人教版七年级上册数学有理数的除法法则
人教版七年级上册数学:第一章《有理数》1.4.2 第1课时《有理数的除法法则》
三、乘除混合运算往往先将除法化为乘法,然后确定积的符 号,最后求出结果(乘除混合运算按从左到右的顺序进行计算)
(1) 12 ; (2) 45
3
12
解 : (1) 12 (12) 3 4 3
(2)
45 12
(45)
(12)
45
12
15 4
二、有理数的乘除混合运算
例3 计算
(1) 125 5 5
7
(2) 2.5 5 ( 1) 84
解:(1)原式 125 5 5 7
(125 5 ) 1 75
125 1 5 1 5 75
25 1 25 1
7
7
(2)原式 5 8 1 254
1
方法归纳
(1)有理数除法化为有理数乘法以后,可以利用 有理数乘法的运算律简化运算
(2)乘除混合运算往往先将除法化为乘法,然后 确定积的符号,最后求出结果(乘除混合运算按从 左到右的顺序进行计算)
两个法则是不是都可以用于解决两数相除呢?
归纳: 两个法则都可以用来求两个有理数相除. 如果两数相除,能够整除的就选择法则二,
不能够整除的就选择用法则一.
典例精析
例1
计算(1)(-36) 9;
(2) ( 12 ) ( 3)
.
25 5
解:(1)(-36) 9= - (36 9)= - 4;
练一练
1.计算
(1)(-45 )÷(-2); (2)-0.5÷78 ×(-54 );
(3)(-7)÷(-32 )÷(-75 )
2
答案:(1)
5
;(2) 5 7
人教版(2024)数学七年级上册2.2.2.1 有理数的除法法则
随堂练习
1. 计算: (1)(-18)÷6; (2) (63) (7)
(3)1 9
(4)0 (8)
解:(1)(-18)÷6)=(-18)×1 =-3
6
(2)(63) (7) 63 1 9 7
(3)1
9
=1
1 9
=
-
1 9
(4)0 (8)=0
(5)6.5 0.13
(5)6.5 0.13
3
3
明
2 3
3
可以写成
-2 这样两个整数相除的形式.
3
33
(2) -45 (45) (12) 45 12 15
12
4
一般地,根据有理数的除法,形如 p (p,q是整数,q≠0)的 q
数都是有理数;
有理数又都可以写成上述形式(整数可以看成分母为1的分 数),这样,有理数就是形如 p (p,q是整数,q≠0)的数.
2.2.2.1 有理数的除法法则
学习目标
1.掌握有理数的除法法则. 2.能利用有理数的乘除法法则进行乘除混合运算.
难点
新课引入
计算:
(1)(8) 1 (4) 4
(1)(8) 1 (4) 4
8 14 4
81
8
(2)( 7 ) 15 (1 1 )
8
2
(2)( 7 ) 15 (1 1)
8
2
解:(1)(-36) ÷9=-(36÷9)=-4;
(2)( 12 ) ( 3) ( 12 ) ( 5) 4 .
25
5
25 3 5
例2 化简:
(1) -2 ; 3
-45 (2) .
-12
带有分数线的数可以 理解为分子除以分母.
七年级数学上册有理数的除法知识梳理人教版
有理数的除法【知识梳理】1、有理数除法法则:两个有理数相除,同号得正,异号得负,绝对值相除.0除以任何非0的数都得0.(注意:0不能作除数.)2、除法的法则也可以这样说,除以一个数,就等于乘以这个数的倒数.(注意:0没有倒数,即0不能作除数.)3、如何求一个数的倒数互为倒数的两个数乘积为1,所以知道其中一个数,求它的倒数就用1除以这个数即可. 如:求53-的倒数,1÷(53-)=35- 所以35-是53-的倒数. 4.几个非0的有理数相除,商的符号怎样确定?几个非0的有理数相除,商的符号由负数的个数决定:当负数的个数为奇数时,商为负;当负数的个数为偶数时,商为正.如:(-12)÷(-2)÷(-3)——三个负数相乘取负=-(12÷2÷3)=-2(-12)÷2÷(-3)——两个负数相乘取正=+(12÷2÷3)=2【重点、难点】有理数的除法法则、倒数的求法【典例解析】例1、 计算:(1)—42÷(—6);(2)25.1)1212(÷- 解:(1)—42÷(—6)=7;(2)25.1)1212(÷-=35541225-=⨯-. 说明: 不能整除的情况下,特别当除数是分数时,应将除法化为乘法来做.例2、求下列各数的倒数,并用“>”连接. -32,-2,|21|,3,-1分析:用“1÷此数”的方法,求这个数的倒数,再将所有的倒数从大到小连接起来. 解:1÷(-32)=-23 -32的倒数是-231÷(-2)=-21 -2的倒数是-21|21|=21,1÷21=2,21的倒数是2 1÷3=31 3的倒数是311÷(-1)=-1 -1的倒数是-1.∴2>31>-21>-1>-23注意:“-32的倒数是-23”,不能用“=”连接-32和-23,因为它们是不相等的,所以一般来说互为相反数的两个数不能用“=”连接,除了-1和1这两个数和它们的倒数外.例3、计算:(-5)÷(-7)÷(-15)分析:三个数连除,先确定商的符号——利用负数的个数;再将除法变为乘法——除以一个数等于乘以这个数的倒数;最后利用乘法法则进行运算.解:(-5)÷(-7)÷(-15)=-(5÷7÷15)——先确定符号 =-(5×71×151)——再将除法变乘法除数变为倒数 =-211例4、计算:72×(-8)÷(-12)点拨:乘除法是同级运算,它们进行混合时,可从左至右逐步计算,注意符号.还可以将式子中的除法变为乘法,直接进行乘法运算.注意:除法没有结合律,即“a ÷b ÷c =a ÷(b ÷c )”是错误的.解法一:72×(-8)÷(-12)——从左到右先乘法再除法逐步计算.=-(72×8)÷(-12)=-576÷(-12)=+48.解法二:72×(-8)÷(-12) =+(72×8×121)——确定符号,除法变乘法=48【过关试题】一、填空题:1、 -2的倒数是 ;-0.2的倒数是 ,负倒数是 。
新人教版七年级上册数学1
亲爱的读者: 春去春又回,新桃换旧符。在那桃花盛开的地方,在这醉人芬芳的季节,愿你生活像春天一 样阳光,心情像桃花一样美丽,感谢你的阅读。
≈ 1.68 ; (3)-5.28÷0.75×(-3.14)≈ 22.11 ; (4)37.5-(-4.2)×31÷(-16)≈29.36 .
课堂小结
有理数的加减乘除混合运算的运算顺序: 如无括号,则按照先乘除,后加减的顺序进行;
如有括号,先算括号里面的;同级运算中,要按从 左到右的顺序来计算;计算中要能合理运用运算律 进行简化计算.
除法没有分配律.
例题精析
正确解法:
(12)
1 3
+
1 4
1 6
(12)
4 12
+
3 12
2 12
(12) 5 12
(12) 12 5
在有理数的混合运算中有两种常见的错误: 一是运算顺序出现错误;
144 . 5
二是乱用运算律.
例题精析
例4 某公司去年1~3月平均每月亏损1.5万元,4~6月平均盈利2万元, 7~10月平均盈利1.7万元,11~12月平均亏损2.3万元,这个公司去年 总盈亏情况如何?
课堂精练
1 计算12-7×(-4)+8÷(-2)的结果是( D )
A.-24
B.-20
C.6
D.36
2 若两个数的和为0,且商为-1,则这两个数( C )
A.互为相反数
B.互为倒数
C.互为相反数且不为零 D.以上都不对
课堂精练
3 根据有理数的运算律,下列等式正确的是( B )
A. a-b=b-a
1 3
1 2
3 11
5 4
.
解:(1)25×6+(-127)=150+(-127)=23.
2.2.2有理数的除法法则(第1课时)(课件)七年级数学上册(人教版2024)
a b c
故 的值为
1或 3.
的值为±1或±3.
故
a b c
例8
一天, 果果与维维利用温差测量山峰的高度,果果在山顶测得温度是-
1℃,维维此时在山脚测得温度是5℃.已知该地区高度每增加100米,气温
大约降低0.8℃, 这个山峰的高度为多少? (山脚海拔0米)
解: 依题意得
( 36 ) 9
解:原式=
= (36 9)
= 4
12 3
(2)
25 5
12 3
解:原式=
25 5
12 5
=
25 3
4
=
5
例2
(1) (-15) ÷ (-3) ;
(3) (-0.75) ÷0.25;
到右的顺序进行计算).
