电力系统对称故障计算及分析
电力系统的不对称(故障)分析的对称分量法
![电力系统的不对称(故障)分析的对称分量法](https://img.taocdn.com/s3/m/60676e1bddccda38376bafba.png)
(*)
式 Ub Uc Z f Ib 可变换为
(a2Ua1 aUa2 Ua0 ) (aUa1 a2Ua2 Ua0 ) Z f (a2Ia1 aIa2 Ia0 )
将(#)式代入:(a2 a)Ua1 (a2 a)Ua2 Z f (a2 a)Ia1
a3 1
其中
1 T a 2
a
1 1 a 1 a 2 1
为对称分量变换矩阵
IP
IIba
Ic
为相电流向量
IS
Ia1 Ia 2
Ia0
为对称分量电流向量
对前式求逆,得 IS T 1IP ,其中
1 a a 2
电力系统的不对称(故障)分析的 对称分量法
在电力系统故障中,不对称故障发生的概率比三相对称故 障发生的概率大得多。例如某电力系统220kV线路故障中:
单相接地短路占91%; 两相短路占0.9%; 两相接地短路占5.9%; 三相短路占1.8%; 单相断线占0.4%。 基本分析方法:对称分量法
一、对称分量法
Ia1 Ia 0Ia 2
Uc 2
Ub 2
Ia
Uc 2
UC1
Uc 0 Uc
Ua Ua 2 Ua0
Ub 2 Ub1
Ub Ub0
2. 两相短路
短路点的电压电流(边 界条件):
Ia 0 Ib Ic
Ub Uc Z f Ib
a
k
b
c
Ua Ub Uc Ia 0
3X kk0 ]Ia1
Uc aUa1 a2Ua2 Ua0 j[(a a2 ) X kk2 (a 1) X kk0 ]Ia1
电力系统故障分析
![电力系统故障分析](https://img.taocdn.com/s3/m/db07053249649b6649d74761.png)
此时短路电流为:
t
i idza idfa Im cost Ime Ta
i T 0.01s T2
iim
i
LX
Ta R R
idfa
2II
e
2IIt源自idzati idza idfa Im cost Ime Ta
可见:无穷大系统发生三相短路时,周期分量不衰减,非 周期分量呈指数规律衰减。
x6*d
x7*d
取U4为基本
级
(2)变压器T1电抗标幺值的计算
% 2
2
%
S U U U U S U S
x x U S U U U S 2*d
2
d 2
4 av
k1
100
2 av T1 N
3av 2 av
4 av 3av
d 2
4 av
k1
100
d T1N
可见,变压器电抗标幺值的计算与基本级的选择无关。
五、短路计算的目的
短路电流计算结果 •是选择电气设备(断路器、互感器、瓷瓶、母线、电缆等) 的依据; •是电力系统继电保护设计和整定的基础; •是比较和选择发电厂和电力系统电气主接线图的依据,根 据它可以确定限制短路电流的措施。 •是以下分析和计算的依据: 中性点接地方式的选择、变压器接地点的位置和台数 对邻近的通讯系统是否会产生较大的干扰 接地装置的跨步电压、接触电压的计算 电力系统稳定性的计算等。
d 2
x1 L
d 2
4 av
2 av
可见,输电线路电抗标幺值的计算与基本级的选择无关。
GⅠ
T1
Ⅱ
T2
RⅢ
T3 Ⅳ
有名值 x1
电力系统自动化试卷及思考题答案年华北电力大学
![电力系统自动化试卷及思考题答案年华北电力大学](https://img.taocdn.com/s3/m/4c3cc7183069a45177232f60ddccda38376be1c6.png)
1.那些实验是在EMS平台下进行那些实验是在DTS平台下进行EMS:1电力系统有功功率分布及分析;2电力系统无功功率分布及分析;3电力系统综合调压措施分析;4电力系统有功-频率分布;5电力系统潮流控制分析;6电力系统对称故障计算及分析;7电力系统不对称故障及计算分析DTS:1电力系统继电保护动作特性分析;2电力系统稳定性计算及分析;3电力系统继电保护动作情况与系统稳定性关系分析2.欲调节电压幅值,调有功P有效还是无功Q有效为什么1电压对无功变化更敏感,有功虽然对电压也有影响但是比较小2只考虑电压降落的纵分量:△U=PR+QX/U,从公式看出,电压降落跟有功P和无功Q都有关系,只不过在高压输电系统中,电抗X>>R,这样,QX在△U的分量更大,调节电压幅值就是在调节无功;3.重合闸有什么好处若电气故障设为三相短路,故障分别持续t1和t2时长,则两个实验结果有什么不同重合闸好处:1在线路发生暂时性故障时,迅速恢复供电,从而提高供电可靠性;2对于有双侧电源的高压输电线路,可以提高系统并列运行的稳定性,从而提高线路的输送容量;3可以纠正由于断路器机构不良,或继电器误动作引起的误跳闸故障延时长的接地距离一段动作次数,相间距离一段动作次数,三相跳开次数比故障延时短的多,开关三相跳开的次数多;4,.以实验为例,举例说明继电保护对暂态稳定的影响实验八中,实验项目一体现出选保护具有选择性,当其故障范围内出现故障时,有相应的断路器动作跳闸;实验项目二体现出保护是相互配合的;当本段拒动时,由上一级出口动作跳闸;实验项目三做的是自动重合闸的“前加速”和“后加速”保护;继电保护快速切除故障和自动重合闸装置就是使故障对系统的影响降到最低,尽早的将故障切除能避免故障电流对设备的冲击减小对系统的扰动,有利于暂态稳定的实现;5.