区间上对函数值进行比较. 5.导数与单调性(1) 一般地,设函数 y = f ( x) 在某个区间可导,如果 f ′( x ) > 0 ,则 f ( x ) 为增函数;如果 f ′( x) < 0 ,则 f ( x) 为减函数;如果在某区间内恒有 f ′( x) = 0 ,则 f ( x) 为常数;(2)对于可导函数 y = f ( x) 来说, f ′( x ) > 0 是 f ( x ) 在某个区间上为增函数的充分非必要 条件, f ′( x ) < 0 是 f ( x ) 在某个区间上为减函数的充分非必要条件; (3)利用导数判断函数单调性的步骤:①求函数 f ( x ) 的导数 f ′( x ) ;②令 f ′( x ) > 0 解不等式,得 x 的范围,就是递增区间;③令 f ′( x) < 0 解不等式,得 x 的范围,就是递增区间。

导数文科高三知识点总结

导数文科高三知识点总结

导数文科高三知识点总结导数是高三文科学生必须掌握的重要数学概念。

它在微积分中具有广泛的应用,涉及到诸多与变化相关的问题。

下面是对导数相关知识点的总结。

1. 导数的定义导数可以理解为函数在某一点的瞬时变化率。

设函数y=f(x),则函数在点x处的导数定义如下:f'(x) = lim[(f(x+△x) - f(x))/△x] (△x → 0)2. 导函数与导数在导数的定义中,如果函数f(x)在区间内任意一点都有导数,那么这个函数就称为可导函数。

可导函数的导数又称为导函数,记作f'(x)。

3. 基本导数法则对于一些常见的函数,我们可以利用基本导数法则来求导数,以简化计算。

以下是一些常用的基本导数法则:a. 常数函数导数为0:(k)' = 0b. 幂函数导数:(x^n)' = nx^(n-1)c. 三角函数导数:- sinx 的导数为 cosx:(sinx)' = cosx- cosx 的导数为 -sinx:(cosx)' = -sinx- tanx 的导数为 sec^2x:(tanx)' = sec^2xd. 指数函数和对数函数导数:- e^x 的导数为 e^x:(e^x)' = e^x- ln|x| 的导数为 1/x:(ln|x|)' = 1/x4. 导数的四则运算(求导法则)导数运算符满足几个基本的四则运算法则:a. 常数乘以函数:(k·f(x))' = k·f'(x)b. 多项式函数的导数:(c1x^n1 + c2x^n2 + ... + cnx^nn)' = c1·n1x^(n1-1) + c2·n2x^(n2-1) + ... + cn·nnx^(nn-1)c. 函数加减法:(f(x) ± g(x))' = f'(x) ± g'(x)d. 函数乘法:- (f(x)g(x))' = f'(x)g(x) + f(x)g'(x)- (f(x)/g(x))' = (f'(x)g(x) - f(x)g'(x))/[g(x)]^2e. 复合函数:(f(g(x)))' = f'(g(x))·g'(x)5. 高阶导数高阶导数是指通过多次求导得到的导数。

导数及其应用-高考文科数学常考考点归纳总结

导数及其应用-高考文科数学常考考点归纳总结

解密05 导数及其应用 高考考点 命题分析 三年高考探源 考查频率

导数的概念、几何意义及计算 从近三年高考情况来看,导数的概念及计算一直是高考中的热点,对本知识的考查主要是导数的概念及其运算法则、导数的几何意义等内容,常以选择题或填空题的形式呈现,有时也会作为解答题中的一问.解题时要掌握函数在某一点处的导数定义、几何意义以及基本初等函数的求导法则,会求简单的复合函数的导数. 导数的应用也一直是高考的热点,尤其是导数与函数的单调性、极值、最值问题是高考考查的重点内容,一般以基本初等函数为载体,考查导数的相关知识及应用,题型有选择题、填空题,也有解答题中的一问,难度一般较大,常以把关题的位置出现.解题时要熟练运用导数与函数单调性、极值与最值之间的关系,理解导数工具性的作用,注重数学思想和方法的应用.