例5
2 1 1
计算
计算:
50 ( )
3 4 6
2
1
1
3
48 48 = 48 48 4 48 6 = 408;
3
4
6
2
8
3 2
3
(方法二)原式 = 48 ( ) = 48 = 192;
(法二)原式=
12 12 12
B.和为负
4.如果a÷b=0,那么(
A.a=0,b=0
B
D.无法确定
C
)
C.积为正
)
B.a=0,b≠0
C. a≠ 0,b=0
D.a=0
D.异号
5.计算(-12)÷4 的结果等于(
A.-3
B.3
6.下列运算错误的是(
人教版七年级数学上册第一单元《1.4.2有理数的除法法则》教案设计
人教版七年级数学上册第一单元《有理数的除法法则》教案设计1.4.2有理数的除法第1课时有理数的除法法则1.理解有理数除法的意义,掌握有理数除法法则,会进行有理数除法运算;(重点)2.通过学习有理数除法法则,体会转化思想,会将乘除混合运算统一为乘法运算.(难点)一、情境导入1.计算:(1)25×0.2=________; (2)12×(-3)=________;(3)(-1.2)×(-2)=________;(4)(-125)×0=________. 2.由(-3)×4=________,再由除法是乘法的逆运算,可得(-12)÷(-3)=4,(-12)÷4=______.同理,(-3)×(-4)=________,12÷(-4)=________,12÷(-3)=________. 观察上面的算式及计算结果,你有什么发现?换一些算式再试一试.二、合作探究探究点一:有理数的除法及分数化简【类型一】 直接判定商的符号和绝对值进行除法运算计算:(1)(-15)÷(-3);(2)12÷(-14); (3)(-0.75)÷(0.25).解析:采用有理数的除法:两数相除,同号得正,异号得负,并把绝对值相除解答. 解:(1)(-15)÷(-3)=+(15÷3)=5;(2)12÷(-14)=-(12÷14)=-48; (3)(-0.75)÷(0.25)=-(0.75÷0.25)=-3.方法总结:注意先确定运算的符号.根据“同号得正,异号得负”的法则进行计算.本题属于基础题,考查对有理数的除法运算法则掌握的程度. 【类型二】 分数的化简 化简下列分数: (1)-21-7=________;(2)-36=________;(3)-6-0.3=________;(4)-28-49=________. 解析:(1)-21-7=-7×3-7=3;(2)-36=-3(-3)×(-2)=-12;(3)-6-0.3=(-0.3)×20-0.3=20;(4)-28-49=2849=4×77×7=47. 解:(1)3;(2)-12;(3)20;(4)47. 方法总结:化简分数时要注意分子、分母的符号,同号结果为正,异号结果为负.【类型三】 将除法转化为乘法进行计算计算:(1)(-18)÷(-23); (2)16÷(-43)÷(-98). 解析:本题可采用有理数的除法:除以一个数就等于乘以这个数的倒数解答.解:(1)(-18)÷(-23)=(-18)×(-32)=18×32=27; (2)16÷(-43)÷(-98)=16×(-34)×(-89)=16×34×89=323. 方法总结:此题考查了有理数的除法运算,有理数的除法运算通常利用除以一个数等于乘以这个数的倒数化为乘法运算来求.【类型四】 根据a b ,a +b 的符号,判断a 和b 的符号如果a +b <0,a b >0,那么这两个数( )A .都是正数B .符号无法确定C .一正一负D .都是负数解析:∵a b>0,根据“两数相除,同号得正”可知,a 、b 同号,又∵a +b <0,∴可以判断a 、b 均为负数.故选D.方法总结:此题考查了有理数乘法和加法法则,将二者综合考查是考试中常见的题型,此题的侧重点在于考查学生的逻辑推理能力.探究点二:有理数的乘除混合运算计算:(1)-2.5÷58×(-14); (2)(-47)÷(-314)×(-112). 解析:(1)把小数化成分数,同时把除法变成乘法,再根据有理数的乘法法则进行计算即可.(2)首先把乘除混合运算统一成乘法,再确定积的符号,然后把绝对值相乘,进行计算即可.解:(1)原式=-52×85×(-14)=52×85×14=1; (2)原式=(-47)×(-143)×(-32)=-(47×143×32)=-4. 方法总结:解题的关键是掌握运算方法,先统一成乘法,再计算.三、板书设计有理数除法法则:1.任何数除以一个不为0的数,等于乘以这个数的倒数,即a ÷b =a ×1b(b ≠0). 2.(1)两个数相除,同号为正,异号得负,并把绝对值相除.(2)0除以任何一个不为0的数,都得0.让学生深刻理解除法是乘法的逆运算,对学好本节内容有比较好的作用.教学设计是可以采用课本的引例做为探究除法法则的导入.让学生自己探索并总结除法法则,同时也让学生对比乘法法则和除法法则,加深印象.教学时应该使学生掌握除法的两种运算方法:1.在除式的项和数字不复杂的情况下直接运用除法法则求解;2.在多个有理数进行除法运算或者是乘、除混合运算时应该把除法转化为乘法,然后统一用乘法的运算律解决问题.1.4.2 有理数的除法第1课时有理数的除法法则教学目标:1.了解有理数除法的定义.2.经历探索有理数除法法则的过程,会进行有理数的除法运算.3.会化简分数.教学重点:正确应用法则进行有理数的除法运算.教学难点:怎样根据不同的情况来选取适当的方法求商.教与学互动设计:(一)创设情境,导入新课1.小明从家里到学校,每分钟走50米,共走了20分钟,问小明家离学校有多远?(50×20=1000)放学时,小明仍然以每分钟50米的速度回家,应该走多少分钟?(1000÷50=20).2.从上面这个例子你可以发现,有理数除法与有理数乘法之间满足怎样的关系?(二)合作交流,解读探究1.比较大小:8÷(-4)8×(-);(-15)÷3 (-15)×;(-1)÷(-2)(-1)×(-).小组合作完成上面题目的填空,探讨并归纳出有理数的除法法则.2.运用法则计算:(1)(-15)÷(-3);(2)(-12)÷(-);(3)(-8)÷(-).观察商的符号及绝对值同被除数和除数的关系,探讨归纳有理数除法法则的另一种说法.3.师生共同完成课本P34例5,P35例6、例7.乘除混合运算该怎么做呢?通过课本P36例7的学习,由学生自己叙述计算的方法:先将除法转换为乘法,然后确定积的符号,最后求出结果.(三)应用迁移,巩固提高1.计算:(1)(-36)÷9;(2)(-63)÷(-9);(3)(-)÷;(4)0÷3;(5)1÷(-7);(6)(-6.5)÷0.13;(7)(-)÷(-);(8)0÷(-5).2.化简下列分数:(1);(2);(3);(4).(四)总结反思,拓展升华本节课大家一起学习了有理数除法法则.有理数的除法计算有2种方法:一是根据“除以一个数等于乘以这个数的倒数”,二是根据“两数相除,同号得正,异号得负,并把绝对值相除”.一般能整除时用第二种方法.(五)课堂跟踪反馈夯实基础1.选择题(1)如果一个数除以它的倒数,商是1,那么这个数是()A.1B.2C.-1D.±1(2)若两个有理数的商是负数,那么这两个数一定是()A.都是正数B.都是负数C.符号相同D.符号不同提升能力2.计算题(1)(-2)÷(-);(2)3.5÷÷(-1); (3)-÷(-7)÷(-);(4)(-1)÷(+)÷(-).第2课时 有理数的加、减、乘、除混合运算1.能熟练地运用有理数的运算法则进行有理数的加、减、乘、除混合运算;(重点)2.能运用有理数的运算律简化运算;(难点)3.能利用有理数的加、减、乘、除混合运算解决简单的实际问题.(难点)一、情境导入1.在小学我们已经学习过加、减、乘、除四则运算,其运算顺序是先算________,再算________,如果有括号,先算__________里面的.2.观察式子3×(2+1)÷(5-12),里面有哪几种运算,应该按什么运算顺序来计算? 二、合作探究 探究点一:有理数的加、减、乘、除混合运算计算:(1)(2-13)×(-6)-(1-12)÷(1+13); (2)(-316-113+114)×(-12). 解析:(1)先计算括号内的,再按“先乘除,后加减”的顺序进行;(2)可考虑利用乘法的分配律进行简便计算.解:(1)(2-13)×(-6)-(1-12)÷(1+13)=53×(-6)-12÷43=(-10)-12×34=-10-38=-1038; (2)(-316-113+114)×(-12)=(-3-16-1-13+1+14)×(-12)=(-3-14)×(-12)=-3×(-12)-14×(-12)=3×12+14×12=36+3=39. 方法总结:在进行有理数的混合运算时,应先观察算式的特点,若能应用运算律进行简化运算,就先简化运算,在简化运算后,再利用混合运算的顺序进行运算.探究点二:运用计算器进行有理数的混合运算用计算器计算:-25÷5-15×(-23). 解析:不同品牌的计算器的操作方法可能有所不同,具体参见计算器的使用说明. 解:按键顺序为(-)25÷5-15×(-)2÷3=就可得结果为5.探究点三:有理数混合运算的应用已知海拔每升高1000m ,气温下降6℃,某人乘热气球旅行,在地面时测得温度是8℃,当热气球升空后,测得高空温度是-1℃,热气球的高度为________m.