·在电力系统潮流控制分析试验中,可以通过改变发电机的无功进行潮流调整,也可以通过改变发电机所连升压变压器的分接头进行潮流调整,实验过程中这两项调整对发电机的设置有何不同为什么改变发电机无功:设置发电机无功时以10MVAR增长;不能保证发电机有功功率和发电机电压恒定,他们可能会随着无功功率的改变有微小的变化;改变变压器分接头:设置此时发电机相当于一个PV节点,即恒定的有功P和不变的电压U;原因:发电机是无功电源,也是有功电源,是电能发生元件;变压器是电能转换元件,不产生功率;7在实验中考虑了哪些调压措施若某节点电压kv/无功……电压升高3kv,则应补偿多少电容实验调节发电机端电压调节有功,调节无功,调整变压器分接头百度电力系统的调压措施主要有:1靠调节发电机机端电压调压2靠改变变压器分接头调压3靠无功补偿调压4靠线路串连电容改变线路参数调压我的实验灵敏度系数为,所以若电压升高3kv,应补偿3/=40Mvar的电容8在调频实验中;对单机单负荷系统,若发电机的额定功率……频率怎么变化当负荷功率大于发电机功率的额定功率……通过K=△p/△f来判断f如何变化9、几个实验步骤实验九试探法求故障切除实验的实验步骤1.进入DTS之“教员台”,在DTS控制面版上选择“进入暂态”;同上述项目一样,将各开关的线路继电保护退出运行;2.按右键点击线路lineAto2,选择“电气故障设置”项,设置“三相短路”、故障延时100ms、距线路首端50%,按“确定”,选择菜单栏上的“表格曲线”下“动态曲线显示”项,在出现的窗体上察看发电机“摇摆曲线”;保存之;3.在“DTS控制台”面版上选择“进入在线”,再点击“仿真重演”,选择设置故障前的时间,返回基态潮流;根据发电机“摇摆曲线”的形态,继续在线路lineAto2上设置故障,故障类型、位置等与上述完全相同,只是将故障延时增加一个Δt,比如Δt=50ms,察看发电机“摇摆曲线”;4.重复步骤3之操作,将故障延时不断增加一个Δt,每一次都注意其摇摆曲线是否已接近稳定极限或已经崩溃,直至系统失稳;实验三1比较电抗器与电容器的调压作用返回系统基态潮流状态,断开连接在母线B上的电抗器和电容器的断路器,记录下此时母线B的电压;合上电容器的断路器,此时母线电压值发生变化,记录变化后的值;断开电容器的断路器,再合上电抗器的断路器,记录下变化后的母线电压值;2调节各变压器分接头,对比不同变压器对某一母线的调压作用返回系统基态潮流,分别调整变压器1号、2号、3号的分接头,比较哪一台变压器对改变母线A的节点电压最有效;具体做法,在“调度员潮流”状态,先把1号发电电机设置为PV节点,然后选中1号变压器,按键,选“分接头调节”,将其分接头位置上调或下调一个档位可多调几档,观察并记录下母线A的电压变化情况;返回系统基态潮流,分别对变压器B、C重复这一实验步骤,观察并分别记录下,母线A的电压变化情况;(3)应用仿真系统中的灵敏度分析法对指定母线电压进行灵敏度分析作母线B电压的灵敏度分析;点击“量测分析”、“状态估计”、“静态安全分析”进入实验操作平台,用鼠标点击并选中“母线B”,在窗口上方上选择“校正对策分析”项,点击“灵敏度分析”下的“灵敏度分析”子项,在弹出窗口中的“受控参数”框中选择“电压”,在右侧的“控制参数”框选中复选项“发电机无功功率”、“负载无功功率”和“电容无功功率”三项,按“确定”后仿真系统便会自动计算并给出各台发电机的无功功率、各个负荷无功功率以及各个电容无功功率对母线B电压影响的报表;4估算并验证电容器补偿容量;假设要将母线B电压升高ΔU,不断试探改变电容器的无功容量参数后将其投入运行,直至母线B电压符合或接近原定的要求,记录此时电容无功功率及母线B电压值;再利用灵敏度分析结果大致估算将母线B电压升高ΔU所需的电容无功功率容量,对比二者结果是否一致;实验一电力系统有功功率分布及分析1.2、欲调节电压相角θ,调有功P有效还是调无功Q有效应调节有功P,因为电力网络中,各元件的电抗一般远大于电阻,所以可将雅克比子阵中的N eP ∂∂=N 省略,可将修正方程中δ∆=∆H P ,所以节点电压相位角的改变主要影响各元件的有功功率潮流,即欲调节电压相角θ,调有功P;3,、想要调节水轮发电机的出力P 应调节什么控制量 如想要调节汽轮发电机的出力P 又应调节什么控制量想要调节水轮发电机的出力P 应调节其水门,调节水流量;如想要调节汽轮发电机的出力P 应调节其气门,调节进气量;实验二电力系统无功功率分布及分析1.2.欲调节电压相角θ,调有功P 有效还是调无功Q 有效答:调节无功有效;3.想要调节水轮发电机的无功Q 应调节什么控制装置调节汽轮发电机的Q 呢答:调节励磁装置,调节发电机励磁电流,增加励磁电流就会增加无功输出,减少励磁电流无功输出就会下降;4.调整变压器分接头能增加或减少全系统无功总量吗答:不能;系统的无功总量由发电机,同步调相机,电力电容器和静止补偿器等来影响,变压器分接头只是通过改变电压来改变无功分布,不影响全系统无功总量;实验三电力系统综合调压措施分析1.步骤2中,哪一种调压手段更有效些为什么答:步骤2中对比了发电机1、3的无功对母线A 电压的影响;调节3号发电机对调压更有效;有iijij ij ij U X Q R P U +=∆可知,电压降落主要受X 和Q,发电机3到母线A 的X 更大,所以发电机无功调节相同的量,3号发电机对母线A 电压的影响更大,调压更有效;2.从本实验的结果看出,要调整电压不合格点电压,最优先采用的调压手段是哪一种为什么而最有效的手段又是哪一种答:最优先采用的是调节发电机端电压、调整变压器分接头的方法,通过调整变压器的电压分接头来调整电压是电力系统经常采用的措施;最有效的是进行无功补偿,从而调节无功负荷;因为改变变压器的变比调压是有条件的;它就是:必须维持系统的无功功率平衡;调整变压器分接头不能从根本是改变无功缺乏的问题,还可能引起电压降落;iijij ij ij U X Q R P U +=∆,所以调节无功Q 对电压调整非常有效;3.如果想降网损,前提不能减出力、不能减负荷,如何通过各种调压手段进行调节答:无功补偿;通过无功补偿使线路上流过的无功减小,线路电压升高,线路是的电压降落减小,从而降低了网损;实验四电力系统有功-频率分析1.