2018课标全国I 6 2018课标全国II 13 2018课标全国III 9、21(1) 2016课标全国III 15 2016课标全国II 16 ★★★★

导数的应用 2018课标全国I、II、

III 21 2017课标全国I 21 2017课标全国II 11、

21 2017课标全国III 11、21 2016课标全国I、II、

III 21

★★★★★

考点1 导数的概念及计算 题组一 导数的计算 调研1 已知函数fx的导函数为fx,且满足(其中e为自然对数的底数),则ef

A.e B.1e C.−1 D.1 【答案】B

【解析】根据题意,f(x)=2xf '(e)+lnx,其导数, 令x=e,可得,变形可得 故选B. 【名师点睛】本题考查导数的计算,注意f '(e)为常数,要正确求出函数f(x)的导数.根据题意,由函

数的解析式对f(x)求导可得,将x=e代入计算可得,变形可得答案.

☆技巧点拨☆ 1.导数计算的原则和方法 (1)原则:先化简解析式,使之变成能用八个求导公式求导的函数的和、差、积、商,再求导. (2)方法: ①连乘积形式:先展开化为多项式的形式,再求导; ②分式形式:观察函数的结构特征,先化为整式函数或较为简单的分式函数,再求导; ③对数形式:先化为和、差的形式,再求导; ④根式形式:先化为分数指数幂的形式,再求导; ⑤三角形式:先利用三角函数公式转化为和或差的形式,再求导. 2.运用基本初等函数求导公式和运算法则求函数()yfx在开区间(a,b)内的导数的基本步骤: (1)分析函数()yfx的结构和特征; (2)选择恰当的求导公式和运算法则求导; (3)整理得结果. 3.求较复杂函数的导数的方法 对较复杂的函数求导数时,先化简再求导.如对数函数的真数是根式或分式时,可用对数的性质将真数转化为有理式或整式求解更为方便;对于三角函数,往往需要利用三角恒等变换公式,将函数式进行化简,使函数的种类减少,次数降低,结构尽量简单,从而便于求导. 4.求复合函数的导数的关键环节和方法步骤 (1)关键环节: ①中间变量的选择应是基本函数结构; ②正确分析出复合过程; ③一般是从最外层开始,由外及里,一层层地求导; ④善于把一部分表达式作为一个整体; ⑤最后结果要把中间变量换成自变量的函数. (2)方法步骤: ①分解复合函数为基本初等函数,适当选择中间变量; ②求每一层基本初等函数的导数; ③每层函数求导后,需把中间变量转化为自变量的函数.

高考文科数学导数真题汇编(带答案)

高考文科数学导数真题汇编(带答案)

高考文科数学导数真题汇编(带答案)高考数学文科导数真题汇编答案一、客观题组4.设函数f(x)在R上可导,其导函数f'(x),且函数f(x)在x=-2处取得极小值,则函数y=xf'(x)的图象可能是。

5.设函数f(x)=x^2-2x,则f(x)的单调递减区间为。

7.设函数f(x)在R上可导,其导函数f'(x),且函数f(x)在x=2处取得极大值,则函数y=xf'(x)的图象可能是。

8.设函数f(x)=1/(2x-lnx),则x=2为f(x)的极小值点。

9.函数y=1/(2x-lnx)的单调递减区间为(0,1]。

11.已知函数f(x)=x^2+bx+c的图象经过点(1,2),且在点(2,3)处的切线斜率为4,则b=3.12.已知函数f(x)=ax^2+bx+c的图象过点(1,1),且在点(2,3)处的切线斜率为5,则a=2.二、大题组2011新课标】21.已知函数f(x)=aln(x/b)+2,曲线y=f(x)在点(1,f(1))处的切线方程为x+2y-3=0.(1) 求a、b的值;(2) 证明:当x>1,且x≠b时,f(x)>2ln(x/b)。

解析】1) f'(x)=a/(xlnb)+2/x,由于直线x+2y-3=0的斜率为-1/2,且过点(1,f(1)),解得a=1,b=1.2) 由(1)知f(x)=ln(x)+1,所以f(x)-2ln(x/b)=ln(x/b)+1>0,当x>1,且x≠b时,f(x)>2ln(x/b)成立。

2012新课标】21.设函数f(x)=ex-ax-2.(1) 求f(x)的单调区间;(2) 若a=1,k为整数,且当x>0时,(x-k)f'(x)+x+1>0,求k的最大值。