解析:此类问题考查有理数的混合运算,解题时要正确理解题意,列出式子求解,由题意可得[8-(-1)]×(1000÷6)=1500(m),故填1500.方法总结:本题的考点是有理数的混合运算,熟练运用运算法则是解题的关键.三、板书设计1.有理数加减乘除混合运算的顺序:先算乘除,再算加减,有括号的先算括号里面的,同级运算从左到右依次进行.2.利用运算律简化运算3.运用计算器进行有理数的混合运算4.有理数混合运算的应用这节课主要讲授了有理数的加减乘除混合运算.运算顺序“先乘除后加减”学生早已熟练掌握,让学生学会分析题目中所包含的运算是本节课的重难点.在教学时,要注意结合学生平时练习中出现的问题,及时纠正和指导,培养学生良好的解题习惯.1.4.2 有理数的除法第4课时有理数的加、减、乘、除混合运算教学目标:掌握有理数加、减、乘、除运算的法则及运算顺序,能够熟练运算.教学重难点:如何按有理数的运算顺序,正确而合理地进行计算.教与学互动设计:(一)创设情境,导入新课观察式子×(-)×÷里有哪种运算,应该按什么运算顺序来计算较简便?(二)合作交流,解读探究引导首先计算小括号里的减法,然后再按照从左到右的顺序进行乘除运算,这样运算的步骤基本清楚了.另外带分数进行乘除运算时,必须化成假分数.注意有理数混合运算的步骤:先乘除,后加减,有括号先算括号里面的.(三)应用迁移,巩固提高【例1】(1)-3÷2÷(-2);(2)-×(-1)÷(-2);(3)-÷×(-)÷(-);(4)20÷(-4)×5+5×(-3)÷15-7.【例2】某公司去年1~3月平均每月亏损1.5万元,4~6月平均每月盈利2万元,7~10月平均每月盈利1.7万元,11~12月平均每月亏损2.3万元.这个公司去年总的盈亏情况如何?(四)总结反思,拓展升华引导学生一起小结:①有理数的运算顺序:先乘除,后加减,有括号的先算括号里面的;②要注意认真审题,根据题目意思正确选择途径,仔细运算,注意检查,使结果无误.(五)课堂跟踪反馈夯实基础1.选择题(1)下列各数中互为倒数的是()A.4和-B.-0.75和-C.-1和1D.-5和(2)若a<b<0,那么下列式子成立的是()A.<B.ab<1C.>1D.<12.若a、b互为倒数,c、d互为相反数,m为最大的负整数,则+ab+= .提升能力3.计算题(1)(-4)÷(-2)÷(-1);(2)(-5)÷(-1)××(-2)÷7;(3)1÷(-1)+0÷(-5.6)-(-4.2)×(-1);(4)÷(+-).4.已知a、b互为相反数,c、d互为倒数,x的绝对值为1,求3x-(a+b+cd)-x.。
人教版七年级数学上册-有理数的除法法则精品教案
1.4.2 有理数的除法第1课时 有理数的除法法则学习目标:1.会将有理数的除法转化成乘法2.会进行有理数的乘除混合运算3.会求有理数的倒数4.认识有理数的除法,经历除法的运算过程.5.理解除法法则,体验除法与乘法的转化关系.6.掌握有理数的除法及乘除混合运算.教学重点:正确进行有理数除法的运算,正确求一个有理数的倒数教学难点:如何进行有理数除法的运算,求一个负数的倒数教与学互动设计:一、情境导入1.计算:(1)25×0.2=________; (2)12×(-3)=________;(3)(-1.2)×(-2)=________;(4)(-125)×0=________. 2.由(-3)×4=________,再由除法是乘法的逆运算,可得(-12)÷(-3)=4,(-12)÷4=______.同理,(-3)×(-4)=________,12÷(-4)=________,12÷(-3)=________. 观察上面的算式及计算结果,你有什么发现?换一些算式再试一试.(一)创设情境,导入新课1.小明从家里到学校,每分钟走50米,共走了20分钟,问小明家离学校有多远?(50×20=1000) 放学时,小明仍然以每分钟50米的速度回家,应该走多少分钟?(1000÷50=20).2.从上面这个例子你可以发现,有理数除法与有理数乘法之间满足怎样的关系?一、知识链接1.填一填:2.有理数的乘法法则:两数相乘,同号________,异号_______,并把_________相乘. 一个数同0相乘,仍得________.3.进行有理数乘法运算的步骤:(1)确定_____________;(2)计算____________.二、新知预习1.根据除法是乘法的逆运算填空:(+2)×(+3)=+6(+6)÷(+2)=_________,对162+⨯=__________.(-2)×(-3)=+6(+6)÷(-2)=_________,比16()2+⨯-=__________.2.对比观察上述式子,你有什么发现?(二)合作交流,解读探究1.比较大小:8÷(-4)8×(-);(-15)÷3 (-15)×;(-1)÷(-2)(-1)×(-).小组合作完成上面题目的填空,探讨并归纳出有理数的除法法则.2.运用法则计算:(1)(-15)÷(-3);(2)(-12)÷(-);(3)(-8)÷(-).观察商的符号及绝对值同被除数和除数的关系,探讨归纳有理数除法法则的另一种说法.3.师生共同完成课本P34例5,P35例6、例7.乘除混合运算该怎么做呢?通过课本P36例7的学习,由学生自己叙述计算的方法:先将除法转换为乘法,然后确定积的符号,最后求出结果.(三)应用迁移,巩固提高1.计算:(1)(-36)÷9;(2)(-63)÷(-9);(3)(-)÷;(4)0÷3;(5)1÷(-7);(6)(-6.5)÷0.13;(7)(-)÷(-);(8)0÷(-5).2.化简下列分数:(1);(2);(3);(4).(四)总结反思,拓展升华本节课大家一起学习了有理数除法法则.有理数的除法计算有2种方法:一是根据“除以一个数等于乘以这个数的倒数”,二是根据“两数相除,同号得正,异号得负,并把绝对值相除”.一般能整除时用第二种方法.(五)课堂跟踪反馈夯实基础1.选择题(1)如果一个数除以它的倒数,商是1,那么这个数是()A.1B.2C.-1D.±1(2)若两个有理数的商是负数,那么这两个数一定是()A.都是正数B.都是负数C.符号相同D.符号不同提升能力2.计算题(1)(-2)÷(-);(2)3.5÷÷(-1);(3)-÷(-7)÷(-);(4)(-1)÷(+)÷(-).板书设计有理数除法法则:1.任何数除以一个不为0的数,等于乘以这个数的倒数,即a ÷b =a ×1b(b ≠0). 2.(1)两个数相除,同号为正,异号得负,并把绝对值相除.(2)0除以任何一个不为0的数,都得0.让学生深刻理解除法是乘法的逆运算,对学好本节内容有比较好的作用.教学设计是可以采用课本的引例做为探究除法法则的导入.让学生自己探索并总结除法法则,同时也让学生对比乘法法则和除法法则,加深印象.教学时应该使学生掌握除法的两种运算方法:1.在除式的项和数字不复杂的情况下直接运用除法法则求解;2.在多个有理数进行除法运算或者是乘、除混合运算时应该把除法转化为乘法,然后统一用乘法的运算律解决问题.。
人教版七年级数学上册-有理数的除法法则教案
1.4.2 有理数的除法 第1课时 有理数的除法法则学习目标:1.会将有理数的除法转化成乘法2.会进行有理数的乘除混合运算3.会求有理数的倒数4.认识有理数的除法,经历除法的运算过程.5.理解除法法则,体验除法与乘法的转化关系.6.掌握有理数的除法及乘除混合运算.教学重点:正确进行有理数除法的运算,正确求一个有理数的倒数 教学难点:如何进行有理数除法的运算,求一个负数的倒数一、情境导入1.计算:(1)25×0.2=________;(2)12×(-3)=________;(3)(-1.2)×(-2)=________; (4)(-125)×0=________.2.由(-3)×4=________,再由除法是乘法的逆运算,可得(-12)÷(-3)=4,(-12)÷4=______.同理,(-3)×(-4)=________,12÷(-4)=________,12÷(-3)=________. 观察上面的算式及计算结果,你有什么发现?换一些算式再试一试.一、知识链接1.填一填:2.有理数的乘法法则:两数相乘,同号________,异号_______,并把_________相乘. 一个数同0相乘,仍得________.3.进行有理数乘法运算的步骤:(1)确定_____________;(2)计算____________.二、新知预习1.根据除法是乘法的逆运算填空:(+2)×(+3)=+6(+6)÷(+2)=_________,对162+⨯=__________.(-2)×(-3)=+6(+6)÷(-2)=_________,比16()2+⨯-=__________.2.对比观察上述式子,你有什么发现?二、合作探究探究点一:有理数的除法及分数化简【类型一】直接判定商的符号和绝对值进行除法运算计算:(1)(-15)÷(-3); (2)12÷(-14);(3)(-0.75)÷(0.25).解析:采用有理数的除法:两数相除,同号得正,异号得负,并把绝对值相除解答. 解:(1)(-15)÷(-3)=+(15÷3)=5; (2)12÷(-14)=-(12÷14)=-48;(3)(-0.75)÷(0.25)=-(0.75÷0.25)=-3.方法总结:注意先确定运算的符号.