在一个实际运行的电网中,假设系统有功出力缺额P ∆,单独依靠发电机自身“一次调频”能力使系统重新平衡不计负荷调节,系统的频率值为f1;单独依靠负荷自身调节效应使系统重新平衡不计发电机调节,系统的频率值为f2;问二者是否相等答:二者不相等,因为发电机的单位调节功率和负荷的单位调节功率的值相差比较多,如:=*G K ~20,=*L K ;2.有人说,一号发电机的发电容量大于2号发电机,因此选调频机的时候应优先选一号机答:这种说法不对,因为发电机的单位调节功率和机组的调差系数σ有互为倒数的关系;100%f P 1K GNG ⨯==σσN实验五电力系统潮流控制分析1. 为什么会有线损线损的构成主要有哪些成分 2.答:电能通过输电线路传输而产生的能量损耗,简称线损;电力网络中除输送电能的线路外,还有变压器等其他输变电设备,也会产生电能的损耗,这些电能损耗包括线损在内的总和称为网损; 线损是由电力传输中有功功率的损耗造成的,主要由以下3个部分组成;=1\GB3①于电流流经有电阻的导线,造成的有功功率的损耗,它是线损的最主要部分②由于线路有电压,而线间和线对接之间的绝缘有漏电,造成的有功功率损耗③电晕损耗:架空输电线路带电部分的电晕放电造成的有功功率损耗;在一般正常情况下,后两部分只占极小的份量; 3. 从实验步骤3中的记录情况,谈谈你对线路损耗的认识;答:线损是电能通过输电线路传输而产生的能量损耗产生的;电力网络中除输送电能的线路外,还有变压器等其他输变电设备,也会产生电能的损耗,这些电能损耗的总和称为网损; 线损是由电力传输中有功功率的损耗造成的,主要由以下3个部分组成;=1\GB3①于电流流经有电阻的导线,造成的有功功率的损耗,它是线损的最主要部分②由于线路有电压,而线间和线对接之间的绝缘有漏电,造成的有功功率损耗③电晕损耗:架空输电线路带电部分的电晕放电造成的有功功率损耗;在一般正常情况下,后两部分只占极小的份量;4. 如果各110kV 线路承担的输送功率长期满负荷运行,有何方法可较好地解决线损过高问题答:为了降低网络功率损耗,可以采取改变系统运行方式,调整运行参数和负荷率等措施使网络的功率分布接近经济分布,使网络运行更经济,功率损耗为最小;在有功功率合理分配的同时,还应做到无功功率的合理分布;按照就近的原则安排补偿,减少无功远距离输送;增设无功补偿装置,并合理配置,以提高负荷的功率因数,改变无功潮流分布,可以减少有功损耗和电压损耗,可以减少发电机送出的无功功率和通过线路、变压器传输的无功功率,使线损大为降低,而且还可以改善电压质量、提高线路和变压器的输送能力; 实验六电力系统对称故障计算及分析1.对某一线路来说,在相同地点发生三相短路时的短路电流是否一定比发生两相短路时的短路电流大为什么答:不一定;当线路发生三相短路时:z U I f fa∑=)1(01其中x ∑)1(为电力系统序网络的正序阻抗;当线路发生两相短路假设b 、c 两相短路时:zz U I I f fc fb ∑+∑==)2()1(032则由12式可知:当z z )13()1()2(-∑<∑时,两相短路电流大于三相短路电流;当z z )13()1()2(-∑=∑时,两相短路电流等于三相短路电流;当z z )13()1()2(-∑>∑时,两相短路电流小于三相短路电流;但是由于电力系统中一般情况下z z ∑=∑)1()2(,所以两相短路电流小于三相短路电流;2.某一线路,首端发生三相短路故障和末端发生三相短路故障引起的系统反应一样吗 请说说理由;答:不一样;由于短路地点的不同,使得两次电源到短路点的短路阻抗不同,从而三相短路电流也不同; 实验七电力系统不对称故障计算及分析1.有人说,在相同地点发生三相短路、两相短路、两相接地短路和单相接地短路,肯定是三相短路的短路电流最大;对吗为什么答:不对;例如单项接地短路故障相的短路电流为∑+∑+∑=)0()2()1(03zzz U I ff ,一般∑)1(z和∑)2(z 接近相等;因此,如果∑)0(z 小于∑)1(z ,则单相短路电流大于同一地点的三相短路电流∑)2(0/zU f,反之,则单相短路电流小于三相短路电流;2.有人认为发生不对称故障时,故障相电流是由各序电流合成的,因此相电流一定比序电流要大;对吗为什么答:不对,因为序电流为矢量,有大小有方向,序电流的合成为矢量叠加,可能最后的相电流幅值比序电流还要小;1.在III 段过电流保护中,使用微机保护后,用不着电流继电器了作为启动元件,请问在该段的动作电流整定公式中还要考虑继电器的返回系数吗答:微机保护由于没有用电流继电器了作为启动元件,从理论上讲没有返回系数,但实际中,为了防止在保护装置在临界值附近发生抖动,微机保护中还是会设置返回系数的;2.如图所示,线路上装设两组电流互感器,线路保护和母线保护应各接哪组互感器为什么答:线路保护采用TA1互感器,母线保护采用TA2互感器;这样做是为了存在保护区间的重叠,从而保证任意处的故障都置于保护区内;实验九电力系统稳定性计算及分析1.有人说装设有自动励磁调节系统的发电机抗扰动能力比较强,对吗为什么答:这种说法是对的;正常情况下,系统中各发电机处于同步运行状态,保证系统中任何节点的电压幅值和频率以及任何线路的传输功率为恒定值;如果系统在运行过程中受到某种干扰,使发电机的输出电功率相应发生改变,结果是使得在扰动瞬间各发电机的机械输入转矩和输出的电磁转矩失去平衡,出现发电机转子不同程度的加速或减速,并导致各发电机之间转子相对角的变化;自动励磁调节系统能维持发电机或其他控制点的电压在给定水平,控制并联运行机组无功功率的合理分配,从而提高电力系统的稳定性;2.是不是只有相间三相短路才有可能引起系统的暂态稳定问题,发生单相接地短路则不会答:是;当发生单相接地不对称故障时,发电机定子回路中将流过负序电流;负序电流产生的磁场和转子绕组电流的磁场形成的转矩,主要是以两倍同步频率交变的,平均值接近于零的制动转矩,它对发电机也即电力系统的暂态过程没有明显影响,可略去不计;3.