解析】1) f(x)的定义域为(-∞,+∞),f'(x)=ex-a,若a≤0,则f'(x)>0,所以f(x)在(-∞,+∞)单调递增。

高考文科导数考点汇总精品文档12页

高考文科导数考点汇总精品文档12页

高考导数文科考点总结一、考试内容导数的概念,导数的几何意义,几种常见函数的导数; 两个函数的和、差、基本导数公式,利用导数研究函数的单调性和极值,函数的最大值和最小值。

导数概念与运算知识清单 1.导数的概念函数y=f(x),如果自变量x 在x 0处有增量x ∆,那么函数y 相应地有增量y ∆=f (x 0+x ∆)-f (x 0),比值x y ∆∆叫做函数y=f (x )在x 0到x 0+x ∆之间的平均变化率,即x y ∆∆=x x f x x f ∆-∆+)()(00。

如果当0→∆x 时,x y∆∆有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。

即f (x 0)=0lim →∆x x y∆∆=0lim →∆x x x f x x f ∆-∆+)()(00。

说明:(1)函数f (x )在点x 0处可导,是指0→∆x 时,x y ∆∆有极限。

如果x y∆∆不存在极限,就说函数在点x 0处不可导,或说无导数。

(2)x ∆是自变量x 在x 0处的改变量,0≠∆x 时,而y ∆是函数值的改变量,可以是零。

由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤(可由学生来归纳): (1)求函数的增量y ∆=f (x 0+x ∆)-f (x 0);(2)求平均变化率x y ∆∆=x x f x x f ∆-∆+)()(00; (3)取极限,得导数f’(x 0)=x yx ∆∆→∆0lim。

2.导数的几何意义函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率。

也就是说,曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率是f’(x 0)。

相应地,切线方程为y -y 0=f/(x 0)(x -x 0)。

3.几种常见函数的导数:4.两个函数的和、差、积的求导法则法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差),即:(.)'''vuvu±=±法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个函数乘以第二个函数的导数,即:.)('''uvvuuv+=若C为常数,则'''''0)(CuCuCuuCCu=+=+=.即常数与函数的积的导数等于常数乘以函数的导数:.)(''Cu Cu=法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方:⎪⎭⎫⎝⎛vu‘=2''vuvvu-(v≠0)。

高三文科导数知识点总结

高三文科导数知识点总结

高三文科导数知识点总结一、导数的概念和求导法则导数是微积分中的重要概念,它描述了函数在某一点上的变化率。

在高三文科中,导数是不可或缺的重要知识点。

1. 导数的定义:函数f(x)在x=a点的导数记作f'(a),表示函数在x=a点的变化率。

导数可以表示为极限的形式:f'(a) = lim (h→0) (f(a+h)-f(a))/h2. 导数的几何意义:导数可以理解为函数图像在某一点处的切线斜率。

当导数为正时,函数在该点上升;当导数为负时,函数在该点下降;当导数为零时,函数存在极值点。

3. 常见的导数法则:- 常数导数法则:常数的导数为零。

例如,f(x) = a,其中a为常数,则f'(x) = 0。

- 幂函数导数法则:幂函数的导数为其指数乘以系数。

例如,f(x) = ax^n,其中a和n为常数,则f'(x) = anx^(n-1)。

- 求和、差和乘积的导数法则:求和、差和乘积函数的导数可以从各个项分别求导后再相加、相减、相乘得到。

- 链式法则:对于复合函数,可以通过链式法则来求导。

链式法则的基本形式为:若y = f(g(x)),则y' = f'(g(x)) * g'(x)。

二、导数的应用导数不仅仅是一个数学概念,也有许多实际应用。

在高三文科中,导数的应用主要包括函数的最值、曲线的凹凸性和函数的图像。

1. 函数的最值:通过求导数,可以判断函数的最值点。

当函数的导数为零时,函数可能存在极大值或极小值。

通过求导数和判断导数的符号,可以找到函数的最值点。

2. 曲线的凹凸性:函数的导数还可以判断曲线的凹凸性。

当函数的二阶导数大于零时,函数是凹的;当函数的二阶导数小于零时,函数是凸的。

3. 函数的图像:通过函数的导数,可以对函数的图像进行分析。

函数图像在导数为正的区间上升,在导数为负的区间下降。

函数的极值点对应导数为零的点。

三、常见的导数函数在高三文科中,涉及到许多常见的函数的导数,这些函数在解题过程中常见且重要。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考导数文科考点总结 一、考试内容 导数的概念,导数的几何意义,几种常见函数的导数; 两个函数的和、差、基本导数公式,利用导数研究函数的单调性和极值,函数的最大值和最小值。 导数概念与运算知识清单 1.导数的概念 函数y=f(x),如果自变量x在x0处有增量x,那么函数y相应地有增量y=f(x0+x)-

f(x0),比值xy叫做函数y=f(x)在x0到x0+x之间的平均变化率,即xy=xxfxxf)()(00。如果当0x时,xy有极限,我们就说函数y=f(x)在点x0处可导,并把这个极限叫做f(x)在点x0处的导数,记作f’(x0)或y’|0xx。