根据“同号得正,异号得负”的法则进行计算.本题属于基础题,考查对有理数的除法运算法则掌握的程度.【类型二】 分数的化简化简下列分数:(1)-21-7=________;(2)-36=________;(3)-6-0.3=________;(4)-28-49=________.解析:(1)-21-7=-7×3-7=3;(2)-36=-3(-3)×(-2)=-12;(3)-6-0.3=(-0.3)×20-0.3=20;(4)-28-49=2849=4×77×7=47.解:(1)3;(2)-12;(3)20;(4)47.方法总结:化简分数时要注意分子、分母的符号,同号结果为正,异号结果为负.【类型三】 将除法转化为乘法进行计算计算:(1)(-18)÷(-23);(2)16÷(-43)÷(-98).解析:本题可采用有理数的除法:除以一个数就等于乘以这个数的倒数解答. 解:(1)(-18)÷(-23)=(-18)×(-32)=18×32=27;(2)16÷(-43)÷(-98)=16×(-34)×(-89)=16×34×89=323.方法总结:此题考查了有理数的除法运算,有理数的除法运算通常利用除以一个数等于乘以这个数的倒数化为乘法运算来求.【类型四】 根据a b,a +b 的符号,判断a 和b 的符号如果a +b <0,a b>0,那么这两个数( )A .都是正数B .符号无法确定C .一正一负D .都是负数解析:∵a b>0,根据“两数相除,同号得正”可知,a 、b 同号,又∵a +b <0,∴可以判断a 、b 均为负数.故选D.方法总结:此题考查了有理数乘法和加法法则,将二者综合考查是考试中常见的题型,此题的侧重点在于考查学生的逻辑推理能力.探究点二:有理数的乘除混合运算计算:(1)-2.5÷58×(-14);(2)(-47)÷(-314)×(-112).解析:(1)把小数化成分数,同时把除法变成乘法,再根据有理数的乘法法则进行计算即可.(2)首先把乘除混合运算统一成乘法,再确定积的符号,然后把绝对值相乘,进行计算即可.解:(1)原式=-52×85×(-14)=52×85×14=1;(2)原式=(-47)×(-143)×(-32)=-(47×143×32)=-4.方法总结:解题的关键是掌握运算方法,先统一成乘法,再计算.板书设计有理数除法法则:1.任何数除以一个不为0的数,等于乘以这个数的倒数,即a ÷b =a ×1b(b ≠0).2.(1)两个数相除,同号为正,异号得负,并把绝对值相除. (2)0除以任何一个不为0的数,都得0.让学生深刻理解除法是乘法的逆运算,对学好本节内容有比较好的作用.教学设计是可以采用课本的引例做为探究除法法则的导入.让学生自己探索并总结除法法则,同时也让学生对比乘法法则和除法法则,加深印象.教学时应该使学生掌握除法的两种运算方法:1.在除式的项和数字不复杂的情况下直接运用除法法则求解;2.在多个有理数进行除法运算或者是乘、除混合运算时应该把除法转化为乘法,然后统一用乘法的运算律解决问题.。
142有理数的除法(第1课时有理数的除法法则)(学案)-七年级数学上册(人教版)
1.4.2 有理数的除法(第1课时有理数的除法法则)学案1. 掌握有理数除法法则,会进行有理数的除法运算.2. 会进行有理数的乘除混合运算.3. 体会转化的思想在解决数学问题中的作用.★知识点1:有理数的除法法则有理数的除法法则有两个:①除以一个不等于0的数,等于乘这个数的倒数.用此法则可将除法转化为乘法,从而将有理数乘除混合运算,统一成乘法运算.②两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,都得0.此法则可与有理数乘法法则类比,适合能整除时的情形.要通过具体的问题灵活选择运用这两个法则.★知识点2:倒数概念的再升华倒数概念的理解在学习了有理数除法之后可以从这两个方面考虑:①零没有倒数,正数的倒数仍为正数,负数的倒数仍为负数.②求一个数的倒数的方法,根据定义由1除以这个数,或将这个数的分子、分母颠倒位置即可.1. 有理数的除法法则:.2. 两数相除,,,.3. a(a≠0)的倒数是.4. 若两个有理数的商为正数,则这两个数一定.1. 说一说有理数的乘法法则.2. 计算:(1)(-5)×(-3);(2)(-7)×4;(3)2934⎛⎫⎛⎫⨯-⎪ ⎪⎝⎭⎝⎭;(4)(-6)×0.3. 求下列各数的倒数:(1)25-;(2)-1;(3)0.25;(4)16.问题1:某班4名同学参加计算机技能测试,以80分为标准,超过的分数记为正,不足的记为负,记录如下:+15,-10,-9,-4,求这4名同学的平均成绩,并说明这4名同学平均成绩是超过80分还是不足80分?追问:求这4位同学的平均成绩应如何列式?之后再看这4位同学的平均成绩是超过80分还是不足80分.问题2:你能根据除法是乘法的逆运算,以及小学学习的除法运算的经验,说明如何计算(-8)÷4吗?追问1:把-8换为其它数,是否也能得到类似的结论?你能用上一句话叙述上述结论吗?追问2:换其它数的除法进行类似的讨论,是否仍有除以a(a≠0)可以转化为乘1a?问题3:你能归纳一下上述讨论结果,给出有理数除法法则吗?除以一个不等于0的数,等于乘这个数的倒数.用符号表示就是a÷b=a•1b(b≠0).追问:你能类比有理数乘法法则,给出除法法则的另一种说法吗?两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0.例1:计算:(1)(-36)÷9; (2)123255⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭.例2:化简下列分数:(1)123-; (2)4512--.例3:计算: (1)()512557⎛⎫-÷- ⎪⎝⎭; (2)512.584⎛⎫-÷⨯- ⎪⎝⎭.1. 填空题:(1)若a ,b 互为相反数,且a ≠b ,则a b = ,2b +2a = . (2)当a >0时,aa = .(3)若a >b ,a b<0,则a ,b 的符号是 . 2. 化简下列分数:(1)0.63-; (2)()2712---.3.计算:(1)936911⎛⎫-÷ ⎪⎝⎭;(2)()()112415⎛⎫-÷-÷- ⎪⎝⎭;(3)()280.2535⎛⎫⎛⎫-⨯-÷- ⎪ ⎪⎝⎭⎝⎭.4.计算:(1)31112424⎛⎫⎛⎫⎛⎫-⨯-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(2)()21354⎡⎤⎛⎫⎛⎫-÷-÷- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.1.(3分)(2022•玉林)计算:2÷(-2)=.2.(3分)(2020•山西1/23)计算1(6)()3-÷-的结果是()A.-18B.2C.18D.-21. 有理数除法法则是什么?两种表述形式,分别有什么特点?2. 本节课的学习,你体会到哪些数学思想方法?(一)有理数除法法则:(1)1a b ab÷=⨯(b≠0).(2)两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,都得0(二)有理数除法化为有理数乘法以后,可以利用有理数乘法的运算律简化运算.(三)乘除混合运算:往往先将除法化为乘法,然后确定积的符号,最后求出结果(乘除混合运算按从左到右的顺序进行计算)【参考答案】1. 除以一个不等于0的数等于乘这个数的倒数;2. 同号得正;异号得负;并把绝对值相除;3. 1a;4.同号.1.两数相乘,同号得正,异号得负,并把绝对值相乘;2.(1)15;(2)-28;(3)32-;(4)0.3.(1)52-;(2)-1;(3)4;(4)116.例1:解:(1)(-36)÷9=-36×19=-4; 或(-36)÷9=-(36÷9)=-4;(2)12312542552535⎛⎫⎛⎫⎛⎫⎛⎫-÷-=-⨯-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 或1231254+2552535⎛⎫⎛⎫⎛⎫-÷-=⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 例2:解:(1)()1212343-=-÷=-; (2)4512--=(-45)÷(-12)=45÷12=154. 例3:解:(1)()512557⎛⎫-÷- ⎪⎝⎭ =512557⎛⎫+⨯ ⎪⎝⎭ =151125575⨯+⨯=1257+ =1257; (2)512.584⎛⎫-÷⨯- ⎪⎝⎭=581254⨯⨯=1.答案:1.(1)-1,0; (2)-1;(3)a >0,b <0.2.(1)15-;(2)94-. 3.(1)1411-;(2)52-;(3)6415-. 4.(1)解:原式=33214294-⨯⨯=-; (2)解:原式=()2515343588⎛⎫-÷⨯=-⨯=- ⎪⎝⎭.1.【解答】解:2÷(-2)=-(2÷2)=-1.故答案为:-1.2.【解答】解:1(6)()(6)(3)183-÷-=-⨯-=. 故选:C .。
人教版七年级上数学有理数的除法法则
利用上面的除法法则计算下列各题:
(1)-54 (-9);(2)-27 3;
(3)0 (-7); (4)-24 (-6).