对于中性点不接地运行的小电网假设自供自用,与外电网没有联系,有无可能会发生类似的暂态稳定问题答:会;当系统在某种运行状态下突然受到某种干扰,使发电机的机械输入转矩和输出的电磁转矩失去平衡,使发电机转子加速或减速,并导致各发电机之间转子相对角的变化,从而带来电磁暂态过程; 实验十电力系统继电保护动作情况与系统稳定性关系分析1.如下图电网,保护5装设保护III 段,动作时限为III t 5,保护3装设II 段和III 段,动作时限分别为II I 3I I 3t t 和,保护1装设I 段、II 段和III 段,动作时限分别为III I I I t t t 111、、;有一继保工作人员在保护动作时限上这样设计:,,,t t s 031535∆+=∆+==III III III III III t t t t ts 0 s .5 0 131===I II II t t t ,;问设计有无问题 假设s 0.5t =∆答:这样设计存在问题;由已知得,s .5 0 31==II II t t 当B-C 线路首端发生短路故障时,1处的II 段保护可能发生误动,使A-B 线路切除,使故障范围扩大;。
电力系统对称故障的分析计算
![电力系统对称故障的分析计算](https://img.taocdn.com/s3/m/68e913f6172ded630b1cb649.png)
2 IP t T I Pm e a
2
短路全电流有效值在冲击电流出现的周期最大,为短路电流最 大有效值
2 I imp I P [ 2 K imp 1I P ]2 I P 1 2K imp 1 2
四、短路容量
系统短路时,t时刻的短路容量为
I q
E q
jXq
U e
jXd I d
E q
U U d q
I q
jXq I q
I
U
三、同步发电机的暂态电势和暂态电抗
1、发电机的暂态电势和暂态电抗 1)发电机的直轴暂态电抗(暂态电抗) 1 X d X X ad X 1 1 X ad X f 2)发电机的交轴暂态电势(暂态电势)
C I m0 sin( 0 ) I m sin
三、短路冲击电流
在短路发生半周内的某个瞬间,短路电流达到最大值,为短 路冲击电流,主要用于电气设备动稳定的校验
3 iimp 2K imp I P
当取TA=0.05s时,Kimp=2.55IP(3) 短路全电流有效值
§6.2 无限大容量电源供电系统的三相短路(无穷 大系统)
一、概念
把系统当作无穷大电源,其内阻抗为零,电压和频率保持稳定, 这样计算出的短路电流偏于安全
二、无穷大系统发生三相短路的暂态过程
ua U m sint a
ia
L
f 3
R
R
L
ub U m sin t 120
二、 同步发电机稳定运行时的等值电路和相量图
无阻尼绕组同步发电机正常稳态运行时,定子绕组在d、q两个 方向的等值电抗分别是同步电抗Xd和XQ ,忽略定子绕组电阻,发电 机定子电压方程为
电力系统故障分析与短路计算分析
![电力系统故障分析与短路计算分析](https://img.taocdn.com/s3/m/0a977b735f0e7cd1842536ef.png)
正序分量 F a 1 , F b 1 , F c 1 对 称
负序分量 F a 2 , F b 2 , F c 2 分 零序分量 F a 0 , F b 0 , F c 0 量
F a F a0 F a1 F a2 F b F b0 F b1 F b2 F c F c0 F c1 F c2
电力系统故障分析与短路 计算分析
(电力系统不对称运行/故障分析方法--对称分量法)
出发点:
•电力系统不对称运行/故障时,采用相分量 分析复杂而困难·
•使用对称分量法将不对称相分量转化未对 称的序分量,可利用其对称性简化不对称运 行/故障分析
1. 对称分量法
不对称相量 F a , F b , F c
Ec ZG
ZL
U b U b0 U b1 U b2
Zn
Ia
Ib
Ic
Ua Ub Uc
U c U c0 U c1 U c2
Ea ZG
ZL
对称分量法
a2E a Z G
ZL
Ia
F a F a0 F a1 F a2 F b F b0 F b1 F b2 F c F c0 F c1 F c2
– 零序电流相同相位,只能通过大地或 与地连接的其他导体才能构成通路。
– 变压器中性点接地的数量和位置确定 了零序网络的结构。
15
2006-5-20
电力系统故障分析
16
2006-5-20
电力系统故障分析
17
2006-5-20
电力系统故障分析
aU a1
特Z n点: 各U序a 2 网三相a U a完2 全a 2U对a 2
称,可U分a 0 析单相U a 0序网U a 0
电力系统第八章电力系统故障的分析与实用计算解析
![电力系统第八章电力系统故障的分析与实用计算解析](https://img.taocdn.com/s3/m/ac1ef00333687e21af45a990.png)
式中, 称为非周期分量电流的衰减系数。
式(8-8)中的 、 、 、 都与回路中元件参数有关,对某一具体回路,它们的值是固定的。式中的 则与故障时刻有关,不同时刻短路, 的值不同,从而非周期分量电流也不同。而且,由于三相电压的合闸相角不可能相同,每相中的非周期分量电流也不相同。
将式(8-8)代入式(8-4)中,便得a相电流的完整表达式
(MVA) (8-15)
式中, 为短路处网络的额定电压(kV); 为短路电流的有效值(kA)。
用标幺值表示是,若取 ,则
(8-16)
这就是说,短路功率的标幺值和短路电流的标幺值相等。利用这一关系短路功率很容易求得
(MVA)(8-17)