即f(x0)=0limxxy=0limxxxfxxf)()(00。 说明:

(1)函数f(x)在点x0处可导,是指0x时,xy有极限。如果xy不存在极限,就说函数在点x0处不可导,或说无导数。 (2)x是自变量x在x0处的改变量,0x时,而y是函数值的改变量,可以是零。 由导数的定义可知,求函数y=f(x)在点x0处的导数的步骤(可由学生来归纳): (1)求函数的增量y=f(x0+x)-f(x0);

(2)求平均变化率xy=xxfxxf)()(00; (3)取极限,得导数f’(x0)=xyx0lim。 2.导数的几何意义 函数y=f(x)在点x0处的导数的几何意义是曲线y=f(x)在点p(x0,f(x0))处的切线的斜率。也就是说,曲线y=f(x)在点p(x0,f(x0))处的切线的斜率是f’(x0)。相应地,切线方程为y-y0=f/(x0)(x-x0)。 3.几种常见函数的导数:

①0;C ②1;nnxnx ③(sin)cosxx; ④(cos)sinxx; ⑤();xxee⑥()lnxxaaa; ⑦1lnxx; ⑧1lglogaaoxex. 4.两个函数的和、差、积的求导法则 法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差), 即: (.)'''vuvu 法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个 函数乘以第二个函数的导数,即:.)('''uvvuuv 若C为常数,则'''''0)(CuCuCuuCCu.即常数与函数的积的导数等于常数乘以函数的导数: .)(''CuCu 法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,

再除以分母的平方:vu‘=2''vuvvu(v0)。 形如y=fx()的函数称为复合函数。复合函数求导步骤:分解——求导——回代。法则:y'|X= y'|U ·u'|X 导数应用知识清单 单调区间:一般地,设函数)(xfy在某个区间可导, 如果'f)(x0,则)(xf为增函数; 如果'f0)(x,则)(xf为减函数; 如果在某区间内恒有'f0)(x,则)(xf为常数; 2.极点与极值: 曲线在极值点处切线的斜率为0,极值点处的导数为0;曲线在极大值点左侧切线的斜率为正,右侧为负;曲线在极小值点左侧切线的斜率为负,右侧为正; 3.最值: 一般地,在区间[a,b]上连续的函数f)(x在[a,b]上必有最大值与最小值。 ①求函数ƒ)(x在(a,b)内的极值; ②求函数ƒ)(x在区间端点的值ƒ(a)、ƒ(b); ③将函数ƒ )(x的各极值与ƒ(a)、ƒ(b)比较,其中最大的是最大值,其中最小的是最小值。 二、热点题型分析 题型一:利用导数研究函数的极值、最值。 1. 32()32fxxx在区间1,1上的最大值是 2 2.已知函数2)()(2xcxxxfy在处有极大值,则常数c= 6 ; 3.函数331xxy有极小值 -1 ,极大值 3 题型二:利用导数几何意义求切线方程 1.曲线34yxx在点1,3处的切线方程是 2yx 2.若曲线xxxf4)(在P点处的切线平行于直线03yx,则P点的坐标为 (1,0) 3.若曲线4yx的一条切线l与直线480xy垂直,则l的方程为 430xy 4.求下列直线的方程: (1)曲线123xxy在P(-1,1)处的切线; (2)曲线2xy过点P(3,5)的切线; 解:(1) 123|yk 23 1)1,1(1x/2/23-上,在曲线点-xxyxxyP 所以切线方程为02 11yxxy即, (2)显然点P(3,5)不在曲线上,所以可设切点为),(00yxA,则200xy①又函数的导数为xy2/,