思考:从上面我们能发现商的符号有什么规律?
有理数除法法则(二) 两数相除,同号得正,异号得负,并把绝对值相除. 0除以任何一个不等于0的数,都得0
思考: 到现在为止我们有了两个除法法则,那么两
第一章 有理数
1.4 有理数的乘除法
1.4.2 有理数的除法
第1课时 有理数的除法法则
学习目标
1.认识有理数的除法,经历除法的运算过程. 2.理解除法法则,体验除法与乘法的转化关系. 3.掌握有理数的除法及乘除混合运算.(重点、难 点)
导入新课
复习引入
倒数的定义你还记得吗?
你能很快地说出下列各数的倒数吗?
个法则是不是都可以用于解决两数相除呢?
要点归纳: 1.两个法则都可以用来求两个有理数相除. 2.如果两数相除,能够整除的就选择法则二,
不能够整除的就选择用法则一.
典例精析
例1 计算(1)(-36) 9;
(2) (
12 25
)
(
53).
解:(1)(-36) 9=-(36 9)=-4;
(2)( 12 ) ( 3) ( 12 ) ( 5) 4 .
__a____0_, b___0___.
(4)若﹣3x=12,则x=____4___.
课堂小结
一、有理数除法法则: 1. a b a 1 (b 0)
b 2.两数相除,同号得正,异号得负,并把绝对 值相除.
0除以任何一个不等于0的数,都得0
二、有理数除法化为有理数乘法以后,可以利 用有理数乘法的运算律简化运算
七年级上册数学,有理数的除法
七年级上册数学,有理数的除法一、有理数除法的定义。
1. 定义。
- 有理数的除法是已知两个有理数的积与其中一个因数,求另一个因数的运算。
例如,如果ab = c(a≠0),那么c÷ a=b。
2. 与乘法的关系。
- 有理数的除法是有理数乘法的逆运算。
就像在整数运算中一样,乘法和除法互为逆运算,在有理数范围内也是如此。
二、有理数除法的法则。
1. 法则一:除以一个不等于0的数,等于乘这个数的倒数。
- 用字母表示为a÷ b=a×(1)/(b)(b≠0)。
例如,2÷(1)/(3)=2×3 = 6。
- 这里要特别注意除数不能为0,因为0没有倒数。
2. 法则二:两数相除,同号得正,异号得负,并把绝对值相除。
- 例如,(+8)÷(+2)=+(8÷2)=4;( - 8)÷( - 2)=+(8÷2)=4;(+8)÷(-2)=-(8÷2)= - 4;(-8)÷(+2)=-(8÷2)= - 4。
- 对于0除以任何一个不等于0的数,结果都为0,即0÷ a = 0(a≠0)。
三、有理数除法的运算步骤。
1. 确定符号。
- 根据“两数相除,同号得正,异号得负”的法则,先确定商的符号。
例如,计算(-12)÷3,因为-12和3异号,所以商为负。
2. 计算绝对值。
- 确定符号后,再把被除数和除数的绝对值相除。
对于(-12)÷3,| - 12|÷|3| = 12÷3 = 4,结合前面确定的符号,结果为-4。
3. 对于多个有理数相除的情况。
- 可以按照从左到右的顺序依次进行计算,也可以先将除法转化为乘法,再利用乘法的运算律进行简便计算。
例如,计算(-2)÷(1)/(2)÷(-3)。
- 方法一:按照顺序计算,(-2)÷(1)/(2)=(-2)×2=-4,-4÷(-3)=(4)/(3)。
人教版数学七年级上册1.2《有理数的除法》教案
人教版数学七年级上册1.2《有理数的除法》教案一. 教材分析《有理数的除法》是初中数学的重要内容,人教版七年级上册第1.2节主要介绍有理数的除法法则。
学生在学习了有理数的加减乘法之后,进一步学习有理数的除法,有助于加深对有理数运算规律的理解。
本节内容通过具体的例子,引导学生掌握有理数除法的基本法则,为学生以后学习更复杂的数学运算打下基础。
二. 学情分析学生在进入七年级之前,已经掌握了整数的除法运算,但对负数的除法了解不多。
因此,在教学过程中,教师需要利用学生已有的知识,通过具体的实例,引导学生理解负数除法的规律。
同时,学生需要在学习过程中,培养运算的准确性,以及解决问题的能力。
三. 教学目标1.了解有理数除法的基本概念,掌握有理数除法的法则。
2.能够正确进行有理数的除法运算。
3.培养学生的运算能力,提高学生解决问题的能力。
四. 教学重难点1.教学重点:有理数除法的基本法则,有理数除法的运算过程。
2.教学难点:负数除法运算的理解,以及运算过程的准确性。
五. 教学方法采用问题驱动法,通过实例引导学生自主探究有理数除法的规律,以小组合作交流的方式,共同解决问题。
同时,结合讲授法,对学生的疑问进行解答,帮助学生深入理解有理数除法。
六. 教学准备1.教学PPT,包括有理数除法的定义,除法法则,以及相关的实例。
2.练习题,包括不同类型的有理数除法题目。
3.教学黑板,用于板书关键知识点和运算过程。
七. 教学过程1.导入(5分钟)教师通过一个简单的实例,引导学生回顾整数的除法运算,激发学生的学习兴趣。
例如:5除以3等于多少?引导学生思考,引出有理数除法的学习。
2.呈现(10分钟)教师通过PPT展示有理数除法的定义,除法法则,以及相关的实例。
让学生初步了解有理数除法的基本概念。
3.操练(10分钟)教师提出练习题目,让学生独立完成。
例如:计算以下有理数除法题目:(1)8除以3;(2)-6除以4;(3)7除以-2。
教师在这个过程中,对学生的疑问进行解答,帮助学生掌握有理数除法的运算过程。
最新人教版初中七年级上册数学《有理数的除法法则》导学案
1.4.2 有理数的除法第1课时 有理数的除法法则学习目标:1.会将有理数的除法转化成乘法2.会进行有理数的乘除混合运算3.会求有理数的倒数教学重点:正确进行有理数除法的运算,正确求一个有理数的倒数教学难点:如何进行有理数除法的运算,求一个负数的倒数教学过程:一、复习引入:1、倒数的概念;2、说出下列各数对应的倒数:1、-43、-(-4.5)、|-23| 3、现实生活中,一周内的每天某时的气温之和可能是正数,可能是0,也可能是负数,如盐城市区某一周上午8时的气温记录如下:周日 周一 周二 周三 周四 周五 周六-30c -30c -20c -3°c 0°c -2°c -1°c问:这周每天上午8时的平均气温是多少?二、探索新知:1、解:[(-3)+(-3)+(-2)+(-3)+0+(-2)+(-1)]÷7,即:(-14)÷7=?(除法是乘法的逆运算)什么乘以7等于-14?因为(-2)×7=-14,所以: (-14)÷7=-2又因为:(-14)×71=-2 所以:(-14)÷7=(-14)×71 2、有理数除法法则除以一个不等于0的数等于乘以这个数的倒数;0除以任何一个不等于0的数都等于0有此可见:“除以一个数,等于乘以这个数的倒数”,在引进负数以后同样成立。
问题1、计算:(1)36÷(-9) (2)(48)÷(-6)(2)0÷(-8) (3)(-21)÷(-32) (4)0.25÷(-0.5) (5)(-2476)÷(-6) (6)(-32)÷4×(-8) (7)17×(-6)÷5★1、能整除时,将商的符号确定后,直接将绝对值相除;2、不能整除时,将除数变为它的倒数,再用乘法;3、有乘除混合运算时,注意运算顺序。
七年级上册数学人教版1.4.2第1课时 有理数的除法法则
1.