短路功率主要用来校验断路器的切断能力。把短路功率定义为短路电流和网络额定电压的乘积,这是因为:一方面断路器要能切断短路电流,另一方面,在断路器断流时,其触头应该经受住额定电压的作用。在有名制的短路实用计算中,网络额定电压 一般可用平均额定电压 ,即 ;短路电流的有效值 ,一般只计短路电流周期分量的有效值,即 。则式(8-15)变为
电力系统发生三相短路时,主要由同步发电机供出短路电流,它仍包含不同时间常数衰减的周期分量和非周期分量。由于短路发生在有很多发电机和很多支路的系统中,要准确地求取短路电流各分量大小和变化规律是相当困难的。不过在某些情况下,产生电流的电源电动势在短路的暂态过程中,可以近似的看作是不变的,这样分析起来就大为简单了。由无限大容量电源供电的电路就属于这种情况,于是就引出了无限大容量电源的概念。
总之,电源的端电压及频率在短路后的暂态过程中保持不变,是无限大容量电源供电电路的重要特性。这样,在分析此种电路的短路暂态过程中,就可以不考虑电源内部的暂态过程。因此,问题也就简单多了。
对称分量法(正序、负序、零序)
![对称分量法(正序、负序、零序)](https://img.taocdn.com/s3/m/85a1f27304a1b0717fd5ddde.png)
对称分量法正序:A相领先B相120度,B相领先C相120度,C相领先A相120度。
负序:A相落后B相120度,B相落后C相120度,C相落后A相120度。
零序:ABC三相相位相同,哪一相也不领先,也不落后。
三相短路故障和正常运行时,系统里面是正序。
单相接地故障时候,系统有正序、负序和零序分量。
两相短路故障时候,系统有正序和负序分量。
两相短路接地故障时,系统有正序、负序和零序分量称分量法基本概念和简单计算正常运行的电力系统,三相电压、三相电流均应基本为正相序,根据负荷情况(感性或容性),电压超前或滞后电流1个角度(Φ),如图1。
图1:正常运行的电力系统电压电流矢量图对称分量法是分析电力系统三相不平衡的有效方法,其基本思想是把三相不平衡的电流、电压分解成三组对称的正序相量、负序相量和零序相量,这样就可把电力系统不平衡的问题转化成平衡问题进行处理。
在三相电路中,对于任意一组不对称的三相相量(电压或电流),可以分解为3组三相对称的分量。
图2:正序相量、负序相量和零序相量(以电流为例)当选择A相作为基准相时,三相相量与其对称分量之间的关系(如电流)为:IA=Ia1+Ia2+Ia0――――――――――――――――――――――――――○1IB=Ib1+Ib2+Ib0=α2Ia1+αIa2 + Ia0――――――――――○2IC=Ic1+Ic2+Ic0=α Ia1+α2Ia2+Ia0―――――――――――○3对于正序分量:Ib1=α2 Ia1 ,Ic1=αIa1对于负序分量:Ib2=αIa2 ,Ic2=α2Ia2对于零序分量:Ia0= Ib0 = Ic0式中,α为运算子,α=1∠120°有α2=1∠240°, α3=1, α+α2+1=0由各相电流求电流序分量:I1=Ia1= 1/3(IA +αIB +α2 IC)I2=Ia2= 1/3(IA +α2IB +αIC)I0=Ia0= 1/3(IA +IB +IC)以上3个等式可以通过代数方法或物理意义(方法)求解。
故障分析对称分量法
![故障分析对称分量法](https://img.taocdn.com/s3/m/09e9f15358f5f61fb7366692.png)
简化,便于计算
无法直接简化 为单相计算!
分解
分析
复合
可以实 施单相 计算。
可以实 施单相 计算。
求解
幅值,相量关系等为 继电保护分析所用
合成
g
g
g
g
例一 U A = U A1 + U A2 + U A0
已知序电压,求相电压
g
g
g
g
g
g
g
U B = U B1 + U B2 + U B0 = a 2 U A1 + a U A2 + U A0
g
g
g
g
例一 U A = U A1 + U A2 + U A0
g
g
g
g
g
g
g
U B = U B1 + U B2 + U B0 = a 2 U A1 + a U A2 + U A0
g
UC
=
g
g
g
U C1 + U C2 + U C0
=
a
g
U
A1
+
a
2
g
U
g
A2 + U A0
(2-1)
零序量三相“同相” 转,间隔0度。
g
U B = U B1 + U B2 + U B0 = a 2 U A1 + a U A2 + U A0
g
UC
=
g
g
g
U C1 + U C2 + U C0
=
a
g
U
A1
ch04-1电力系统故障分析及计算
![ch04-1电力系统故障分析及计算](https://img.taocdn.com/s3/m/c670d64aa1c7aa00b52acb90.png)
Uq Eq jxd Id
Ud jxq Iq
U Ud Uq Eq jxq Iq jxd Id U Eq j(xq xd )Iq jxd I
id’
jX q
暂态电抗后电势E’
xd’ Eq’
+
uq
iq
ud
-
31
1、暂态电抗和暂态电势
id )
q xq iq
f xadid x f i f xad (i f id ) xf i f
iq
+
xq
ψq
-
无阻尼绕组Park方程的等值电路
25
戴维南定理 id’
Eq’
xd’
+
ψd
-
iq
+
xq
ψq
-
xa xf xad
xd’
磁链平衡等值电路 26
1、暂态电抗和暂态电势
从 d , f 方程中消去 i f ,得
)
ic
X
R' X' R' X'
i ip ia 强制分量 自由分量
ip
Im
sin(t
)
Um Z
sin(t
)
ia Ce pt C exp( t / Ta )
Ta
L R
Z R2 X 2
arctg X
R
8
i (0)
i(0_)
Im(0) sin( (0) )