所以过),(00yxA点的切线的斜率为0/2|0xykxx,又切线过),(00yxA、P(3,5)点,所以有352000xyx②,由①②联立方程组得,255 110000yxyx或,即切点为(1,1)时,切线斜率为;2201xk;当切点为(5,25)时,切线斜率为10202xk;所以所求的切线有两条,方程分别为2510 12 )5(1025)1(21xyxyxyxy或即,或 题型三:利用导数研究函数的单调性,极值、最值

1.已知函数))1(,1()(,)(23fPxfycbxaxxxf上的点过曲线的切线方程为y=3x+1 (Ⅰ)若函数2)(xxf在处有极值,求)(xf的表达式; (Ⅱ)在(Ⅰ)的条件下,求函数)(xfy在[-3,1]上的最大值; (Ⅲ)若函数)(xfy在区间[-2,1]上单调递增,求实数b的取值范围 解:(1)由.23)(,)(223baxxxfcbxaxxxf求导数得 过))1(,1()(fPxfy上点的切线方程为: 而过.13)]1(,1[)(xyfPxfy的切线方程为上

故3023323cabacaba即 ∵124,0)2(,2)(bafxxfy故时有极值在 ③ 由①②③得 a=2,b=-4,c=5 ∴.542)(23xxxxf (2)).2)(23(443)(2xxxxxf

当;0)(,322;0)(,23xfxxfx时当时 13)2()(.0)(,132fxfxfx极大时当 又)(,4)1(xff在[-3,1]上最大值是13。

(3)y=f(x)在[-2,1]上单调递增,又,23)(2baxxxf由①知2a+b=0。 依题意)(xf在[-2,1]上恒有)(xf≥0,即.032bbxx

①当6,03)1()(,16minbbbfxfbx时; ②当bbbfxfbx,0212)2()(,26min时;

① ② ③当.60,01212)(,1622minbbbxfb则时 综上所述,参数b的取值范围是),0[ 2.已知三次函数32()fxxaxbxc在1x和1x时取极值,且(2)4f. (1) 求函数()yfx的表达式; (2) 求函数()yfx的单调区间和极值; 解:(1) 2()32fxxaxb, 由题意得,1,1是2320xaxb的两个根,解得,0,3ab. 再由(2)4f可得2c.∴3()32fxxx. (2) 2()333(1)(1)fxxxx, 当1x时,()0fx;当1x时,()0fx; 当11x时,()0fx;当1x时,()0fx; 当1x时,()0fx.∴函数()fx在区间(,1]上是增函数; 在区间[1,]1上是减函数;在区间[1,)上是增函数. 函数()fx的极大值是(1)0f,极小值是(1)4f. 3.设函数()()()fxxxaxb. (1)若()fx的图象与直线580xy相切,切点横坐标为2,且()fx在1x处取极值,求实数,ab 的值; (2)当b=1时,试证明:不论a取何实数,函数()fx总有两个不同的极值点. 解:(1)2()32().fxxabxab 由题意(2)5,(1)0ff,代入上式,解之得:a=1,b=1. (2)当b=1时,()0fx令得方程232(1)0.xaxa 因,0)1(42aa故方程有两个不同实根21,xx. 不妨设21xx,由))((3)(21'xxxxxf可判断)('xf的符号如下: 当时,1xx)('xf>0;当时,21xxx)('xf<0;当时,2xx)('xf>0 因此1x是极大值点,2x是极小值点.,当b=1时,不论a取何实数,函数()fx总有两个不同的极值点。 题型四:利用导数研究函数的图象 1.如右图:是f(x)的导函数, )(/xf的图象如右图所示,则f(x)的图象只可能是( D ) (A) (B) (C) (D)

2.函数的图像为14313xxy( A )

3.方程内根的个数为在)2,0(076223xx ( B ) A、0 B、1 C、2 D、3 题型五:利用单调性、极值、最值情况,求参数取值范围

1.设函数.10,3231)(223abxaaxxxf (1)求函数)(xf的单调区间、极值. (2)若当]2,1[aax时,恒有axf|)(|,试确定a的取值范围. 解:(1)22()43fxxaxa=(3)()xaxa,令()0fx得12,3xaxa 列表如下:

x (-∞,a) a (a,3a) 3a (3a,+∞) - 0 + 0 - 极小 极大

x y o 4 -2 4 -2 --x y o 4 -2 4 -2 --x y y 4 -2 4 -2 --

6 6 6 6 y

x --o

4 2

2 4

相关文档
最新文档