2.两数相除,同号得正,异号得负,并把绝对值相除.
0除以任何一个不等于0的数,都得0
两个法则都可以用来求两个有理数相除.
如果两数相除,能够整除的就选择法则二,不能够整除的就选择用法则一.
第五步:
师友反馈
环节1:师友检测
1.填空
(1)-40÷(-5)=____; (2)(-36)÷6=____;
(1)-54 (-9);(2)-27 3;
(3)0 (-7); (4)-24 (-6).
2.完成下列问题,结合有理数乘法法则,观察有理数除法是否也有类似的性质呢?
8×9=____, 72÷9=____,
(-4)×3 =____, (-12)÷(-4)=____,
(-4)×(-3)=____, 12÷(-4)=____,
(1)因为( )×(-4 )=8,
所以8÷(-4)=
(2) =
观察8÷(-4)与 有什么关系?并讨论:除号和除数都发生了怎样的变化?
环节2:教师讲解
除号变乘号
8 ÷(-4)=
除数变为它的倒数
有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数.
符号表示为:
第三步:
分层提高
环节1 师友训练
1.利用上面的除法法则计算下列各题:
0×(-6)=____, 0÷(-6)=____,
例1:(1)(-36)÷9
例2:
环节2 教师提升
两数相除的法则:两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数,都得0 .
第四步:
总结归纳
环节1:师友归纳
•这节课我学会(懂得)了……
•这节课我想对师傅(学友)说……
人教版初一数学上册有理数的乘除(基础)知识讲解
有理数的乘除(基础)【学习目标】1.会根据有理数的乘法法则进行乘法运算,并运用相关运算律进行简算;2.理解乘法与除法的逆运算关系,会进行有理数除法运算;3. 巩固倒数的概念,能进行简单有理数的加、减、乘、除混合运算;4. 培养观察、分析、归纳及运算能力.【要点梳理】要点一、有理数的乘法1.有理数的乘法法则:(1)两数相乘,同号得正,异号得负,并把绝对值相乘;(2)任何数同0相乘,都得0.要点诠释: (1) 不为0的两数相乘,先确定符号,再把绝对值相乘.(2)当因数中有负号时,必须用括号括起来,如-2与-3的乘积,应列为(-2)×(-3),不应该写成-2×-3.2. 有理数的乘法法则的推广:(1)几个不等于0的数相乘,积的符号由负因数的个数决定.当负因数有奇数个时,积为负;当负因数的个数有偶数个时,积为正;(2)几个数相乘,如果有一个因数为0,那么积就等于0.要点诠释:(1)在有理数的乘法中,每一个乘数都叫做一个因数.(2)几个不等于0的有理数相乘,先根据负因数的个数确定积的符号,然后把各因数的绝对值相乘.(3)几个数相乘,如果有一个因数为0,那么积就等于0.反之,如果积为0,那么至少有一个因数为0.3. 有理数的乘法运算律:(1)乘法交换律:两个数相乘,交换因数的位置,积相等,即:ab=ba.(2)乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.即:abc=(ab)c=a(bc).(3)乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.即:a(b+c)=ab+ac.要点诠释:(1)在交换因数的位置时,要连同符号一起交换.(2)乘法运算律可推广为:三个以上的有理数相乘,可以任意交换因数的位置,或者把其中的几个因数相乘.如abcd=d(ac)b.一个数同几个数的和相乘,等于把这个数分别同这几个数相乘,再把积相加.如a(b+c+d)=ab+ac+ad.(3)运用运算律的目的是“简化运算”,有时,根据需要可以把运算律“顺用”,也可以把运算律“逆用”.要点二、有理数的除法1.倒数的意义:乘积是1的两个数互为倒数.要点诠释:(1)“互为倒数”的两个数是互相依存的.如-2的倒数是12-,-2和12-是互相依存的;(2)0和任何数相乘都不等于1,因此0没有倒数;(3)倒数的结果必须化成最简形式,使分母中不含小数和分数;(4)互为倒数的两个数必定同号(同为正数或同为负数).2. 有理数除法法则:法则一:除以一个不等于0的数,等于乘这个数的倒数,即1(0)a b ab b÷=≠. 法则二:两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,都得0. 要点诠释:(1)一般在不能整除的情况下应用法则一,在能整除时应用法则二方便些. (2)因为0没有倒数,所以0不能当除数.(3)法则二与有理数乘法法则相似,两数相除时先确定商的符号,再确定商的绝对值. 要点三、有理数的乘除混合运算由于乘除是同一级运算,应按从左往右的顺序计算,一般先将除法化成乘法,然后确定积的符号,最后算出结果.要点四、有理数的加减乘除混合运算有理数的加减乘除混合运算,如无括号,则按照“先乘除,后加减”的顺序进行,如有括号,则先算括号里面的. 【典型例题】类型一、有理数的乘法运算1.(2015•台湾)算式(﹣1)×(﹣3)×之值为何?( ) A .B .C .D .【思路点拨】根据有理数的乘法法则,先确定符号,然后把绝对值相乘即可 【答案】D . 【解析】 解:原式=××=.【总结升华】本题考查的是有理数的乘法,掌握乘法法则是解题的关键,计算时,先确定符号,然后把绝对值相乘.2.(1)54(3)1(0.25)65⎛⎫-⨯⨯-⨯- ⎪⎝⎭;(2)(1-2)(2-3)(3-4)…(19-20); (3)(-5)×(-8.1)×3.14×0.【答案与解析】几个不等于零的数相乘,首先确定积的符号,然后把绝对值相乘.因数是小数的要化为分数,是带分数的通常化为假分数,以便能约分.几个数相乘,有一个因数为零,积就为零.(1)54(3)1(0.25)65⎛⎫-⨯⨯-⨯- ⎪⎝⎭591936548=-⨯⨯⨯=-;(2)(1-2)(2-3)(3-4)…(19-20)19-(1)(1)(1)(1)1=-⨯-⨯-⨯⋅⋅⋅⨯-=-个(1)相乘;(3)(-5)×(-8.1)×3.14×0=0.【总结升华】几个不等于零的数相乘,积的符号由负因数的个数确定,与正因数的个数无关.当因数中有一个数为0时,积为0.3.运用简便方法计算:(1)5105(12)6⎛⎫-⨯+⎪⎝⎭(2)(-0.25)×0.5×(-100)×4(3)111 (5)323(6)3333 -⨯+⨯+-⨯【思路点拨】 (1)根据题目特点,可以把51056-折成51056--,再运用乘法分配律进行计算.(2)运用乘法结合律,把第1、4个因式结合在一起.(3)逆用乘法分配律:ab+ac=a(b+c).【答案与解析】解:(1)5105(12)6⎛⎫-⨯+⎪⎝⎭5105(12)6⎛⎫=--⨯+⎪⎝⎭510512126=-⨯-⨯(分配律)1260101270=--=-(2)(-0.25)×0.5×(-100)×4=(-4×0.25)×[0.5×(-100)] (交换律)=-1×(-50)=50(结合律)(3)111(5)323(6)3333-⨯+⨯+-⨯11[(5)2(6)]39333⎛⎫=-++-⨯=-⨯+⎪⎝⎭(逆用乘法的分配律)27330=--=-【总结升华】首先要观察几个因数之间的关系和特点.适当运用“凑整法”进行交换和结合.举一反三:【变式1】计算16.8×+7.6×的结果是.【答案】7.解:原式=8.4×=(8.4+7.6)×=16×=7.【高清课堂:有理数乘除 381226 多个有理数相乘例2】【变式2】542(1)()( 2.5)(4)12253-⨯⨯-⨯-;4(2)(0.125)()16(7)7-⨯-⨯⨯-【答案】(545147(1)=1225239-⨯⨯⨯=-原式 4(2)(0.1258)2(7)87=-⨯⨯⨯⨯=-原式类型二、有理数的除法运算4.计算:(1)(-32)÷(-8) (2)112(1)36÷-【答案与解析】 (1)(-32)÷(-8)=+(32÷8)= 4 ……用法则二进行计算.(2)117776212363637⎛⎫⎛⎫⎛⎫÷-=÷-=⨯-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭……用法则一进行计算. 【总结升华】(1)乘法、除法的符号法则是一致的,两数相乘除,同号得正,异号得负;(2)除法的两个法则是一致的,应学会灵活选择. 