Im(0) sin( (0) ) Im sin( ) C
△ifa
△if
定转子子各各绕绕组组磁磁链量变保化持为初零始值定子转三子相绕绕组组磁的链磁变链化保持为21初零值
(三)忽略阻尼绕组同步电机突然三相短路 的物理分析
电力系统对称故障分析计算
![电力系统对称故障分析计算](https://img.taocdn.com/s3/m/ab946722aaea998fcc220e4d.png)
7 电力系统对称故障分析计算7. 1 习题1) 电力系统短路的类型有那些?那些类型与中性点接地方式有关?2)什么是横向故障?什么是纵向故障?3)短路有什么危害?4)无限大容量电源的含意是什么?5)什么是最恶劣的短路条件?6)什么是冲击电流?什么是冲击系数?7)无限大容量电源供电系统发生对称三相短路周期分量是否衰减?8)无限大容量电源供电系统发生对称三相短路是否每一相都出现冲击电流?9)什么是无限大容量电源供电系统短路电流最大有效值?如何计算?10)无限大容量电源供电系统短路电流含那些分量?交流分量、直流分量都衰减吗?衰减常数如何确定?11)用瞬时值计算公式说明t=0时周期分量与非周期分量的关系。
12)下图为长方形超导线圈长lm,宽1m,处于均匀磁场B0中,其线圈平面与磁场B0垂直时闭合开关k,此时超导线圈的磁链是多少?线圈转90○时,磁链又是多少?k图7- 1 习题7-1213)为什么设定发电机电流、电压、磁链的正方向?每个回路的电流、电压和各绕组磁链的正方向、绕组轴线正方向如何规定?14)写出a相回路的瞬态电压方程(考虑其它绕组对a相回路的互感)。
15)(7-1)式回路方程与磁链方程(7-2)式什么关系?16)(7-1)式回路方程是否可解?为什么?17)哪些电感系数不变化?为什么不变化?18)什么是磁链?什么是一个绕组的自磁链?什么是绕组之间的互磁链?什么是一个绕组的总磁链?19)什么是综合相量?在派克变换中的作用是什么?20)什么是派克变换矩阵?为什么进行克变换?电流、电压、磁链的派克变换矩阵是否相同?21)派克变换矩阵中的θ角是什么角?22)以知a ,b ,c 三相电压u t a =+1sin()ωα,u t b =+-11200sin()ωα,u t c =++11200sin()ωα,求d ,q ,0轴电压。
23)读者自己对磁链方程(7-2)式到(7-9)和回路方程(7-1)式到(7-8)式的做一次派克变换推导。
电力系统三相短路的分析与计算
![电力系统三相短路的分析与计算](https://img.taocdn.com/s3/m/0febf5cad1d233d4b14e852458fb770bf78a3b90.png)
电力系统三相短路的分析与计算电力系统三相短路是指电力系统中发生的由于过大的电流流过电气设备、电缆、电缆接头、电线路等导体元件而引起的电气故障。
三相短路是一种严重的故障,可能导致设备损坏、事故发生甚至火灾爆炸。
因此,对电力系统三相短路进行准确分析和计算是非常重要的。
首先,我们来看一下三相短路的类型。
三相短路可以分为对称短路和不对称短路两种情况。
对称短路是指三相短路电流大小相等,相位相同的短路;不对称短路是指三相短路电流大小不等,相位差大于120度的短路。
接下来,我们介绍一下三相短路的分析方法。
三相短路的分析可以采用阻抗法、复数法和对称分量法等方法进行。
其中,阻抗法是最常用的一种方法。
阻抗法的基本原理是利用设备和导线的等效阻抗来分析三相短路。
首先,需要测量或查表得到电源电压、设备电流和电源电阻的值。
然后,根据欧姆定律和基尔霍夫定律,利用等效电路模型计算电路中电流和电压的数值。
最后,通过计算得到的电压和电流值,可以得出电力系统中设备的功率损耗、电流大小等信息。
接下来,我们来看一下三相短路计算的具体步骤。
首先,需要收集电力系统的相关信息,包括电源电压、设备电流、电源电阻等。
然后,根据短路的类型选择相应的计算方法。
对于对称短路,可以使用复数法进行计算;对于不对称短路,可以使用对称分量法进行计算。
在计算中,可以采用手动计算或使用专业软件进行模拟计算。
最后,根据计算结果对电力系统的安全性进行评估,并采取相应的措施进行处理。
三相短路的分析和计算是一项复杂的工作,需要对电力系统和相关理论有较深入的了解。
在实际工作中,应该高度重视电力系统的安全问题,采取相应的预防措施和应急措施,保障电力系统的正常运行和人员的安全。
同时,还需要不断学习和更新电力系统的相关知识,提高自身的技术水平。
总结起来,电力系统三相短路的分析与计算是一项重要的工作,需要掌握相应的理论和方法。
只有进行准确的分析和计算,才能及时发现电力系统中的故障,保障电力系统的安全和可靠运行。
浅析电力系统故障分析中的对称分量法
![浅析电力系统故障分析中的对称分量法](https://img.taocdn.com/s3/m/59b29530492fb4daa58da0116c175f0e7cd119aa.png)
浅析电力系统故障分析中的对称分量法摘要:对故障电力系统的分析中,对称分量法是一种十分重要的分析方法,可以将非对称的故障部分分解为正序、负序和零序,从而组建对称系统,使得适用于对称电力系统的分析方法依然适用于非对称故障系统。
为了能有效掌握对称分量法,本文结合非对称故障电力系统进行推导并有效验证了对称分量法。
电力系统在正常运行情况下,三相元件参数和电路完全相同,可以由单相电路等效三相电路进行分析。
当电力系统出现单相短路或断线、两相短路或断线等非对称故障时,三相电路不再对称【1】,此时无法直接用单相电路等效进行分析【2】。
在发生不对称故障时,三相电路的电压、电流、阻抗等存在差异,单相电路无法等效三相进行分析,因此需要一种新的分析三相电路的方法【2】。
依据线性数学知识可知,三个不对称相量可以被唯一地分解成三组对称相量【3】。