举一反三:【高清课堂:有理数乘除 381226 有理数除法(法则)】 【变式】计算:(1) 1.25(0.375)-÷-【答案】原式535810()()48433=+÷=+⨯=类型三:有理数的乘除混合运算5.(2015秋•德惠市校级期中)计算:(﹣2)×.【思路点拨】原式利用除法法则变形,约分即可得到结果. 【答案与解析】解:原式=2××3×3=9.【总结升华】此题考查了有理数的乘除法,熟练掌握运算法则是解本题的关键. 举一反三:【变式1】计算:(-9)÷(-4)÷(-2)【答案】 (-9)÷(-4)÷(-2)=-9÷4÷2=1199428-⨯⨯=- 【变式2】计算:(1)14410(2)893-÷⨯÷- (2)341731755⎛⎫⎛⎫⎛⎫-÷-÷⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭【答案】 (1)14410(2)893-÷⨯÷-194181941243108432843216⎛⎫=-⨯⨯⨯-=⨯⨯⨯= ⎪⎝⎭(2)341731755⎛⎫⎛⎫⎛⎫-÷-÷⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭3511717435⎛⎫⎛⎫⎛⎫=-⨯-⨯⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 351171174354⎛⎫=-⨯⨯⨯=-⎪⎝⎭类型四、有理数的加减乘除混合运算6. 计算(1)113512641212⎛⎫⎛⎫-+-+÷- ⎪ ⎪⎝⎭⎝⎭; (2)111351226412⎛⎫⎛⎫-÷-+-+ ⎪ ⎪⎝⎭⎝⎭【答案与解析】(1)113512641212⎛⎫⎛⎫-+-+÷- ⎪ ⎪⎝⎭⎝⎭1135(12)26412⎛⎫=-+-+⨯- ⎪⎝⎭ 1135(12)(12)(12)(12)26412⎛⎫=-⨯-+⨯--⨯-+⨯- ⎪⎝⎭=6-2+9-5=8(2)法1:原式=16295181121()()121212121288-+-+⎛⎫⎛⎫-÷=-÷-=⨯= ⎪ ⎪⎝⎭⎝⎭法2:由(1)知:1135182641212⎛⎫⎛⎫-+-+÷-= ⎪ ⎪⎝⎭⎝⎭,所以16295112128-+-+⎛⎫⎛⎫-÷= ⎪ ⎪⎝⎭⎝⎭ 【总结升华】除法没有分配律,在进行有理数的除法运算时,若除数是和的形式,一般先算括号内的,然后再进行除法运算,也可以仿照方法2利用倒数关系巧妙解决. 举一反三: 【变式】75318 1.456 3.9569618⎛⎫-+⨯-⨯+⨯⎪⎝⎭ 【答案】 原式()753181818 1.456 3.9569618⎛⎫=⨯-⨯+⨯+-⨯+⨯⎪⎝⎭(14153)( 1.45 3.95)6=-++-+⨯2 2.5617=+⨯= 类型五:利用有理数的加减乘除,解决实际问题7.气象统计资料表明,高度每增加1000米,气温就降低6℃.如果现在地面的气温是27℃,那么8000米的高空的气温大约是多少?【思路点拨】解决此题的关键是明确高度变化与气温变化的关系.由于“高度每增加1000米,气温就降低6℃”,8000米的高空比地面高度增加8000米,因此气温降低6×8=48℃,由此便可求出高空的气温. 【答案与解析】解:80002762748211000-⨯=-=-(℃)因此8000米的高空的气温大约是-21℃.【总结升华】本题是生活实际中的问题,关键是读懂题意,弄清各数量之间的关系,再列出正确的算式.附录资料:方程的意义(基础)知识讲解【学习目标】1.正确理解方程的概念,并掌握方程、等式及算式的区别与联系;2. 正确理解一元一次方程的概念,并会判断方程是否是一元一次方程及一个数是否是方程的解;3. 理解并掌握等式的两个基本性质.【要点梳理】【高清课堂:从算式到方程一、方程的有关概念】要点一、方程的有关概念1.定义:含有未知数的等式叫做方程.要点诠释:判断一个式子是不是方程,只需看两点:一.是等式;二.是含有未知数.2.方程的解:使方程左右两边的值相等的未知数的值,叫做方程的解.要点诠释:判断一个数(或一组数)是否是某方程的解,只需看两点:①.它(或它们)是方程中未知数的值;②将它(或它们)分别代入方程的左边和右边,若左边等于右边,则它们是方程的解,否则不是.3.解方程:求方程的解的过程叫做解方程.4.方程的两个特征:(1).方程是等式;(2).方程中必须含有字母(或未知数).【高清课堂:从算式到方程二、一元一次方程的有关概念】要点二、一元一次方程的有关概念定义:只含有一个未知数(元),并且未知数的次数都是1,这样的方程叫做一元一次方程.要点诠释:“元”是指未知数,“次”是指未知数的次数,一元一次方程满足条件:①首先是一个方程;②其次是必须只含有一个未知数;③未知数的指数是1;④分母中不含有未知数.【高清课堂:从算式到方程三、解方程的依据——等式的性质】要点三、等式的性质1.等式的概念:用符号“=”来表示相等关系的式子叫做等式.2.等式的性质:等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.即:如果,那么 (c为一个数或一个式子) .等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.即:如果,那么;如果,那么.要点诠释:(1)根据等式的两条性质,对等式进行变形,等式两边必须同时进行完全相同的变形; (2) 等式性质1中,强调的是整式,如果在等式两边同加的不是整式,那么变形后的等式不一定成立,如x=0中,两边加上得x+,这个等式不成立;(3) 等式的性质2中等式两边都除以同一个数时,这个除数不能为零.【典型例题】类型一、方程的概念1.下列各式哪些是方程?①3x-2=7;②4+8=12;③3x-6;④2m-3n=0;⑤3x2-2x-1=0;⑥x+2≠3;⑦251x=+;⑧28553x x-=.【答案与解析】解:②虽是等式,但不含未知数;③不是等式;⑥表示不等关系,故②、③、⑥均不符合方程的概念.①、④、⑤、⑦、⑧符合方程的定义,所以方程有:①、④、⑤、⑦、⑧.【总结升华】方程的判断必须看两点,一个是等式,二是含有未知数.当然未知数的个数可以是一个,也可以是多个.举一反三:【变式】下列四个式子中,是方程的是()A. 3+2=5B. x=1C. 2x﹣3<0D. a2+2ab+b2 【答案】B.2.(2015春•孟津县期中)下列方程中,以x=2为解的方程是()A. 4x﹣1=3x+2B. 4x+8=3(x+1)+1C. 5(x+1)=4(x+2)﹣1D. x+4=3(2x﹣1)【答案】C.【总结升华】检验一个数是不是方程的解,根据方程解的概念,只需将所给字母的值分别代入方程的左右两边,若两边的值相等,则这个数就是此方程的解,否则不是.举一反三:【变式】下列方程中,解是x=3的是( )A.x+1=4 B.2x+1=3 C.2x-1=2 D.217 3x+=类型二、一元一次方程的相关概念3.(2016春•南江县期末)在下列方程中①x2+2x=1,②﹣3x=9,③x=0,④3﹣=2,⑤=y+是一元一次方程的有()个.A.1 B.2 C.3 D.4【思路点拨】根据一元一次方程的定义:只含有一个未知数,并且未知数的最高次数是1次的整式方程,可以逐一判断. 【答案】B.【解析】解:①x 2+2x=1,是一元二次方程;②﹣3x=9,是分式方程;③x=0,是一元一次方程;④3﹣=2,是等式,不是方程;⑤=y+是一元一次方程;一元一次方程的有2个,故选:B . 【总结升华】本题考查了一元一次方程的定义,解决本题的关键是熟记一元一次方程的定义.举一反三:【变式】下列方程中是一元一次方程的是__________(只填序号). ①2x-1=4;②x =0;③ax =b ;④151x-=-. 【答案】①②.类型三、等式的性质4.用适当的数或整式填空,使所得的结果仍为等式,并说明根据等式的哪一条性质,以及怎样变形得到的. (1)如果41153x -=,那么453x =+________; (2)如果ax+by =-c ,那么ax =-c +________; (3)如果4334t -=,那么t =________. 【答案与解析】解: (1). 11;根据等式的性质1,等式两边都加上11; (2).(-by ); 根据等式的性质1,等式两边都加上-by ; (3).916-; 根据等式的性质2,等式两边都乘以34-. 【总结升华】先从不需填空的一边入手,比较这一边是怎样变形的,再根据等式的性质,对另一边也进行同样的变形.举一反三:【变式】下列说法正确的是( ).A .在等式ab =ac 两边都除以a ,可得b =c.B .在等式a =b 两边除以c 2+1,可得2211a bc c =++. C .在等式b ca a=两边都除以a ,可得b =c. D .在等式2x =2a-b 两边都除以2,可得x =a-b. 【答案】B.类型四、设未知数列方程5.根据问题设未知数并列出方程:一次考试共有25道选择题,做对一道得4分,做错或不做一道倒扣1分.若小明想考80分,他要做对多少道题?【答案与解析】解:设小明要做对x道题,则有(25-x)道做错或没做的题,依题意有:4x-(25-x)×1=80.可以采用列表法探究其解显然,当x=21时,4x-(25-x)×1=80.所以小明要做对21道题.【总结升华】根据题意设出合适的未知量,并根据等量关系列出含有未知量的等式.举一反三:【变式】根据下列条件列出方程.(l)x的5倍比x的相反数大10;(2)某数的34比它的倒数小4;(3)甲、乙两人从学校到公园,走这段路甲用20分钟,乙用30分钟,如果乙比甲早5分钟出发,问甲用多少时间追上乙?【答案】(1)5x-(-x)=10;(2)设某数为x,则1344xx-=;(3)设甲用x分钟追上乙,由题意得11(5)3020x x+=.。
有理数的除法人教版七年级数学上册
•
7.阅历之所以会对读书所得产生深浅 有别的 影响, 原因在 于阅读 并非是 对作品 的简单 再现, 而是一 个积极 主动的 再创造 过程, 人生的 经历与 生活的 经验都 会参与 进来。
•
8.少年时阅历不够丰富,洞察力、理 解力有 所欠缺 ,所以 在读书 时往往 容易只 看其中 一点或 几点, 对书中 蕴含的 丰富意 义难以 全面把 握。
知识点2.有理数的乘除混合运算
7. 计算:
重难易错
D
9. 若ab<0,则 的值( B )
A. 是正数 B. 是负数 C. 是非正数 D. 是非负数
一级基础巩固练
10. 若被除数是 是( D )
三级检测练
,除数比被除数小 ,,则商
-5
二级能力提升练
13. 填空:
(1)
24
72
16 37.5
三级拓展延伸练
•
1.情节是叙事性文学作品内容构成的 要素之 一,是叙 事作品 中表现 人物之 间相互 关系的 一系列 生活事 件的发 展过程 。
•
2.它由一系列展示人物性格,反映人物 与人物 、人物 与环境 之间相 互关系 的具体 事件构 成。
•
3.把握好故事情节,是欣赏小说的基础,也是整 体感知 小说的 起点。 命题者 在为小 说命题 时,也必 定以情 节为出 发点,从整体 上设置 理解小 说内容 的试题 。通常 从情节 梳理、 情节作 用两方 面设题 考查。
(2)一个数的倒数是-1,这个数是_____;
(3)用最简分数表示:24分钟=_______小时.
14. 如果两个有理数的和除以它们的积,所得的商为 0,那么这两个有理数( B ) A. 互为倒数 B. 互为相反数但均不为0 C. 有一个数为0 D. 都等于0
人教版七年级数学上册-有理数的除法法则导学案
1.4.2 有理数的除法第1课时 有理数的除法法则学习目标:1.会将有理数的除法转化成乘法2.会进行有理数的乘除混合运算3.会求有理数的倒数4.认识有理数的除法,经历除法的运算过程.5.理解除法法则,体验除法与乘法的转化关系.6.掌握有理数的除法及乘除混合运算.教学重点:正确进行有理数除法的运算,正确求一个有理数的倒数教学难点:如何进行有理数除法的运算,求一个负数的倒数教学过程:一、情境导入1.计算:(1)25×0.2=________; (2)12×(-3)=________;(3)(-1.2)×(-2)=________;(4)(-125)×0=________. 2.由(-3)×4=________,再由除法是乘法的逆运算,可得(-12)÷(-3)=4,(-12)÷4=______.同理,(-3)×(-4)=________,12÷(-4)=________,12÷(-3)=________. 观察上面的算式及计算结果,你有什么发现?换一些算式再试一试.一、复习引入:1、倒数的概念;2、说出下列各数对应的倒数:1、-43、-(-4.5)、|-23| 3、现实生活中,一周内的每天某时的气温之和可能是正数,可能是0,也可能是负数,如盐城市区某一周上午8时的气温记录如下:周日 周一 周二 周三 周四 周五 周六-30c -30c -20c -3°c 0°c -2°c -1°c问:这周每天上午8时的平均气温是多少?一、知识链接1.填一填:2.有理数的乘法法则:两数相乘,同号________,异号_______,并把_________相乘.一个数同0相乘,仍得________.3.进行有理数乘法运算的步骤:(1)确定_____________;(2)计算____________.二、新知预习1.根据除法是乘法的逆运算填空:(+2)×(+3)=+6(+6)÷(+2)=_________, 对 162+⨯=__________. (-2)×(-3)=+6(+6)÷(-2)=_________, 比 16()2+⨯-=__________.2.对比观察上述式子,你有什么发现?二、探索新知:1、解:[(-3)+(-3)+(-2)+(-3)+0+(-2)+(-1)]÷7,即:(-14)÷7=?(除法是乘法的逆运算)什么乘以7等于-14?因为(-2)×7=-14,所以: (-14)÷7=-2又因为:(-14)×71=-2 所以:(-14)÷7=(-14)×71 2、有理数除法法则除以一个不等于0的数等于乘以这个数的倒数;0除以任何一个不等于0的数都等于0有此可见:“除以一个数,等于乘以这个数的倒数”,在引进负数以后同样成立。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
活动3 知识归纳
1.除以一个不等于0的数,等于乘以这个数的 倒数 , 即a÷b= a·1b(b≠0) .
2.两数相除,同号得 正 ,异号得 负 ,并把绝对值相除.
3.0除以任何一个不等于0的数,都得 0 .
4.分数可以理解为 分子 除以 分母 ,分数线代表 除号 .
活动4 例题与练习
例1 计算:
(2) −12
分数可以 理解为分子除 以分母.
= (-45) ÷ (-12)
= 45 ÷12
15 =4
例3 计算:
(1)(-0.33)÷-31÷(-11);
解:原式
=-13030×3×111 =-1090
(2)-213÷-116÷-154.
解:原式
=-37×67×95 =-190
练习
1.教材P35 练习.
2.教材P36 第1个练习第1题.
3.如果a+b<0,且 b >0,那么下列结论成立的是 a
A.a>0,b>0
B.a<0,b<0
C.a>0,b<0
D.a<0,b>0
( B)
练习
4.当a=-3,b=-2,c=5时,a÷|b|÷c的值为
A.-1
B.-
3 10
C.
3 10
D.1
5.已知|x|=4,|y|=
(1) (-36)÷9;
解:(1) (-36)÷9 =- (36÷9 ) =- 4;
(2)
12 − 25
÷
3 −5
(2)
12
3
− 25 ÷ − 5
12
5
= − 25 × − 3
4 =5
例2 化简下列分数:
(1)
−12 3
;
解:(1)
−12 3
= (-12) ÷3
=- 4;
(2)
−45 −12
;
−45
第一章 有理数 1. 4 有理数的乘除法 1. 4. 2 有理数的除法 第1课时 有理数的除法法则
一、教学目标
1.理解有理数除法的意义,熟练掌握有理数除法法法运算转化为乘法运算,培养转化思想;通过运算,培养运算能 力.
二、教学重难点
重点
有理数的除法法则.
难点
灵活运用运算律进行有理数的乘除混合运算.
三、教学设计
活动1 新课导入 乘积是1的两个数互为倒数. 说出下列各数的倒数:-4,3,-2,-25,151.
解:上面各数的倒数分别是 -14,31,-12,-52,56.
活动2 探究新知
教材P34 内容.
提出问题: (1)我们知道除法是乘法的逆运算,怎么把一个有理数除法变成有理数的 乘法? (2)在有理数的除法中,0可以作为被除数和除数吗?为什么? (3)两数相除,商的符号与两数的符号有什么关系? (4)分数线可以代表什么? (5)你能归纳出有理数的除法法则吗?
12 ,且xy<0,则
x y
的值等于
-8
.
( B)
练习
6.在如图所示的运算流程中,若输出的数y=-3,则输入的数 x= -6或-7 .