这样,就可以将出现不对称故障的三相电力系统,分解为正序、负序和零序三组对称相量表示【4、5】。
正序、负序和零序是在电力系统分析中常见的三相对称分量,如图1所示。
(a)正序分量(b)负序分量(c)零序分量图1 正序、负序和零序电流分量图1中,、和代表正序电流,、和代表负序电流,、和代表零序电流。
正序电流三相相量大小相等、相位顺时针依次相差,负序电流三相相量大小相等、相位逆时针依次相差,零序电流三相相量大小、相位都相等,如公式(1~3)所示【5】。
(1)(2)(3)为了方便计算,令,则有:(4)从上述公式,我们可以进行如下推导:(5)如果取:(6)则有公式(7)成立,从而可以推算出对称相量法的成立,同理我们也可以得出电压等相量的相序分解。
(7)从上述推导过程,可以得知,对称分量法在电力系统不对称故障分析中的有效性,则可以将电力系统不对称故障部分分为正序、负序和零序三个对称部分的叠加。
对称分量法用于分析不对称故障电力系统时,首先将故障电力系统分为正常部分和故障部分,正常部分是三相对称电路不需要单独用对称分量法分解,故障部分则依据对称分量法将电路中参数分为正序、负序和零序再依据对称电路分析方法对整个电力系统进行处理。
电力系统故障分析及短路电流计算
![电力系统故障分析及短路电流计算](https://img.taocdn.com/s3/m/d2de4add84254b35eefd34d9.png)
U 0 U 0
0 I 0
0 I 0
(a)
U 0
U Z0 0 I 0
0 I 0
(b)
电力系统中各元件的各序阻抗10
• ② YN,d接线变压器的零序阻抗
I U Ⅰ 0 0
Ⅰ Ⅱ
17
ZⅠ
U 0
I 0 Ⅰ
ZⅡ
I U Ⅰ 0 0
X 2 X d Xq X q Xd X 2 2 当转子上没有阻尼 绕组时 当转子上有阻尼 绕组时
13
• 在工程实际应用上在短路电流的计算中,发电机的负序电抗近似取作等 于正序电抗,即
X 2 X1
电力系统中各元件的各序阻抗7
• 发电机的零序电抗 • 由于三相零序电流幅值与相位都相同,发电机三相定子绕组的轴线在空 间位置上互相相差 120°,所以发电机三相定子绕组中流过零序电流时 产生的空间合成磁场是零。因此定子绕组产生的磁通只是经气隙构成回 路的漏磁通,它所对应的是漏电抗。由于漏磁通比较小,所以与之对应 的漏电抗也比较小。零序电抗为:
I 0 Ⅰ
3I 0 Ⅰ
I U 0 Ⅰ 0
若后面的变压器是YN,y接线(一次侧是 中性点接地的星形接线,二次侧是中性 ZⅡ ZⅠ 点不接地的星形接线)或是Y,y接线( 一次侧与二次侧都是中性点不接地的星 I0 Ⅱ I I 0 Ⅰ m U0 形接线)或是D,y(一次侧是三角接线 Zm ,二次侧是中性点不接地的星形接线) 接线,这样,从前面变压器起,整个也 不出现在零序序网图中
电力系统故障分析及短路电流计算
一、 对称分量法的应用1
•
一组不对称的电气交流量可以分解正序,负序和零序三组 电气量。以A相为特殊相
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验六电力系统对称故障计算及分析
一、实验简介
本实验采用九节点电网模型进行,调用EMS中的“故障分析”高级应用功能。
通过本实验,加深对较复杂系统故障计算的理解。
二、实验目的
1.掌握在仿真系统中设置故障。
2.对比不同地点相同故障下短路电流在电网中的分布状况。
三、实验内容
1. 对比线路三相短路前后各电气量的变化,掌握故障分量的换算。
2. 比较线路在不同地点三相短路时同一线路上故障电流的变化。
四、实验步骤及要求
启动仿真系统。
运行桌面仿真系统启动文件,进入EMS下“工作平台”,在当前窗口下拉式菜单中依次执行“状态估计”、“故障分析”。
在故障计算及分析中,有时需要考虑系统的接地方式,这就涉及到变压器中性点接地刀的操作。
在仿真系统的“故障分析”窗口对接地刀的具体操作方法是:选中接地刀,按右键,选“执行中性点接地刀操作”,则原来断开的接地刀就闭合;执行同样操作,也能使原来闭合的接地刀就断开。
可根据需要进行相应操作。
1.不同地点三相短路对比
打开九节点全网图,点击线路LineAto2并按下右键,在弹出的菜单项中选“设置故障”,在出现的窗口中“故障类型”栏选择“设置ABC三相短路”,故障位置在线路中部(50%),故障持续时间设为50ms。
按确定后,在菜单栏上选择“请求故障计算”,系统便进行故障计算。
在当前“功率潮流”状态下点击“功率潮流”的下拉式菜单,分别选择“故障A相”、“故障B相”、“故障C相”等,电网元件模型上便会出现相应的不同的值,观察记录下各状态下故障线路LineAto2的故障电流和各节点母线电压。
在菜单栏上选择“故障分析”---“清除操作”后,返回基态潮流。
此时再对线路LineBto2设置三相短路故障,具体操作方法和步骤与上一步相同,设置故障的信息也与上一步统一,以保证结果有较好的可比性。
在线路
LineBto2上按右键,选择“设置ABC三相故障”,故障位置、持续时间设为50ms,按确定后,在菜单栏上选择“请求故障计算”,系统便进行故障计算。
记录下各状态下故障线路LineBto2的故障电流、非故障线路LineAto2的线路电流、各节点母线电压。
参考以下表格。
同理返回初始基态潮流后,对线路LineCto2做同样的故障设置。
记录下各状态下故障线路LineCto2的故障电流、非故障线路LineAto2、非故障线路LineBto2的线路电流、各节点母线电压。
表1 母线电压
故障点电流
六、实验数据分析
首先要记录系统初始状态的潮流分布,以便与实验结果对比。
七、实验总结及实验报告
1.电网模型图
2.实验数据记录
3.实验结果的分析论证
4.实习总结和体会
八、问题
1.短路点与发电厂的距离会给短路电流带来什么影响?
2. 透过实验数据分析,某条线路发生三相短路故障的反应和其他线路发生三相短路故障对这条线路的影响反应一样吗?
附:
系统参数:
(1)功率基值:100WVA
(2)电压等级:
(3)平衡机:GEN1
实验七 电力系统不对称故障计算及分析
一、实验简介
本实验采用九节点电网模型进行,调用EMS 中的“故障分析”高级应用功能。
通过本实验,加深对不对称故障现象的认识和理解。
二、实验目的
1. 让学生加深理解不对称故障的特点,对不对称故障后各相的电气量变化规律有初步和形象的认识。
2. 对比不对称故障与对称故障下的短路电流大小。
3. 对比不接地系统与接地系统的故障电流特点。
4. 对比不接地系统与接地系统的序网状况。
三、实验内容
1. 对比线路两相短路前后各故障相和非故障相的电气量的变化。
2. 比较线路在相同地点三相短路和两相短路时的短路电流的关系。
3. 比较线路在相同地点两相相间与两相接地短路时三序分量及特点。
4. 对比中性点不接地和中性点接地时,在线路相同地点发生单相接地,接地点故障电流的区别及各节点电压的分布状况。
四、实验步骤及要求
启动仿真系统。
运行桌面仿真系统启动文件,进入EMS 下“工作平台”,在当前窗口下拉式菜单中依次执行“状态估计”、“故障分析”,在“故障分析”窗口下将所有接地刀合上。
具体操作方法是:
选中接地刀,按右键,选“执行中性点接地刀操作”,则原来断开的接地刀就闭合。
执行同样操作,也能使原来闭合的接地刀就断开。
1.实验项目及步骤
(1) 比较三相短路和两相短路故障电流是否满足(3)
d
(2)
d
I 23I 为便于实验,首先“调度员潮流”状态下分别断开2号、3号升压变高压侧断路器,构成单电源辐射线路。
具体做法是:点击选中断路器,按右键,选“开关(刀闸)变位”,在弹出窗口中选“确定”,便完成操作。
而后再进入“故障分析”。
在九节点全网图中对线路LineAto2设置两相故障:点击选中线路LineAto2,按右键,在出现的菜单项中选“设置故障”,在弹出的窗口中的“故障类型”选择“AB相短路”,故障位置在线路首端(50%),故障持续时间设为50ms,按确定后,在菜单栏上选择“故障分析”项下“故障计算”,系统便进行故障计算。
再点击菜单栏窗口中部“功率潮流”下拉式菜单,分别选择“故障A相”、“故障B相”。
记录下故障线路LineAto2各相故障电流。
在菜单栏上选择“故障分析”---“清除操作”后,再对线路LineAto2设置三相短路故障,故障位置在线路首端(50%),故障持续时间设为50ms,在菜单栏上选择“故障分析”项下“故障计算”后。
再点击菜单栏中部“功率潮流”下的“故障A相”,记录下故障线路LineAto2各相的故障电流。
表格自定。
故障点电流
(2)对比中性点不接地和中性点接地时,发生单相接地时的故障分量
第一步实验之前,确信各个中性点接地刀已闭合。
在九节点全网图中对线路LineAto2设置单相接地故障:按下右键,在出现的菜单项中选“设置故障”,在“故障类型”窗口选“A相接地短路”,故障位置距首端(50%),故障持续时间均为50ms,按确定后,在菜单栏上选择“故障分析”项下“故障计算”,系统便进行故障计算。
点击“功率潮流”下拉式菜单,从中选择“故障正序”、“故障负序”、“故障零序”、“故障A相”、“故障B相”、“故障C相”等,观察并记录此时各个序网的节点电压、故障电流情况。
故障点电流
第二步实验之前,确信各个中性点接地刀已断开。
在菜单栏上选择“故障分析”---“清除操作”后,再对线路LineAto2设置单相接地故障:按下右键,在弹出菜单项中选“设置故障”,在“故障类型”
窗口选“A相接地短路”,故障位置距首端(50%),故障持续时间均为50ms,按确定后,在菜单栏上选择“故障分析”项下“故障计算”,系统便进行故障计算。
点击“功率潮流”下拉式菜单,从中选择“故障正序”、“故障负序”、“故障零序”、“故障A相”、“故障B相”、“故障C相”等,观察并记录此时各个序网的节点电压、故障电流情况。
故障点电流
五、实验数据记录
1. 详细准确记录故障条件,避免不一致的情况,否则实验结果受影响。
2. 对不对称短路,故障分量较多,注意分类记录故障电流序分量、电压序分量、电流相分量、电压相分量。
还要记录下原始状态量。
六、实验数据分析
1. 初步验算各相故障电流,结合课本,观察是否符合故障特性。
2. 记录故障线路的各序电流,手算将序电流换算成相电流,看与系统计算
值是否一致。
七、实验总结及实验报告
1.电网模型图
2.实验数据记录
3.实验结果的分析论证
4.实习总结和体会
八、问题
1.有人认为发生不对称故障时,故障相电流是由各序电流合成的,因此相电流一定比序电流要大。
对吗?为什么?
2. 对某一线路来说,在相同地点发生三相短路时的短路电流是否一定比发生两
相短路时的短路电流大?为什么?。